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Abstract. Electric utilities are in the process of installing millions of
smart meters around the world, to help improve their power delivery
service. Although many of these meters come equipped with encrypted
communications, they may potentially be vulnerable to cyber intrusion
attempts. These attempts may be aimed at stealing electricity, or desta-
bilizing the electricity market system. Therefore, there is a need for an
additional layer of verification to detect these intrusion attempts. In this
paper, we propose an anomaly detection method that uniquely combines
Principal Component Analysis (PCA) and Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) to verify the integrity of
the smart meter measurements. Anomalies are deviations from the nor-
mal electricity consumption behavior. This behavior is modeled using a
large, open database of smart meter readings obtained from a real deploy-
ment. We provide quantitative arguments that describe design choices for
this method and use false-data injections to quantitatively compare this
method with another method described in related work.
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1 Introduction

The Advanced Metering Infrastructure (AMI) provides a means for communi-
cation between electric utilities and consumers. Smart meters are increasingly
replacing traditional analog meters to enable the automated reading of electricity
consumption and the detection of voltage variations that may lead to outages.
For example, by 2018, the Illinois-based Commonwealth Edison Company will
have installed 4 million smart meters in all homes and businesses in Northern
Illinois [5].

AMI is perceived to provide other benefits, beyond describing the state of
the electric distribution grid. For example, smart meters have been rolled out
by electric utilities such as BC Hydro to detect electricity theft [2]. In 2010,
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however, the Cyber Intelligence Section of the FBI reported that smart meters
were hijacked in Puerto Rico, causing electricity theft amounting to annual losses
for the utility estimated at $400 million [6].

In [20], we show that an attacker may be able to destabilize a real-time
electricity market system by compromising the electricity price relayed to the
Automated Demand Response (ADR) interfaces. Equivalently, it may be possible
to destabilize the system by compromising smart meter consumption readings,
causing suppliers to modify the electricity price accordingly. Electricity theft
and destabilization of electricity markets are just two of several attacker goals
that illustrate the need for effective intrusion detection systems. Other attacker
models are discussed in [3].

It must be noted that smart meters, such as those manufactured by GE, are
equipped with encrypted communication capabilities and tamper-detection fea-
tures. However, reliance on those mechanisms is not a sufficient defense against
cyber intrusions that exploit software vulnerabilities. In their Cyber Risk Re-
port 2015, HP Security Research states that the enterprises most successful in
securing their environments employ complementary protection technologies [8].
Such technologies work best in the context of the assumption that breaches will
occur. By using all tools available and not relying on a single product or service,
defenders place themselves in a better position to prevent, detect, and recover
from attacks.

The anomaly detection methods presented in this paper assume that an at-
tacker has compromised the integrity of smart meter consumption readings, and
aim to mitigate the impact of such an intrusion. How the attacker can get into
a position where he is capable of modifying communication signals is not a fo-
cus of this paper and is discussed in [9], [13], and [14]. Our aim is to verify the
data reported to the utility by modeling the normal consumption patterns of
consumers and looking for deviations from this model.

Our proposed method leverages Principal Component Analysis (PCA) [15];
anomaly detection methods that leverage PCA have been proposed in [4, 11,
18, 19]. However, these papers focus on classifying anomalies, such as network
volume anomalies, that manifest themselves as spikes in the data. Electricity con-
sumption behavior, however, tends to be naturally spiky. Therefore, these meth-
ods fail to detect actual anomalies in consumption, such as extended changes in
consumption patterns.

We propose a method that leverages the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm and show that this algorithm [1,
7], when combined with PCA, effectively detects anomalies in electricity con-
sumption data. There are three advantages to using this method. First, by ex-
tracting the principal components that retain the maximum amount of variance
in the data, we extract underlying consumption trends that repeat on a daily or
weekly basis. Principal components that account for lower variance essentially
represent noise in the consumption behavior, and this noise is filtered out. Sec-
ond, the first two principal components allow us to visualize a massive dataset in
a 2-dimensional space. Anomaly detection can then be performed in a way that
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can be visually verified. Third, the anomaly detection is performed in a space
that spans the consumptions of all consumers. Therefore, it becomes significantly
harder for an attacker to reverse-engineer and circumvent this detector, as he
would need full information of all the consumers’ smart meters in the network.

