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ABSTRACT

Aims. Our main objective is to develop a denoising strategy to increase the signal to noise ratio of individual spectral lines of stellar
spectropolarimetric observations.
Methods. We use a multivariate statistics technique called Principal Component Analysis. The cross-product matrix of the observa-
tions is diagonalized to obtain the eigenvectors in which the original observations can be developed. This basis is such that the first
eigenvectors contain the greatest variance. Assuming that the noise is uncorrelated a denoising is possible by reconstructing the data
with a truncated basis. We propose a method to identify the number of eigenvectors for an efficient noise filtering.
Results. Numerical simulations are used to demonstrate that an important increase of the signal to noise ratio per spectral line is
possible using PCA denoising techniques. It can be also applied for detection of magnetic fields in stellar atmospheres. We analyze
the relation between PCA and commonly used techniques like line addition and least-squares deconvolution. Moreover, PCA is very
robust and easy to compute.
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1. Introduction

The light coming from most of astrophysical scenarios is po-
larised. This radiation is usually described in terms of the Stokes
parameters: the total intensity, I, the linear polarisation given by
Stokes Q and U, and the circular polarisation given by Stokes V .
The degree of polarisation is accounted for by

√
Q2 + U2 + V2

which, in most cases, is very small compared to the total inten-
sity. Several physical mechanisms related to the breaking of the
spherical symmetry induce the generation of polarised radiation:
scattering processes, the presence of magnetic fields through
the Zeeman or Hanle effects, etc. For example, the presence of
strong magnetic fields in solar or stellar spots produces a large
degree of polarisation which, in some cases, can reach more than
ten percent. It decreases to ∼0.01–0.1% in the less magnetically
active areas of solar or stellar surfaces.

The investigation of the magnetic field in stellar atmospheres
is restrained by the low expected and observed polarisation sig-
nals (e.g., Donati et al. 1997). In most cases the expected degree
of polarisation is of the order of or even below the noise level.
This is especially critical when analysing the spectra of cool
stars (Petit 2007, and references therein), although this problem
is present for active stars. The most natural procedure to increase
the signal to noise ratio (S/N) is to increase the exposure time.
However, it is limited by the rotation period of the star. A rad-
ically new solution to this problem was presented by Semel &
Li (1996, see also Semel 1989). They suggested to use multiline

observations of the same star and combine the information of all
of them to increase the sensitivity of the polarimetric observa-
tions. In the last decades, these ideas have been made possible
thanks to the synergy between instrumental and theoretical ad-
vances. On the one hand, we have witnessed the development of
very sensitive polarimeters attached to cross-dispersed Echelle
spectrographs that produce data of very good scientific quality.
Some examples of very successful instruments are ESPaDOnS1

and NARVAL, both based on the concept of SEMPOL2. On the
other hand, line addition techniques have permitted us to take ad-
vantage of these large spectral range observations. An inflection
point was the presentation of the Least-Squares Deconvolution
(LSD) technique that allowed detection of polarisation signals in
a variety of stars (Donati et al. 1997, 2007). The LSD technique
is an improvement over the brute force line addition approach
developed by Semel & Li (1996).

Although line addition techniques are very successful in the
detection of the polarisation signatures in noisy spectra, they
are based on very rough approximations. Another weak point is
that the final polarisation signature obtained after applying these
techniques is difficult to interpret. It cannot be associated with
a standard spectral line and any analysis based on the theory of
polarised radiative transfer of spectral lines cannot be directly
applied. For this reason, it would be desirable not to work with
“mean” profiles but to take advantage of multiline observations

1 Echelle SpectroPolarimetric device for the observation of stars.
2 SEMel POLarimeter.
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to increase the S/N of individual spectral lines. This would make
it much easier to interpret the results because one would deal
with standard spectral lines.

Following this idea, we present in this paper a denois-
ing technique based on a multivariate statistics method called
Principal Component Analysis (PCA). A first application of this
technique to real observational data was used by Carroll et al.
(2008) for Zeeman-Doppler imaging of late-type stars. A tech-
nique based on PCA has been proposed to increase the signal
to noise ratio of stellar polarised spectra by Semel et al. (2006).
This technique uses a data base of synthetic stellar spectra to
construct the so-called Multi Zeeman Signatures, profiles that re-
sult from the cross-correlation of the observed spectrum and the
principal components of the synthetic data base. In this paper,
we propose a different approach using the same statistical tech-
nique. It allows us to efficiently denoise stellar polarised spectra
so that an increase of the S/N per individual spectral line is ob-
tained efficiently using the information encoded in the whole ob-
served spectrum. Consequently, since we use the observed stellar
spectrum itself, our method is model-independent. Moreover, we
denoise the whole spectrum, keeping the information carried by
the spectral lines, making them suitable for more sophisticated
radiative transfer analysis than previous techniques.

