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Abstract

Background: Genetic association study is currently the primary vehicle for identification and characterization of

disease-predisposing variant(s) which usually involves multiple single-nucleotide polymorphisms (SNPs) available.

However, SNP-wise association tests raise concerns over multiple testing. Haplotype-based methods have the

advantage of being able to account for correlations between neighbouring SNPs, yet assuming Hardy-Weinberg

equilibrium (HWE) and potentially large number degrees of freedom can harm its statistical power and robustness.

Approaches based on principal component analysis (PCA) are preferable in this regard but their performance varies

with methods of extracting principal components (PCs).

Results: PCA-based bootstrap confidence interval test (PCA-BCIT), which directly uses the PC scores to assess gene-

disease association, was developed and evaluated for three ways of extracting PCs, i.e., cases only(CAES), controls

only(COES) and cases and controls combined(CES). Extraction of PCs with COES is preferred to that with CAES and

CES. Performance of the test was examined via simulations as well as analyses on data of rheumatoid arthritis and

heroin addiction, which maintains nominal level under null hypothesis and showed comparable performance with

permutation test.

Conclusions: PCA-BCIT is a valid and powerful method for assessing gene-disease association involving multiple

SNPs.

Background
Genetic association studies now customarily involve

multiple SNPs in candidate genes or genomic regions

and have a significant role in identifying and character-

izing disease-predisposing variant(s). A critical challenge

in their statistical analysis is how to make optimal use

of all available information. Population-based case-con-

trol studies have been very popular[1] and typically

involve contingency table tests of SNP-disease associa-

tion[2]. Notably, the genotype-wise Armitage trend test

does not require HWE and has equivalent power to its

allele-wise counterpart under HWE[3,4]. A thorny issue

with individual tests of SNPs for linkage disequilibrium

(LD) in such setting is multiple testing, however, meth-

ods for multiple testing adjustment assuming indepen-

dence such as Bonferroni’s[5,6] is knowingly

conservative[7]. It is therefore necessary to seek alterna-

tive approaches which can utilize multiple SNPs simul-

taneously. The genotype-wise Armitage trend test is

appealing since it is equivalent to the score test from

logistic regression[8] of case-control status on dosage of

disease-predisposing alleles of SNP. However, testing for

the effects of multiple SNPs simultaneously via logistic

regression is no cure for difficulty with multicollinearity

and curse of dimensionality[9]. Haplotype-based meth-

ods have many desirable properties[10] and could possi-

bly alleviate the problem[11-14], but assumption of

HWE is usually required and a potentially large number

of degrees of freedom are involved[7,11,15-18].

It has recently been proposed that PCA can be com-

bined with logistic regression test (LRT)[7,16,17] in a

unified framework so that PCA is conducted first to

account for between-SNP correlations in a candidate

region, then LRT is applied as a formal test for the

association between PC scores (linear combinations of

the original SNPs) and disease. Since PCs are orthogo-

nal, it avoids multicollinearity and at the meantime is
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less computer-intensive than haplotype-based methods.

Studies have shown that PCA-LRT is at least as power-

ful as genotype- and haplotype-based methods[7,16,17].

Nevertheless, the power of PCA-based approaches vary

with ways by which PCs are extracted, e.g., from geno-

type correlation, LD, or other kinds of metrics[17], and

in principle can be employed in frameworks other than

logistic regression[7,16,17]. Here we investigate ways of

extracting PCs using genotype correlation matrix from

different types of samples in a case-control study,

while presenting a new approach testing for gene-dis-

ease association by direct use of PC scores in a PCA-

based bootstrap confidence interval test (PCA-BCIT).

We evaluated its performance via simulations and

compared it with PCA-LRT and permutation test using

real data.

Methods
PCA

Assume that p SNPs in a candidate region of interest

have coded values (X1, X2, ..., Xp) according to a given

genetic model (e.g., additive model) whose correlation

matrix is C. PCA solves the following equation,

Cl li i  0 (1)

where l li i = 1, i = 1,2, ..., p, li = (li1, li2, ..., lip)’ are

loadings of PCs. The score for an individual subject is

F l X l X l X i pi i i ip p    1 1 2 2 1 2 , , , , , (2)

where cov (Fi, Fj) = 0, i ≠ j, and var(F1) ≥ var(F2) ≥ ...