Online anomaly detection is an important feature that would enable better
adoption of our method. For this feature, we leverage the technique in [17].
The results of our method could feed into recent cyber physical vulnerability
assessment techniques such as [21], or be incorporated into a stand-alone tool.

Our model of consumption patterns is based on a large, open dataset that
is described in Section 2. We propose and delineate our own anomaly detection
method in Section 3, and evaluate this method against other well-known methods
in Section 4. We conclude in Section 5.

2 Description of the Dataset

The dataset we use was collected by Ireland’s Commission for Energy Regulation
(CER) as part of a trial that aimed at studying smart meter communication
technologies. It is the largest, publicly available dataset that we know of, and
access details are provided in the Acknowledgments section of this paper. The
fact that the dataset is public makes it possible for researchers to replicate and
extend this paper’s results.

The dataset is an anonymized collection of readings from 6,408 consumers,
collected at a half-hour time resolution, for a period of up to 74 weeks. Of the
6,408 consumers, we restrict our analysis to the largest subset that contains the
same 74 weeks, by calendar date. This restriction results in a set of 2,982 con-
sumers, of which 2,374 were residential, 253 were small and medium enterprises
(SMEs), and 355 were unclassified by CER.

3 Data-Driven Detection Strategies

In this section, we analyze the CER smart meter dataset and model electricity
consumption patterns to aid in the detection of integrity attacks. We discuss two
distinct detection strategies. The first is based on the average detector proposed
in [12]. Given the limitations of that technique, we devised an alternative method,
which is based on Principal Component Analysis (PCA). We discuss it in detail
and quantify its effectiveness in Section 4.

The electricity consumption patterns in the CER dataset guide our anomaly
detection methods. The authors of [12] admit that they arbitrarily evaluate de-
tection strategies and use consumption models (such as the Auto-Regressive
Moving-Average model) that do not capture actual electricity consumption pat-
terns. In contrast, our detection methods stem from our analysis of consumption
patterns in a dataset obtained from a real, large-scale deployment.
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3.1 Assumptions and Notations Used in Detection

The detection strategies presented in this section look for anomalies in the smart
meter readings that are reported to the utility. We assume that the meters are
correctly measuring current, but the readings being communicated may have
been compromised.

In the context of this paper, a detection strategy is a centralized online
algorithm that would typically run at the utility control center and is defined as
follows. The input is a set of new smart meter consumption readings that are
reported to the utility. We refer to it as the input set, and it may contain one or
more readings for each consumer. We refer to the output as the classification of
the set, which is binary: normal or suspected attack. Note that the classification
is based on an input set, and not on a single reported reading. So it is possible
for the detection algorithm to classify individual readings as normal, but classify
a combined set of such readings as anomalous. This may happen because of a
deviation of the combined readings from the expected combined pattern.

We divided the 74 weeks of consumption data obtained from the CER dataset
into two sets: a training set of the first 60 weeks and a test set of the remaining
14 weeks. Note that anomalies in the training set are not labeled, so we do not
have ground truth on which readings are anomalous. As such, our algorithm is
unsupervised, and our training set serves to build a model of the consumption
patterns while accounting for the possibility of anomalies in it.

It is reasonable to assume that the training set obtained from CER is free
from integrity attacks. However, there are anomalous consumption behaviors in
the dataset. These anomalies might reflect periods when consumers were, for
example, traveling, leading to abnormally low consumption, or hosting parties,
leading to abnormally high consumption. Such events lead to false positives if
the detection strategy classifies them as suspected attacks. The test set is used in
Section 4 to evaluate false positives and false negatives reported by the detection
algorithms using models built from the training set.

We use the following matrix notations in this section. A(i,j) refers to the
element in matrix A at the intersection of row i and column j. A(i,:) refers to
the row vector at row i, and A(:,j) refers to the column vector at column j.

3.2 Use of Averages to Detect Anomalies

The Average Detector was shown to be effective relative to the other methods
proposed in [12]. This detector is formulated as follows. Let Dc(t) represent the
total consumption of consumer c during time period t. Given that our dataset
contains smart meter measurements at a half-hour granularity, t refers to a par-
ticular half-hour. The consumption reported to the utility is denoted by D′

c(t).

