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pcadapt : an R package to perform genome scans1

for selection based on principal component2

analysis.3
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1 Université Grenoble Alpes, CNRS, Laboratoire TIMC-IMAG, UMR 5525, France.5
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Abstract7

The R package pcadapt performs genome scans to detect genes under selection based8

on population genomic data. It assumes that candidate markers are outliers with respect9

to how they are related to population structure. Because population structure is ascer-10

tained with principal component analysis, the package is fast and works with large-scale11

data. It can handle missing data and pooled sequencing data. By contrast to population-12

based approaches, the package handle admixed individuals and does not require grouping13

individuals into populations. Since its first release, pcadapt has evolved both in terms of14

statistical approach and software implementation. We present results obtained with robust15

Mahalanobis distance, which is a new statistic for genome scans available in the 2.0 and16

later versions of the package. When hierarchical population structure occurs, Mahalanobis17

distance is more powerful than the communality statistic that was implemented in the18

first version of the package. Using simulated data, we compare pcadapt to other software19

for genome scans (BayeScan, hapflk, OutFLANK, sNMF). We find that the proportion of20

false discoveries is around a nominal false discovery rate set at 10% with the exception of21

BayeScan that generates 40% of false discoveries. We also find that the power of BayeScan22

is severely impacted by the presence of admixed individuals whereas pcadapt is not im-23

pacted. Last, we find that pcadapt and hapflk are the most powerful software in scenarios24

of population divergence and range expansion. Because pcadapt handles next-generation25

sequencing data, it is a valuable tool for data analysis in molecular ecology.26

Keywords. population genetics, R package, outlier detection, Mahalanobis distance,27

principal component analysis.28
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Introduction29

Looking for variants with unexpectedly large differences of allele frequencies between30

populations is a common approach to detect signals of natural selection (Lewontin and31

Krakauer, 1973). When variants confer a selective advantage in the local environment,32

allele frequency changes are triggered by natural selection leading to unexpectedly large33

differences of allele frequencies between populations. To detect variants with large diffe-34

rences of allele frequencies, numerous test statistics have been proposed, which are usually35

based on chi-square approximations of FST -related test statistics (François et al., 2016).36

Statistical approaches for detecting selection should address several challenges. The37

first challenge is to account for hierarchical population structure that arises when genetic38

differentiation between populations is not identical between all pairs of populations. Sta-39

tistical tests based on FST that do not account for hierarchical structure, when it occurs,40

generate a large excess of false positive loci (Bierne et al., 2013; Excoffier et al., 2009).41

A second challenge arises because approaches based on FST -related measures require42

to group individuals into populations, although defining populations is a difficult task43

(Waples and Gaggiotti, 2006). Individual sampling may not be population-based but44

based on more continuous sampling schemes (Lotterhos and Whitlock, 2015). Additionally45

assigning an admixed individual to a single population involves some arbitrariness because46

different regions of its genome might come from different populations (Pritchard et al.,47

2000). Several individual-based methods of genome scans have already been proposed to48

address this challenge and they are based on related techniques of multivariate analysis49

including principal component analysis (PCA), factor models, and non-negative matrix50

factorization (Duforet-Frebourg et al., 2014; Hao et al., 2016; Galinsky et al., 2016; Chen51

et al., 2016; Duforet-Frebourg et al., 2016; Martins et al., 2016).52

The last challenge arises from the nature of multilocus datasets generated from next53

generation sequencing platforms. Because datasets are massive with a large number of54

molecular markers, Monte Carlo methods usually implemented in Bayesian statistics may55

be prohibitively slow (Lange et al., 2014). Additionally, next generation sequencing data56

may contain a substantial proportion of missing data that should be accounted for (Arnold57

et al., 2013; Gautier et al., 2013).58

To address the aforementioned challenges, we have developed the software pcadapt and59

the R package pcadapt. The software pcadapt is now deprecated and the R package only is60
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maintained. pcadapt assumes that markers excessively related with population structure61

are candidates for local adaptation. Since its first release, pcadapt has substantially evolved62

both in terms of statistical approach and software implementation (Table 1).63

The first release of pcadapt was a command line C software. It implemented a Monte64