≥ var(Fp).

Methods of extracting PCs

Potentially, PCA can be conducted via four distinct

extracting strategies (ES) using case-control data, i.e., 0.

Calculate PC scores of individuals in cases and controls

separately (SES), 1. Use cases only (CAES) to obtain

loadings for calculation of PC scores for subjects in both

cases and controls, 2. Use controls only (COES) to

obtain the loadings for both groups, and 3. Use com-

bined cases and controls (CES) to obtain the loadings

for both groups. It is likely that in a case-control asso-

ciation study, loadings calculated from cases and con-

trols can have different connotations and hence we only

consider scenarios 1-3 hereafter. More formally, let (X1,

X2, ..., Xp) and (Y1, Y2, ..., Yp) be p-dimension vectors of

SNPs at a given candidate region for cases and controls

respectively, then we have,

Strategy 1 (CAES):

C l lXX i i
1 1 0  (3)

where CXX is the correlation matrix of (X1, X2, ..., Xp),

l l l li i i ip
1

1
1

2
1 1 ( , , , ) and l li i

1 1 = 1, i = 1,2, ..., p. The ith

PC for cases is calculated by

F l X l X l Xi
D

i i ip p   1
1

1 2
1

2
1 (4)

and for controls

F l Y l Y l Yi
C

i i ip p   1
1

1 2
1

2
1 (5)

Strategy 2 (COES):

C l lYY i i  0 (6)

where CYY is the correlation matrix of (Y1, Y2, ..., Yp).

The ith PC for controls is calculated by

F l Y l Y l Yi
C

i i ip p   1 1 2 2  (7)

And for cases, the ith PC, i = 1,2, ..., p, is calculated by

F l X l X l Xi
D

i i ip p   1 1 2 2  (8)

Strategy 3 (CES):

Cl li i
   0 (9)

where C is the correlation matrix obtained from the

pooled data of cases and controls,     l l l li i i ip ( , , , )1 2

and   l l i pi i
  1 1 2, , , , . The ith PC of cases is calcu-

lated by

F l X l X l Xi
D

i i ip p      
1 1 2 2 (10)

The ith PC of controls is calculated by

F l Y l Y l Yi
C

i i ip p      
1 1 2 2 (11)

PCA-BCIT

Given a sample of N cases and M controls with p-SNP

genotypes (X1, X2, ..., XN)
T, (Y1, Y2, ..., YM)

T, and Xi =

(X1i, X2i, ..., xpi) for the ith case, Yi = (Y1i, Y2i, ..., ypi) for

the ith control, a PCA-BCIT is furnished in three steps:

Step 1: Sampling

Replicate samples of cases and controls are obtained

with replacement separately from (X1
(b, X2

(b), ..., XN
(b))T

and (Y1
(b, Y2

(b), ..., YM
(b))T, b = 1,2, ..., B (B = 1000).

Step 2: PCA

For each replicate sample obtained at Step 1, PCA is

conducted and a given number of PCs retained with a
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threshold of 80% explained variance for all three strate-

gies[16], expressed as F F FD D
K
D

b

1 2, , ,
( )

  and F F FC C
K
C

b

1 2, , ,
( )

  .

Step 3: PCA-BCIT

3a) For each replicate, the mean of the kth PC in cases is

calculated by

mean F
N

Fk
D b

ki
D b

i

N

( )( ) ( )

1

1

(12)

and that of the kth PC in controls is calculated by

mean F
M

Fk
C b

kj
C b

j

M

( )( ) ( )

1

1

(13)

3b) Given confidence level (1 - a ), the confidence

interval of mean Fk
D b( )( ) is estimated by percentile

method, with form

( , )
( )

P P
k

D

k

D

 
2 2

1
 for case (14)

where P
k

D

2

is the 100
2
 th percentile of

mean Fk
D b( )( ) , and P

k

D

( )1
2

 is the 100 1
2

( )  th

percentile.

