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Abstract
Many scientific domains, such as nanophotonic design, gene expression, and materials

design, are limited by high costs of acquiring data. This data is often intrinsically
low-dimensional, nonlinear, and benefits from dimensionality reduction. Autoencoders
(AE) provide nonlinear dimensionality reduction but are typically ineffective for low data
regimes. Principal Component Analysis (PCA) is data-efficient but limited to linear
dimensionality reduction. We propose a technique that harnesses the benefits of both
methods by using PCA to initialize an AE. The proposed approach outperforms both
PCA and standard AEs in low-data regimes and is comparable to the best of either of
the two in other scenarios.
Keywords: Dimensionality Reduction, Autoencoders, Principal Component Analysis
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1. Introduction

While the proliferation of large datasets has been a driving force behind the progress
and success of machine learning methods, many application domains remain constrained
by relatively small low-dimensional datasets. For instance, collecting useful data can be
computationally expensive in domains, like photonics design [1], that rely on simulation-
based-optimizations interacting with physics equation solvers. Gene expression data is of-
ten obtained from experimental processes with very limited data due to costs and ethical
considerations [2]. Materials design problems can involve running computationally intensive
models as well as expensive experiments, all resulting in small useful datasets [3–5]. Yet,
these datasets can often benefit from dimensionality reduction techniques to analyze the
low dimensional space for future experiment design or to assist in some other downstream
tasks.

Principal Component Analysis (PCA) [6] is a classical dimensionality reduction approach
with provably optimal performance for linearly dependent data [7]. It is often the first, if not
the only, method used for datasets where the number of features is smaller than the number
of data points (n < m). However, its efficiency clearly suffers when data exhibits curvature
as PCA cannot distinguish between nonlinear structure and lack of structure in data. In
many domains where dimensionality reduction is desired, the data is inherently nonlinear
and therefore nonlinear methods are in principle expected to yield superior results.

Autoencoders [8] are commonly used for nonlinear dimensionality reduction as they offer
a convenient way of controlling the reduction by setting network’s bottleneck size. How-
ever, their typical data requirements are significantly larger than PCA when trained with
randomly initialized weights. Yet, it is well known that the behaviour of PCA with p com-
ponents can be modeled using an autoencoder with a bottleneck of the same number of
neurons and linear activation functions [9]. In this paper, we explore the use of PCA to
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initialize the weights of an autoencoder in a numerically stable way. Specifically, we propose
PCA-Robust autoencoders (PCA-Robust) which, given a PCA dimensionality reduction to
p dimensions, are initialized with PCA-derived weights with linear activation functions and
a bottleneck of size p thus replicating PCA’s behavior. The activation function is then al-
lowed to change smoothly to a nonlinear one as part of the normal training process, enabling
the network to capture nonlinear behavior to the extent that the data supports it.

Another work has previously explored a different PCA-based initialization of autoen-
coders [10]. However, the proposed initialization is a heuristic, and the main objective of
that work is to speed up a slow training process on large datasets rather than improve per-
formance on scarce data. Linear variational autoencoders to address data scarcity problems
in collaborative filtering was previously proposed [11]. However, this model cannot capture
nonlinear relationship between parameters. Allerbo and Jörnsten [12] present techniques
for inducing sparsity in dimensionality reduction using autoencoders. However, the sparsity
regularization is meant to primarily address interpretability issues rather than improve pro-
jection error performance. Also, sparsity regularization introduces extra parameters that
require tuning and is therefore less suitable to problems with small datasets.

Various other nonlinear dimensionality reduction methods exist such as t-SNE [13], Kernel
PCA [14], Locally Linear Embedding [15], Isomap [16], etc. (see [17]). In this study we focus
on autoencoders for several reasons. First, they provide a seamless way of reconstructing
data from the reduced to the original space, a necessary requirement of its application to
nanophotonic design. Second, autoencoders offer a built-in way to map out-of-sample points
on the lower dimension. This paves the way for developing adaptive data acquisition schemes
that minimize the number of samples required to achieve a desired level of accuracy. Finally,
Neural Network implementations are widely available, making their use easily accessible to
communities outside the research domain.

