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Abstract 
Within the field of neuroimaging, there has been an increasing trend towards studying brain 
activity in naturalistic conditions, and it is possible to robustly estimate networks of on-going 
oscillatory activity in the brain. However, not many studies have focused on differences between 
individuals in on-going brain activity that would be associable to psychological or behavioral 
characteristics. Existing standard methods can perform well at single-participant level, but 
generalizing the methodology across many participants is challenging due to individual 
differences of brains. As an example of a clinically relevant, naturalistic condition we consider 
here mindfulness. Trait mindfulness, as well as a mindfulness-based intervention cultivating 
focused attention, is often associated with benefits for psychological health. Therefore, the 
manner in which the brain engages in focused attention vs. mind wandering is likely to associate 
with individual differences in psycho–behavioral tendencies. 
We recorded MEG from 29 participants both in a state of focused attention and in a state of 
simulated mind wandering. We used Principal Component Analysis to decompose spatial 
average activation maps of focused attention contrasted with two different mind wandering 
states. The first principal component, which reflected differential engagement of bilateral parietal 
areas during focused attention vs. mind wandering, was associated with behavioral 
characteristics of inhibition, anxiousness and depression, as measured by standard 
questionnaires. We demonstrated that such decomposition of time-averaged contrast maps can 
overcome some of the challenges in methods based on concatenated data, especially from the 
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perspective of behaviorally and clinically relevant characteristics in the ongoing brain oscillatory 
activity. 
 

Keywords 
● Magnetoencephalography 
● Principal Component Analysis 
● Behavioral inhibition 
● Mindfulness 
● Mind wandering 

 

Highlights 
● We present a specific method to analyse/establish associations between brain 

oscillations and behavioral characteristics. 
● We found that activity levels in parietal areas during mind wandering compared to 

focused attention were associated with the behavioral trait of inhibition and anxiety. 

1. Introduction 
Studies using functional magnetic resonance imaging (fMRI) and recently also 
magnetoencephalography (MEG) have shown that even with no specific task, brain exhibits 
robust patterns of activation that are consistent over individuals (Nugent et al., 2015; Ramkumar 
et al., 2012). However, the lack of a specific task makes it difficult to use standard methods that 
are designed for correlating activation patterns with known task or stimulation patterns. Thus, 
unsupervised methods such as Independent Component Analysis (ICA) have become popular 
in this context. After a breakthrough fMRI study (Beckmann et al., 2005) where many such 
resting-state networks were identified in a data-driven manner using ICA, similar networks that 
are consistent over subjects​ ​have also been identified in brain electrophysiology using MEG 
(Brookes et al., 2011).  
 
While it is important to study the commonalities over individuals, for better understanding the 
relevance of resting brain dynamics in individual experience and behavioral tendencies, we also 
need to explore how individual brains differ in these task-free conditions. Indeed, with an 
increase in sample size and use of more sophisticated data analysis methods, it is becoming 
feasible to extract features in brain activation patterns that associate with individual trait 
differences in cognition or behavior (Mason et al., 2007). For example, the frequency distribution 
of spectral content of resting state electrophysiological activity in the brain shows stability over 
individuals (Näpflin et al., 2007) and reflects the level of cognitive load (Haegens et al., 2014).  
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However, there are very few investigations that have focused on the link between resting-state 
oscillatory dynamics and psychological traits within a typical healthy sample of participants. 
Interestingly, MEG was recently used to show that increased beta-band modulation to 
anxiety-evoking images differs between participants who profile at the opposite ends in the 
dimension of tendency to be exploratory vs. tendency to be cautious (Yamano et al., 2016). In 
that study, the differences were shown at the group level by classical hypothesis-driven 
t-statistics on activation in response to stimulation. Yet, the results indicate that there are indeed 
features in the MEG oscillations that may reflect, in a fundamental way, how we approach the 
environment, especially in emotionally loaded contexts. Building on this assumption, data-driven 
characterization of brain oscillations would enable comparisons of general resting-state 
dynamics that underlie psychological differences in human behavior.  
 