2. Principal components analysis

Principal Components Analysis (PCA; see Loève 1955), also
known as Karhunen-Loève transformation, is an algorithm used
in multivariate statistics. Briefly, it is used to obtain a self-
consistent basis on which the data can be efficiently developed.
This basis has the property that the largest amount of variance is
explained with the least number of basis vectors. It is useful to
reduce the dimensionality of data sets that depend on a very large
number of parameters. This property has been used for denois-
ing purposes, and it constitutes the main core of the denoising
technique that we propose for polarised spectra.

For simplicity, we focus from on the problem of polarised
spectra. When a spectrograph is used to observe a spectral line
formed in a stellar atmosphere, it is sampled at a finite number
of wavelengths, a number that depends on the spectral resolu-
tion of the instrumental setup. However, this number is usually
much larger than the number of physical variables involved in
the spectral line formation mechanism (Asensio Ramos et al.
2007). Moreover, if we observe the full Stokes vector, the num-
ber of wavelengths increases by a factor of 4, while the num-
ber of physical parameters typically increases more slowly. It is
easy to understand that correlations between the observables ex-
ist. This is related to the fact that the presence of physical laws
constrain the possible values that any observable can take. For
instance, all the wavelength points tracing the continuum away
from spectral lines provide roughly the same information about
the physical conditions. Since the stellar continuum is typically
formed in local thermodynamic equilibrium conditions, it can
be characterized by a Planck function at a given temperature.
Therefore, all the wavelength points are linked by the functional
form of the Planck function.

Due to these intrinsic correlations that exist in the observ-
ables, when a spectral line is observed many times, or, in our
case, several spectral lines are observed simultaneously, the
cloud of points that represents all spectral lines in the multi-
dimensional space of the observables will be elongated in some
directions. These directions are the so-called principal compo-
nents and the data can be efficiently reproduced as a linear com-
bination of vectors along them.

Let us assume that the wavelength variation of each Stokes
profile (I, Q, U, or V) of a particular spectral line is described by
the quantity S j

i . The index i represents the wavelength position
while the index j = {I,Q,U,V} indicates the Stokes parame-
ter. Each Stokes parameter is a vector of length Nλ, correspond-
ing to the number of wavelength points. In the ideal situation, it
would be advantageous to have Nobs � Nλ observations, so that
the number of observed lines is much larger than the number of
wavelength points used to sample each line. Thanks to the cross-
dispersed capabilities of instruments like SEMPOL, ESPaDOnS
or NARVAL, a very large number of spectral lines is obtained
in one exposure when recording spectro-polarimetric data. This
allows us to apply statistical techniques to capture the intrinsic
behavior of the points in Nλ-dimensional space and to use PCA
to reduce its dimensionality.

We define Ô as the Nobs × Nλ matrix containing the wave-
length variation of all the observed spectral lines. The principal
components can be found as the eigenvectors of this matrix of
observations. This means that the PCA procedure reduces to the
diagonalisation of the matrix Ô. Since we require that Nobs � Nλ
holds, this matrix is not square by definition. Moreover, even
if one uses the Singular Value Decomposition (SVD; see, e.g.,
Press et al. 1986) to diagonalise Ô, the dimension of the matrix
can be so large that computational problems can arise. It can be
demonstrated that the right singular vectors of of the matrix Ô
are equal to the singular vectors of the cross-product matrix:

X̂ = ÔtÔ. (1)

The matrix X̂ is the Nλ × Nλ cross-product matrix and the su-
perindex “t” represents the transposition operator. The same ap-
plies to the left singular vectors, which are also eigenvectors of
the cross-product matrix X̂′ = ÔÔt. The matrix X̂′ has dimen-
sions Nobs × Nobs and is typically much larger than the matrix X̂.
However, one description is the dual of the other and they are
completely equivalent. The ith principal component, Bi, fulfills:

X̂Bi = kiBi, (2)

with ki its associated eigenvalue. All the eigenvectors can be put
together in the matrix B̂. This matrix has dimensions Nλ × Nλ
and contains the eigenvectors as column vectors. Note that the
cumulative distribution of eigenvalues

gm =

∑m
i= 1 ki
∑Nλ

i= 1 ki

(3)

gives the relative amount of variance explained by the first m
eigenvectors. Since these vectors constitute a basis, the observa-
tions can be written as a linear combination of them as follows:

Ô = ĈB̂t, (4)

Ĉ being the Nobs × Nλ matrix of coefficients. The element Ci j of
this matrix represents the projection of the observation i on the
eigenvector j. This matrix can be easily calculated as:

Ĉ = ÔB̂. (5)

Note that the transposition operator of the matrix of the eigen-
vectors in Eq. (4) replaces the inverse operator because the ma-
trix of singular vectors is orthogonal, so that it fulfills B̂−1 = B̂t.
This greatly simplifies the calculations because no numerical
matrix inversion is needed.
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3. Denoising procedure

In the following, we explain the procedure that we propose for
denoising the experimental Stokes profiles of magnetic stars.
The method is general, it should be used not only to retrieve
Stokes I and V but to obtain Stokes Q and U given the important
information encoded in it (see, e.g., the series of paper starting
with Landolfi et al. 1993).

3.1. The simulated data set

In order to demonstrate the capabilities of the PCA denois-
ing technique, we use a synthetic polarised spectrum, including
Stokes Q, U and V . We cover the wavelength range between 400
and 900 nm, with a spectral resolution of 50 mÅ. The synthetic
spectrum has been obtained under the assumption of local ther-
modynamical equilibrium (LTE) using a standard solar model
atmosphere (Fontenla et al. 1993), with a star-filling magnetic
field of 1000 G. The inclination of the magnetic field with re-
spect to the line of sight is 45◦ and its inclination is 20◦. This
produces polarization signals that are much larger than those
observed in real cases. For this reason, we apply a filling fac-
tor f to our simulated spectra in order to end up with Stokes V
amplitudes that are similar to the ones expected in some cool
star observations (∼10−4Ic, Ic being the continuum intensity). We
quantify the quality of the data (amount of information about the
physical conditions in the regions of line formation available in
the data) with the signal to noise ratio, S/N. Consequently, the
filling factor turns out to be unimportant and it is only chosen so
as to end up with amplitudes comparable to the observed ones.
The influence of realistic surface magnetic field distributions on
the capabilities of the denoising technique will be addressed by
Carroll et al. (2008, in preparation).

The spectral range that we use in our denoising technique is
very large (500 nm), so that there is a large difference between
the Doppler width of lines in the red and in the blue part of the
spectrum. This is because the Doppler width is proportional to
the wavelength. In order to make the Doppler widths compatible
for all wavelengths, we transform the wavelength axis into the
following velocity axis:

v = c log
λ

λref
, (6)

where c is the speed of light, the symbol λ represents the wave-
length and λref is a reference wavelength, which we choose to
be 400 nm. This change of variables ensures that all the lines
have, to first order, the same Doppler width in the new axis.
Differences may exist because the Doppler width depends on
the atomic mass of each species and because it also depends on
the temperature in the line formation region. However, we as-
sume that these differences are of second order with respect to
the wavelength dependence. Since this new axis has an irregular
step size because the spectrum has been sampled regularly in a
wavelength scale, we re-interpolate it to a velocity axis with a
regular step using a standard linear interpolation procedure. We
set the spectral resolution equal to 0.2 km s−1. This is equivalent
to assuming that the spectral resolution is the same regardless of
the wavelength.

The individual spectral lines that will be used for building
the matrix Ô will be extracted using fixed positions for the cen-
tral wavelength. In this experiment, we have computed the po-
sitions of the spectral lines as the positions where the mini-
mum of the intensity profile is found. Standardized linelists have
been developed for different stars depending on the spectral type

(Donati et al. 1997). The results that we show in this paper
have been obtained using a database with ∼6300 lines. In prin-
ciple, the capabilities of the method might be improved by using
databases with more spectral lines, provided that the added lines
carry sufficient information. We set Nλ = 40, choosing 20 points
to the red and 20 points to the blue. This translates into a veloc-
ity range of 8 km s−1, which is sufficient for our experiment since
we are not including the effects of rotation. In the analysis of a
rapid rotator, a larger number of points have to be chosen. With
each individual profile, we construct the matrix of observations
(Ô) having one spectral line in each one of the rows.