We present the methodology as well as the algorithmic details of the robust PCA-based
initialization. To study the impact of the proposed approach we first analyze its performance
on carefully designed synthetic data where we can control the degree of nonlinearity. We
then follow up with a variety of datasets coming from the nanophotonic component design
domain as well as gene expression data and a benchmark breast cancer dataset. Our results
demonstrate that there exists a synergy between linear and nonlinear methods in that the
proposed approach improves upon both baselines in most low data regimes while being
comparable to the best performing method in all other situations.

2. PCA-Enhanced Autoencoders

A central piece of our method is the use of the Parametric ReLU (PReLU, Figure 2)
activation function for the autoencoder [18]. While the original motivation for this ac-
tivation function was to improve the training process in large networks, we adopt it for
different reasons. PReLU allows for the smooth transition from linear to nonlinear function
approximation [19]. When we manually set the slope for the negative values of ReLU to
1 the network represents a linear transformation. In fact, emulating PCA is the best this
network can do since PCA gives the optimal linear dimensionality reduction under the L2

loss function. The amount by which the slope for the negative values is adjusted becomes
another parameter to be estimated from data [18]. PReLU, as it is discussed here, is distinct
from Leaky ReLU. With Leaky ReLU the α slope (Figure 2) is configured manually and in
PReLU α is treated as an independent learnable parameter per node during training and is
adjusted by the learning algorithm.

We assume that the architecture of the AE takes the vase-shaped form shown in Figure 1,
where first the data is expanded in its dimensionality and then reduced back to the original
dimension n before being reduced to the bottleneck dimension q. Although not necessary,
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it makes the robust weights initialization procedure easier to implement and present, while
still allowing a significant degree of flexibility in the choice of the architecture.

For the n-dimensional signal, let X be the original data matrix with n columns (features)
and m rows (samples). We assume that X is already centered and possibly scaled, depending
on the application needs. Let X̂ be the result of representing X using just the first q linear
principal components. That is,

X̂ = Um×q · Sq×q ·Vn×q⊤,

being a rank−q singular value decomposition of matrix X.
The functionality of a linear Autoencoder as in Figure 1 with the bottleneck dimension

q can be described by the following equation:

x⊤ ·Wn×·
e1 · · ·W·×n

ei ·Wn×q
enc ·Wq×n

dec ·Wn×·
d1

· · ·W·×n
di

= x̂⊤

where each Wr×s ∈ Rr×s represents the weights of a layer of the AE having r inputs
and s nodes, and subscript identifies the layer itself (ei, di - encoder and decoder layers
respectively, enc, dec the bottleneck layers of the encoder and decoder respectively). We
seek to generate the weights such that the following equality holds:

X ·Wn×·
e1 · · ·W·×n

ei ·Wn×q
enc ·Wq×n

dec ·Wn×·
d1

· · ·W·×n
di

= X̂, (2.1)

implying that the AE acts as PCA.
The above equation implies that there is no unique solution to the initialization of weights

due to both larger number of degrees of freedom (parameters) as well as scaling. This
creates different possibilities for the initialization. We consider two options, both allowing
a significant degree of randomness. The simplified version initializes all the layers randomly
except for the bottleneck (any random distribution is acceptable as long as it generates
full rank matrices with probability 1), then computes the bottleneck layers (last encoder
layer and first decoder layer) to match PCA. Let Wenc− =

∏
j Wej and Wdec+ =

∏
j Wdj

be the weights corresponding to the product of all the encoder layers’ weights except for
the bottleneck, and the product of all the decoder layers’ weights except for the bottleneck
respectively. While Wenc− and Wdec+ are products of random matrices, the bottleneck
layer weights are calculated as follows:

Wenc = W−1
enc− ·V; Wdec = V⊤ ·W−1

dec+. (2.2)

It is easy to see that Eq. (2.1) holds as a result. We call this procedure PCA-Naive.
The second, more involved initialization option that we use in our implementation ensures

that all the intermediate AE layers are non-expansive and non-contractive operators with
respect to the original input, i.e. they maintain the magnitude of the input vector, with the
exception of the bottleneck layers only. It is implemented by sampling random orthogonal
matrices in a correct order and solving linear systems to stitch those matrices together.
This ensures the numerical stability of the neural network, making the generalization less
sensitive to the initialization process. The algorithm is outlined in Alg. 1 .

