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Abstract Phylogenetic trees based on mtDNA polymor-

phisms are often used to infer the history of recent human

migrations. However, there is no consensus on which

method to use. Most methods make strong assumptions

which may bias the choice of polymorphisms and result in

computational complexity which limits the analysis to a

few samples/polymorphisms. For example, parsimony

minimizes the number of mutations, which biases the

results to minimizing homoplasy events. Such biases may

miss the global structure of the polymorphisms altogether,

with the risk of identifying a ‘‘common’’ polymorphism as

ancient without an internal check on whether it either is

homoplasic or is identified as ancient because of sampling

bias (from oversampling the population with the poly-

morphism). A signature of this problem is that different

methods applied to the same data or the same method

applied to different datasets results in different tree topol-

ogies. When the results of such analyses are combined, the

consensus trees have a low internal branch consensus. We

determine human mtDNA phylogeny from 1737 complete

sequences using a new, direct method based on principal

component analysis (PCA) and unsupervised consensus

ensemble clustering. PCA identifies polymorphisms rep-

resenting robust variations in the data and consensus

ensemble clustering creates stable haplogroup clusters. The

tree is obtained from the bifurcating network obtained

when the data are split into k = 2,3,4,…,kmax clusters, with

equal sampling from each haplogroup. Our method

assumes only that the data can be clustered into groups

based on mutations, is fast, is stable to sample perturbation,
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uses all significant polymorphisms in the data, works for

arbitrary sample sizes, and avoids sample choice and ha-

plogroup size bias. The internal branches of our tree have a

90% consensus accuracy. In conclusion, our tree recreates

the standard phylogeny of the N, M, L0/L1, L2, and L3

clades, confirming the African origin of modern humans

and showing that the M and N clades arose in almost

coincident migrations. However, the N clade haplogroups

split along an East-West geographic divide, with a

‘‘European R clade’’ containing the haplogroups H, V, H/

V, J, T, and U and a ‘‘Eurasian N subclade’’ including

haplogroups B, R5, F, A, N9, I, W, and X. The haplogroup

pairs (N9a, N9b) and (M7a, M7b) within N and M are

placed in nonnearest locations in agreement with their

expected large TMRCA from studies of their migrations

into Japan. For comparison, we also construct consensus

maximum likelihood, parsimony, neighbor joining, and

UPGMA-based trees using the same polymorphisms and

show that these methods give consistent results only for the

clade tree. For recent branches, the consensus accuracy for

these methods is in the range of 1–20%. From a compari-

son of our haplogroups to two chimp and one bonobo

sequences, and assuming a chimp-human coalescent time

of 5 million years before present, we find a human mtDNA

TMRCA of 206,000 ± 14,000 years before present.

Keywords mtDNA phylogeny � Principal component

analysis � Unsupervised consensus ensemble clustering �
Clade tree � Homoplasy � Time to most recent common

ancestor

Introduction

Although it is agreed that modern humans emerged from

Africa between 50 and 70 KYBP (thousand years before

present) (Cann et al. 1987), details about their dispersal and

migratory routes are still unclear (Harpending et al. 2005;

Stringer 2001). Population movements are often inferred

from trees based on mtDNA and Y chromosome polymor-

phisms. However, it is well known that each method often

gives different trees depending on which samples and

polymorphisms are used, and different methods give dif-

ferent trees for the same samples and polymorphisms. This

is because of implicit assumptions in each method which

bias it toward certain tree topologies, e.g., maximum par-

simony (MP) (Densmore 2001; Stewart 1993; Yang 1996)

minimizes the number of polymorphisms, maximum like-

lihood (ML) (Hasegawa et al. 1991; Jin et al. 2006; Minh

et al. 2005; Saitou 1990; Sanderson 1994; Sullivan 2005;

Yang 1997) optimizes a likelihood function (Drummond

and Rodrigo 2000; Kumar and Gadagkar 2000; Ota and Li

2000; Pearson et al. 1999; Saitou and Nei 1987; Studier and

Keppler 1988; Tamura et al. 2004), etc. Verifying the

robustness of the inferred trees is compounded by the

computational complexity of these methods, which limits

them to small sample sizes and few polymorphisms (Fel-

senstein 1996). Estimating their accuracy using bootstrap

analysis on samples and polymorphisms often shows poor

consensus on internal branches (see below). Sampling bia-

ses in the data also skew the results in unknown ways.

In this paper, we develop a new method using principal

component analysis (PCA) (Jolliffe 2002) and consensus

ensemble clustering that avoids these problems. The pro-

cedure we follow is described below.

Materials and Methods

PCA is used to divide the data into clusters at multiple

scales and identify robust polymorphisms that distinguish

them. The PCA eigenvectors define linear combinations of

polymorphisms which represent a clustering hierarchy of

the samples. The number of clusters and sample member-

ship in these clusters as discovered by PCA is not affected

by sampling bias because multiple instances of similar

samples will cluster close together. Thus, PCA is a simple

and visual way to separate samples into clades/haplogroups

in the presence of unknown sampling bias. One expects

that ancient polymorphisms, representing clusters that have

drifted far apart in mtSNP space, will appear on leading

eigenvectors. More recent splits will be represented by

nonleading eigenvalues and eigenvectors. A simple method

we use to exploit this hierarchy of clusters is to first use

PCA to separate samples into clades and then, recursively

repeating the analysis within each cluster, stratify further

into subclades, haplogroups, subhaplogroups, etc.

The polymorphisms representing structure at each stage

in the hierarchy can be read off from the high absolute value

coefficients of the leading PCA eigenvectors. Using these

polymorphisms, the samples are divided into an optimum

number of haplogroups using consensus ensemble clustering

(Kaufmann and Rousserw 1990; Monti et al. 2003; Strehl

and Ghosh 2002). This method produces robust haplogroups

by averaging over several clustering methods (probabilistic,

agglomerative, and hierarchical) and many bootstrapped

datasets. The optimum number of clusters (kmax) is inferred

using statistical measures (silhouette score (Kaufmann and

Rousserw 1990) and gap statistics (Tibshirani et al. 2001)).

The robustness and statistical significance of the clusters and

polymorphisms used are validated by averaging over 10 2:1

training/test bootstrapped datasets on which we repeat the

complete clustering analysis. We require a polymorphism to

have a classification accuracy of at least 90% in the training/

test validations to be included in the analysis. We also

require a 90% agreement across data perturbation and
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clustering methods for a pair of samples to be assigned to the

same haplogroup.

When we create k ? 1 clusters, we do not use the pre-

vious clustering into k clusters. Nevertheless, we find that

the k ?1 clusters consist of k – 1 clusters from the previous

clustering plus two more obtained from the splitting of one

of the clusters at level k. These recursive bifurcations as

k ? k ? 1 are strong, inherent features of the data which we

interpret as branch splits on the tree. The polymorphisms on

branches are identified by a frequency analysis at each split.

Using equal sampling from each haplogroup cluster (to

minimize sampling bias) and repeating the consensus

clustering, the phylogeny is inferred from the sequence of

splits as the number of clusters increases. The bifurcating

network obtained in the reclustering defines an unrooted

tree as the number of clusters (k) increases from 2 to kmax.

The root of the tree is identified in two ways: (i) as the

internal node equidistant (i.e., with the same average

number of mutations) from the leaf haplogroup clusters—

this can be identified by simulating Poisson dynamics on the

branch polymorphisms; and (ii) as the internal node closest

to an outgroup (we use a consensus chimpanzee sequence).