3.2. Principal components of a “correlated” data set

We refer to a “correlated” data set when some correlation be-
tween the observables exist. In our particular case, this means
that the physical mechanisms of line formation in stellar at-
mospheres introduce correlations between different wavelenght
points of each spectral line. The principal components of a cor-
related data set have some peculiarities that allow us to reduce
the dimensionality of the data set. The principal components as-
sociated with the largest eigenvalues are representative of the
directions of highest correlation and Eq. (3) can be used to es-
timate the relative amount of variance explained by them. Top
panels of Fig. 1 show the first two eigenvectors of the matrix of
observations of the Stokes V parameter without any noise added.
The first eigenvector has the typical antisymmetric shape repre-
sentative of the Stokes V profile induced by the Zeeman effect.
This means that the most important common pattern to all of
our spectral lines ressembles a Zeeman profile. Note also that
the first eigenvalue is much larger than the following ones (right
panel of Fig. 1; note the logarithmic scale). Although this is an
expected result, we have not assumed in the analysis any sys-
tematic pattern in our data. On the contrary, it is a natural result
of PCA. The rest of the eigenvectors present other characteris-
tics of the profiles whose importance decreases as the associated
eigenvalue decreases.

The right panel of Fig. 1 shows that the first eigenvalue is the
most representative one and that they drop dramatically. This is
the key property of the PCA that allows us to reduce the dimen-
sionality of the data set. This means that our observations can
be efficiently reproduced using only a few eigenvectors. The ob-
servations were represented in a space of Nλ dimensions but the
PCA analysis indicates that it is possible to represent them in
a space of N′λ dimensions (the number of chosen eigenvectors),
with N′λ � Nλ.

3.3. Principal components of uncorrelated noise

It is instructive to apply the same analysis based on principal
components to a data set composed only of uncorrelated noise.
In the limit Nλ → ∞ and Nobs → ∞, the cross-product ma-
trix is strictly equal to the identity. As a consequence, the eigen-
vectors are the canonical basis and the eigenvalues are all equal
to 1. However, since Nλ is small, the cross-product matrix has
non-diagonal elements and some spurious correlation may ap-
pear between different wavelength points. The bottom left and
middle panels of Fig. 1 show the first two eigenvectors of a ma-
trix with the same size as the one of the observations but con-
taining only Gaussian noise3. The Gaussian distribution of noise

3 Note also that the random numbers obtained in computers are not
strictly uncorrelated and this can induce (hopefully small) additional
non-zero non-diagonal elements in the cross-product matrix.
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Fig. 1. Top panels: first (left) and second (centre) eigenvectors of the matrix of observations without any noise added. The dataset is described
in Sect. 3.1. The right upper panel represents the eigenvalues for all the eigenvectors. Bottom panels: equivalent to the upper panels but for an
observation containing only Gaussian noise. The standard deviation of the distribution of noise is 10−3 Ic.

has a standard deviation equal to 10−3 Ic. All the eigenvectors
are noisy, similar to those shown in the figure. The eigenvalues,
represented in the bottom right panel of Fig. 1, are roughly the
same for all the eigenvectors.

Real spectro-polarimetric measurements can present some
degree of correlation between different wavelength points but
are also contaminated by uncorrelated noise. Consequently, it is
clear that the noise level will be an important issue that will re-
strain the denoising of the observations by means of principal
components.

3.4. The procedure

To simulate the real case, we add Gaussian noise to each spectral
line of our matrix of observations. We apply the denoising pro-
cedure to our simulated data set with different values of added
noise in order to analyze how it behaves in different situations.
In order to use only one reference signal to noise ratio we choose
the ratio between the polarisation signal (Q, U or V) in the mag-
netically sensitive 630.2 nm line and the standard deviation of
the added noise distribution. Note that this S/N gives an idea of
the quality of the data for the most magnetically sensitive lines,
while the median of the S/N distribution is located at a much
lower value, typically one order of magnitude smaller. This is
produced by the fact that most of the lines induce small polar-
ization signals, while only few lines give conspicuous signals.
Consequently, the distribution of amplitudes is strongly shifted
towards zero.