3. Experiments

The design of the experiments is intended to replicate a low-data regime with the down-
stream tasks requiring the choice of a single dimensionality reduction model that is later
explored. The exploration of the latent space can be accomplished by sampling using rein-
jections [20]. The total available data in our experiments is split into 80% for training, 10%
for validation, and 10% for model selection, where the validation set is used to identify when
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Figure 1. AutoEncoder archi-
tecture used in experiments

Figure 2. PReLU, α = 1 ini-
tially and varies independently
for each node in training

Algorithm 1 Stable PCA-based weights initialization
Parameters:

X ∈ Rm×n - centered (optionally scaled) data matrix
k - bottleneck dimension

arch - list of dimensions for encoder/decoder layers
Output: List of weights

1: ## Robust weight initialization
2: function RWI(A ∈ Rm×n, arch : List)
3: if size of arch ≤ 2 then
4: return A
5: Remove last element from arch
6: B = Call RO(first and last elements of arch)
7: W = B† ·A
8: return List(Call RWI(B,arch),W)
9:

10: ## Random orthonormal matrix
11: function RO(m,n): return random orthonormal matrix ∈ Rm×n

12:
13: A =RO(n, n)
14: Enc =RWI(A, arch) ▷ encoder weights init
15: Wenc− =

∏
Enc

16: Dec =RWI(A, arch) ▷ decoder weights init
17: Wdec+ =

∏
Dec

18: P = PCA(X, k)
19: return List(Enc,W−1

enc−P,P−1W−1
dec+,Dec)

to stop the training process. The model selection set is used to choose the best performing
AE model among several randomly initialized and trained AE models. The same model
selection is also applied to the AE models that reproduce PCA since this process allows
significant degree of randomness as well. All final models are evaluated on a much larger
testing set for analysis purposes.

Training is performed using the Adam optimizer with the slope of PReLU activation
function for all the layers initialized to 1. Along with the PCA, the compared AE models are
the PCA-Robust initialization (Alg. 1), PCA-Naive initialization and Random initialization.
Although it was tracked during all the experiments, PCA-Naive is not depicted in the charts
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because it performed poorly—consistently worse and significantly less stable than the other
methods. The Euclidean distance between the input and output vectors is used as the loss
function, consistent with an implicit objective of PCA.

We also considered the possibility that simple orthogonalization of the initial random
weights may have accounted for some gains. However, in our experiments with synthetic
data we observed no statistically significant difference between random initialization and
orthogonalized random initialization. Hence this possibility was not pursued further.

All autoencoder architectures we experiment with have 7 layers including the input and
output layers. The choice of this architecture is somewhat arbitrary and was not optimized
for any of the problems.

For our experiments we used the ADAM optimizer with a custom learning rate schedule.
We found a learning rate of 10−4 with an exponential decay of 0.99 per epoch yielded the
best results. We ran each training run for a maximum of 1000 epochs. The experiments
were run on a node with dual Intel Xeon Gold 6130 CPUs clocked at 2.1GHZ. The node’s
available memory is 192GB. The experiments, submitted as jobs to the node, ran on CPU
and consumed no more than 32GB of memory per run.

Finally, both synthetic and real experiments are repeated with different total sample sizes
(20, 30, 40, 50, 80 and 100), representing varying sizes of the low data regimes.

3.1. Power Function

In our first experiment the data is generated from a function that takes two parameters,
satisfying:

xn + yn = z (1)
As shown in Figure 3 , adjusting n allows for the manipulation of the degree of curvature

of the surface while maintaining the same range of a function for a fixed domain x, y ∈ [0, 1].
As n approaches 1 the surface approximates a linear surface more closely.

In this experiment we study the effect of curvature and sample size on the respective
performances of PCA, a Randomly-initialized AE and two AE’s: one initialized with our
stable algorithm (PCA-Robust), and one initialized naively without consideration for the
stability issues discussed in the previous section (PCA-Naive). We vary the sample sizes
(using 20, 30, 40, 50, 80 and 100) and different values for n in equation (1) (n= 1.1, nearly
linear , Figure. 3a-left, and, n=4, clearly curved, Figure. 3b-right). Altogether, these values
cover a range of curvature and data availability of the latent 2D subspace.