The confidence interval of mean Fk
C b( )( ) is estimated

by

( , )
( )

P P
k

C

k

C

 
2 2

1
 for control (15)

where P
k

C

2

is the 100
2
 th percentile of

mean Fk
C b( )( ) , and P

k

C

( )1
2

 is the 100 1
2

( )  th

percentile.

3c) Confidence intervals of cases and controls are

compared. The null hypothesis is rejected if

( , )
( )

P P
k

D

k

D
 
2 2

1 and ( , )
( )

P P
k

C

k

C
 
2 2

1 do not overlap,

which is mean Fk
D b( )( ) and mean Fk

C b( )( ) are statistically

different[19], indicating the candidate region is signifi-

cantly associated with disease at level a. Otherwise, the

candidate region is not significantly associated with dis-

ease at level a.

Simulation studies

We examine the performance of PCA-BCIT through

simulations with data from the North American Rheu-

matoid Arthritis (RA) Consortium (NARAC) (868 cases

and 1194 controls)[20], taking advantage of the fact that

association between protein tyrosine phosphatase non-

receptor type 22 (PTPN22) and the development of RA

has been established[21-24]. Nine SNPs have been

selected from the PNPT22 region (114157960-

114215857), and most of the SNPs are within the same

LD block (Figure 1). Females are more predisposed

(73.85%) and are used in our simulation to ensure

homogeneity. The corresponding steps for the simula-

tion are as follows.

Step 1: Sampling

The observed genotype frequencies in the study sample

are taken to be their true frequencies in populations of

infinite sizes. Replicate samples of cases and controls of

given size (N, N = 100, 200, ..., 1000) are generated

whose estimated genotype frequencies are expected to

be close to the true population frequencies while both

the allele frequencies and LD structure are maintained.

Under null hypothesis, replicate cases and controls are

sampled with replacement from the controls. Under

alternative hypothesis, replicate cases and controls are

sampled with replacement from the cases and controls

respectively.

Step 2: PCA-BCITing

For each replicate sample, PCA-BCITs are conducted

through the three strategies of extracting PCs as out-

lined above on association between PC scores and dis-

ease (RA).

Step 3: Evaluating performance of PCA-BCITs

Repeat steps 1 and 2 for K ( K = 1000 ) times under

both null and alternative hypotheses, and obtain the fre-

quencies (Pa) of rejecting null hypothesis at level a (a =

0.05).

Applications

PCA-BCITs are applied to both the NARAC data on

PTPN22 in 1493 females (641 cases and 852 controls)

described above and a data containing nine SNPs near

μ-opioid receptor gene (OPRM1) in Han Chinese from

Shanghai (91 cases and 245 controls) with endopheno-

type of heroin-induced positive responses on first use

[25]. There are two LD blocks in the region of gene

OPRM1 (Figure 2).

Results
Simulation study

The performance of PCA-BCIT is shown in Table 1 for

the three strategies given a range of sample sizes. It can

be seen that strategies 2 and 3 both have type I error

rates approaching the nominal level (a = 0.05), but

those from strategy 1 deviate heavily. When sample size

larger than 800, the power of PCA-BCIT is above 0.8,

and strategies 2 and 3 outperform strategy 1 slightly.

Applications

For the NARAC data, Armitage trend test reveals none

of the SNPs in significant association with RA using

Bonferroni correction (Table 2), but the results of PCA-

BCIT with strategies 2 and 3 show that the first PC
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Figure 1 LD (r2) among nine PTPN22 SNPs. The nine PTPN22 SNPs are rs971173, rs1217390, rs878129, rs11811771, rs11102703, rs7545038,

rs1503832, rs12127377, rs11485101. The triangle marks a single LD block within this region: (rs878129, rs11811771, rs11102703, rs7545038,

rs1503832, rs12127377, rs11485101).

Figure 2 LD (r2) among nine OPRM1 SNPs. The nine OPRM1 SNPs are rs1799971, rs510769, rs696522, rs1381376, rs3778151, rs2075572,

rs533586, rs550014, rs658156. The triangles mark the LD block 1 (rs696522, rs1381376, rs3778151) and LD block 2 (rs550014, rs658156).
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extracted in region of PTPN22 is significantly associated

with RA. The results are similar to that from permuta-

tion test (Table 3).