Our method uses the global, ‘‘natural’’ structure of all

polymorphisms in the data to infer phylogeny. It is insen-

sitive to data perturbations, is robust against recent

polymorphisms, and avoids sampling bias as much as

possible. It was extensively validated on synthetic data

generated by numerical simulation.

Results

Identifying Clades, Inferring Old Polymorphisms,

and Building the Clade Tree

One thousand seven hundred thirty-seven complete

mtDNA sequences were downloaded in April 2006 from

the public databases http://www.mitomap.org/ and http://

www.genpat.uu.se/mtDB/ and pairwise aligned with the

Revised Cambridge Reference Sequence (rCRS) (see

http://www.mitomap.org/mitoseq.html) using the algo-

rithm Stretcher (Myers and Miller 1998) in Emboss (http://

emboss.sourceforge.net). In addition, we used two chimp

and one bonobo sequences in our analysis from NCBI

(NCBI references: chimp 1, D38113; chimp 2,: X93335;

bonobo, D38116). The data had 3177 mtSNPs, of which

90.5% were transitions, 4% transversions, and 5.5% mul-

tiallelic. This creates a 1737 9 3177 matrix Mi,j whose

entries correspond to polymorphisms relative to rCRS.

PCA of the matrix M identified 166 eigenvalues repre-

senting 85% of the variation in the data corresponding to

410 polymorphisms identified from the top 25% coeffi-

cients by absolute value in their eigenvectors.

Supplementary Table STI lists the mtDNA sequences at all

polymorphic loci for all samples used in our study and the

haplogroup assignments by NCBI and from the methods

described here.

Figure 1 shows the projection of the samples on the first

two principal components, which represents 20% of the

total variation. The five clades N, L0/L1, L2, L3, and M

(Bandelt et al. 2006) are clearly visible. These were sepa-

rated into clade clusters using consensus hierarchical

clustering on the 410 polymorphisms, averaging over 50

bootstrapped datasets and cutting and combining the con-

sensus hierarchical tree at the fifth level. This gave an

agreement matrix of size 1737 9 1737 for the fraction of

datasets where two samples were in the same cluster. Using

simulated annealing (Cerny 1985; Kirkpatrick et al. 1983)

this matrix was resorted into a diagonal block form to

identify the clade clusters, whose identity was largely

confirmed by the sample labels in the database. In the cases

where our results differed from the database labels, we

found that the labels were incorrect and we updated the

database entries.
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Fig. 1 Results of PCA on all

1737 samples and all 3177

polymorphic loci. The first two

principal components account

for 20% of the variation in the

data and readily split the

samples into the five major

clades
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A frequency analysis comparing all 3177 loci across the

clades seen in PCA identified 34 polymorphisms with a

frequency of [95% in one clade and \5% in at least one

other clade (see Supplementary Table STII). Sampling

equally and repeatedly from each clade, we built a consensus

cluster bifurcating tree using these 34 mtSNPs and rooted it

with respect to the consensus chimpanzee sequence

(D38113 and X93335 from http://www.ncbi.nlm.nih.gov/

entrez). This tree is shown in Fig. 2 and is labeled with 30

polymorphisms which have a unique signature for the clades

(i.e., either a frequency [90% or a frequency \10% in one

of clade and the opposite signature in all other clades). In

agreement with the ‘‘standard mtDNA tree’’ ((Bandelt et al.

2006; Ingman et al. 2000); http://www.mitomap.org/mito

map-phylogeny.pdf). Figure 2 confirms that the oldest clade

is L0/L1, followed by L2, followed by M/N/L3. Although

our results suggest that the M and N clades resulted from two

distinct migrations, we are unable to resolve the trifurcation

in the M/N/L3 split in Fig. 2. We find that the time interval

between these two migrations is too small to be resolved

because (a) the markers distinguishing the L3 clade from L2

and L0/L1 are identically expressed in M and N and (b) the

number of robust mtSNPs accumulated by the M and N

clades since the ‘‘out of Africa’’ event are almost the same

(382 vs 373; see below).

PCA for the N Clade Shows B Closer to A Than

to T/J/H/V

Repeating the PCA using all 3177 polymorphisms on only

the samples in the N clade gives the results shown in

Fig. 3. The haplogroup labels shown are the consensus

labels of their NCBI assignments. In the pc1-pc2 projec-

tion, the leftmost clusters are the T and J haplogroups. The

cluster on the extreme right contains a mixture of V and H

samples. The cluster in the middle is a mixture of samples

from A, B, W, F, I, and X. These four clusters remain well

separated in higher PC projections as well. We also veri-

fied the stability of these four clusters by repeating the

analysis on 10 random 2:1 split training/test datasets cre-

ated from the N-clade samples. The [A,B] haplogroups

always remained in the middle cluster and the distance

between [B,J] or [B,T] was consistently and significantly

larger than that between [A,B]. This strongly suggests that

haplogroups B and A separated from each other more

recently than did either B from J or B from T. It also

suggests that the so called ‘‘R subclade’’ of the N clade

(Bandelt et al. 2006), usually identified by the synony-

mous polymorphism at locus 12705, is too heterogeneous

over the N clade to have originated in a single founder

event.

Fig. 2 Consensus clustering tree for the five clades using 30

distinctive mtSNPs with a frequency [90% or a frequency \10% in

exactly one clade and the opposite signature in the other clades.

Rooting used a consensus chimpanzee as outgroup. The M/N/L3 split

is shown as a trifurcation. The time difference between the two

migrations cannot be resolved because (a) the mtSNPs distinguishing

the L3 clade from L2 and L0/L1 are identically expressed in M and N

and (b) the number of robust mtSNPs identified by PCA and ensemble

clustering for the M- and N-clade samples are almost equal. Note that

the polymorphisms 8701A, 9540T, and 10873T, shown here as

defining polymorphisms for the N clade, are wild type with respect to

rCRS
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The N and M Subtrees from PCA and Clustering

Separate PCA of the samples in the N and M clades in Fig. 1

identified 373 and 382 ‘‘useful’’ polymorphisms respec-

tively representing 85% of the variation in each clade.

Unsupervised consensus ensemble k-clustering and 10-fold

training/test validation identified 24 and 23 robust haplo-

groups in N and M, respectively. Of the 373 polymorphisms

in N, 140 had either C 90% or B 10% frequency in at least

one or more clusters in N. Of these, 93 were distinctive, i.e.,

specific to only one cluster. For M, the corresponding

numbers were 141 of 382, with 93 distinctive for the non-D

branch and 78 for the D branch. These polymorphisms are

listed in Supplementary Table STIII. The near-equality of

the numbers of robust polymorphisms for the N and M

clades (373/382 and 140/141) suggests that the N- and M-

clade migrations ‘‘Out of Africa’’ were almost coincident.

Comparing the cluster samples to their haplogroup

labels, we were able to assign haplogroups to 13 previously

unlabeled samples in the data. Eighty-five of 1015 samples

in N and 122 of 585 samples in M had fluctuating mem-

bership in the clusters and were assigned to ‘‘Bulk_N*’’

and ‘‘Bulk_M*’’ clusters, respectively. These samples

belong to subhaplogroups that are too poorly sampled to

meet our criteria of robustness under bootstrap. Supple-

mentary Table STI gives the list of all sample labels, their

source, and their haplogroup assignments in the NCBI

listing and using our methods.