1000 points are randomly generated for each value of n and from these 250 are designated
the test set. The rest are used to draw training samples from. For each data sample, the
AEs were each initialized accordingly. All three autoencoders (PCA-Robust, PCA-Naive and
Random) undergo the same training process on the given sample. Finally, the experiment
is repeated 200 times (resulting in different data samples) and the statistics are presented.

For the synthetic experiments, the layer sizes in sequence from the input layer to the
output layer are 3-20-3-2-3-20-3, based on 3-dimensional data.

Figure 4 shows the average errors of different models evaluated on the test data (size=250)
as a function of the training data size. The results show that PCA-Robust performs signif-
icantly better than PCA for all cases. The result for Random for n = 1.1 are not shown as
they are significantly worse.

Moreover, when curvature is increased, similar performance patterns hold and all AE-
based methods begin to do better than PCA for larger data sizes as expected. Most impor-
tantly, PCA-Robust AE consistently outperforms other models in most data regimes and at
least as well as any other model otherwise.
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(a) n = 1.1 (b) n = 4

Figure 3. 2D surface satisfying xn + yn = z (gray) along with PCA projections (green)
and PCA-Robust (blue) for 40 training samples.

(a) n = 1.1 (b) n = 4

Figure 4. Comparison of dimensionality reduction techniques on a synthetic dataset
generated with different curvatures

3.2. Nanophotonic Component Design

Here we present several real-world problems that motivated this work in the first place,
and illustrate the practical utility of dimensionality reduction with limited data. In nanopho-
tonic component design, the geometry on a chip is manipulated on a nanometer scale to
generate functions for applications ranging from optical communication to biological sens-
ing [21]. Designing such devices requires solving Maxwell’s partial differential equations to
obtain the electromagnetic field distribution—a computationally expensive process. Such
design problems are typically posed as optimization problems where parameters represent
physical quantities such as material properties and/or geometry. The introduction of an
adjoint based optimization method in nanophotonic design [22, 23] allowed an efficient
gradient-based optimization that easily scales up to a large number of parameters. Acquir-
ing a single optimized design typically takes hours to days of computation depending on
the problem and computational resources. However, in practice a single optimized design
is often not the best one to be fabricated. The preferred course of action is to present a
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collection of optimized designs among which the designer chooses one or a handful to man-
ufacture, based on a variety of considerations, such as other figures of merit or fabrication
reliability, that are not captured in the objective function.

In [1, 24, 25], PCA was used to characterize a subspace of optimized designs from a
small collection of such designs. Exploring this lower dimensional subspace became com-
putationally feasible by simple sampling. While the linear approach was useful, the data
also exhibited some curvature [1]. Using a method that can capture the lower dimensional
subspace more accurately, including its curvature, implies that exploring this subspace will
identify a collection of better performing designs to consider for manufacturing. Here we
consider three design problems - two grating couplers and a power splitter, as described
below - where we demonstrate that the proposed autoencoders can capture some of the
curvature of the design space and generalize well despite being trained on limited data.

3.2.1. Grating Coupler 1

Figure 5. Schematic representations of grating cou-
plers’ structures: Top - Grating Coupler 1; Bottom -
Grating coupler 2. (reproduced with permission [1]).

A vertical grating coupler is a device
that diffracts light injected in-plane verti-
cally upwards, or couples light signal in the
photonic chip to and from optical fibers or
free space. It is a necessary device for con-
necting photonic chips to the surrounding
environment. A schematic of the device
that is considered here is shown in Figure
5 (Top).

The complete dataset of optimized struc-
tures for this vertical grating coupler con-
sists of 540 designs, also referred to as a set
of good designs. These were obtained from
computationally intensive simulation-based
optimizations and selected from a set con-
sisting of more than 30,000 candidate de-
signs based on an optical performance cri-
terion (a waveguide-fiber coupling efficiency
of at least 74%). The designs are character-
ized by five segment values (L1 to L5) representing different widths of silicon blocks, which
are the parameters to the design problem (see Figure 5 (Top)). In [1], it was shown that
two principal components were enough to capture most of the optimized design subspace
within this five dimensional design problem. Only a small set of such designs were required
to identify the subspace. The layer sizes for this experiment were 5-20-5-2-5-20-5 (see Figure
1) for the 5-dimensional data. Note that the size, n, of the bottleneck for the experiments
is compared to PCA with n principal components as in [1].