Dc(t) is non-deterministic, and the true value at a certain time t is unknown
to us, since our only knowledge of the value is through the reported reading
D′

c(t). As D′

c(t) may be manipulated by integrity attacks on smart meter com-
munications, we need to devise methods to validate D′

c(t) for each t.
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(a) Normalized consumption for all weeks
for SME 1028
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(b) Distribution of normalized consump-
tion at half-hour index 71

Fig. 1: Normalized consumption of SME Consumer 1028. The five green/blue
vertical bands in (a) represent time periods of higher electricity consumption
that correspond to weekdays.

For each consumer c, we define an M × N matrix Hc in which each row
represents one week, and there are M weeks. Each column represents the time
of the week, and there are N times. In addition, we carefully align the weeks
such that the first column of each matrix Hc refers to the first time period of a
Monday, and the last column refers to the last time period of a Sunday. In our
training set, Hc is a 60× 336 matrix, as there are 60 weeks in the training data
and 336 half-hours in a week.

Note that while consumption patterns typically repeat every week, the abso-
lute consumption depends on the week. If the week is during winter in a country
whose climate is like Ireland’s, chances are that an occupant of the house will
turn on the heating system. In contrast, the heating system will most likely be
turned off during a week in the summer. To ensure that weeks can be compared
on even grounds, we normalize each row in the matrix Hc, corresponding to
the week, by dividing the row by its l2-norm. Fig. 1 illustrates the normalized
H1028 matrix (consumer identity c = 1028). The fact that this consumer has
nearly zero consumption on weekends indicates that it is likely not a residential
consumer. Indeed, the CER dataset has labeled 1028 as an SME.

We define the half-hour index (HHI) of the time t as a mapping HHI :
t → {0, 1, ..., 335}. For example, if we want to know whether D′

c(t) is anomalous
when t is December 2, 2014 at 12 p.m., we determine that this date is a Tuesday
and that the time of the week corresponds to an HHI of 71. Fig. 1(b) represents
P (D1028|HHI(t) = 71). We do not make any assumptions on the underlying dis-
tribution, as we do not have the data necessary to construct a valid distribution.
In previous work, we showed that a normal distribution is observed when Dc is
conditioned on multiple parameters, such as HHI (t), solar irradiation, external
temperature, and building occupancy [10].

The detection algorithm for an input set is performed on a per-user basis as
follows. For each consumer ck, we calculate the average of the input set ISk =
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{D′
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(t1), D

′
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(t2)...}, where the times tj may index a single time point (j = 1), a

day (j ∈ [1, 48]) or a week (j ∈ [1, 336]), etc. This produces a single average value
avg(ISk) for the new data. We then compare this average to the averages taken
over the same time points in all previous weeks for consumer ck. For example,
if ISk contains the set of all consumption points on a Tuesday, we compare the
average avg(ISk), with averages of every Tuesday in the history of the dataset.
If avg(ISk) is less than the lowest (or greater than the highest) average seen in
past Tuesdays, we say that the input set is anomalous. If ISk is a singleton set
containing, say, the consumption at 12 p.m. on a Tuesday, we compare it against
a set of consumptions at 12 p.m. on previous Tuesdays. In this case, avg(ISk)
is the same as the single value in ISk, so the notation remains valid.

3.3 Detecting Anomalies with Principal Component Analysis

The drawback of the average detector is that an attacker can circumvent it
by ensuring that the average of the input set for a consumer avg(ISk) does not
change significantly. Specifically, the elements of the input set can vary in a man-
ner that is not consistent with the typical consumption patterns, but this change
of pattern will not be quickly detected if the average is kept within reasonable
bounds. Therefore, there is a need for a method that analyzes the variation in
the consumption pattern as a collection of meter readings, as opposed to indi-
vidual meter readings. For this purpose, we propose using Principal Component
Analysis (PCA), and to detect deviations from the pattern we propose the use
of a clustering technique.