However, the multi-participant context requires additional care regarding the decomposition of 
data into components. In order to achieve a meaningful interpretation, the resulting brain 
oscillation components for each participant should be comparable to each other. Running ICA 
separately for each participant in a group results in a set of components for each participant with 
no simple way of matching them (but see Esposito et al., 2005). Organizing original data of each 
participant in some common structure, by, for example, spatial or temporal concatenation, 
allows to run ICA only once yielding components in common space in one go, and then the 
participant-specific components can be extracted using back-projection. This has become a 
popular choice to do ICA on fMRI at group level (Calhoun et al., 2009). While it has been used 
successfully for example to find connectivity differences between healthy participants and 
participants with major depressive disorder (Nugent et al., 2015), it also has drawbacks. As the 
datasets are concatenated before ICA is run, the resulting components are all constrained with 
the same ICA mixing matrix. This means that the independent processes that ICA models, are 
assumed to be (either spatially or temporally) consistent over participants. It is not completely 
clear what the implications of this assumption are, for example, in the case of inconsistency of 
measurement errors or other differences between participants, even though the matter has 
been investigated to some extent (Allen et al., 2012). In addition, some components may 
represent processes that are based only on a subset of participants. For a study on group-level 
inferences, aiming to examine the link between brain activation and individual differences, this 
poses a problem: how to know if a back-projected component of a participant is simply noise (if 
the component was in reality reflecting other subjects’ activities) or represents a 
participant-specific modulation of the common independent process. Finally, even if the 
estimation went fine, ICA typically results in a lot of components. It is a common challenge to 
determine which components are selected for further analysis. Without valid a priori information 
in the component selection, this can lead to selective reporting or loss of power due to multiple 
comparisons. 
 
Mindfulness meditation provides an interesting testbed to develop and test methods for 
continuous data analysis, as it represents a distinct, yet ‘trigger-free’ condition. In the context of 
meditation, practicing focused attention is often associated with many health benefits, such as 
optimal emotion regulation, cognitive control, stress reduction and feeling of fuller life. It can 
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thus be hypothesized that individual differences in the neural signatures of focused attention 
would correlate with behavioral tendencies and personality characteristics that link with 
psychological wellbeing.  
 
We recorded MEG in a paradigm where a sample of 29 participants were asked to perform 
focused-attention meditation task (FA) and two different control conditions: reflection on anxious 
thoughts (AT) and self-centered future planning (FP). These latter conditions served as a 
simulation for mind wandering, which is generally considered as an opposite state of mind to 
mindful focused attention. Thus, importantly, these two control conditions could be used as a 
meaningful baseline to extract the essential features reflecting sustained attention during 
mindfulness meditation.  
 
For analysis of this data, to alleviate the problems discussed earlier, we devised an alternative 
approach based on temporal averaging and contrasting instead of temporal concatenation. We 
first projected sensor-level time courses to source space, and then computed amplitude 
envelopes of band-pass filtered data from these with Hilbert’s transform. We focused on alpha 
oscillations as they have good signal-to-noise ratio and they have been shown to be modulated 
by selective attention (Foxe & Snyder, 2011). Instead of using ICA on concatenated time 
courses, we computed average amplitudes for each brain voxel and for each task, and then did 
pairwise subtractions to get spatial contrast maps, that is, the difference of amplitudes in each of 
the voxels. This was done separately for each subject and for all three pairs of tasks (FA-AT, 
FA-FP and FP-AT). Feeding these spatial contrast maps into Principal Component Analysis 
(PCA) resulted in one robust component, which explained most of the variance across subjects, 
for all three task pairs. We then used regression to explore the significance of the state-related 
cortical differences, represented by the principal components, for psychological traits, measured 
by temperament and personality questionnaires. 
 