For a given S/N, the eigenvectors of the cross-product matrix
are computed as described in Sect. 2. If any systematic Zeeman
signature is present in the dataset, it will appear in the first few
eigenvectors. Since uncorrelated noise is also present in the ob-
servations (perhaps even completely masking the line polariza-
tion signals), the rest of eigenvectors having smaller eigenvalues
contain the contribution of this noise. The filtering procedure

consists of reconstructing the observed signal using only the first
eigenvectors:

Ô′ = Ĉ′B̂′t, (7)

where Ô′ is the matrix of observations after the denoising proce-
dure. The matrix B̂′ contains the few first eigenvectors that have
been retained as containing stellar magnetic signatures. The ma-
trix Ĉ′ contains the coefficients of the projection of the matrix of
observations onto the chosen basis of eigenvectors:

Ĉ′ = ÔB̂′. (8)

The selection of the number of eigenvectors that are dominated
by the polarimetric signal is the fundamental free parameter of
the denoising procedure. It is not an easy task to efficiently se-
lect it and sometimes requires subjective criteria. We have veri-
fied that the following criterion works quite well for many of the
tested cases and is also based on the properties of the PCA de-
composition. For each value of the variance of the noise added to
the simulated profiles, we compute an observation matrix equal
to the observed one but made only of uncorrelated noise. In real
situations, this matrix has to be built based on the estimation
of the noise present in the observations. The eigenvalues of the
pure noise matrix are calculated and compared with those of
the real observations. If the variance of the noise has been cor-
rectly estimated, the two eigenvalue distributions will overlap
except for those eigenvalues associated with correlated signals.
Consequently, we select those eigenvectors bi with eigenvalues
higher than a factor f of those corresponding to the pure noise
case. We have verified that f ≈ 1.2 gives good results. It is also
instructive not to rely on automatic selection methods but rather
to verify the shape and weight of each eigenvector. The direct
analysis of the eigenvectors can show many important details
about the hidden signal and some tricks can be used to enhance
the possibility of recovering it. A detailed discussion of the prop-
erties of the eigenvalues and the choice of the cutoff for the SVD
problem can be found in Christensen-Dalsgaard et al. (1993) and

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809719&pdf_id=1
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Fig. 2. Ratio between the eigenvalues of the noisy observations obtained for different S /N values and the ones of the pure noise observations (top
and bottom left panels). The horizontal dashed line indicates the value f = 1.2. The bottom right panel shows the first four eigenvectors (ordered
from bottom to top) for the case of S/N = 3.360. The eigenvectors are shifted in the vertical direction to avoid overlapping.

in a series of papers by Hansen (1992), Hansen et al. (1992) and
Hansen et al. (1993).

The results we are presenting here are not the optimal case.
For a field of 1000 G and since we do not include any additional
line broadening mechanism, the majority of the lines are not
in the weak field regime of the Zeeman effect. Therefore, they
present different shapes (as a consequence of the Zeeman satu-
ration) and part of the correlation is lost. We show that the PCA
denoising technique is very performant in this non-optimal case.
In stars with broadened lines (due to any mechanism), the weak
field regime can be expected for larger magnetic field strengths
and our PCA denoising algorithm will work even better.

If none of the eigenvalues fulfill the criterion (to be expected
in extremely noisy spectra), we have chosen to reconstruct us-
ing only the first eigenvector. The upper and bottom left panels
of Fig. 2 show, for the cases discussed in the next section, the
ratio between the eigenvalues of the cross-product matrix ob-
tained from the synthetic data plus noise and the eigenvalues of
the pure noise cross-product matrix. The horizontal dashed line
indicates the threshold that we chose to select the eigenvectors.
The bottom right panel of the figure shows the first four selected
eigenvectors for the less noisy case that we analyze in this paper.

4. Results

We present in this section the behavior of the PCA denoising in
several S/N regimes. The data range from very noisy profiles in
which the signal is completely masked by the noise to less noisy
profiles in which the PCA technique can be used to improve even

more the quality of the data for the analysis of individual spectral
lines. For the sake of simplicity, all the figures showing individ-
ual line profiles present results for Stokes V , although similar
results (for similar values of the S/N) are obtained for Stokes Q
and U. However, the general denoising trends are presented both
for circular and linear polarisation states.

4.1. Intermediate S/N

As representative of an intermediate S/N, we present the results
obtained when the S/N in the 630.2 nm line is 3.358. As can be
seen in Fig. 3 amplitudes like the one of the 630.2 nm line are not
very common in the spectrum. This means that most of the spec-
tral lines would have S/N values at least 5 to 10 times smaller.
Then, we are dealing with an example that can be representative
of a typical observational case in stellar polarised spectra.