PCA reveals the underlying trends in the smart meter data, across thousands
of consumers, by reducing the dimensionality of the data, while retaining most of
the data’s variance. As such, it provides us with a way we can collapse a vector of
electricity consumption readings in a high-dimensional space into one in a lower-
dimensional space. This greatly aids anomaly detection methods, which can be
intuitively executed in the lower-dimensional space, without loss of significant
information. PCA not only immediately reveals clusters in data, but also is
sensitive to changes in consumption patterns that may indicate integrity attacks.

The PCA Mechanism We demonstrate the mechanism of PCA by con-
structing two different matrices (A & B) from our entire training set. A has
MA = 20, 160 rows, one for each half-hour of the 60-week period of study, and
NA = 2, 982 columns, one for each consumer. In this example, we can think of
the consumption of each consumer across all 60 weeks as a column vector in
a 20,160-dimensional space. There are 2,982 such column vectors. Using PCA,
we will collapse these column vectors from MA = 20, 160 dimensions into two
dimensions. Due to high correlation, two data points are sufficient to capture the
patterns of each consumer, relative to the patterns of other consumers. Let PA

be the matrix of dimension 2 ×MA that transforms A of dimension MA × NA

to YA of dimension 2×NA. Then,

PAA = YA (1)
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For calculation and notation convenience, we pre-process A by subtracting each
row by the mean for that row and dividing the entire matrix by NA = 2, 982. We
are interested in the covariance between the MA rows (or readings per consumer)
in A. For the corresponding AAT covariance matrix, PA = UT

(0:1,:), where U is

obtained from the Singular Value Decomposition (SVD) of A = UΣV T . Here,
the columns of U are the eigenvectors of the covariance matrix AAT , and Σ2

(the eigenvalues) represent the amount of variance retained by the principal
components. This is illustrated in Fig. 2. Together, the two components in PA

retain 63.63% of the variance in A, and the marginal variance retained by each
further component is negligible.

There are two advantages to retaining only the first two components. First,
maximum variance is retained by these components, so discarding further com-
ponents effectively discards the noise in the consumption patterns. Second, it
allows us to visualize a vector of 20, 160 dimensions in a two dimensional space.
This then facilitates anomaly detection in this 2D space, as we will discuss later.
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Fig. 2: Variance (%) retained by principal components of matrices A & B.

Construction of PCA Biplots We transform A into the PA space by taking
the product PAA = YA, where YA is the 2×NA PCA score matrix. The two rows
of YA are called the Principal Component 1 Score and the Principal Component
2 Score. The scatter plot of the two scores is the PCA biplot shown in Fig. 3(a).
Points that lie close together in this 2D space describe consumers, or columns in
A, whose consumption patterns are similar. Given that the comparison is over
60 weeks at a half-hour granularity, the large extent to which the consumers
cluster together in the biplot was unexpected, and indicates that most of the
consumers in the dataset have highly similar consumption patterns.

In Fig. 3(a), we used the labels in the CER dataset to distinguish the points
in the biplot by consumer type. These labels revealed an interesting behavior
where most residential consumers were found to cluster together in the 2D space.
This indicated that their consumptions were similar to each other. However,
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Fig. 3: Principal Component Analysis biplots describing the structure and simi-
larities within the dataset.

SMEs varied greatly, which might reflect the unique electricity consumption
requirements of their businesses.

In order to capture the relationship among consumers’ individual patterns
across different weeks, we reshaped A to get another matrix B; it contains MB =
48 ∗ 7 = 336 rows (one for each half-hour of the week) and NB = 2, 982 ∗ 60 =
178, 920 columns (one for each week of each consumer in the 60-week period).
Again, we reduced the dimension of each week from MB = 336 dimensions
to 2 dimensions, retaining 68% of the variance in B as shown in Fig 2. The
corresponding principal component matrix, PB , is 2 × 336, and the PCA score
matrix, YB = PBB, is 2×NB .

Note that although A and B contain the same number of elements, their
Principal Component Scores are of different dimensions and describe completely
different characteristics of the data. The scores in YB tell us how similar the 60
weeks of consumption are in the training set across all consumers and they are
plotted in Fig. 3(b). We observe a dense clustering of points corresponding to
each consumer in the YB matrix, which captures how similar the consumption
weeks are for each consumer, in comparison to weeks of other consumers. This
can easily be seen in Fig. 3(b), where we have colored the points corresponding
to four very different consumers and their consumption weeks.