Similar to the setup in [1], we choose 2 as a reduced dimension and simulate scenarios
where only a small number of these optimized designs are available, ranging from 20 to 100.
These are randomly sampled from the available good designs set. To corroborate our entire
experimental setup that can be sensitive to data partitioning due to the low data regime,
we set aside half of the available designs designs (270) as the test set. The experiments are
further repeated 50 times creating different data splits to measure accurate statistics of the
results. The error bars represent the uncertainty of an average estimate.

Figure 6 (Left) shows the performance of different methods evaluated on the test set.
We notice that our proposed Robust model consistently outperforms randomly-initialized
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(a) Grating Coupler 1 (b) Grating Coupler 2

Figure 6. Comparison of techniques on Grating Coupler 1 (left)and 2 (right) datasets.
Robust depicts the average projection error of PCA-Robust AE, Random is Randomly
initialized AE, and PCA depicts PCA’s performance

autoencoders as well as PCA across all dataset sizes. As expected, the performance of
randomly-initialized autoencoders slowly catches up and is expected to match the perfor-
mance of Robust model when sufficient data is provided.

Note that with only 20 samples the PCA-Robust model has lower error than the standard
Autoencoder with 100 samples in Figure 6, while PCA requires around double the amount
of samples to catch up to the same error. This offers a significant reduction in the amount
of data required to collect to reliably identify the lower dimensional subspace. Similar con-
clusions can be made in the next device (Grating Coupler 2) we consider.

3.2.2. Grating Coupler 2

A similar experiment was conducted on data obtained from another vertical grating cou-
pler design, as depicted in Figure 5 (Bottom). Compared to the previous example, here
a section based on a subwavelength metamaterial is introduced in the device structure, as
described in [1, 24]. While the number of variables defining the structure is also five -
(L1, · · · , L4, nswg), the variable nswg represents a different physical quantity - the effective
material index of the subwavelength metamaterial section - which has a different interpre-
tation as well as a different order of magnitude [21]. The other four variables, as previously,
represent silicon segment widths.

The complete dataset consists of 1502 optimized designs (coupling efficiency > 74%) of
which half were used as the test set. Since the variables in this design problem are of different
magnitudes, the values were scaled for all dimensionality reduction methods. The structure
of the experiment is otherwise identical to the previous grating coupler design setup.

The performance results are shown in Figure 6 (Right). Trends very similar to those of
the Grating Coupler 1 experiment are observed.

3.2.3. Power Splitter

Another nanoponotonic component ubiquitous in integrated circuits is a power splitter.
Its role is to split the incoming wave carrying the signal into two or more ports propagating
the same signal but with reduced intensity. We consider a parameterized design of a 1x2
power splitter as in [25] targeting equal splitting ratio on the output ports . The splitter is
defined by a single silicon shape, the parameters directly controlling its boundary. Examples
of such optimized splitters are shown in Figure 7. Ten parameters define the boundary at
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equally spaced location along the X axis, while the boundary points in between them are
interpolated and smoothed.

The Y-Splitter data is 10-dimensional and we compare different dimensionality reduc-
tions, specifically, 4 and 5. This resulted in layer sizes of 10-20-10-4-10-20-10 and 10-20-10-
5-10-20-10 respectively.

The complete dataset consists of 645 designs that achieve at least 97% coupling efficiency,
defined as the amount of power coupled into the output ports (since the device is symmetric
the power is guaranteed to be split equally). The optimized structures are obtained from
hundreds of gradient based optimizations with random initial conditions. Figure 8 represents
the performance results on this dataset for two different choices of the reduced dimension.
Similar to previous experiments, PCA-Robust method outperforms its competitors except
for PCA at the smallest dataset regime, where their performance is comparable.

An interesting outcome revealed by these two experiments is the observation that with
100 samples, the average projection error for PCA reduced to 5 dimensions (108 ± 0.7) is
marginally better than that of PCA-Robust reduced to 4 (114± 1.4). First, it suggests that
PCA needs more dimensions to capture approximately the same amount of information as
a nonlinear method – a sign of an increasingly curved subspace. Second, exploring a lower-
dimensional subspace will often require significantly less samples. It is particularly important
in applications such as this one, where sampling is costly. Similarly, randomly-initialized
autoencoders require more data to catch up with PCA (approximately 50 more samples
when reduced to 4 dimensions and 80 more samples when reduced to five dimensions).