We selected equal numbers of samples repeatedly from

each of the 24 clusters for N and 23 clusters for M, repe-

ated the k-clustering, created the consensus bifurcating

network, and found the internal root which was equidistant

from the leaves using Poisson statistics on the branch

polymorphisms to construct the clade subtrees for N and

M. The root for each clade was also verified by ensuring

that it was the internal node which was closest to the

consensus chimp sequence. Details of the clustering

methods used are given in Appendix A. The resulting trees

are shown in Figs. 4a and b. In the M clade, we found 13 D

and 10 non-D haplogroups. Of these, we identified several

subgroups of D4, some of which have been identified

previously in the literature (Kong et al. 2006; Tanaka et al.

2004). We label these as D4b1a, D4b1b, D4b2a, D4b2b,

D4d1a, and D4d1b, extending their nomenclature in the

literature. As a validation exercise, we tested the classifi-

cation accuracy of the 1015 samples in N and the 585

samples in M using the branch polymorphisms in Fig. 4a

and b. We found that, except for samples in BULK_N* and

-3

-2

-1

0

1

1

2

-3 -2 -1 0

pc1

p
c2

A

B

N

-4

-3

-2

-1

0

1

1

2

3

-3 -2 -1 0 2

pc2

p
c3

A

B

N

-4

-3

-2

-1

0

1

2

3

-3 -2 -1 0 2

pc1

p
c3

A

B

N

H,V

H,V

H,V

T

J

T
J

T

J

1 3

2 3

Fig. 3 N-clade PCA projections. The haplogroup labels for the

cluster samples are from NCBI. Note that the distance between B and

A is much smaller than that between B and any of T/J/H/U/V. This

suggests that the B and A split is more recent than the split of B from

any of T/J/H/U/V. There is no evidence for the so-called ‘‘R

subclade,’’ which would include B with T/J/H/U/V. The relative

positions of these haplogroups also remain the same in other PCA

projections
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BULK_M*, each sample assigned to a haplogroup exhib-

ited more than 95% of the polymorphisms from the root to

the leaf in the tree.

The L Subtree

The L0/L1, L2, and L3 samples analyzed by PCA showed

3, 3, and 5 clusters, respectively, and had 9, 15, and 15

eigenvectors and 235, 167, and 133 mtSNPs, respectively,

which represented 85% variation in the data. The L sub-

trees found in our analysis are shown in Fig. 4c. The

African sampling in our dataset is too sparse to allow any

additional detail on the L phylogeny, given our stringent

criteria for robustness to data perturbation and minimum

haplogroup size.

Discussion

We have described a new method to create mtDNA phy-

logeny using PCA and consensus ensemble clustering but

without any additional simplifying assumptions. Our

method first identifies all the polymorphisms in the data

which distinguish the clusters and then uses them to

Fig. 4 N- and M-clade subtrees from PCA and consensus ensemble

clustering. Using equal sampling from each haplogroup, we obtained

a bifurcating network by splitting the data into 2,3,…kmax clusters.

This network was rooted by (a) using Poisson dynamics to find the

internal branch equidistant from the leaves and (b) finding the internal

branch closest to an outgroup sequence (consensus L0/L1). All

internal branches shown have 90% consensus accuracy under sample

bootstrap. At each split, the mutations labeling the branches are also

at least 90% accurate, i.e., they are expressed in more than 90% of

samples in one branch and less than 10% of samples in the other. The

labeling on branches used an L0/L1 consensus sequence as outgroup.

Note that this means that 14766C and 7028C, used here to label V/H/

H4 and H/H4, respectively, are wild type with respect to rCRS. (c)

Consensus clustering subtrees for the L clades L1, L2, and L3. The

bootstrap accuracy of every internal branch exceeds 90% accuracy.

Only mutations which have one signature (e.g., either fre-

quency [90% or frequency \10%) in one branch and the opposite

signature in the other branch are shown. These subtrees were rooted

using an L0/L1 consensus sequence as the outgroup

b
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Fig. 5 (a) Histogram of the average number of coding-region

mtSNPs between human haplogroups and chimp/bonobo. (b) Histo-

gram of the number of coding-region mtSNPs between haplogroups

and L01 consensus as defined in Supplementary Table STV. Some of

the haplogroups were collapsed to internal nodes to ensure at least 15

samples per haplogroup. We retain only those mutations which

have C 90% consensus across repeated bootstrap sampling from the

haplogroups. Excluding the L1 haplogroups, we estimate that the

average number of mtSNPs from the present time to coalescence for

the human tree was 27.8 ± 1.9. The numbers of mtSNPs between

human-chimp and human-bonobo are 1351.9 ± 6.5 and 1339.81 ±

7.07, respectively. Assuming a chimp-human coalescence time of 5

million years, this gives a TMRCA for the human tree of 206 ± 14

KYBP and a mutation rate in the coding region for human mtDNA of

0.0027 ± 0.0003 mutation/generation, assuming a generation time of

20 years
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robustly classify the samples into haplogroup clusters

which are stable under perturbation in both polymorphisms

and sample bootstrap. Reclustering into k = 1,2,…,kmax

clusters with equal sampling from each haplogroup directly

yields the tree. We root the tree both with respect to an

outgroup as well as using Poisson statistics on the branch

polymorphisms to find the internal node which is equidis-

tant from the leaves. We compare these two methods and

give additional details about them in Appendix C.

Although both these methods give the same root for the

mtDNA tree, we prefer the method using Poisson statistics

because it finds the best root over all possible evolutionary

scenarios, which gives some confidence on the reliability of

the identified root.

Our method includes all polymorphisms in the data, is

fast, is robust to data and sample perturbations, and is

based on mild assumptions required for the clustering

analysis. The underlying assumption in our method is that

sequences that share a specific mutation are more related

than those that do not (this is the basis for clustering) and

that the more mutations they share, the more closely related

they are. Whereas this does impose a restriction on the

phylogeny, it is a mild assumption (than say minimizing

the total number of mutations) and it does not restrict the

possibility of ancient mutations involved in homoplasy

events.

A striking observation we made was that the haplogroup

clusters emerged naturally as a bifurcating network. Two

clusters at each k were derived from a split of one of the

clusters at the previous (smaller) k, while the other clusters

remained the same. The tree we infer is consistent with a

recent African origin of modern humans and the almost-

coincident emergence of the M and N clades out of Africa.

A major result is that our N clade tree does not have the

standard ‘‘R clade.’’ Instead, it has a ‘‘European R subc-

lade’’ with haplogroups T/J/U/V/H/K and a ‘‘Eurasian N

subclade’’ with the Asian/Eurasian haplogroups B, F, and

R5 (usually placed in the ‘‘R clade’’ (Bandelt et al. 2006))

in proximity to A/B/W/I/X. The clear division between

‘‘European R subclade’’ groups and ‘‘Eurasian N subclade’’

groups suggests that the N clade may have split into dis-

tinct West/East migrating subgroups after emerging from

Africa and settled in their current geographic locations with

relatively little East/West mixing.

Supplementary Table STIV gives the frequency of the

allelic forms of all polymorphisms in every haplogroup

identified by our analysis as well as the allelic form for

rCRS, Chimp1, Chimp2, Bonobo, and a ‘‘Consensus L01’’

sequence (which was obtained from the samples closest to

the root of the clade tree which came from haplogroups L0

and L1a). To compute a time to coalescence of the human

tree, we collapsed smaller haplogroups in the tree to nodes

containing at least 15 samples. We then compared the

samples in each haplogroup to the consensus L01 sequence,

to one another, and to the chimp sequences using bootstrap

sampling and identified all polymorphisms which were

identified in more than 90% of the bootstrap samplings.