The proposed pipeline mitigated many of the problems discussed above for analysing the 
connection between resting-state dynamics in MEG data and specific individual (trait or state) 
characteristics. Because the within-participant variation is averaged out, the decomposition is 
not based on processes on individual participant level, but instead on the differences between 
participants, making interpretation straightforward. Even though intricate information on the 
within-participant fluctuations is lost, for the task of exploring individual differences it is 
meaningful to focus on subspaces that reflect the variation between participants. The use of 
spatial contrast maps further increased the specificity of the method, as the subtracted contrast 
tasks essentially acted as a baseline. This removed both within- and between-participant 
variability not related to tasks. These steps together made the final collection of components 
relatively small, and thus less statistical power is lost in the component selection. This is 
especially important with a relatively low sample of participants, which is typical in neuroimaging 
studies. 
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2. Materials and methods 

2.1. Participants and data acquisition 
The project was run as a collaboration between Aalto University, University of Jyväskylä and 
University of Helsinki. 29 people (aged 21–48 years) took part in the initial data gathering 
phase. Participants had no history of neurological disorders, head trauma or substance abuse, 
and had normal or corrected to normal vision. Twelve participants had no previous meditation 
experience, while other participants had meditation experience ranging from 0.5 to 10 years. For 
each of the participants, we collected two 30-minute recordings of magnetoencephalography 
(MEG) with Elekta Neuromag TRIUX system (MEGIN Oy, Helsinki, Finland). Each recording 
session included two 2-minute resting-state blocks at the beginning and at the end of the 
sessions. In between there were three different 8-minute tasks organized in 2-minute blocks in 
counterbalanced order (see Fig 1.) 
 
The three tasks included were focused attention on breathing (FA), future planning (FP) and 
anxious thoughts induced by reflection on emotional pictures (AT). In all tasks, participants were 
instructed to sit still, fix gaze on a crosshair in front of them, and perform the task. Before each 
1-minute miniblock, an instruction picture was shown with a text: "Focus on your breathing" for 
the FA task, "make plans related to the picture" for the FP task, and "place yourself or someone 
close to you in this situation" for the AT task. Pictures were selected beforehand by the 
participant from International Anxious Picture System (IAPS) -database to maximize the 
affective experience for each participant individually. 

2.2. Trait questionnaires 
Psychological and behavioral traits were characterized by using standardized questionnaires. 
Based on earlier studies (Lyyra and Parviainen, 2018; Schneider et al., 2018; Yamano et al., 
2016) we hypothesized that traits along the dimension of behavioral inhibition and behavioral 
approach as well as anxiety would most likely be captured in the brain dynamics, and therefore 
focused on questionnaires in this domain. These included questionnaires related to anxiety, 
depression and behavioral inhibition or activation. BIS/BAS is a self-report questionnaire 
designed to measure two motivational systems: behavioral inhibition system and the behavioral 
activation system (Carver and L. White, 1994). BDI measures characteristic attitudes and 
symptoms of depression (Beck et al., 1961). BAI is used for measuring the severity of anxiety in 
children and adults (Beck et al., 1988). 

2.3. Preprocessing of trait data 
To lower the dimension of possibly collinear questionnaire results, we ran PCA on the data 
originally containing variables for BDI, BAI, BIS, BAS Reward Responsiveness, BAS Fun 
Seeking, and BAS Drive questionnaires from all participants. 
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2.4. Preprocessing of MEG data 
MEG was used to record magnetic fields from 306 channels arranged in a helmet around the 
head of a participant. Recording was done with 1000 Hz sampling frequency, yielding 306 time 
series. Before the recording, the shape of participant's scalp was digitized and the five coils 
attached to the head were localized with respect to anatomical landmarks (nasion, preauricular 
points). During the MEG measurement, weak current with specified frequency was applied to 
the coils so that the location of sensors with respect to the helmet could be determined. 
 
The recordings were preprocessed with the signal-space separation method (MaxFilter 3.0; 
MEGIN Oy, Helsinki, Finland) to suppress magnetic interference originating from outside the 
helmet. As the head location in the helmet can vary from participant to participant, and can 
change during the recording, MaxFilter's utilities for movement compensation and translation to 
the same virtual head location were used. Common artifacts such as eye blinks and heartbeats 
were extracted and removed semi-automatically using ICA implemented in MNE-Python 
(Gramfort et al., 2014). One participant had to be completely dropped from further analysis 
because of low signal-to-noise ratio. 
 