For the OPRM1 data, the sample characteristics are

comparable between cases and controls (Table 4), and

three SNPs (rs696522, rs1381376 and rs3778151) are

showed significant association with the endophenotype

(Table 5). The results of PCA-BCIT with strategies 2

and 3 and permutation test are all significant at level a

= 0.01. In contrast, result from PCA-LRT is not signifi-

cant at level a = 0.05 with strategy 2 (Table 3). The

apparent separation of cases and controls are shown in

Figure 3 for PCA-BCIT with strategy 3, suggesting an

intuitive interpretation.

Discussion
In this study, a PCA-based bootstrap confidence interval

test[19,26-28] (PCA-BCIT) is developed to study gene-

disease association using all SNPs genotyped in a given

region. There are several attractive features of PCA-

Table 1 Performance of PCA-BCIT at level 0.05 with

strategies 1-3†

Sample size Type I error Power

1 2 3 1 2 3

100 0.014 0.036 0.037 0.156 0.163 0.176

200 0.016 0.044 0.036 0.249 0.278 0.292

300 0.017 0.028 0.029 0.383 0.426 0.368

400 0.014 0.04 0.02 0.508 0.485 0.516

500 0.009 0.035 0.042 0.613 0.595 0.597

600 0.006 0.032 0.042 0.677 0.662 0.683

700 0.007 0.061 0.04 0.733 0.758 0.73

800 0.004 0.043 0.045 0.801 0.791 0.819

900 0.005 0.057 0.051 0.826 0.855 0.858

1000 0.01 0.056 0.05 0.871 0.901 0.889

†1 case-only extracting strategy (CAES), 2 control-only extracting strategy

(COES), 3 case-control extracting strategy (CES)

Table 2 Armitage trend test on nine PTPN22 SNPs and RA susceptibility

SNP Genotype Female Male

Case Control P-value Case control P-value

rs971173 CC 334 381 0.025 116 169 0.779

AC 236 363 85 134

AA 71 106 26 39

rs1217390 AA 268 319 0.333 99 112 0.108

AG 272 392 89 175

GG 98 138 38 55

rs878129 GG 338 507 0.009 131 187 0.384

AG 251 291 83 130

AA 52 54 13 25

rs11811771 AA 224 272 0.090 78 111 0.717

AG 303 411 104 168

GG 112 169 45 62

rs11102703 CC 312 469 0.024 121 174 0.418

AC 269 314 90 137

AA 60 69 16 31

rs7545038 GG 321 428 0.696 109 186 0.417

AG 265 342 98 114

AA 52 80 20 40

rs1503832 AA 324 487 0.013 129 185 0.249

AG 262 306 86 127

GG 55 59 12 30

rs12127377 AA 349 521 0.017 139 197 0.230

AG 243 282 78 121

GG 49 48 10 24

rs11485101 AA 564 738 0.656 206 305 0.430

AG 72 112 21 35

GG 5 2 0 2

None of the P-values is significant after Bonferroni Correction.
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based approaches. First of all, they are at least as power-

ful as genotype- and haplotype-based methods[7,16,17].

Secondly, they are able to capture LD information

between correlated SNPs and easy to compute with

needless consideration of multicollinearity and multiple

testing. Thirdly, BCIT integrates point estimation and

hypothesis testing as a single inferential statement of

great intuitive appeal[29] and does not rely on the distri-

butional assumption of the statistic used to calculate

confidence interval[19,26-29].

While there have been several different but closely

related forms of bootstrap confidence interval calcula-

tions[28], we focus on percentiles of the asymptotic

distribution of PCs for given confidence levels to esti-

mate the confidence interval. PCA-BCIT is a data-

learning method[29], and shown to be valid and

powerful for sufficiently large number of replicates in

our study. Our investigation involving three strategies

of extracting PCs reveals that strategy 1 is invalid,

while strategies 2 and 3 are acceptable. From analyses

of real data we find that PCA-BCIT is more favourable

compared with PCA-LRT and permutation test. It is

suggested that a practical advantage of PCA-BCIT is

that it offers an intuitive measure of difference

between cases and controls by using the set of SNPs

(PC scores) in a candidate region (Figure 3). As extrac-

tion of PCs through COES is more in line with the

principle of a case-control study, it will be our method

of choice given that it has a comparable performance

with CES. Nevertheless, PCA-BCIT has the limitation

that it does not directly handle covariates as is usually

done in a regression model.