Figure 5a shows the number of coding-region mtSNPs

identified for each haplogroup relative to chimp/bonobo,

from which we estimate the number of robust coding region

mutations between human-chimp and human-bonobo to be

1351.9 ± 6.5 and 1339.81 ± 7.07, respectively. Excluding

the L1 haplogroups, we estimate that the average number of

mtSNPs from the present time to coalescence for the human

tree is 27.8 ± 1.9. Assuming a chimp-human coalescence

time of 5 million years and a generation time of 20 years,

this gives a TMRCA for the human tree of 206 ± 14 KYBP

and a mutation rate in the coding region for human mtDNA

of 0.0027 ± 0.0003 mutation per generation. Our list of

robust mtSNPs, supported by 90% bootstrapping, selects

markers and TMRCA for the clades to be somewhat older

but generally consistent with previous estimates (Ingman

et al. 2000; Jobling et al. 2004; Parsons and Heflich 1998).

Our tree is in agreement with the so-called ‘‘standard’’

tree ((Bandelt et al. 2006); http://www.mitomap.org/mito

map-phylogeny.pdf) at the clade level but disagrees at the

subclade level. To understand the source of this discrep-

ancy, we built consensus trees for the five clades as well as

for each of the subclades using four different tree building

methods: maximum parsimony, maximum likelihood,

neighbor joining (NJ), and UPGMA as implemented in the

software package Phylip of J. Felsenstein (http://evolution.

genetics.washington.edu/phylip.html; see Appendix B for

details).

To build the consensus clade trees, we created 100

datasets, each consisting of one sample randomly chosen

from each clade. Using the same polymorphisms used for

Fig. 2, we obtained 100 trees for each phylogeny method

and combined them into a single consensus tree. We found

that all the consensus clade trees had the same topology

(which agreed with Fig. 2) and were also unable to resolve

the trifurcation in the M/N/L3 split.

Fig. 6 The consensus maximum likelihood tree obtained using 869

mtSNPs from the union of all polymorphisms identified by PCA and

clustering for the clades and M, N, and L haplogroups. The tree

shown is the consensus over trees from 100 datasets, each of which

was created by selecting one sample randomly from each of the 55

haplogroups shown. The branch labels on the consensus maximum

likelihood tree are a measure of the reliability of the branch. This is

estimated as the fraction of cases when the branch splits the

downstream haplogroups into the sets shown in the tree over the

sampled datasets. The best consensus is shown on all branches.

Ancient branches, corresponding to the clade tree in Fig. 2, are

reliably reproduced, as are some recent branches. The middle

branches have a lower reliability, with branch accuracies of \10%

in many cases. This makes the overall reliability of the maximum

likelihood tree very low, as it is highly sensitive to sample bootstrap

b
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Complete consensus trees for all haplogroups for each of

the four methods were built in a similar way, using the

union of all polymorphisms identified by PCA for the

clades, M, N, and L (see Appendix B for details). We found

that the accuracy of the internal branches of these trees was

highly variable, with many internal branch accuracies in

the 1–30% range. As an example of this, we show the

consensus maximum likelihood tree in Fig. 6. This analysis

shows that the standard techniques used to infer phylogeny

are very sensitive to data perturbation and unreliable except

at the level of the clade tree. Although some haplogroup

cluster topologies remain consistently the same for all

methods (mostly near the leaves of the consensus trees),

there is a lot of variability in the internal branches across

the methods. Even for a single method, the accuracy of

many internal branches is quite low. This should be con-

trasted with our tree (Figs. 2 and 4a–c), where every

branch split is constructed to be at least 90% accurate.

The ‘‘R clade’’ is usually defined by a synonymous

mutation at locus 12705. In our analysis, this polymor-

phism is only one among many old (and homoplasic)

polymorphisms. We find instead (Fig. 3) that the haplo-

groups in the so-called ‘‘R clade’’ are too widely separated,

and some are too close to non-R-clade haplogroups, to have

arisen from a single founder event defined by this poly-

morphism. Possible reasons for the identification of a

homogeneous ‘‘R clade’’ in earlier analysis are (a) a sam-

pling bias toward specific European and Asian haplogroups

J, T, H, V, B, and F, all of which have the mutation

12705C ? T, (b) tree construction using human-aided

identification of polymorphisms, and (c) a strong focus on

minimizing homoplasy events using methods (e.g., parsi-

mony) which are less sensitive to the global structure of

polymorphisms in the data.

There are many other homoplasy mutations (like

12705) in the data. For instance, there is a mutation at

locus 5417 which appears in both N9a and N9b but is not

present in any other N haplogroups (Tanaka et al. 2004;

Kong et al. 2006). Parsimony methods identify this

mutation as a founder mutation and, consequently, place

N9a and N9b on adjacent leaves of the N-clade subtree

(Bandelt et al. 2006). Indeed the names of these groups

are themselves derived from such a placement. However,

from a study of the Jomon and Yayoi people in Japan

(Shinoda 2005), the N9a haplogroup is believed to have

entered Japan from South China through Korea along an

eastern route, while the N9b haplogroup came into Japan

via a northern route. According to this analysis, these two

haplogroups diverged between 15,000 and 20,000 years

ago and so should not be adjacent in the tree. Our tree

agrees with this analysis and places these two groups

relatively far apart based on many global and robust dif-

ferences in their sequences.

Another example of homoplasy is in the M clade sub-

tree, where polymorphisms at loci 6455 and 9824 are found

in haplogroups M7a and M7b. Once again, parsimony

methods place these haplogroups in close proximity despite

the fact that M7b is found mostly in Korea and came there

from an Eastern migration from China, while M7a is most

frequent in Ryukyuans on the Okinawa islands of Japan

(Tanaka et al. 2004) and is believed to have entered Japan

via a southern route. It is believed that these two haplo-

groups diverged from a common ancestor more than

20,000 years ago (Tanaka and Ozawa 1994) and have been

geographically isolated for a long time. Consequently they

should not be close together in the M subtree, in agreement

with our placements of these groups (Fig. 4b). The overall

analysis of homoplasy events in our mtDNA tree, com-

parisons with other trees, and their relation to selection and

population geography/history will be addressed in a sepa-

rate publication.

Because of our use of complete mtDNA sequences and a

data perturbation-independent protocol, our clustering

techniques provide a ‘‘gold standard’’ for assignment of

samples to haplogroups. They should be useful for the

identification of new haplogroups. In Supplementary Table

STV, we list the allelic state of the polymorphisms in

Supplementary Table STIV as used to label the trees and

assign haplogroups. The allelic forms shown for each ha-

plogroup are expressed in more than 90% of the samples in

each haplogroup where they are shown. Supplementary

Table STVI gives the characteristic mtSNPs to assign

samples to haplogroups. For completeness, we give the

frequency at each of the 3177 polymorphic loci in each

haplogroup in Supplementary Table STVII and the aligned

sequences for rCRS and Chimp 1, Chimp 2, and Bonobo

which were used in this paper in Supplementary Table

STVIII. The L01 reference sequence is defined at all

polymorphic loci relative to rCRS in Supplementary Table

STVII. At all loci other than these, L01 is identical to rCRS.

Finally, Supplementary Fig. SFI gives the full labeled tree

using consensus L01 as outgroup.