Carlo approach based on a Bayesian factor model (Duforet-Frebourg et al., 2014). The65

test statistic for outlier detection was a Bayes factor. Because Monte Carlo methods can66

be computationally prohibitive with massive NGS data, we then developed an alternative67

approach based on PCA. The first statistic based on PCA was the communality statistic,68

which measures the percentage of variation of a SNP explained by the first K principal69

components (Duforet-Frebourg et al., 2016). It was initially implemented with a command-70

line C software (the pcadapt fast command) before being implemented in the pcadapt R71

package. We do not maintain C versions of pcadapt anymore. The whole analysis that goes72

from reading genotype files to detecting outlier SNPs can now be performed in R (R Core73

Team, 2015).74

The 2.0 and following versions of the R package implement a more powerful statistic75

for genome scans. The test statistic is a robust Mahalanobis distance. A vector containing76

K z-scores measures to what extent a SNP is related to the first K principal components.77

The Mahalanobis distance is then computed for each SNP to detect outliers for which78

the vector of z-scores do not follow the distribution of the main bulk of points. The79

term robust refers to the fact that the estimators of the mean and of the covariance80

matrix of z, which are required to compute Mahalanobis distances, are not sensitive to81

the presence of outliers in the dataset (Maronna and Zamar, 2012). In the following, we82

provide a comparison of statistical power that shows that Mahalanobis distance provides83

more powerful genome scans compared to the communality statistic and to the Bayes84

factor that were implemented in previous versions of pcadapt.85

In addition to comparing the different test statistics that were implemented in pcadapt,86

we compare statistic performance obtained with the 3.0 version of pcadapt and with other87

software of genome scans. We use simulated data to compare software in terms of false88

discovery rate (FDR) and statistical power. We consider data simulated under different89

demographic models including island model, divergence model and range expansion. To90

perform comparisons, we include software that require to group individuals into popu-91

lations : BayeScan (Foll and Gaggiotti, 2008), the FLK statistic as implemented in the92

hapflk software (Bonhomme et al., 2010), and OutFLANK that provides a robust estima-93
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tion of the null distribution of a FST test statistic (Whitlock and Lotterhos, 2015). We94

additionally consider the sNMF software that implements another individual-based test95

statistic for genome scans (Frichot et al., 2014; Martins et al., 2016).96

Statistical and Computational approach97

Input data98

The R package can handle different data formats for the genotype data matrix. In the99

version 3.0 that is currently available on CRAN, the package can handle genotype data100

files in the vcf, ped and lfmm formats. In addition, the package can also handle a pcadapt101

format, which is a text file where each line contains the allele counts of all individuals102

at a given locus. When reading a genotype data matrix with the read.pcadapt function, a103

.pcadapt file is generated, which contains the genotype data in the pcadapt format.104

Choosing the number of principal components105

In the following, we denote by n the number of individuals, by p the number of genetic106

markers, and by G the genotype matrix that is composed of n lines and p columns.107

The genotypic information at locus j for individual i is encoded by the allele count Gij,108

1 ≤ i ≤ n and 1 ≤ j ≤ p, which is a value in 0, 1 for haploid species and in 0, 1, 2 for109

diploid species.110

First, we normalize the genotype matrix columnwise. For diploid data, we consider the111

usual normalization in population genomics where G̃ij = (Gij−pj)/(2×pj(1−pj))
1/2, and112

pj denotes the minor allele frequency for locus j (Patterson et al., 2006). The normalization113

for haploid data is similar except that the denominator is given by (pj(1− pj))
1/2.114

Then, we use the normalized genotype matrix G̃ to ascertain population structure115

with PCA (Patterson et al., 2006). The number of principal components to consider is116

denoted K and is a parameter that should be chosen by the user. In order to choose K, we117

recommend to consider the graphical approach based on the scree plot (Jackson, 1993).118

The scree plot displays the eigenvalues of the covariance matrix Ω in descending order.119