A closer look at the weeks for consumer 1028 in Fig. 3(b) revealed a single
blue triangle at around (70,−15) in the plot that is significantly distant from the
others. It corresponds to Week Index 23 in Fig. 1(a), which is clearly anomalous
and probably a vacation week. There are other anomalous points that are distant
from the dense cluster. As the anomalies are inherent in the dataset, we assume
that they are natural anomalies, and not the consequence of attacks. Attacks,
which modify the consumption signals in a manner that changes their pattern,
cause a shift in the location of the original point (corresponding to a week) to a
completely new one on the biplot, as shown in Fig. 4(b).
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Fig. 4: Principal Component Analysis biplots for Consumer 1028 capturing (a)
the decision boundary for anomalous points and (b) the movement of a baseline
week of consumption in the principal component space with increase in duration
of an integrity attack (Random Scale Attack, discussed in Section 4.3).

Clustering Points in the Principal Component Space A natural density-
based clustering of points in the principal component space is observed in Fig. 3.
Therefore, we employ the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm [7] to determine which points correspond to regular
weeks and which points correspond to anomalous weeks. An inherent benefit of
DBSCAN lies in the fact that it works well for irregular geometries of dense clus-
ters, and that it does not assume any underlying probability density of the points.
The non-convex boundaries and treatment of dense clusters make DBSCAN bet-
ter suited to our application, as opposed to other hierarchical, centroid-based,
and distribution-based clustering methods.

The DBSCAN algorithm has two configurable parameters: eps and MinPts.
These are used to obtain dense neighborhoods. In a two-dimensional Euclidean
space, such as our principal component space, the circular region of radius eps

centered at a point is referred to as the eps neighborhood of the point. A core point
is a point that contains MinPts points within its eps neighborhood. All points
that lie within the eps neighborhood of a core point are considered members of
a dense cluster.

In our specific case, we are clustering 60 points that correspond to the weeks
of consumption, for each consumer in our training set. These points were ex-
tracted from YB . We define MinPts as the number of points that achieves a
simple majority (which in this case is 31). As a result, a single continuous cluster
corresponding to normal weeks is produced, because any two eps neighborhoods
containing MinPts points must intersect at at least one point.

Points that lie within the eps neighborhood of a core point, but are not core
points themselves, are referred to as fringe points, as they usually lie at the
fringes of the dense neighborhood. The algorithm considers all points that are
neither core points nor fringe points to be “noise.” This noise is how we define
anomalous points in the dataset.
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Fig. 4(a) illustrates the result of the DBSCAN algorithm for consumer 1028.
The green points are core points, and the blue triangles are fringe points. Since
we chose MinPts to represent a simple majority, the circular eps neighborhoods
overlap to form a single dense region, indicated by the yellow region in Fig. 4(a).
All points within this region are considered to be normal. Anomalies, which
may be caused by attacks, are points that do not lie in this region. The red
crosses correspond to natural anomalies, which the algorithm would flag as false
positives, as they lie outside the yellow “safe” region.

Clearly, the detection takes place in the 2D space spanned by PB ’s basis vec-
tors, which span the weekly consumptions of all consumers. In order to reverse-
engineer the PCA detector for the purpose of circumventing it, the attacker
would need to recreate this 2D space by gaining access to the meters of all con-
sumers. In contrast, he would only need to compromise the smart meter of a
single victim in order to reverse-engineer the Average Detector for that victim.
Therefore, the PCA-based detection method is more secure, because circumvent-
ing it requires full knowledge of all consumers’ smart meter readings.

Although the DBSCAN authors provide recommendations in [7] on how to
set eps, these methods are not scalable. Specifically, they suggest calculating
a list of core distances for each point and observing a knee-point at which a
threshold should be set for eps. Given that there are 2, 982 sets of points in
our dataset (one for each consumer), eyeballing knee-points for each set is not
feasible, so we needed to find an alternative. OPTICS, described in [1], can
be used to determine cluster memberships for a single set of points containing
multiple clusters. However, this method is not suitable for our study, in which
we are defining a single cluster per set in 2, 982 sets of points.