Our method identified a phylogeny for the N and M

clades that better reflects the current geographic location

and known migratory history of some of their haplogroups,

which are usually grouped in unlikely ways by methods

such as parsimony. Supplementary Fig. SFII compares the

migration paths and current location of the N-clade ha-

plogroups for a parsimony-based tree (which has an R

clade) with those for the tree derived in this paper. The first

figure in Supplementary Fig. SFII shows that splitting into

R and non-R groups requires a back-migration event to

explain the presence of R5/F/B haplogroups in Asia. The

second figure shows haplogroups as they are labeled by our

tree, which has no R clade and splits the N clade cleanly

into Eastern/Western haplogroups, eliminating the need for
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a back-migration event to explain the presence of R5/F/B

in Asia.

Instead of building the tree from a few polymorphisms

using methods with strong assumptions, our method iden-

tifies and uses all informative polymorphisms and builds

the tree from the natural order of bifurcations inherent in

the data. Finally, instead of the poor bootstrap support on

internal branches which is a common feature of methods

such as parsimony and maximum likelihood, our method is

robust and has high internal branch bootstrap support. The

flexibility and robustness of our method make it suitable

for the analysis of datasets with mixed distributions, high

variability, unknown sample size bias, and unknown ha-

plogroup structure.

Since the method described in the paper is quite com-

plex, we have developed a software suite in Python with C

extensions, described in Appendix D, which reproduces the

results in Figs. 1 and 2 and Supplementary Table STII. The

source code can be downloaded from https://biomaps.rut

gers.edu/wiki/upload/9/93/MtDNA_utility.tar.gz.

This software starts with the 1737 aligned sequences used

in the paper, creates the mutation matrix, performs PCA,

identifies the subset of mutations that represent 85% of the

variation, identifies the clade clusters based on PCA, and,

using equal numbers of samples from each clade, uses

consensus clustering based on k-means to divide the data

into k = 2, 3, 4, 5, 6 groups, thereby reproducing the network

representing the clade tree in Fig. 2. The 410 mtSNPs used

in this analysis are listed in Supplementary Table STIX.

Finally, as a validation exercise for our method, we

performed a simulation which mimics the observed origin

and migration of the M and N clades from a parent pop-

ulation in Africa. We started with 10,000 individuals,

broken up into mtDNA groups of 20–50 individuals related

by descent from a common ancestor within the previous

200 generations. Assuming a constant mutation rate across

the coding region, we implemented a neutral evolutionary

model with a fixed population size (implemented by

choosing each individual to have a Poisson-distributed

number of offspring with Poisson parameter unity) for

5000 generations (*100,000 years, assuming a generation

time of 20 years). At this point, we simulated two simul-

taneous migration events of 1000 individuals each

(corresponding to the M and N clades), which then

expanded into two groups of 10,000 individuals by a 5%

increase in birth rate before their respective populations

stabilized. The three groups (one original plus two migrant)

then evolved under neutral dynamics with approximately

stable populations for an additional 3000 generations

(*60,000 years) to the present time.

When we looked at the resulting polymorphisms in the

data, we found that they separated into two distinct sets.

One set contained old polymorphisms which were fixed by

drift and found in large groups of individuals. The other

set, which was much larger, contained polymorphisms not

yet fixed by drift which were sites of a large number of

homoplasy events. We found that our method, because of

the bootstrap analysis, was able to distinguish these two

sets of polymorphisms and could construct the correct tree

with good internal consensus. However, other methods

(such as parsimony) often confused recent and ancient

homoplasic polymorphisms. An interesting observation

was that most of the contribution to the homoplasy events

was from the last 1000–1500 generations, which corre-

sponds to about 20,000–30,000 years. This coincides

nicely with the East-West split in the N clade and suggests

that mtDNA phylogeny using standard methods such as

parsimony and maximum likelihood, because of their

sensitivity to homoplasy events, gives accurate trees only at

the level of the clade tree. This observation also agrees

with our reported analysis of real mtDNA sequences.
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Appendix A: Method for Finding Robust Clusters Using

Consensus Ensemble Clustering

Unsupervised clustering algorithms divide data into mean-

ingful groups or clusters such that the intracluster similarity

is maximized and the intercluster similarity is minimized

[A1]. Clustering is an NP-hard problem. However, many

heuristic methods exist and they can be categorized into

hierarchical, partitioning, and grid-based methods. We

apply all these methods in an unsupervised way to the data,

i.e., without assuming a predefined label on the objects to be

classified. Unsupervised clustering is known to produce

unstable solutions which are sensitive to various data

parameters and/or perturbations and to the clustering tech-

niques used [A2]. A relatively recent solution which

corrects for this instability is consensus ensemble clustering

[A2, A3]: Given several methods of clustering data, find a

combination of these methods which is of better quality.

This problem can be broken up into two parts: a method

that generates a collection of clustering solutions and a

consensus function that combines them to produce a single

output clustering of the data. There is an implicit

assumption in this that combining the results of several

clustering techniques will give groupings that are more

reliable and less biased to a particular technique. This has

been demonstrated in supervised classification schemes

where it was shown that multiple solutions may reduce the
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variance of the error and, at the same time, increase the

robustness of the result [A4, A5]. The ensemble clustering

technique was introduced in [2], and the effects of con-

sensus clustering were described in several subsequent

studies [A4, A6, A7].

In our study the challenge posed to the ensemble con-

sensus clustering approach was to identify meaningful

clusters which were stable and robust both to perturbations

of the data and to the choice of clustering methods used.

This goal was approached in two ways.

1. If the method was stochastic, we reduced the effect of

the stochastic variation by applying the method

repeatedly and taking an appropriate average.

2. To reduce the sensitivity to random variation in the

data, we applied each clustering method to multiple

sample datasets obtained by bootstrapping in both the

mutations used in the clustering and in the samples.

Clustering High-Dimensional Data

To correct for the fact that many mutations are only on

individual samples and merely add noise to the data and the

fact that many mutations travel together, we cluster on

subspaces of attributes rather than on the entire space. The

subset of attributes (mtSNPs) on which data are clustered

may have an important influence on the clustering solution.

Since mtDNA data are high dimensional, we restricted the

clustering procedures to those attributes which were

determined to be ‘‘discriminatory’’ through an initial

principal component analysis (PCA).

The details of our clustering method are as follows.

Step 1

For each k = 2,…,50, we created k clusters on resampled

and random projected datasets based on individual clus-

tering methods. We generated 150 datasets as follows: 50

datasets were created by bootstrapping the samples, 50

datasets by projecting the data onto subsets of mtSNPS

bootstrapped from the data, and 50 additional datasets by

first projecting the data on a bootstrapped subset of

mtSNPS and then bootstrapping samples on the resulting

dataset. We then applied representative methods for each

major class of known clustering techniques. We discuss

these briefly below.

Partitioning Relocation Methods

These methods divide data into several subsets and use

certain greedy heuristics in the form of iterative optimi-

zation to reassign points between the k clusters. The

optimization is applied to an objective function defined on

unique cluster representatives (e.g., centroid, medoid),

which is usually a dissimilarity measure.

We applied the following algorithms.

i. Partition around medoids (PAM) [A8]: PAM is an

iterative optimization that relocates the points between

perspective clusters by renominating the points as

potential medoids.

ii. CLARA [A8]: This method uses several samples of

the data and subjects each of them to PAM. The

dataset is then reassigned to the resulting medoids and

the best system of medoids is retained.

iii. K-means [A9]: To each cluster, this method associates

the mean (centroid) of its points and uses as the

objective function the sum of distances between a

point and its centroid.

iv. Graph partitioning [A10]: In this method the points

(samples) are associated with vertices in a graph and

each point is connected to the closest neighbor. The

resulting graph is then split into k-clusters by applying

a min-cut approach.

