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Abstract
Over the last ten years, face recognition has

become a specialized applications area within the field
of computer vision. Sophisticated commercial systems
have been developed that achieve high recognition
rates. Although elaborate, many of these systems
include a subspace projection step and a nearest
neighbor classifier. The goal of this paper is to
rigorously compare two subspace projection
techniques within the context of a baseline system on
the face recognition task. The first technique is
principal component analysis (PCA), a well-known
“baseline” for projection techniques. The second
technique is independent component analysis (ICA), a
newer method that produces spatially localized and
statistically independent basis vectors. Testing on the
FERET data set (and using standard partitions), we
find that, when a proper distance metric is used, PCA
significantly outperforms ICA on a human face
recognition task. This is contrary to previously
published results.

1. Introduction
Over the last ten years, face recognition has

become a specialized applications area within the
field of computer vision. Sophisticated commercial
systems have been developed that achieve high
recognition rates1. Although the details of these
systems are generally confidential, most of them
include a subspace projection step which projects
data from a high-dimensional space to a more
meaningful, lower-dimensional space. Face
recognition is then implemented as nearest-neighbor
classification in this reduced space.

The sophistication of the commercial systems
should not be underestimated. These companies have
developed methods for pre-processing (and in some
cases generating) training data, computing features

1 For a comparison of commercial systems, see
http://www.dodcounterdrug.com/facialrecognition/FRVT2000/frvt
2000.htm

over images or image differences, and for detecting
and registering faces. Unfortunately, the details of
commercial systems are generally proprietary.
Moreover, many of these techniques are highly
specific to face recognition. The underlying subspace
projection methods, on the other hand, are more
broadly applicable. The goal of this paper is to
compare a canonical subspace projection technique –
principal component analysis (PCA [1, 2]) – to a
newer technique, independent component analysis
(ICA [3, 4]).

While PCA has been a popular method in
computer vision, especially in face recognition, ICA
was originally developed for separating mixed audio
signals into independent sources [3]. It is only
recently that ICA has been applied to image analysis
[5], recognizing faces [6-10] and expressions [11].
Previous results of applying ICA to human face
recognition on the FERET database [7, 8] and the
Olivetti and Yale databases [10] showed that ICA
outperforms PCA, and another report [9] claimed that
there is no performance difference between ICA and
PCA. In this paper, we make the comparison in the
context of a simple, baseline recognition system and
the FERET face recognition database. We have
tested three different distance metrics – L1 norm, L2
norm, and cosine angle - for both PCA and ICA. We
find, contrary to previous reports in the literature, that
PCA significantly outperforms ICA when the best
performing distance metric is used for each method.

2. PCA vs. ICA
PCA is the most widely used subspace projection

technique. In PCA, the basis vectors are obtained by
solving the algebraic eigenvalue problemRT(XX T)R
= ΛΛΛΛ where X is a data matrix whose columns are
training samples2, R is a matrix of eigenvectors, and
ΛΛΛΛ is the corresponding diagonal matrix of
eigenvalues. The projection of data,Cn = Rn

TX, from
the original p dimensional space to a subspace
spanned byn principal eigenvectors is optimal in the
mean squared error sense. That is, the reprojection of

2 The training samples must be centered, soXi = Yi – Y, whereY i

is the ith raw training sample andY is the mean training sample.



Cn back into thep dimensional space has minimum
reconstruction error. In fact, ifn is large enough to
include all the eigenvectors with non-zero
eigenvalues, the reprojection is lossless.

While the goal in PCA is to minimize the
reprojection error from compressed data, the goal of
ICA is to minimize the statistical dependence
between the basis vectors. Mathematically, this can
be written asWX T = U, where ICA searches for a
linear transformationW that minimizes the statistical
dependence between the rows ofU, given a training
set X (as before). Unlike PCA, the basis vectors in
ICA are neither orthogonal nor ranked in order. Also,
there is no closed form expression to findW. Instead,
many iterative algorithms have been proposed based
on different search criteria [13]. However, it has been
shown that most of the criteria optimized by different
ICA algorithms lead to similar or even identical
algorithms [14, 15]. In this paper, we will
concentrate on InfoMax, one of the best-known ICA
algorithms by Bell and Sejnowski [4].