We set eps based on Sn, a measure proposed by statisticians in [16]. Sn

looks at a typical distance between points, which makes it a good estimator of
eps. In contrast, the Median Absolute Deviation (MAD) and the Mahalanobis
distance measure the distance between points and a centroid, which is not how
eps is defined. And, unlike the standard deviation, Sn is robust to outliers. In
addition, Sn is applicable to asymmetric geometries of points, like those in 3(b).

4 Evaluation of Detection Methods

We used data-driven simulation methods to evaluate the performance of our
PCA-based detection method for multiple consumers in our dataset. We present
a quantitative comparison of the performance of this method with that of the
Average Detector method.

4.1 Runtime Memory Cost of Implementing the Detectors

The memory cost of the PCA-based method depends on the size of the input
set that needs to be verified. For each consumer, if the input set is a week of
readings at a half-hour time resolution, the principal component matrix would
have a 2×336 dimension. The dimensionality of the principal component matrix
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remains the same as that of the input set. It does not increase as more input
sets are evaluated, but can be updated without further memory costs, as shown
in [17]. Also, it is not a function of how many consumers are in the system and
thus occupies O(1) memory.

In comparison, the Average Detector occupies O(N) memory, scaling with
the number of consumers in the system. For each consumer, this detector needs
to access the minimum and maximum of the averages of each input set it ever
processed. Therefore, this detector maintains 2 scalar values (a maximum and a
minimum) per consumer.

In our evaluation, we do not consider the scenario where input sets are re-
stricted to readings obtained from a single day. However, we briefly describe the
procedure for evaluating such a scenario, because it might be useful in practice.
In this scenario, we would separately perform PCA for each day of the week to
obtain the two principal components. Therefore, our model for each day of the
week would be a 2 × 48 matrix, as there are 48 half-hours in a day. Depending
on the input set’s day of the week, we would then rotate the input set into its
corresponding principal component space. Following this, we would use the DB-
SCAN algorithm to detect whether the input set was an outlier. Note that we
would need 7 principal component matrices in this case, one for each day of the
week; the total memory requirement remains 2× 336.

4.2 Evaluation Methodology

In order to evaluate both methods, we injected attacks that modify the smart
meter readings. Our objective was to test the robustness of the two methods
to such modifications, so we gradually varied the attack duration and recorded
both false positives as well as false negatives. In this case, a false positive occurs
when the input set is classified as a suspected attack, when it was actually not
altered. A false negative occurs when the input set was compromised but the
detection method classifies it as normal behavior.

Let Attacked : ISk → {0, 1} be a function that takes the value 1 when the
Input Set for a consumer ISk is compromised and 0 when ISk is not compro-
mised. We measured the false positive rate (FPR) and false negative rate (FNR)
defined in terms of probabilities as follows:

FPR = P (Classification = Suspected Attack |Attacked(ISk) = 0)

FNR = P (Classification = Normal Behavior |Attacked(ISk) = 1)
(2)

In order to make a fair comparison between the two methods, we standardized
the size of the input set to half-hour values over a week. Therefore, the input set
contained 336 readings. We could have equivalently limited the standardized size
of the input set to a day, but the stealthy attacks that we injected would take
multiple days to be detected. A stealthy attack in this sense is one where the
readings are not significantly altered, and examples are described in Section 4.3.

Our injection approach was broken down into two tests. In both tests, we
constructed an initial input set containing the elements of any previous week in
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the training data that corresponded to a core point according to DBSCAN. This
set is guaranteed to be free from anomalies and was used to complete the input
set with 336 readings. Beginning with the first half-hour element of this input
set, we modified the consumptions in chronological order. The modifications were
made differently for the two tests, as described next.

The first test was a test for false negatives and the readings were modified us-
ing the attack injection methods explained in Section 4.3. The ideal result would
have been the classification of all input sets as suspected attacks. By modifying
the input sets in a chronological sequence, we varied the attack duration from
one half-hour period to the entire week. For each attack duration, a new input
set was created. The time to detection (TTD) for a detector is captured by the
input set that corresponded to the shortest detectable attack duration. Better
detectors have smaller TTDs.