To enhance interpretability, data were further transformed from sensor space to source space, 
that is, a model of neural currents within the brain, using the following procedure. For each 
participant, the digitized points from the measurement were fitted to average head model from 
the freesurfer software package. As head size can vary between participants, we first uniformly 
scaled (scaling factors varied between 0.85 to 1.0) the average head for each participant 
separately so that the fit would be as good as possible. Both the scaling and fitting were done 
using MNE-Python’s coregistration utility. 
 
Within the head model, we used a volumetric source dipole arrangement. Instead of using the 
same spacing for each participant, we first constructed source space for the original freesurfer 
model with 8mm spacing, and then scaled the source space to match individual participants. 
This yielded one-to-one correspondence between voxels of the head models, making 
comparisons between participants simple later on. 
 
The actual inverse problem was then solved using Minimum Norm Estimate (MNE) -method in 
combination with noise normalization by dynamic Statistical Parametric Mapping (dSPM). 

2.5. Data Analysis 
The overall dataset consisted of two independent 8-minute recordings for each of the 
continuous tasks (FA, FP, AT) from 28 participants. Solving the inverse problem yielded time 
series for each voxel in the head model. We band-pass filtered the signals to a range of 
frequencies known as the alpha band (7-14Hz), and then, using Hilbert transform, computed 
amplitude envelopes over time. For each task, participant and voxel separately, we computed 
the average over all time points of the 16-minute concatenated envelope, resulting in one spatial 
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map for each task and each participant. While we were primarily interested in the differences 
between the tasks, association of these task-specific spatial maps to behavioral characteristics 
was investigated as a preliminary step. 
 
Next, we computed spatial contrast maps. This was done for all three task pairs (FA-FP, FA-AT, 
FP-AT) as a simple subtraction of the task-specific spatial maps, resulting in 
n_voxels-dimensional (where n_voxels is the amount of voxels) vector for each task pair and 
each participant. The following steps were done for each task pair separately, i.e. analysing 
variability over the 28 participants for each task pair. 
 
To focus on the most relevant interactions between individual trait characteristics and 
task-related brain activity, we conducted PCA to extract subspaces containing most of the 
variance. To evaluate the robustness of PCA in our context, we ran a variant of icasso (Himberg 
et al., 2004) to reveal how sensitive the resulting components were to the presence of individual 
participants. 
 
The icasso-based evaluation procedure went as follows. For each participant, we picked the 
spatial contrast maps for all except this particular participant, and stacked them to a 
(n_participants - 1) * n_voxels matrix. This matrix was then decomposed to three principal 
components and their corresponding mixing weights (spatial weight maps) that explain most of 
the variance. We used hierarchical clustering to cluster all the spatial weight maps from all runs 
pooled together. The compactness of clusters, indicating robustness to individual participants 
being present or not, was inspected visually from a dendrogram. After evaluation, we ran the 
PCA once more with all the participants, and used that decomposition in the subsequent steps. 
We additionally ran ICA in the subspace spanned by the three principal components to see if 
using higher order information can complement the analysis. 
 
Finally, we used linear regression to model the relationship between the first principal 
component of the spatial contrast maps and the first principal component of the questionnaire 
data. Statistical significance of the regression coefficient was evaluated with a standard t-test. 
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3. Results 

3.1. Behavioral inhibition — approach -component 
We used PCA to decompose the data from questionnaires to three components. The mixing 
weights are shown in Fig 2. The first component explained 50% of the data. As the component 
seemed to capture positive correlations between the BDI, BAI, and BIS questionnaires, but also 
negative correlation to BAS Drive, we call this behavioral inhibition – approach -component 
(BIA). The other two components (see Fig A.1) explained both less than 20% of the variance, 
and were not as intuitively understandable, so they were left out for the subsequent analysis. 