Clusters produced by centroid methods (k-means, PAM,

CLARA) work by identifying samples into clusters if they

form a spheroid shape. Thus, they are suitable for clus-

tering datasets with uniform and relatively low variation

among samples. Graph partitioning methods produce

clusters in which samples are added in if they are ‘‘close’’

to at least one sample in the candidate cluster. Thus graph

partitioning approaches can successfully identify clusters

with unequal variance along the feature coordinates (i.e.,

they can find a ‘‘long’’ shape).

Agglomerative Methods

These methods build the clusters gradually by trying to

establish a hierarchical order [A1]. One starts by assigning

each sample to its own cluster and then recursively merg-

ing two or more most similar clusters until a stopping

criterion is fulfilled. The similarity between clusters is

usually computed based on a linkage metric which reflects

the connectivity and similarity between the clusters. In our

study we applied hierarchical clustering techniques based

on the following metrics.

Average linkage metric: Computes the distance between

two clusters as the average of the distances between the

pairs of points in these clusters.

Complete linkage metric: Computes the distance

between two clusters as the maximum distance between

the pairs of points in the two clusters.

Single linkage metric: Computes the distance between

two clusters as the minimum distance between the pairs

of points in the two clusters.
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McQuitty metric: Computes the distance between two

clusters as the average distance between the subclusters

of the two clusters.

Centroid metric: Computes the distance between two

clusters as the distance between the centroids of the two

clusters.

Ward metric: Computes the distance between two

clusters as the distance between the centroids of the

two clusters averaged to the reciprocal mean of the sizes

of the two clusters.

In addition, we applied a hybrid-biased agglomerative

method (bagglo) which combines partitioning clustering

with the agglomerative hierarchical approach [A11]. For n

samples, we start with an initial partition into n1/2 clusters

and augment the original feature space by adding n1/2

dimensions corresponding to the initial clusters. The

agglomerative clustering approach is then applied to this

augmented dataset.

Methods Based on Probability

In these methods, data are considered to be a sample

independently drawn from a mixture model of several

probability distributions and the clusters are associated

with the area around the mean of each distribution. It is

assumed that each point is assigned to a unique cluster. The

probabilistic clustering method optimizes the log-likeli-

hood of the data to be drawn from a given mixture model.

In our approach we applied the expectation maximiza-

tion (EM) method [A12, A13]. EM is a two-step procedure

which starts with estimating for each point the probability

of belonging to a certain cluster. In the second step EM

finds an approximation to the mixture model by maxi-

mizing the log-likelihood in an iterative way until the

convergence to an optimal solution is reached.

Entropy-Based-Clustering (ENCLUST)

This method [A14] starts by dividing the interval associ-

ated with each attribute into one-dimensional bins (cells)

and retaining only the cells with a high density. The iter-

ative step consists in creating cells of higher dimensions by

joining the cells with low dimension and retaining only

those cells which have the entropy below a certain

threshold as optimal for clustering.

Clustering on Subsets of Attributes (COSA)

This method [A15] uses an idea similar to that in ENC-

LUST by preferentially clustering on subsets of attributes

with low variability across the samples in the clusters.

Self-Organizing Maps (SOM)

This method [A16] is both a data visualization and a

clustering technique which reduces the dimensions of

data through the use of self-organizing neural networks.

The way SOM reduces dimensions is by producing a

map of usually one or two dimensions which plot the

similarities of the data by grouping similar data points

together.

Step 2

Each method was applied 50 times with different parameter

initialization on the full dataset and once on each of the 150

datasets obtained as described in Step 1. Based on the 200

clustering results, we constructed an agreement matrix for

each method whose entries mij represent the fraction of

times the pair of samples (i, j) occurred in the same cluster

of the total number of times the pair of samples was

selected in the 200 datasets.

Using dij = 1 - mij as the distance between the samples

(i, j), we apply simulated annealing [A17] to find k ‘‘con-

sensus’’ clusters which achieve the maximum value for the

average internal similarity and the average external dis-

similarity. The cost function used for the simulated

annealing is given below.

P

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j2Cl

dij

r

P

l

nl
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i2Cl ;j2S

dij
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i;j2Cl

dij

q

ð1Þ

where dij represents the distance between the samples

(i,j), C1,…,Ck are the k clusters to be determined, nl is

the size of cluster Cl, l = 1,.., k, and S is the set of

samples.

At the end of this step, each method will give us its best

clustering into k clusters.

Step 3

For each k, we combine the results from Step 2 by using an

agreement matrix to create a consensus of all the individual

clustering techniques and, once again, use simulated

annealing to optimize the clustering.

In comparison with the traditional methods which use a

single clustering technique, the consensus ensemble clus-

tering approach, in combination with PCA, has better

average performance across datasets and a lower sensitivity

to noise, outliers, and sampling variation.

J Mol Evol (2008) 67:465–487 477

123



References A1

A1. Rousseeuw PJ (1987) Silhouettes: a graphical aid to

the interpretation and validation of cluster analysis.

J Comput Appl Math 20:53–65

A2. Strehl A, Ghosh J (2002) Cluster ensembles: a

knowledge reuse framework for combining partit-

ionings. In: Eighteenth National Conference on

Artificial Intelligence. Edmonton, Alberta, Canada,

July 28–August 1, 2002, pp 93–98

A3. Monti S, Tamayo P, Mesirov PJ, Golub T (2003)

Consensus clustering: a resampling-based method

for class discovery and visualization of gene

expression microarray data. Machine Learn J

52(1–2):91–118

A4. Alexe G, Alexe S, Crama Y, Foldes S, Hammer PL,

Simeone B (2004) Consensus algorithms for the

generation of all maximal bicliques. Discrete Appl

Math 145(1):11–21

A5. Prodromidis AL, Stolfo SJ (1999) A comparative

evaluation of meta-learning strategies over large

and distributed data sets. Workshop on Meta-

learning. Sixteenth International Conference on

Machine Learning

A6. Topchy A, Jain AK, Punch W (2005) Clustering

ensembles: models of consensus and weak parti-

tions. IEEE Trans Pattern Anal Machine Intel

27:1866–881

A7. Topchy A, Minaei-Bidgoli B, Jain AK, Punch WF

(2004) Adaptive clustering ensembles. In: 17th

International Conference on Pattern Recognition

(ICPR’04): 2004, pp 272–275

A8. Kaufmann L, Rousserw PJ (1990) Finding groups

in data: an introduction to cluster analysis, 1st edn.

Wiley, New York

A9. Hartigan JA (1975) Clustering algorithms. Wiley,

New York

A10. Karypis G, Kumar V (1995) Multilevel graph

partitioning schemes. In: Proceedings, 24th Inter-

national Conference on Parallel Processing. CRC

Press, New York, pp 113–122

A11. Rasmussen M, Karypis G (2004) gCLUTO: an

interactive clustering, visualization, and analysis

system. UMN-CS 2004. TR-04-021

A12. Dempster AP, Laird NM, Rubin DB (1977) R:

maximum likelihood from incomplete data via the

EM algorithm. J Roy Stat Soc Ser B 39:1–38

A13. Fraley B, Raftery AE (2002) Model-based cluster-

ing, discriminant analysis, and density estimation. J

Am Stat Assoc 97:611–631

A14. Cheng CH, Fu AW, Zhang Y (1999) Entropy-based

subspace clustering for mining numerical data. In:

Proceedings of ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining

KDD-99: 1999. San Diego, CA

A15. Friedman JH, Meulmany JJ (2004) Clustering

objects on subsets of attributes. J Roy Stat Soc

Ser B 66:1–25

A16. Kohonen T (2001) Self-organizing maps, vol 30.