The second test was a test for false positives. In this case, the input set was
constructed using readings from the test set, which contained 14 weeks from the
CER dataset (see Section 3.1). For each half-hour index of the input set, we
randomly picked a reading from the test set with the same half-hour index. This
random choice was made from a discrete uniform distribution with range [1, 14].
The ideal result would have been the classification of all input sets as normal,
since P (Attacked(ISk) = 0) for all of them.
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Fig. 5: Physical Manifestation of Random Scale (α = 0.5, β = 3) and Average
(γ = 0.5) Attacks on Consumer 1028. The attacks are launched at time 0. The
PCA Detector has a TTD of 114 half-hours for the Random Scale Attack, and
84 half-hours for the Average Attack. The Average Detector has a TTD of 270
half-hours for the Random Scale Attack, and cannot detect the Average Attack.
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4.3 Attack Injection Methods

In order to evaluate false negatives, we discuss two specific types of attack in-
jection methods that modify the baseline week of readings (input set):

Random Scale Attack : At each half-hour time point, the consumption signal is
multiplied by a uniform random variable R ∼ Unif(α, β) where 0 < a < b. The
consumption is under-reported when R is a fraction below 1, and over-reported
when it is a fraction above 1. If on average the values are over-reported, it can
cause instability as shown in [20]. If they are under-reported, however, they can
lead to electricity theft, as shown in [12].

Average Attack : At each half-hour time point, the consumption signal is re-
placed by the average value of the baseline week, multiplied by a uniform random
variable G ∼ Unif(1− γ, 1 + γ) where γ ∈ [0, 1]. The reported consumption ef-
fectively oscillates around the average. An attacker may use this method in a
time-of-use electricity pricing scheme by under-reporting consumption readings
when the price is high and over-reporting them when the price is low, while
maintaining the average for a given day. This assumes that the electric utility
uses redundant meters to verify aggregate consumptions at the end of the day.

Fig. 5 illustrates the physical manifestation of these attacks. As previously
described, the false data was injected into the reported readings starting from
half-hour index 0 all the way to half-hour index 355. This simulates the duration
of the attack, and reveals the TTD for each detector.

For the PCA detector, the point, which corresponds to a week in the principal
component space, moves as the attack duration increases. This movement, in
discrete steps, is captured by the trajectory in Fig. 4(b). When the consumption
pattern has been sufficiently disturbed, the point moves beyond the detection
boundary defined by the DBSCAN algorithm. Beyond this duration (the TTD),
the point continues to move farther away from the dense cluster and will continue
to be classified as a suspected attack.

4.4 Results

We have thus far used Consumer 1028 for illustration purposes, and now extend
our evaluation to all 2, 982 consumers in the dataset. The Random Scale Attack
was simulated on all consumers while the Average Attack was simulated on a
subset of 2, 814 consumers. This subset contained only those consumers who
exhibited variation in the baseline consumption that was greater than the vari-
ation introduced by the Average Attack; specifically, the ratio of the standard
deviation to the mean of the baseline week was greater than γ.

For each consumer, we created 2 ∗ 336 ∗ 1, 000 input sets, for a combination
of 2 tests (false positive and false negative), 336 discrete attack durations (for
336 half-hours in a week), and 1, 000 trials to capture the range of the uniform
random variables. Increasing the number of trials from 100 to 1, 000 resulted in
a 5.4% increase in the range of means observed for a uniform random sample
of 336 values. Further increasing the number of trials from 1, 000 to 100, 000
increased the range by just 6.2%. We therefore decided to use 1, 000 trials to
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reduce the cost of the simulation without losing a large fraction of the range of
the uniform random variables.

Given the large size of the simulation (it took around 3, 840 CPU hours to
complete), we limited the attack parameter space to the values given in Fig. 5.
We then calculated the FNR and TTD for the two different types of attacks.
Table 1 captures the metrics across all consumers.