3.2. Spatial contrast maps 
Using the procedure detailed in the methods section we created spatial contrast maps from 
MEG data for all participants and for all task pairs. Averages computed over participants for 
each task pair (FA-FP, FA-AT, FP-AT) are shown in Fig 3. In the figure, the red color means that 
the amplitude of alpha oscillations during the second task (FP in FA-FP pair) is higher than the 
amplitude of alpha oscillations during the first task (FA in FA-FP pair). Thus, the color reflects 
the power of alpha in reference to the given contrast; same color across brain areas means that 
the entire network is modulated by the task contrast in the same way and different color e.g in 
left vs right hemisphere means that in the two hemispheres or areas the power of alpha 
oscillation modulates to opposite direction in reference to the task contrast. The averages of 
FA-FP and FA-AT contrasts (in Figs 3A and 3B) appeared quite similar, both showing pattern of 
increased activation in the left and decreased activation in the right. Average of FP-AT contrast 
(in Fig 3C) shows a bilaterally symmetric pattern, and is somewhat weaker. Spatial contrast 
maps of FA-FP contrast for each individual participant are included in supplementary material 
(Figs A.2-A.5).  

3.3. PCA on spatial contrast maps 
We ran PCA on the contrast maps to find most relevant subspaces in all three task pairs. The 
mixing weights for the first principal component in all task pairs are shown in Fig 4. Figs 4A and 
4B illustrate the weights for FA-FP and FA-AT contrasts, respectively. They both show a 
component that captures a bilaterally symmetric brain network in parietal areas which 
increases/decreases in amplitude with respect to the contrast. Thus, in addition to the similarity 
of means shown in Fig 3, FA-FP and FA-AT contrasts seem to be similar in their correlation 
structure. Fig 4C shows a slightly more posterior pattern for the FP-AT contrast. 
 
Fig 4 also includes the distributions of the component scores, that is, values for each individual 
contrast map after projecting them to principal axis using PCA. The vertical line shows the value 
of hypothetical contrast map containing only zeros, and basically reflects the effect of removing 
the mean before analysing covariances. It can be interpreted as a score for a participant who 
shows no difference between the tasks, and thus as a cutoff value where the difference 
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between tasks changes direction. For example, because the average in Fig 3A shows positive 
value in the right parietal area, and because the mixing weights in Fig 4A are slightly stronger 
on the right, most of the participants are to the right of the vertical line in the component score 
plot. For the second component, the vertical line moves closer to the mean as the mixing 
weights are slightly more symmetrical, and the right parietal area of the mean in Fig 3B is 
somewhat weaker. Overall, even after taking the effect of mean into consideration, participants 
seem to exhibit quite variable patterns of activation, where even the signs of the effects can be 
opposite to each other. 
 
The principal components, even with relatively low number of samples, were robust to individual 
participant omission, that is, leaving any of the participants out resulted always in a very similar 
set of components, with cluster quality index of around 0.8 for the first component of each pair. 
A dendrogram showing the results of clustering for FA-FP pair is included in supplementary 
material (Fig A.7). All three components for FA-FP pair are shown in Fig A.6. Components in 
other two task pairs were similarly robust. The first principal component in all task pairs 
explained substantially more variance than the other components (65% for FA-AT contrast, 65% 
for FA-FP contrast and 80% for FP-AT contrast), and was thus the only one kept for further 
analysis. 

3.4. ICA on spatial contrast maps 
As the first principal component explained most of the variance, the analysis above focused on 
using only it. Next, a more fine-grained analysis was done by taking more principal components, 
and in particular, doing ICA in the subspace spanned by the first principal components. For the 
FA-FP and FA-AT pairs, one independent component (see Fig A.8C) was similar to the first 
principal component, and behaved similarly in relation to subsequent regression. Another 
component (see Fig A.8A) had no connection to the BIA-component, but seemed to capture the 
amount of laterality that was seen in Figs 3A and 3B. The laterality seemed to be statistically 
significant (​p ​ = 0.001), that is, on average, participants exhibit increase of alpha oscillations in 
the right hemisphere and a decrease of alpha oscillations in the left hemisphere. These results 
suggest that the ICA decomposition (after averaging and contrasting the data) can be a viable 
complement to the PCA decomposition, and bring out relevant and meaningful aspects of the 
data. As it uses more information, however, it might be more subject to fitting to noise, and the 
robustness of components should be carefully analysed. Using the first principal component 
may be recommendable in the case of a small sample size, as was our case here. 