Up to a constant, eigenvalues are proportional to the proportion of variance explained120

by each principal component. The eigenvalues that correspond to random variation lie on121

a straight line whereas the ones corresponding to population structure depart from the122
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line. We recommend to use Cattell’s rule that states that components corresponding to123

eigenvalues to the left of the straight line should be kept (Cattell, 1966).124

Test statistic125

We now detail how the package computes the test statistic. We consider multiple linear126

regressions by regressing each of the p SNPs by the K principal components X1, . . . , XK127

Gj =
K
X

k=1

�jkXk + ✏j, j = 1, . . . , p, (1)

where �jk is the regression coefficient corresponding to the j-th SNP regressed by the128

k-th principal component, and ✏j is the residuals vector. To summarize the result of the129

regression analysis for the j-th SNP, we return a vector of z-scores zj = (zj1, . . . , zjK)130

where zjk corresponds to the z-score obtained when regressing the j-th SNP by the k-th131

principal component.132

The next step is to look for outliers based on the vector of z-scores. We consider a133

classical approach in multivariate analysis for outlier detection. The test statistic is a134

robust Mahalanobis distance D defined as135

D2

j = (zj − z̄)TΣ−1(zj − z̄), (2)

where Σ is the (K × K) covariance matrix of the z-scores and z̄ is the vector of the136

K z-score means (Maronna and Zamar, 2012). When K > 1, the covariance matrix Σ137

is estimated with the Orthogonalized Gnanadesikan-Kettenring method that is a robust138

estimate of the covariance able to handle large-scale data (Maronna and Zamar, 2012)139

(covRob function of the robust R package). When K = 1, the variance is estimated with140

another robust estimate (cov.rob function of the MASS R package).141

Genomic Inflation Factor142

To perform multiple hypothesis testing, Mahalanobis distances should be transformed143

into p-values. If the z-scores were truly multivariate Gaussian, the Mahalanobis distances144

D should be chi-square distributed with K degrees of freedom. However, as usual for145

genome scans, there are confounding factors that inflate values of the test statistic and146
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that would lead to an excess of false positives (François et al., 2016). To account for the147

inflation of test statistics, we divide Mahalanobis distances by a constant � to obtain a148

statistic that can be approximated by a chi-square distribution with K degrees of freedom.149

This constant is estimated by the genomic inflation factor defined here as the median of150

the Mahalanobis distances divided by the median of the chi-square distribution with K151

degrees of freedom (Devlin and Roeder, 1999).152

Control of the false discovery rate (FDR)153

Once p-values are computed, there is a problem of decision-making related to the154

choice of a threshold for p-values. We recommend to use the FDR approach where the155

objective is to provide a list of candidate genes with an expected proportion of false156

discoveries smaller than a specified value. For controlling the FDR, we consider the q-157

value procedure as implemented in the qvalue R package that is less conservative than158

Bonferroni or Benjamini-Hochberg correction (Storey and Tibshirani, 2003). The qvalue159

R package transforms the p-values into q-values and the user can control a specified value160

↵ of FDR by considering as candidates the SNPs with q-values smaller than ↵.161

Numerical computations162

PCA is performed using a C routine that allows to compute scores and eigenvalues163

efficiently with minimum RAM access (Duforet-Frebourg et al., 2016). Computing the co-164

variance matrix Ω is the most computationally demanding part. To provide a fast routine,165

we compute the n × n covariance matrix Ω instead of the much larger p × p covariance166

matrix. We compute the covariance Ω incrementally by adding small storable covariance167

blocks successively. Multiple linear regression is then solved directly by computing an168

explicit solution, written as a matrix product. Using the fact that the (n,K) score matrix169

X is orthogonal, the (p,K) matrix �̂ of regression coefficients is given by GTX and the170

(n, p) matrix of residuals is given by G−XXTG. The z-scores are then computed using171

the standard formula for multiple regression172

zjk = �̂jk

s

Pn
i=1

x2

ik

�2

j

, (3)
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where �2

j is an estimate of the residual variance for the jth SNP, and xik is the score of173

kth principal component for the ith individual.174

Missing data175

Missing data should be accounted for when computing principal components and when176

computing the matrix of z-scores. There are many methods to account for missing data in177