To save space in Table 1, we introduce some new notation. RS Attack is the
Random Scale Attack and A Attack is the Average Attack. dPCA denotes the
event that an attack was successfully detected by the PCA detector within the
336 half-hour time frame in all 1, 000 trials. This event applies to each consumer.
P (dPCA) is a probability that denotes the fraction of consumers for whom
this event held true. dAV G is the corresponding event for the Average (AVG)
detector. Result 1 (in Table 1) tells us that for 84.9% of consumers, the PCA
detector was successful in detecting the Random Scale Attack. The PCA detector
performs better against both attacks, as indicated in the Win column. Although
the PCA detector did not perform as well as we had hoped for the Average
Attack, it was a significant improvement on the AVG Detector.

Note that the detectors work in many of the 1, 000 trials conducted for each
consumer, but we wanted to test robustness under the stochastic attacker behav-
ior. Therefore, our results conservatively captured only the consumers for whom
the detectors worked in all 1, 000 trials.

Results 2, 3, & 4 describe the TTD for the PCA and AVG detectors. The
best case (min), average case (mean), and worst case (max) TTDs for the PCA
detector are lower than the corresponding values for the AVG detector for most
consumers, which again makes the PCA detector better. Note that the probabil-
ity of having a higher TTD can be inferred from the probability of having equal
and lower TTDs, which are given in the table. Result 5 compares the probability
of having lower FNRs. Note that the remaining probability is accounted for by
the case where the FNRs are equal.

Table 1: Evaluation Results for False Negative Tests
RS Attack A Attack

Metric Value Win Value Win

1. P (dAV G) 0.635 PCA 0.040 PCA
P (dPCA) 0.849 0.081

2. P (mean(PCATTD) < mean(AV GTTD)|dPCA & dAV G) 0.652 PCA 0.520 PCA
P (mean(PCATTD) = mean(AV GTTD)|dPCA & dAV G) 0.001 0.000

3. P (min(PCATTD) < min(AV GTTD)|dPCA & dAV G) 0.689 PCA 0.480 TIE
P (min(PCATTD) = min(AV GTTD)|dPCA & dAV G) 0.025 0.040

4. P (max(PCATTD) < max(AV GTTD)|dPCA & dAV G) 0.513 PCA 0.600 PCA
P (max(PCATTD) = max(AV GTTD)|dPCA & dAV G) 0.121 0.040

5. P (PCAFNR < AV GFNR) 0.630 PCA 0.079 PCA
P (PCAFNR > AV GFNR) 0.232 0.033
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On false positive tests, the AVG detector outperformed the PCA detector
overall. In fact, the AVG detector had a perfect result: P (AV GFPR = 0) = 1.0
and P (AV GFPR = 1) = 0.0. For the PCA detector, however, P (PCAFPR =
0) = 0.637 and P (0 < PCAFPR < 1) = 0.363. This means that for 63.7% of
consumers, false positives were not detected in all 1, 000 trials. For the remain-
ing consumers, the consumption patterns changed dramatically in the test set,
leading to at least one false positive reported by the PCA detector in the 1, 000
trials. However, the consumption did not increase or decrease beyond the AVG
detector thresholds, leading to the success of the AVG detector.

In summary, we have shown that the PCA detector probabilistically out-
performs the AVG detector on false negative tests. We suspect that the PCA
detector can be improved to reduce the false positive rate for the 36.3% of con-
sumers. This might be achieved by correlating their consumption pattern devia-
tions with deviations observed in the patterns of other consumers. In a vacation
weak, for example, the PCA detector would suspect an attack due to deviation
in consumption patterns. However, if other consumers show deviations for the
same week, it provides evidence against classification as a suspected attack.

5 Conclusion

In this paper, we proposed a PCA-based anomaly detection method that utilities
can use to detect integrity attacks on smart meter communications in an Ad-
vanced Metering Infrastructure. We provided quantitative arguments describing
design choices for this method and presented a quantitative evaluation of the
method with respect to the Average Detector proposed in related work.

In future work, we intend to use the framework developed in this paper to
build a tool that can allow us to perform a more comprehensive evaluation of de-
tection strategies under different attack parameters. Also, we plan to investigate
the false positives of the PCA method by correlating simultaneous anomalies
across multiple consumers.
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