Although the real signal is still below the noise level for most
of the lines, the number of selected eigenvectors is 4 according
to the criterion of Sect. 3.4. The left panels of Fig. 4 show the
comparison between the original synthetic profile without noise
and the profile recovered after PCA denoising starting from the
noisy profiles. The right panels of Fig. 4 show the comparison
between the noisy and the PCA-filtered signals of three indi-
vidual Fe i spectral lines and a Cr i line widely known in solar
physics. In these conditions, the shape of all the spectral lines
is roughly reproduced and the S/N of the filtered data is good
enough for a reliable study of these individual spectral lines.
The results presented so far have been obtained using the au-
tomatic criterion for the selection of eigenvectors to be included

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809719&pdf_id=2
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Fig. 3. Histogram of the amplitudes of the Stokes V profiles in the blue
lobe divided by the amplitude of the 630.2 nm spectral line. The his-
togram has been normalized to its maximum. The dashed line marks
the position of the median value of the amplitudes while the dotted line
shows the mean value. The arrows points to the value of 1 that corre-
sponds to the 630.2 nm spectral line.

into the linear combination. This facilitates the statistical analy-
sis of the method and gives an idea of how the methods behave
with real data. However, better results are obtained in particular
cases when one carefully selects the eigenvectors used to recon-
struct the signal. An example of this is the lowest panel of Fig. 4,
where the filtered signal has a spurious contribution from high-
order PCA eigenvectors that can be improved by taking fewer
PCA eigenvectors in the reconstruction.

Note that the results shown in Figs. 4–6 correspond to a par-
ticular noise realization. The first eigenvector and the projection
of the data onto it do change for different noise realizations (note
also that the sign of the filtered profile can, in some cases, be the
opposite of the original one). This will be explained in Sect. 4.4.

4.2. Low S/N

We present in this section the results when the S/N of the
630.2 nm spectral line has been decreased to 0.784. Figure 5
shows the comparison between the original and the filtered sig-
nals (left panels) and between the noisy and filtered observations
for the same four spectral lines. According to the criterion pre-
sented in Sect. 3.4, we reconstruct the data taking into account
only the first eigenvector. This case is even worse than the typical
scenario we can expect from real spectro-polarimetric observa-
tions (e.g., Donati et al. 1997). Figure 5 shows that the S/N of
the filtered data has been considerably improved. The shapes of
the spectral lines can now be seen under the noise, mainly in
the first and third panels. However, note that since we are taking
into account only the first eigenvector, many details are still not
reproduced. This means that all spectral lines should have the
same shape, the only difference between them being the projec-
tion coefficient. However, the improvement in S/N has allowed
us to unambiguously detect the presence of circular polarization
signals in some lines.

4.3. Very low S/N

As a representative of a case in which the signal is far below
the noise level, we have chosen a noise distribution with a S/N
in the 630.2 nm line of 0.113. The signal to noise ratio in each

Fig. 4. Each row of this figure corresponds to a particular spectral line.
The first one is the Fe i line at 630.1 nm, the second one is the Fe i spec-
tral line at 630.2 nm, the third one is the Cr i line at 524.8 nm, and the
fourth one is the Fe i line at 525.1 nm. The amplitudes are normalized to
the amplitude at the blue lobe of the 630.2 nm spectral line. Left panels
represent the original profiles of each spectral line (thin line) and the
filtered profiles (thick line). Right panels represent the noisy profile of
each spectral line (thin line) and the filtered one (thick line). The S/N,
taking the Fe i line at 630.2 nm as reference, S/N is 3.358. Note that the
recovered Stokes V profiles almost overlap the original ones.

individual line is indicated in each panel. Only the first eigen-
vector has been used to reconstruct the data set according to the
criterion described above. It is evident that the signal has been
strongly filtered and that the noise level is much lower than in the
simulated observations. In this case, the value of S/N is so small
that the information about the line profiles cannot be extracted
from the noisy data.

4.4. Denoising trends in S/N

The lower the noise level the more spectro-polarimetric informa-
tion is contained in the observations. Consequently, the S/N of
the filtered data will be better if the S/N of the observations is not
very small. Of course, when the noise level in the observations
is negligible, the filtering procedure leads to a small improve-
ment. Figure 7 presents the general trend in the improvement of

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809719&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809719&pdf_id=4
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Fig. 5. The same as in Fig. 4 but for S/N = 0.784.

the S/N after the PCA denoising is applied. The same applies to
Fig. 8 for the case of Stokes Q. The solid line in Fig. 7 shows
the S/N of the filtered data versus the S/N of the observations.
Again, we define the S/N of the filtered data as the ratio be-
tween the amplitude of the Stokes V amplitude of the 630.2 nm
line (10−4 Ic) and the standard deviation of the difference be-
tween the filtered and the original profile. In order to estimate
the statistical significance of these values, we have estimated
confidence intervals using a MonteCarlo approach. The PCA de-
noising procedure has been applied to each line for 100 different
realizations of each individual standard deviation of the noise.
The confidence intervals are obtained as the positions around
the most probable value that enclosse 68% of the probability.