3.5. Association of behavioral component to spatial activation maps 
As a preliminary step, we investigated whether the tasks themselves were associated with the 
BIA-component computed from the questionnaire data. The component scores from the first 
principal component are often close to the means computed from each of the samples 
(participants in our case) separately. Thus for this initial investigation we took the mean of the 
spatial activation map for each participant and each task, and regressed the means with the 
BIA-component scores. This resulted in no correlation ( ​p ​ > 0.3) in all cases. 
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3.6. Association of behavioral component to spatial contrast maps 
We next regressed the first principal component of contrast maps with the BIA-component for all 
three task contrasts (see Fig 5 for scatter plots.) We found that the FA-FP and FA-AT pairs are 
similarly correlated (​r​ = 0.45, ​p ​ = 0.015 for FA-FP, and ​r ​ = 0.42, ​p ​ = 0.024 for FA-AT pair) with 
the behavioral characteristics, and found no connection for the FP-AT pair ( ​r ​ = 0.06, ​p ​ = 0.74).  
 
In short, bilateral parietal network (see Figs 4A and 4B) is modulated by behavioral inhibition in 
such a way, that the more inhibited or anxious the participant is, the stronger the oscillations in 
mind wandering states are compared to focused attention. As the distributions of individual 
participants relative to principal components in Figs 4A and 4B show, the difference between 
states can be both positive or negative. Thus for the less inhibited participants, oscillations of 
mind wandering can be weaker than oscillations of focused attention, and for the more inhibited 
participants, oscillations of mind wandering can be stronger than oscillations of focused 
attention. 
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4. Discussion 
Using data collected from continuous tasks of focused attention (FA), future planning (FP) and 
anxious thoughts (AT), we computed spatial activation maps for each task and participant, by 
averaging over respective time points. For each participant, we then subtracted 
condition-specific spatial activation maps from each other to get spatial contrast maps. Using 
PCA, we found distinctive subspaces along which the contrast maps of individual participants 
distributed, with notable variation across participants in the relative power across conditions in 
parietal regions. In particular, regressing the first principal component of spatial contrast maps in 
FA-FP and FA-AT contrasts with the trait of behavioral inhibition, anxiousness and depression, 
as measured by BIS, BAI and BDI questionnaires, revealed association in the parietal areas. 
 
The usual approach in the analysis of trigger-free conditions with continuous 
electrophysiological data is to decompose the signal first by unsupervised methods such as ICA 
or PCA. In multi-participant context, concatenation methods are often used due to their ease of 
use. For example, in temporal concatenation, one first concatenates data from all participants in 
temporal dimension, then decomposes the concatenated signal, and then splits the 
decomposed concatenated signal to participant-specific decomposed signals. This way, it is 
straightforward to compare the values each component takes for each participant (Calhoun et 
al., 2009). As detailed in the introduction, this approach has drawbacks for investigating 
individual differences for at least two reasons. First, concatenation methods assume consistent 
mixing, i.e same spatial filter in temporal concatenation, across participants, which can be 
violated because of measurement errors or differences between brains. In addition, also 
individual-specific variation is present in the concatenated data, and thus some components 
may be based on variation present only in a small subset of participants, making it difficult to 
interpret values for participants that had negligible contribution. Some of the matter has been 
investigated in a simulation-based study (Allen et al., 2012), which highlights that concatenation 
methods are quite robust when differences between sources in different brains are small, but 
the quality deteriorates quickly when differences become larger. Specifically, it is noted that 
amplitude of component for single participant is correlated with how well the component is 
estimated for that participant. Second, due to many different sources of variance, such as noise, 
variance within- and between-tasks, and variance within- and between-participants, the 
decomposition usually results in a large number of components. Having a small number of 
components is good both for practical reasons, as it can be time-consuming to go through all 
components to find the useful ones (Hyvärinen et al., 2010), and for statistical reasons: there 
has been a lot of discussion recently on the low repeatability of psychological research due to 
questionable analysis practices (Simmons et al., 2011). 
 
In the approach we took, the first problem is largely bypassed by averaging out the 
within-participant variance. This removes information that can bias the decomposition. There is, 
however, an inherent tradeoff in the process: we lose some intricate details of the brain 
activation to win in interpretability of the data in the special case of investigating individual 
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differences. The second key feature of our approach is the contrasting of task averages within 
participants. Use of task contrast maps in the decomposition removes the variation within and 
between participants that is not related to the matter of interest. These two analysis steps 
combined thus leave only few but meaningful components for further analysis, and thus mitigate 
the second problem of having too many components.  
 