Figure 7. Examples of two optimized 1x2 power splitters. The light travels from the left
port (waveguide) and being split equally into two output ports (waveguides) on the right.
Both power splitters are defined by their (symmetric) boundaries at the top and bottom
representing the silicon shape. Yellow represents the electric field intensity profile.

3.3. Gene Expression

Another application that often offers only limited data where PCA is used is gene expres-
sion. We consider a subset of gene expression data associated with varying conditions of
fungal stress in cotton [26]. The data contains 662 samples. Each sample has six features,
each is real-valued and indicates a condition associated with fungal stress in cotton. PCA
is applied to this data to enable the visualization of the relationships between samples and
thus a reduction that preserves more information, that is, lower average projection error,
can provide a more accurate representation of these relationships.

In our experiments we reduce the samples to two dimensions. The autoencoder layers
were 6-20-6-2-6-20-6. Figure 9a shows the comparison of the three methods. We can observe
that PCA-Robust autoencoder maintains the same performance as PCA for a number of
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(a) Y-splitter Data Reduced to 4 Dimensions (b) Y-splitter Data Reduced to 5 Dimensions

Figure 8. Y-splitter data reduced to different dimensions.

(a) Cotton Data
(b) Breast Cancer Data Reduced to 15 Dimen-
sions

Figure 9. Performance comparison on the Cotton and Breast Cancer datasets.

data sizes, suggesting that the amount of data is not yet sufficient to pick up any nonlinearity
that generalizes well. For larger data sizes, there is sufficient data to improve upon the linear
method and PCA-Robust approach leverages that information. Also, randomly-initialized
autoencoders never catch up to the PCA-Robust model and rarely to PCA in all the above
plots, implying a potentially significant increase in data requirement in this practical setting.

3.4. Breast Cancer Wisconsin Dataset

The Breast Cancer Wisconsin Dataset [27], included in sci-kit learn package[28], consists
of 569 total samples labeled “benign” and “malignant”. These labels are irrevelant for our
purposes since we’re interested in comparing the average projection error in the dimension-
ality reduction of PCA and PCA-Robust. Each sample contains 30 real-valued features
describing charecteristics of the cell nuclei depicted in an image of a fine-needle aspirate of
a breast mass. Since the feature size is 30 we expanded the width of our vase as compared
to our earlier experiments. The new width had 100 nodes and a bottleneck of 15 nodes (to
obtain 15 reduced dimensions), resulting in 30-100-30-15-30-100-30 size architecture.

Figure 9b shows that, the PCA-Robust autoencoder outperforms other methods on all
except for the smallest data set size, where its performance is comparable to that of PCA.

4. Conclusion and Future Work

We demonstrated that autoencoders, with proper initialization, offer a viable solution for
dimensionality reduction even in a limited data regime for problems where number of data
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points is larger than the number of features. Accordingly, a choice does not have to be made
between linear and nonlinear model fitting on small datasets. Instead, stable PCA initial-
ization provides the best of both worlds, allowing the AE training to proceed smoothly and
introducing nonlinearity only to the extent allowed by the data. These results are encour-
aging in domains where, due to data scarcity, only PCA has been used for dimensionality
reduction. Furthermore, the explicit encoding-decoding nature of autoencoders allow sam-
pling the low-dimensional space for applications such as nanophotonic component design.
This is achievable for non-generative autoencoders using reinjection [20]. Exploring the high
dimensional data regime (m < n), where PCA is no longer the optimal linear method [29]
deserves a separate treatment which we defer to future work.

The practical impact of the improvement of the Robust model is illustrated in the ex-
periments, which show a significant reduction in data requirements compared to randomly
initialized AEs. In applications where data is difficult to obtain, this reduces the burden of
expensive data generation.

While the idea of initializing the autoencoders with PCA is not new, we demonstrate
that, unlike its naive implementation, a numerically stable initialization is critical to the
final model’s training and performance. Our experimental results suggest it is significantly
more favourable for the typical gradient-based training method(s) of AE.

Finally, initialization of the network weights in the proposed fashion might offer a degree
of stability and robustness similar to the proposals that address adversarial example issues
in neural networks and enforce general smoothness [30, 31]. We leave this as an avenue for
exploration in future work.
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