Although the results are slightly different for each spectral
line, they share the same behavior. If the S/N of the observa-
tions is below ∼0.5, the amount of polarimetric information that
we can extract from the spectrum is very small. Therefore, the
analysis based on principal components is less applicable. In this
case, none of the eigenvalues of the cross-product matrix fulfill
the selection criterion and we use only the first eigenvector with
detection purposes. However, it is important to be cautious in this
case, as already presented in Sect. 3.4. When the signal to noise
is at least 0.6–0.7, there is an improvement in the S/N of the
filtered signal. For instance, note that with a S/N of 0.7 in the

Fig. 6. The same as in Fig. 4 but for S/N = 0.113.

observations we increase it by almost one order of magnitude.
Finally, as expected, if the noise level is very small we do not
improve the S/N in the filtered data. Thus, as is apparent from
Figs. 7 and 8, the goal of having a S/N ∼ 1 can be accomplished
with an observed spectrum with S/N ∼ 0.1.

5. Relation to previous approaches

5.1. Line addition

The line addition technique (Semel & Li 1996) consists of
adding all the spectral lines together for equal velocity displace-
ments from line center. The photon noise and the blends are sup-
posed to add in an incoherent way and the polarimetric informa-
tion is supposed to add coherently. Consequently, one ends up
with a mean profile with a considerably higher S/N, an increase
that is roughly proportional to the square root of the number of
added lines. It is a very useful technique to detect polarisation in
stellar spectra. The drawback is that the profile is difficult to ana-
lyze. The mean profile is not a spectral line because its behavior
with the magnetic field is not the same as if it were a standard
spectral line.

Under the PCA approach, it is also possible to retrieve the
mean profile of the observations. The following expression,
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Fig. 7. Signal to noise ratio of the filtered data versus the original S/N of the observations for Stokes V . The error bars indicate the 68% confidence
interval obtained in a Montecarlo procedure with different noise realizations.

obtained after some simple algebra from Eqs. (4), gives the av-
erage profile P:

P =

∑
jk C jk bk

Nobs
, (9)

where the index k indicates the eigenvector and j refers to the ob-
servation. The quantity C jk is the projection of the observation j
onto the eigenvector k. The previous analysis can also be done
using only the first eigenvector. In this case, we end up with the
most common pattern in the data. Since we are using the cross-
product matrix (and not the covariance matrix in which the mean
is subtracted from the observations), the following average pro-
file (reconstructed using only the first eigenvector) is very close
to the mean profile of Eq. (9):

P1 =

∑
j C j1b1

Nobs
· (10)

The reason is that the first eigenvalue is the largest one and
contains most of the variance of the data set. Then, as the eigen-
values drop rapidly, the rest of eigenvectors are much less impor-
tant. The following analysis demonstrates that the PCA denois-
ing can be made equivalent to the line addition technique, also
being a suitable technique to detect magnetic signals in stars.

5.2. Least-squares deconvolution

The Least-Squares Deconvolution method presented by Donati
et al. (1997) is a variation of line addition. It is based on the fol-
lowing two hypotheses: the lines are assumed to be in the weak

field regime of the Zeeman effect and there is a common pattern
to all spectral lines. Since the lines are assumed to be in the weak
field regime of the Zeeman effect, their Stokes V profiles are pro-
portional to the longitudinal component of the magnetic field and
the proportionality constant depends on the spectral line. This in-
duces the resulting LSD Stokes V profile also to be linear in the
longitudinal component of the magnetic field, making the anal-
ysis possible in terms of a pseudo-line with an effective average
Landé factor. The assumption that all the Stokes profiles of all
the spectral lines are proportional to a common “mean Zeeman
signature” reduces the problem to the following linear system of
equations:

V = ŴZ, (11)

where V is a vector of length NobsNλ containing the observed
line profiles. The matrix Ŵ, of size NobsNλ × Nλ, contains the
weights w for each spectral line which, in this approximation, are
defined by means of its Landé factor g and its central depth d:

w = gλd. (12)

The vector Z is the so-called LSD profile, which is the charac-
teristic Zeeman signature of the star. One of the weakest points
of this technique is that the weights have to be proposed a priori.
Once the weights are imposed, the linear system has the follow-
ing least-squares solution:

Z =
(
Ŵ tŜ 2Ŵ

)−1
Ŵ tŜ 2V̂ , (13)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809719&pdf_id=7
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Fig. 8. Signal to noise ratio of the filtered data versus the original S/N of the observations for Stokes Q. The error bars indicate the 68% confidence
interval obtained in a Montecarlo procedure with different noise realizations.

where the matrix Ŝ is a diagonal matrix containing the inverse
of the error bar of each spectral pixel. The previous solution is
obtained using the weighted pseudo-inverse of the matrix Ŵ.