Springer, New York

A17. Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimi-

zation by simulated annealing. Science 220(4598):

671–680

Appendix B: Building Consensus Trees Using

Maximum Parsimony, Maximum Likelihood, Neighbor

Joining, and UPGMA

Preprocessing

There were a total of 1737 complete mtDNA sequences,

classified into 61 haplogroups. We removed samples clas-

sified into the six bulk clusters: B*, BULK_D*,

BULK_M*, BULK_N*, H*, and U*. The number of

samples was reduced to 1222 and the number of poly-

morphisms was reduced to 2321.

Building the Consensus Clade Trees

We built one consensus tree for the five clades (L0/L1, L2,

L3, M, and N) for each of the four methods: maximum

parsimony (MP), maximum likelihood (ML), neighbor

joining (NJ), and unweighted pair group method with

arithmetic mean (UPGMA).

We created 100 data sets, each consisting of one sample

picked randomly from each clade. The polymorphisms

used were the same 34 mtSNPs identified by the cluster

analysis on the clades (Supplementary Table STII).

Procedure

We used the software package Phylip [B.1] to construct the

trees. Table 1 lists the software used in Phylip. For each of

the four methods, one tree was created for each of the

datasets. A consensus tree (see Appendix B Fig. 7a–d) was

Table 1 The four Phylip programs used in this analysis

Tree building method Phylip program

Maximum parsimony Dnapars

Maximum likelihood Dnaml

Neighbor joining Neighbor

UPGMA neighbor (toggle option N

to choose UPGMA method)
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obtained for each method using the consensus program in

Phylip by combining the 100 trees. The branches were

labeled with the percentage of cases when the split

appeared as shown in the figures. The algorithm automat-

ically chooses the branch percentage which is maximum.

Discussion

While the accuracy of the L0/L1 and L2 branches was

always 100%, the percentage of times the split in the M/N/

L3 clades appeared over all possibilities is reported in

Table 2.

Fig. 7 (a) The reliable (high bootstrap agreement) and unreliable

(low bootstrap agreement) parts of the MP clade tree are estimated

from the consensus fraction on branches across bootstrap replicates in

this consensus tree. The tree was constructed using 100 bootstrap

datasets, each with one sample from each clade using the 34 mtSNPs

listed in Supplementary Table STII and building the consensus tree

from them. The older branches have 100% consensus across bootstrap

replicates and may be considered robust and reliable. However, the

sequence in which the L3/M/N clades split is not determined to any

reliable accuracy. In 67% of the bootstrap results, the MP algorithm

reported this split as a trifurcation, (b) The reliable (high bootstrap

agreement) and unreliable (low bootstrap agreement) parts of the ML

clade tree are estimated from the consensus fraction on branches

across bootstrap replicates in this consensus tree. Once again, the

oldest branches are reliable, while the L3/M/N clade split is not. (c)

The reliable (high bootstrap agreement) and unreliable (low bootstrap

agreement) parts of the NJ clade tree are estimated from the

consensus fraction on branches across bootstrap replicates in this

consensus tree. Once again, the oldest branches are reliable, while the

L3/M/N clade split is not. (d) The reliable (high bootstrap agreement)

and unreliable (low bootstrap agreement) parts of the UPGMA clade

tree are estimated from the consensus fraction on branches across

bootstrap replicates in this consensus tree. Although the oldest

branches are more accurate than the L3/M/N split, UPGMA is the

only one of the four methods used here which reliably suggests that

the N migration preceded the M migration. However, as the other

methods do not resolve this split in a reliable way, we can only

conclude that the L3/M/N should be shown as a trifurcation

Table 2 Frequencies for the four ways of resolving the M/N/L3

trifurcation for each method: MP, ML, NJ, and UPGMA

(L3,(M,N))

(%)

((L3,M),N)

(%)

((L3,N),M)

(%)

(L3,M,N)

(%)

Maximum

parsimony

27 2 4 67

Maximum

likelihood

29 40 31 0

Neighbor

joining

49 46 5 0

UPGMA 0 89 11 0
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Building Complete Consensus Trees

We built a consensus tree for all 55 haplogroups with each

of the four phylogenetic tree building methods: MP, ML,

NJ, and UPGMA.

We created 100 datasets by selecting one sample from

each of the 55 haplogroups that remained after eliminating

the six bulk clusters: B*, BULK_D*, BULK_M*,

BULK_N*, H*, and U*. There were 869 polymorphisms

left from the combined set of polymorphisms identified by

the global PCA as well as the PCA for N, M, L. All these

were used to build 100 trees for each of MP, ML, NJ, and

UPGMA. From these, consensus trees were obtained for

each of the methods. They are shown in Fig. 8a–d. The MP

algorithm generated many trees with the same optimum

weight for the same dataset. All trees with the same weight

were first combined for each dataset before they were

combined across datasets. We used the tree plotting soft-

ware TreeGraph [B.2] to draw the trees.

References B
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B.2. Müller J, Müller K (2004) TreeGraph: automated

drawing of complex tree figures using an extensible

tree description format. Mol Ecol Notes 4:786–788

Appendix C: Methods to Select the Root of the Network

In this paper, we have used two methods to root the net-

works identified by our procedure. The first method used

the mtDNA sequence of an ‘‘outgroup’’ species (such as

chimpanzee or bonobo). The root was identified as the

internal node in the network, which minimizes the number

of loci at which the mtDNA sequence at the internal node

was different from the outgroup sequence for a robust

subset of mtSNPs. The second defined the root as the

internal node that was equidistant from the leaves across all

possible trees, assuming that the number of polymorphisms

on the tree was one instantiation of a Poisson process on

the internal branches.

Method I: Rooting with Respect to an Outgroup

The first method is standard and depends only on the

availability of an appropriate outgroup sequence. In our

case, we used the consensus of the two chimpanzee and one

bonobo sequences in Supplementary Table STI and limited

the analysis to the 435 robust mtSNPs used in labeling the

tree (this list of mtSNPs is given in Supplementary Table

STIV). For illustration, we consider three internal nodes,

R1, R2, and R3. In Fig. 2, R1 is the split between the L0/

L1 superclade and rest of the tree, R2 is the node defining

the split between the L2 superclade and the rest of the tree,

and R3 is the node separating the L0/L1/L2 subtree from

the rest of the tree. We find that the number of mtSNPs that

are different between these internal nodes and the chimp-

bonobo consensus sequence is: DR1 = 111, DR2 = 118,

and DR3 = 121. This identifies R1 as the root of the tree.