In [7], Bartlett and colleagues first apply PCA to
project the data into a subspace of dimensionn.
InfoMax is then applied to the eigenvectors to
minimize the statistical dependence among the rows
of U in WRn

T = U. It is then possible to reconstruct
an approximation to the original images, sinceXT ≈
Cn

T W-1 U. This use of PCA as a pre-processor in a
two-step process allows ICA to create subspaces of
size n for any n. In [8], it is also argued that pre-
applying PCA would enhance ICA performance by
discarding small trailing eigenvalues before
whitening and reduce computational complexity by
minimizing pair-wise dependencies. Unfortunately,
even with this heuristic ICA basis vectors are much
more expensive to compute than PCA basis vectors
(on the order of hours rather than seconds).

3. The Baseline System
Following the lead of Moon and Phillips [12], we

compare PCA and ICA by embedding both
algorithms in identical baseline systems. These
systems use a subspace projection technique (either
PCA or ICA) to compute a set of subspace basis
vectors, and then compress a gallery of stored images
by projecting them onto the basis vectors. New
images are matched to stored images by projecting
them onto the basis vectors and matching their
projections to the nearest stored (projected) image.

More precisely, the baseline object recognition
system used in this study has three steps, and
operates on registered face images of three sets: the
training, gallery, andprobe sets [16]. The first (off-
line) step computes the subspace basis vectors from
the training images. The second (also off-line) step
projects the gallery images into the subspace. The
third (on-line) step projects a probe image into the

subspace and retrieves the closest galley image to the
probe image, as measured in subspace.

Depending on the application, the training and
gallery image sets may overlap or even be the same.
However, the probe set must always be disjoint from
the gallery and training sets.

4. Comparing PCA & ICA
We compare PCA and ICA on the task of

recognizing faces in the FERET face database. Since
face recognition is a significant application, these
results are immediately interesting. Moreover, a
NIST web site3 provides results for 10 different
algorithms on this task. Because we use their data
and replicate their methodology, the ICA numbers
presented here can be directly compared to the
performance results of these other algorithms.
Finally, before the full FERET database was
available, there were claims by other researchers that
ICA outperforms or equals PCA on face images [7-
10]. This paper refutes those claims.

At the same time, readers should be aware that the
nature of the recognition task effects the evaluation.
In particular, face recognition is more “holistic” in
the sense that global properties of the face (e.g.
coloring, width, length) are significant. Such features
may be more easily captured by PCA than ICA, since
ICA basis vectors are more spatially localized than
their PCA counterparts (Figure 1). Evaluations on
localized recognition tasks, such as recognizing
expressions [11], may produce significantly different
results.

Figure 1: The first eight eigenvectors computed from 500
randomly selected images from FERET gallery (top) and
eight of 200 ICA basis vectors computed using the
technique of [7] (bottom). Note that the eigenvectors are
“global” in that they often overlap, assigning significant
weights to the same pixels while ICA basis vectors are
more spatially localized and never overlap, unlike their
PCA counterpart.

4.1 The FERET Database
The FERET face recognition database is a set of

face images collected by NIST from 1993 to 1997.
Each image contains a single face. Prior to
processing, the faces are registered to each other, and
the backgrounds are eliminated. In this study, only

3 http://www.itl.nist.gov/iad/humanid/feret/



head-on images are used; faces in profile or at other
angles are discarded (although see [6]).

Of particular interest is the structure of the
database. The gallery contains 1,196 face images.
For this study, the training images are a randomly
selected subset of 500 gallery images. Most
importantly, there are four different sets of probe
images: using the terminology in [12], thefafb probe
set contains 1,195 images of subjects taken at the
same time as the gallery images. The only difference
is that the subjects were told to assume a different
facial expression than in the gallery image4. The
duplicate Iprobe set contains 722 images of subjects
taken between one minute and 1,031 days after the
gallery image was taken. Theduplicate II probe set
is a subset of the duplicate I probe set, where the
probe image is taken at least 18 months after the
gallery image. The duplicate II set has 234 images.
Finally, thefafc probe set contains images of subjects
under significantly different lighting. This is the
hardest probe set, but unfortunately it contains only
194 probe images. In this work, the images were
scaled down to 60x50 from the original size of
150x130.

4.2 PCA & ICA Implementations
The implementation of PCA used in this

comparison is a publicly available C program5. It was
developed using components from Intel’s OpenCV
library implementation and compared with other
versions of PCA used in the original FERET study.
Since the training set contains 500 images, a
maximum of 499 non-zero eigenvalues could result.
Keeping with standard practice, we keep the first 200
(40%) eigenvectors with the highest eigenvalues.