The examples shown in Figs. 6 and 5 are very close to what
LSD represents because we use only the first eigenvector for the
reconstruction. By so doing, we assume that all spectral lines can
be reproduced by a common structure (the first eigenvector), the
only difference between them being a scale factor (the projec-
tion of each observation along the first eigenvector). Instead of
assuming the weight for each line, PCA naturally retrieves the
common pattern in the observations and its intrinsic scale factor.
However, note that the lower the S/N the higher the dispersion
of the PCA coefficients. Then, for extremely low S/N we must
be careful interpreting this coefficient in terms of physical pa-
rameters.

PCA can be understood as a generalization of the basic idea
of LSD in the sense that each spectral line is now a linear com-
bination of several particular functions. In order to investigate
the relation between PCA and LSD, we present in Fig. 9 a scat-
ter plot showing the value of the first PCA coefficient and the
LSD scaling factor, given by Eq. (12). This plot has been ob-
tained for ∼2000 spectral lines without any noise added. Each
spectral line can be contaminated by surrouding spectral lines
in the same spectral range, inducing negative projections on the
first PCA eigenvector. Also a reduced group of lines can have
negative Landé factors, giving negative projections on the first
PCA eigenvector. The values are unimportant since the ampli-
tudes of the LSD profile and the first eigenvector are not equiv-
alent. However, the plot shows no apparent correlation between
the two coefficients. In this particular case, even if the concepts

of PCA and LSD are similar, the stellar Zeeman profile retrieved
with LSD is not the common pattern in the data (which is clearly
the first eigenvector). In a strict mathematical sense, PCA is not
directly related to LSD but to the more general Total Least-
Squares (TLS; Huffel & Lemmerling 2002). The standard lin-
ear least-squares method attributes all errors to the dependent
variables (V in our case) and it minimizes the distance between
the observations and the linear fit as measured along a particu-
lar axis direction. The weight matrix Ŵ is assumed to be known
without error. On the contrary, the linear TLS method allows er-
rors in both the dependent and independent variables (V and Ŵ)
and minimizes the perpendicular distance to the linear fit. PCA
is one of the methods that can be used to solve the linear TLS
problem.

6. Conclusions

In this paper PCA is used to detect correlations between differ-
ent velocity points and different spectral lines. The first princi-
pal component can be used to detect magnetic activity in stars.
But the most important application of PCA is the denoising of
individual spectral lines of stellar spectropolarimetric observa-
tions. The capabilities of the method are analysed using numeri-
cal simulations. By assuming that the contaminating noise has a
negligible correlation, we are able to isolate the signal from the
noise. We have demonstrated that improvements of close to one
order of magnitude in the signal to noise ratio per spectral line
are typical for the present quality of observed stellar polarised
spectra. However, although the method filters the noise in each
individual spectral line, the information contained in all of them

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809719&pdf_id=8
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Fig. 9. Scatter plot showing the value of the projection of ∼2000 ob-
served line profiles onto the first eigenvector versus the LSD scaling
factor associated with each line.

is taken into account. The increase in the S/N facilitates the fu-
ture analysis of individual lines with standard techniques based
on polarised radiative transfer theory.

The PCA denoising technique relies only on one free param-
eter: the number of PCA eigenvectors included in the reconstruc-
tion of the signal. We have suggested an automatic criterion for
its selection that works well on average. However, better denois-
ing results can be obtained if one carefully analyzes the resulting
PCA eigenvectors and only selects those that carry an important
amount of signal compared to the noise.

Although the algebra is different, the PCA denoising tech-
nique is related to other successful techniques for the detection
of magnetic signals in stars such as the line addition technique
(Semel & Li 1996) and the LSD procedure (Donati et al. 1997).

Since we use the cross-product matrix the first principal compo-
nent is very close to the mean profile obtained with the line ad-
dition. Moreover, PCA is directly related to Total Least-Squares,
a method that can be seen as a generalization of LSD.
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