Fig. 8 (a) The consensus MP tree obtained using 869 mtSNPs from

the union of all polymorphisms identified by PCA and clustering for

the clades and M, N, L haplogroups. The tree shown is the consensus

over trees from 100 datasets, each of which was created by selecting

one sample randomly from each of the 55 haplogroups shown. The

branch labels on the consensus MP tree are a measure of the reliability

of the branch. This is estimated as the fraction of cases when the

branch splits the downstream haplogroups into the sets shown in the

tree over the sampled datasets. Ancient branches, corresponding to

the clade tree in Fig. 2, are reliably reproduced, as are some recent

branches. The middle branches have a lower reliability, with branch

accuracies of \10% in many cases. This makes the overall reliability

of the tree very low. (b) The consensus ML tree obtained using 869

mtSNPs from the union of all polymorphisms identified by PCA and

clustering for the clades and M, N, L haplogroups. The tree shown is

the consensus over trees from 100 datasets, each of which was created

by selecting one sample randomly from each of the 55 haplogroups

shown. The branch labels on the consensus ML tree are a measure of

the reliability of the branch. This is estimated as the fraction of cases

when the branch splits the downstream haplogroups into the sets

shown in the tree over the sampled datasets. Ancient branches,

corresponding to the clade tree in Fig. 2, are reliably reproduced, as

are some recent branches. The middle branches have a lower

reliability, with branch accuracies of \10% in many cases. This

makes the overall reliability of the tree very low. (c) The consensus

NJ tree obtained using 869 mtSNPs from the union of all polymor-

phisms identified by PCA and clustering for the clades and M, N, L

haplogroups. The tree shown is the consensus over trees from 100

datasets, each of which was created by selecting one sample randomly

from each of the 55 haplogroups shown. The branch labels on the

consensus NJ tree are a measure of the reliability of the branch. This

is estimated as the fraction of cases when the branch splits the

downstream haplogroups into the sets shown in the tree over the

sampled datasets. Ancient branches, corresponding to the clade tree in

Fig. 2, are reliably reproduced, as are some recent branches. The

middle branches have a lower reliability, with branch accuracies

of \10% in many cases. This makes the overall reliability of the tree

very low. (d) The consensus UPGMA tree obtained using 869

mtSNPs from the union of all polymorphisms identified by PCA and

clustering for the clades and M, N, L haplogroups. The tree shown is

the consensus over trees from 100 datasets, each of which was created

by selecting one sample randomly from each of the 55 haplogroups

shown. The branch labels on the consensus UPGMA tree are a

measure of the reliability of the branch. This is estimated as the

fraction of cases when the branch splits the downstream haplogroups

into the sets shown in the tree over the sampled datasets. Ancient

branches, corresponding to the clade tree in Fig. 2, are reliably

reproduced, as are some recent branches. The middle branches have a

lower reliability, with branch accuracies of \10% in many cases. This

makes the overall reliability of the tree very low
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Method II: Rooting Using Poisson Statistics

for the Number of Mutations on Edges

The second method is novel and is based on the funda-

mental observation that the same amount of time has

elapsed from the root to each leaf. Hence, if the mutation

rate is assumed to be fixed (as it is here), then the number

of mtSNPs from the root to all leaves must be (approxi-

mately) the same. We also impose the constraint that the

root be the most probable choice to satisfy this criterion

(equal distance from leaves) across all possible evolution-

ary scenarios on the internal branches, as described in

greater detail below.

If all loci are equally likely to mutate and the mutation

rate is low, the number of mtSNPs on internal branches is a

Poisson variable with Poisson parameter proportional to the

time corresponding to the branch. The number of actual

mtSNPs on the branch is an unbiased estimator of this

Poisson parameter. To find the root, we created a number

of equivalent evolutionary networks by simulating the

Poisson variables (number of mtSNPs on the internal

branches), using the observed number of mtSNPs on the

edges as the Poisson parameter. The distance D(R ? Li) of

a leaf Li from a node R is the sum of the number of mtSNPs

labeling the edges in the path from R to Li. We simulated

1000 evolutionary scenarios, and for each scenario we

computed the distances D(R ? Li) for all the paths from

each possible internal root to the leaves. For each scenario,

we then computed the mean and standard deviation (SD) of

D over these paths, and from these, the distribution of SDs

over the 1000 evolutionary scenarios for each internal

node. Figure 9 shows the distribution of SD for the three

internal nodes R1, R2, and R3. If we make the reasonable

assumption that the best root is the one with the lowest

possible SD averaged over all possible evolutionary sce-

narios, then it is clear from Fig. 9 Fig. AIII.1 that, once

again, R1 is the preferred root.

Although both methods give the same result for the root

of the mtDNA tree, we prefer the second method, because

the averaging over equally probable evolutionary scenarios

provides an additional measure of confidence in the

identification.

Appendix D: Software to Reproduce Figs. 1 and 2

and Supplementary Table STII

The software is described below and is available for

download at: https://biomaps.rutgers.edu/wiki/upload/9/93/

MtDNA_utility.tar.gz.

The code uses Python (http://www.python.org) with C

extensions. The README file gives specific instructions

on how to install the libraries and compile the code. The

code takes as input 1737 aligned mtDNA sequences on

3177 polymorphic loci and from them creates a binary

‘‘mutation matrix’’ B, whose rows represent samples and

columns represent mtDNA loci. Each column element is

assigned the value 1 if the nucleotide matches rCRS and

the value 0 if it does not. The process begins by calling

migration, which uses parsers.ParseSTI to read Table

STI.txt. This parsing class creates a SampleData object

containing each of the 1737 samples, their aligned

sequences of 3177 polymorphic loci, and their haplo-

groups. This is then compared to the rCRS sequence

pairwise to create the binary matrix B. Next, this matrix is

centered so that each column has 0 mean using a call to

pca.py. This class also performs a singular value decom-

position of the matrix, and the resulting first two

eigenvectors, which correspond to the highest eigenvalues,

are used to generate a plot (saved to disk using display.py)

of each sample in principal component space. This plot

corresponds to Fig. 1 in the text. From this plot, using

predefined cut-points on the coordinates, clade membership

is assigned.
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Once clade membership is assigned, frequency analysis

of the mtSNPs in each clade is performed in migration.py.

A mtSNP is selected if it appears in 95% of the samples in

one clade and \5% of the samples in any other clade. This

identifies the 34 mtSNPs given in Supplementary Table

STII.

The call to migration.py also identifies the 410 mtSNPs

which occur with high weights (top 25% by absolute value)

as coefficients in 166 eigenvectors corresponding to the

highest eigenvalues, which represent 85% of the variance

in the data. These mtSNPs are listed by clade in Supple-

mentary Table STIX. Migration.py then randomly samples

20 individuals from each of the five clades and reduces

their data vectors to just these reliable mtSNPs. These 100

samples are then used as input for cluster.py, which

repeatedly samples from within the set and uses k-means to

divide them into k = 2, 3, 4, 5, and 6 clusters. To create a

dataset of these 100 samples, cluster.py either randomly

selects 80% of the samples, or randomly selects 80% of the

mtSNPs for each sample, or randomly selects 80% of the

samples and 80% of the mtSNPs for each sample, or leaves

the samples and data vectors unmodified. This is repeated

300 times and the data for each k are combined into an

agreement matrix M, whose entries Mij correspond to the

fraction of times samples i and j were clustered together

across the 300 samplings. (1 - Mij) may be considered the

‘‘distance’’ between sample i and sample j. Using this

definition of distance, we cluster the samples again using

hierarchical clustering with average linkage to assign the

final clusters for each k. This agreement matrix is then

reordered using Simulated Annealing to maximize the

similarity between adjacent samples within a cluster and

maximize the dissimilarity between samples farther apart.

The reordered matrix is recorded to disk using display.py

as a heatmap, where bright spots represent samples which

were heavily clustered together, and dark spots represent

samples which were rarely clustered together.

At this point all five clades are split and the sequence of

splits represents (unrooted) Fig. 2, which can then be

rooted using the procedure described in Appendix C.
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