The implementation of InfoMax is publicly
available MATLAB code6 written by Bell and
Sejnowski and used to generate the results in [5] and
[7]. InfoMax has several parameters; for this study,
the block size was 50, the initial learning rate was
0.001 and, after 1000 iterations, it was reduced every
200 epochs to 0.0005, 0.0002, and 0.0001. We
trained InfoMax for 1,600 iterations. These
parameters are exactly the same as those used in [7].
To avoid over fitting to the training data, we savedW
after every 100 iterations, and tested each version.
The results presented in the next section are for the
best version ofW on any given probe set.

4.3 Results on FERET
The results of comparing PCA and ICA on the

FERET data set are given in Table 1. The algorithms

4 Subjects were not told what type of facial expression to assume
for either the gallery of fafb images, only that the two expressions
should be different.
5 http://www.cs.colostate.edu/evalfacerec/
6 http://www.cnl.salk.edu/~tony/ica.html

are compared by measuring how often a probe image
matches the nearest gallery image in subspace.
(Alternatively, it is possible to rank them according
to how often the true match was one of the K closest
images, for any rank K.) Table 1 shows results with
three different distance measures for PCA, and cosine
angle for ICA7.

PCA ICA
L1 L2 cosine cosine

fafb 80.42 % 72.80 % 70.71 % 78.33 %
dup I 40.30 % 33.24 % 35.18 % 36.15 %
dup II 22.22 % 14.53 % 15.38 % 15.81 %
fafc 20.62 % 4.64 % 4.64 % 6.70 %

Table 1: Correct retrieval rates of PCA and ICA on
different probe sets. The probe sets are ordered easiest
(fafb) to hardest (fafc).

The most obvious result in Table 1 is that PCA
outperforms ICA for every probe set when L1 norm
is used. This directly contradicts the previous claims.
This is disappointing, since InfoMax is an expensive
algorithm that uses PCA as a pre-processor. In
effect, the several hours of computation that it took to
refine PCA basis vectors into ICA basis vectors
reduced performance.

There are several reasons why our results might
contradict those reported previously. The most
obvious thing would be the distance metric used for
comparison. Table 1 clearly shows that L1 norm
performs significantly better than both L2 norm and
cosine angle, but none of the previous reports used
L1 norm for PCA. (In [7], cosine angle was used
whereas L2 norm was used in [8] and [9].) We use
the distance measure that maximizes the performance
of each technique.

Additionally, previous studies were limited to
subsets of the FERET database. For example, [7]
used 425 training/gallery images and 543 probe
images, while [9] used 706 training/gallery images
and 1,123 probe images, and [8] used 738
training/gallery images and 369 probes. Table 1, on
the other hand, presents results from a larger study
with 1,196 gallery images and a total of 2,345 probe
images. Moreover, the division of the images into
four probe sets and the gallery is the same as has
been used for previous FERET evaluation studies.

Since we use the same implementation and
parameters as [7], the difference in results (after
accounting for the distance metrics) may be
attributable to differences in the preprocessing of the
input data. We apply NIST’s standardization routine
to the input images; this was not done in [7].

7
We also tested L1 norm and L2 norm for ICA, and found that

cosine angle measure was better for ICA. In this comparison, we
only show the best performance by cosine angle for ICA. Cosine
angle is also recommended by [7] for ICA.



4.4 Statistical Significance
One could question whether the results in Table 1

are statistically significant. The simplest method for
determining significance is to model each probe
image as a binomial test that either succeeds or fails.
McNemar’s test can then be used to determine
whether one algorithm is significantly better than the
other. Under this model, PCA with L1 norm is
significantly better than ICA on every probe set. For
the fafb and fafc probe sets, the differences are
significant to a probability of 99.99% for both. For
the duplicate I and duplicate II probe sets, the
differences are again significant to 99.96% and
99.87%, respectively.

When L2 norm is used, ICA performs significantly
better on the fafb and duplicate I probe sets, but not
on the fafc and duplicate II probe sets. Also, there is
no difference between ICA and PCA with cosine
angle on fafc, duplicate I, and duplicate II probe sets,
and ICA is better on fafb probe set. This also
contradicts previous reports that show that ICA is
better than PCA for all probe sets.

5. Conclusion
Previously reported results comparing ICA to PCA

for face recognition claim that ICA matches or
outperforms PCA [7-10]. Our results with the FERET
database contradict this claim. We find that PCA
outperforms ICA on all four probe sets when the
distance metric for each method is selected to
maximize performance. Furthermore, we find that
the difference in performance between PCA and ICA
is statistically significant.
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