PCA and we consider the pairwise covariance approach (Dray and Josse, 2015). It consists178

in estimating the covariance between each pair of individuals using only the markers that179

are available for both individuals. To compute z-scores, we account for missing data in180

formula (3). The term in the numerator
Pn

i=1
x2

ik depends on the quantity of missing data.181

If there are no missing data, it is equal to 1 by definition of the scores obtained with PCA.182

As the quantity of missing data grows, this term and the z-score decrease such that it183

becomes more difficult to detect outlier markers.184

Pooled sequencing185

When data are sequenced in pool, the Mahalanobis distance is based on the matrix of186

allele frequency computed in each pool instead of the matrix of z-scores.187

Materials and Methods188

Simulated data189

We simulated SNPs under an island model, under a divergence model and we downloa-190

ded simulations of range expansion (Lotterhos and Whitlock, 2015). All data we simulated191

were composed of 3 populations, each of them containing 50 sampled diploid individuals192

(Table 2). SNPs were simulated assuming no linkage disequilibrium. SNPs with minor193

allele frequencies lower than 5% were discarded from the datasets. The mean FST for each194

simulation was comprised between 5% and 10%. Using the simulations based on a island195

and a divergence model, we also created datasets composed of admixed individuals. We196

assumed that an instantaneous admixture event occurs at the present time so that all197

sampled individuals are the results of this admixture event. Admixed individuals were198
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generated by drawing randomly admixture proportions using a Dirichlet distribution of199

parameter (↵,↵,↵) (↵ ranging from 0.005 to 1 depending on the simulation).200

Island model201

We used ms to create simulations under an island model (Fig SI1). We set a lower202

migration rate for the 50 adaptive SNPs compared to the 950 neutral ones to mimick203

diversifying selection (Bazin et al., 2010). For a given locus, migration from population204

i to j was specified by choosing a value of the effective migration rate that is set to205

Mneutral = 10 for neutral SNPs and to Madaptive for adaptive ones. We simulated 35 datasets206

in the island model with different strengths of selection, where the strength of selection207

corresponds to the ratio Mneutral/Madaptive that varies from 10 to 1, 000. The ms command208

lines for neutral and adaptive SNPs are given by (Madaptive = 0.01 and Mneutral = 10)209

./ms 300 950 -s 1 -I 3 100 100 100 -ma x 10 10 10 x 10 10 10 x210

./ms 300 50 -s 1 -I 3 100 100 100 -ma x 0.01 0.01 0.01 x 0.01 0.01 0.01 x211

Divergence model212

To perform simulations under a divergence model, we used the package simuPOP,213

which is an individual-based population genetic simulation environment (Peng and Kim-214

mel, 2005). We assumed that an ancestral panmictic population evolved during 20 gene-215

rations before splitting into two subpopulations. The second subpopulation then split into216

subpopulations 2 and 3 at time T > 20. All 3 subpopulations continued to evolve until217

200 generations have been reached, without migration between them (Figure SI1). A total218

of 50 diploid individuals were sampled in each population. Selection only occured in the219

branch associated with population 2 and selection was simulated by assuming an additive220

model (fitness is equal to 1 − 2s, 1 − s, 1 depending on the genotypes). We simulated a221

total of 3, 000 SNPs comprising of 100 adaptive ones for which the selection coefficient is222

of s = 0.1.223

Range expansion224

We downloaded in the Dryad Digital Repository six simulations of range expansion225

with two glacial refugia (Lotterhos and Whitlock, 2015). Adaptation occurred during the226

recolonization phase of the species range from the two refugia. We considered six different227
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simulated data with 30 populations and a number of sampled individual per location that228

varies from 20 to 60.229

Parameter settings for the different software230

When using hapflk, we set K = 1 that corresponds to the computation of the FLK231

statistic. When using BayeScan and OutFLANK, we used the default parameter values.232