The stability of principal components was evaluated using leave-one-participant-out procedure, 
similar to icasso (Himberg et al., 2004). The presence of individual participants had little effect 
on the estimated components. Especially the first component, which was the one used in 
regression analysis, had a very isolated cluster, indicating that it is robustly estimated. In all task 
contrasts, the first component explained substantially more variance than other components, 
and was for this reason the only component used in the later analysis. This resulted in a 
particularly parsimonious presentation and simple interpretation, where a single spatial pattern 
is used to explain the variability between participants. 
 
We additionally decomposed the data with ICA to three components, for the FA-FP contrast. In 
terms of explained variance, this resulted in a more balanced set of two components, and one 
one component with negligible contribution. When comparing the ICA- and PCA -based 
component characteristics, one of the independent components had very similar spatial weights 
as the first principal component. Thus, to find the association between behavioral characteristics 
and the contrast maps, ICA could have also been used. The other component had a pattern 
where opposite hemispheres increased and decreased, respectively, in activation. It was not 
correlated with the BIA-component, but might still be meaningful, capturing the interhemispheric 
differences related to the task contrast. However, using ICA with such small sample sizes (less 
than 100) is quite risky since ICA usually needs much more data to give robust results. 
 
Interestingly, the component scores and even the individual contrast maps (see Figs A.2-A.5) 
reveal a lot of variability across individuals. Some participants showed even the exact opposite 
patterns of activation to each other. This highlights the remarkable individual variability in the 
continuous MEG activation underlying these task conditions. It also explains why building 
group-level classifiers for the purpose of brain-computer interfaces is difficult with this type of 
data, as we attempted using these same recordings in a previous study (Zhigalov et al., 2019). 
More specifically, the cortical networks engaged during focused attention vs. mind wandering 
seem to show distinctive characteristics at individual level especially in bilateral parietal cortex. 
Importantly, by using linear regression to associate the first principal component of spatial 
contrast maps of FA-AT and FA-FP to behavioral inhibition – approach -component, we found 
them positively associated. Simply put, the higher the difference in alpha amplitude between 
mind wandering vs. focused attention, the higher the tendency for behavioral inhibition, 
evaluated using standardized questionnaires.  
 
Behavioral inhibition was not correlated with the original spatial activation maps. This may stem 
from task-unrelated inter-individual variability in the MEG data. Therefore, we do not know if only 
one of the contrasted tasks was modulated by the behavioral characteristics, or if they both 
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contributed to the observed association. If we assume that the participants have their brain 
activated in focused attention task in a similar fashion, and that increase in alpha oscillations 
signifies inhibition of brain networks, the result can be interpreted as more anxious or 
behaviorally inhibited participants showing less activation (or more inhibition) in parietal areas 
during mind wandering.  
 
It is not surprising that the individual variability in behavioral tendency for inhibition and anxiety 
is associated particularly with activation in parietal areas. Bilateral parietal areas have originally 
been thought of as ‘association areas’ linking modality specific information e.g. from auditory 
and visual areas. However, beyond pure associative function, parietal regions have been 
recently linked especially with prioritizing the focus of attention and cognitive control (Bisley and 
Goldberg, 2010; Sapountzis et al., 2018). As our task conditions required controlling of 
attention, it is tempting to think that our results reflect activation of the frontoparietal control 
network, that has nodes located in the bilateral parietal areas (Cole et al., 2014). Frontoparietal 
control network has been suggested to support flexible switching between default and dorsal 
attentional network, and consequently the focusing of attention to internal, autobiographical 
information vs. external cognition (Smallwood et al., 2012; Spreng et al., 2010). Our tasks 
required focusing of attention either on ongoing sensory experience of one's own body 
(breathing), or on visually triggered autobiographical thoughts (mind wandering). The results 
could indicate that inhibition (higher alpha) of the cognitive control/attentional resources during 
mind wandering are linked with tendency for anxiety and behavioral inhibition. Interestingly, in 
line with this interpretation, increased activity in the control network has been observed after 
successful psychotherapeutic treatments of depression and anxiety disorders. (Clark & Beck, 
2010). However, the linkage to frontoparietal control network is still very speculative, as we did 
not see frontal areas sensitive to the studied contrast.  
 