Conclusions
PCA-BCIT is both a valid and a powerful PCA-based

method which captures multi-SNP information in study

of gene-disease association. While extracting PCs based

on CAES, COES and CES all have good performances, it

appears that COES is more appropriate to use.
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Table 3 PCA-BCIT, PCA-LRT and permutation test on real data

Study Strategy† 99%CI 95%CI P-value‡

PCA-LRT Permutation test

PTPN22 2 (-5.4E-01,-4.7E-03)**
(-7.5E-16,6.9E-16)

(-4.8E-01,-8.6E-02)*
(-4.6E-16,4.2E-16)

0.006** 0.002**

3 (1.7E-02,3.3E-01)**
(-2.5E-01,-1.3E-02)

(4.9E-02,3.0E-01)*
(-2.2E-01,-3.7E-02)

0.007** 0.002**

OPRM1 2 (-1.2E+00,-1.1E-02)**
(-4.7E-16,5.0E-16)

(-1.1E+00,-1.8E-01)*
(-3.7E-16,3.4E-16)

0.107 0.002**

3 (5.3E-02,1.4E+00)**
(-4.9E-01,-1.7E-02)

(2.4E-01,1.2E+00)*
(-4.2E-01,-8.0E-02)

0.012* 0.004**

†2 control-only extracting strategy (COES), 3 case-control extracting strategy (CES)

‡* significant at levels a = 0.05(*) and a = 0.01 (**).

Table 4 Sample characteristics of heroin-induced positive responses on first use

Cases (N = 91) Controls (N = 245) P-value

Age (yrs) 30.42 ± 7.65 30.93 ± 8.18 0.6057

Women (%) 26.4 29.8 0.5384

Age at onset (yrs) 26.29 ± 7.41 26.97 ± 7.89 0.4760

Reason for first use of heroin 0.7173

Curiousness 79.1 75.1

Peer pressure 6.6 4.9

Physical disease 7.7 10.2

Trouble 5.5 6.1

Other reasons 1.1 3.8
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Table 5 Armitage trend tests on nine OPRM1 SNPs and heroin-induced positive responses on first use

SNP Genotype Count and frequency Armitage trend test

Cases Controls Chi-square P-value

rs1799971 AA 55 0.604 150 0.622 0.003 0.9537

AG 27 0.297 64 0.266

GG 9 0.099 24 0.112

rs510769 TT 56 0.667 167 0.749 2.744 0.0976

TC 24 0.286 53 0.237

CC 4 0.048 4 0.018

rs696522 AA 64 0.762 215 0.907 11.097 0.0009*

AG 19 0.226 21 0.089

GG 1 0.012 1 0.004

rs1381376 CC 70 0.769 221 0.913 13.409 0.0003*

CT 20 0.220 21 0.087

TT 1 0.011 0 0.000

rs3778151 GG 66 0.733 215 0.896 14.655 0.0001*

GA 23 0.256 25 0.104

AA 1 0.011 0 0.000

rs2075572 GG 50 0.556 149 0.642 1.574 0.2096

GC 33 0.367 82 0.353

CC 7 0.078 11 0.047

rs533586 TT 68 0.840 203 0.868 0.761 0.3830

TC 12 0.148 31 0.132

CC 1 0.012 0 0.000

rs550014 TT 78 0.857 203 0.832 0.093 0.7602

TC 12 0.132 41 0.168

CC 1 0.011 0 0.000

rs658156 GG 65 0.714 192 0.787 2.041 0.1531

GA 24 0.264 52 0.213

AA 1 0.011 0 0.000

* significant after Bonferroni Correction.

Figure 3 Real data analyses by PCA-BCIT with strategy 3 and confidence level 0.95. The horizontal axis denotes studies and vertical axis

mean(PC1), the statistic used to calculate confidence intervals for cases and controls. PCA-BCITs with strategy 3 were significant at confidence

level 0.95.
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