For sNMF, we used K = 3 for the island and divergence model and K = 5 for range233

expansion as indicated by the cross-entropy criterion. The regularization parameter of234

sNMF was set to ↵ = 1000. For sNMF and hapflk, we used the genomic inflation factor235

to recalibrate p-values. When using population-based methods with admixed individuals,236

we assigned each individual to the population with maximum amount of ancestry.237

Results238

Choosing the number of principal components239

We evaluate Cattell’s graphical rule to choose the number of principal components.240

For the island and divergence model, the choice of K is evident (Figure 1). For K ≥ 3, the241

eigenvalues follow a straight line. As a consequence, Cattell’s rule indicates K = 2, which242

is expected because there are 3 populations (Patterson et al., 2006). For the model of243

range expansion, applying Cattell’s rule to choose K is more difficult (Figure 1). Ideally,244

the eigenvalues that correspond to random variation lie on a straight line whereas the245

ones corresponding to population structure depart from the line. However, there is no246

obvious point at which eigenvalues depart from the straight line. Choosing a value of K247

between 5 and 8 is compatible with Cattell’s rule. Using the package qvalue to control248

10% of FDR, we find that the actual proportion of false discoveries as well as statistical249

power is weakly impacted when varying the number of principal components from K = 5250

to K = 8 (Figure SI2).251

An example of genome scans performed with pcadapt252

To provide an example of results, we apply pcadapt with K = 6 in the model of range253

expansion. Population structure captured by the first 2 principal components is displayed254
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in Figure 2. P -values are well calibrated because they are distributed as a mixture of a255

uniform distribution and of a peaky distribution around 0, which corresponds to outlier256

loci (Figure 2). Using a FDR threshold of 10% with the qvalue package, we find 122 outliers257

among 10, 000 SNPs, resulting in 23% actual false discoveries and a power of 95%.258

Control of the false discovery rate259

We evaluate to what extent using the packages pcadapt and qvalue control a FDR set260

at 10% (Figure 3). All SNPs with a q-value smaller than 10% were considered as candidate261

SNPs. For the island model, we find that the proportion of false discoveries is 8% and it262

increases to 10% when including admixture. For the divergence model, the proportion of263

false discoveries is 11% and it increases to 22% when including admixture. The largest264

proportion of false discoveries is obtained under range expansion and is equal to 25%.265

We then evaluate the proportion of false discoveries obtained with BayeScan, hapflk,266

OutFLANK, and sNMF (Figure 3). We find that hapflk is the most conservative approach267

(FDR = 6%) followed by OutFLANK and pcadapt (FDR = 11%). The software sNMF268

is more liberal (FDR = 19%) and BayeScan generates the largest proportion of false269

discoveries (FDR = 41%). When not recalibrating the p-values of hapflk, we find that the270

test is even more conservative (results not shown). For all software, the range expansion271

scenario is the one that generates the largest proportion of false discoveries. Proportion of272

false discoveries under range expansion ranges from 22% (OutFLANK) to 93% (BayeScan).273

Statistical power274

To provide a fair comparison between methods and software, we compare statistical275

power for equal values of the observed proportion of false discoveries. Then we compute276

statistical power averaged over observed proportion of false discoveries ranging from 0%277

to 50%.278

We first compare statistical power obtained with the different statistical methods that279

have been implemented in pcadapt (Table 1). For the island model, Bayes factor, commu-280

nality statistic and Mahalanobis distance have similar power (Figure 4). For the divergence281

model, the power obtained with Mahalanobis distance is 20% whereas the power obtai-282

ned with the communality statistic and with the Bayes factor is respectively 4% and 2%283

(Figure 4). Similarly, for range expansion, the power obtained with Mahalanobis distance284
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is 46% whereas the power obtained with the communality statistic and with the Bayes285

factor is 34% and 13%. We additionally investigate to what extent increasing sample size286

in each population from 20 to 60 individuals affects power. For range expansion, the power287

obtained with the Mahalanobis distance hardly changes ranging from 44% to 47%. Ho-288

wever, the power obtained with the other two statistics changes importantly. The power289

obtained with the communality statistic increases from 27% to 39% when increasing the290

sample size and the power obtained with the Bayes factor increases from 0% to 44%.291