There are some limitations in the conducted study. The accuracy of inverse transform depends 
on the model of the brain, which usually is based on individual MRI images. For this study, 
however, we did not have MRI images for all participants, and instead, used a default template 
head model from freesurfer-package, to which the digitized head was aligned. Because the real 
shape of individual heads can vary, the accuracy of the inverse transform is slightly reduced, 
which must be kept in mind when interpreting the results. There are also limitations to the wider 
use of the methodological approach. It can only be applied to datasets that contain multiple 
continuous tasks, and is not applicable for example if only resting state recordings are available. 
It is also reasonable only when the interest lies in the individual differences, and not in common 
intricate activations. It is also worth noting that activation patterns shared by both tasks, which 
are lost in the subtraction, may still be significant determinants of individual variation. 
 
In conclusion, this study explored the use of PCA of spatial contrast maps as a way to 
investigate individual differences. The ability of the method to extract behaviorally relevant, 
participant-specific characteristics of brain activity with no need for post-hoc component 
selection was demonstrated using a dataset containing continuous focused attention and 
simulated mind wandering states. Furthermore, the association of behavioral inhibition to the 
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activation levels of parietal areas makes sense in the light of the previous literature giving 
evidence for the validity of the method. As the exploration of individual differences through 
neuroimaging methods has been an increasing trend in neuroimaging studies, we see a 
demand for methodology that can specifically target them in the context of continuous and more 
naturalistic settings. The validity of the method in wider applications for neuroscience should be 
confirmed and replicated in future studies.  
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Figure captions 
● Fig 1. Experiment design. Tasks of focused attention (FA), future planning (FP) and 

anxious thoughts (AT) are carried out in counterbalanced order. Each 1-minute block 
contains a brief instruction in the beginning (!). 

● Fig 2. Mixing weights of the first PCA component computed from questionnaire data 
(behavioral inhibition – approach component.) 

● Fig 3. Averages computed from spatial contrast maps over 28 participants. The FA-FP 
contrast (A) shows a pattern of laterally opposite activations, which is quite similar to 
FA-AT (B). The contrast FP-AT in (C) shows a bilateral pattern. 

● Fig 4. Mixing weights of the first PCA component in FA-FP (A), FA-AT (B) and FP-AT (C) 
contrasts, along with the component scores. 

● Fig 5. Scatter plots with regression lines for FA-FP (A), FA-AT (B) and FP-AT (C) 
contrasts. 

● Fig A.1. Mixing weights for first three PCA components from questionnaire data. 
● Fig A.2. Spatial contrast maps (FA-FP) for participants 01-07. The first column contains 

spatial contrast maps for each participant, and the second column shows their projection 
to first principal axis (red) compared to other participants (blue). 

● Fig A.3. Spatial contrast maps (FA-FP) for participants 08-14. 
● Fig A.4. Spatial contrast maps (FA-FP) for participants 15-21. 
● Fig A.5. Spatial contrast maps (FA-FP) for participants 22-28. 
● Fig A.6. Mixing weights for first three PCA components computed from spatial contrast 

maps (FA-FP) from 28 participants. 
● Fig A.7. Dendrogram of the first three PCA components clustered using hierarchical 

clustering. Every intersection of vertical lines and the bottom of the figure represents a 
single component in a single run. The longer the vertical blue line is at the top, the more 
isolated the cluster is. 

● Fig A.8. Mixing weights for the three ICA components computed after projecting the 
spatial contrast maps (FA-FP) to first three principal axes. 
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Appendix A: Supplementary figures 

Fig A.1 
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Fig A.2 
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Fig A.3 
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Fig A.4 
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Fig A.5 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 9, 2019. ; https://doi.org/10.1101/835884doi: bioRxiv preprint 

https://doi.org/10.1101/835884
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig A.6 
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Fig A.7 
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