Then we describe our comparison of software for genome scans. For the simulations292

obtained with the island model where there is no hierarchical population structure, the293

statistical power is similar for all software (Figure SI3 and SI4). Including admixed indi-294

viduals hardly changes their statistical power (Figure SI3).295

Then, we compare statistical power in a divergence model where adaptation took place296

in one of the external branches of the population divergence tree. The software pcadapt297

and hapflk, which account for hierarchical population structure, as well as BayeScan are298

the most powerful in that setting (Figure 5 and Figure SI5). The values of power in299

decreasing order are of 23% for BayeScan, of 20% for pcadapt, of 17% for hapflk, of 7%300

for sNMF and of 1% for OutFLANK. When including admixed individuals, the power of301

hapflk and of pcadapt hardly decreases whereas the power of BayeScan decreases to 6%302

(Figure 5).303

The last model we consider is the model of range expansion. The package pcadapt is the304

most powerful approach in this setting (Figure 6 and SI6). Other software also discover305

many true positive loci with the exception of BayeScan that provides no true discovery306

when the observed FDR is smaller than 50% (Figure 6 and SI6). The values of power in307

decreasing order are of 46% for pcadapt, of 41% for hapflk, of 37% for OutFLANK, of 30%308

for sNMF and of 0% for BayeScan.309

Running time of the different software310

Last, we compare the software running times. The characteristics of the computer we311

used to perform comparisons are the following : OSX El Capitan 10.11.3, 2,5 GHz Intel312

Core i5, 8 Go 1600 MHz DDR3. We discard BayeScan as it is too time consuming compared313

to other software. For instance, running BayeScan on a genotype matrix containing 150314

individuals and 3, 000 SNPs takes 9 hours whereas it takes less than one second with315
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pcadapt. The different software were run on genotype matrices containing 300 individuals316

and from 500 to 50, 000 SNPs. OutFLANK is the software for which the runtime increases317

the most rapidly with the number of markers. OutFLANK takes around 25 minutes to318

analyse 50, 000 SNPs (Figure SI7). For the other 3 software (hapflk, pcadapt, sNMF),319

analyzing 50, 000 SNPs takes less than 3 minutes.320

Discussion321

The R package pcadapt implements a fast method to perform genome scans with next322

generation sequencing data. It can handle datasets where population structure is conti-323

nuous or datasets containing admixed individuals. It can handle missing data as well as324

pooled sequencing data. The 2.0 and later versions of the R package implements a robust325

Mahalanobis distance as a test statistic. When hierarchical population structure occurs,326

Mahalanobis distance provides more powerful genome scans compared to the communa-327

lity statistic that was implemented in the first version of the package (Duforet-Frebourg328

et al., 2016). In the divergence model, adaptation occurs along an external branch of the329

divergence tree that corresponds to the second principal component. When outlier SNPs330

are not related to the first principal component, the Mahalanobis distance provides a331

better ranking of the SNPs compared to the communality statistic.332

Simulations show that the R package pcadapt compares favorably to other software of333

genome scans. When data were simulated under an island model, population structure334

is not hierarchical because genetic differentiation is the same for all pairs of populations.335

Statistical power and control of the FDR were similar for all software. In presence of336

hierarchical population structure (divergence model) where genetic differentiation varies337

between pairs of populations, the ranking of the SNPs is software dependent. The software338

pcadapt and hapflk provide the most powerful scans whether or not simulations include339

admixed individuals. OutFLANK implements a FST statistic and because adaptation does340

not correspond to the most differentiated populations, it fails to capture adaptive SNPs341

(Figure 5) (Bonhomme et al., 2010; Duforet-Frebourg et al., 2016). BayeScan does not342

assume equal differentiation between all pairs of populations, which may explain why343

it has a good statistical power for the divergence model. However its statistical power is344

severely impacted by the presence of admixed individuals because its power decreases from345

24% to 6% (Figure 5). Understanding why BayeScan is severely impacted by admixture is346
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out of the scope of this paper. In the range expansion model, BayeScan returns many null347

q-values (between 376 and 809 SNPs out of 9, 899 neutral and 100 adaptive SNPs) such348

that the observed FDR is always larger than 50%. Overall, we find that pcadapt and hapflk349

provides comparable statistical power. Compared to other software, they provide optimal350

or near optimal ranking of the SNPs in different scenarios including hierarchical population351

structure and admixed individuals. The main difference between the two software concerns352

the control of the FDR because hapflk is found to be more conservative.353

Because NGS data become more and more massive, careful numerical implementation354

is crucial. There are different options to implement PCA and pcadapt uses a numerical355

routine based on the computation of the covariance matrix Ω. The algorithmic complexity356

to compute the covariance matrix is proportional to pn2 where p is the number of markers357

and n is the number of individuals. The computation of the first K eigenvectors of the358

covariance matrix Ω has a complexity proportional to n3. This second step is usually359

more rapid than the computation of the covariance because the number of markers is360

usually large compared to the number of individuals. In brief, computing the covariance361

matrix Ω is by far the most costly operation when computing principal components.362

Although we have implemented PCA in C to obtain fast computations, an improvement363

in speed could be envisioned for future versions. When the number of individuals becomes364

large (e.g. n ≥ 10, 000), there are faster algorithms to compute principal components365

(Halko et al., 2011; Abraham and Inouye, 2014). In addition to running time, numerical366

implementations also impact the effect of missing data on principal components (Dray and367

Josse, 2015). Achieving a good tradeoff between fast computations and accurate evaluation368

of population structure in the face of large amount of missing data is a challenge for369

modern numerical methods in molecular ecology.370
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Test statistic Pop. structure Language Command line Versions of the R package Ref.
Bayes factor Factor model C PCAdapt NA Duforet-Frebourg et al. (2014)
Communality PCA C and R PCAdapt fast 1.x Duforet-Frebourg et al. (2016)

Mahalanobis dist. PCA R NA 2.x and 3.x This paper

Table 1 – Summary of the different statistical methods and implementations of pcadapt.
Pop. structure stands for population structure and dist. stands for distance.

Individuals SNPs Adaptive SNPs Simulations
Island model 150 472 27 35
Divergence model 150 3000 100 6
Island model (hybrids) 150 472 30 27
Divergence model (hybrids) 150 3000 100 9
Range expansion 1200 9999 99 6

Table 2 – Summary of the simulations. The table above shows the average number of
individuals, of SNPs, of adaptive markers and the total number of simulations per scenario.
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Figure 1 – Determining K with the screeplot. To choose K, we recommend to use
Cattell’s rule that states that components corresponding to eigenvalues to the left of the
straight line should be kept. According to Cattell’s rule, the eigenvalues that correspond
to random variation lie on the straight line whereas the ones corresponding to population
structure depart from the line. For the island and divergence model, the choice of K is
evident. For the model or range expansion, a value of K between 5 and 8 is compatible
with Cattell’s rule.
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Figure 2 – Population structure (first 2 principal components) and distribution of p-value
obtained with pcadapt for a simulation of range expansion. P -values are well calibrated
because they are distributed as a mixture of a uniform distribution and of a peaky distri-
bution around 0, which corresponds to outlier loci. In the left panel, each color corresponds
to individuals sampled from the same population.
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Figure 3 – Control of the FDR for different software of genome scans. We find that the
median proportion of false discoveries is around the nominal FDR set at 10% (6% for
hapflk, 11% for both OutFLANK and pcadapt, and 19% for sNMF) with the exception of
BayeScan that generates 41% of false discoveries.
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Figure 4 – Comparison of statistical power for the different test statistics that have
been implemented in pcadapt (Table 1). Bayes factors corresponds to the test statis-
tics implemented in the Bayesian version of pcadapt (Duforet-Frebourg et al., 2014) ; the
communality statistic was the default statistic in version 1.x of the R package pcadapt

(Duforet-Frebourg et al., 2016), and Mahalanobis distances are available since the re-
lease of the 2.0 version of the package. When there is hierarchical population structure
(divergence model and range expansion), the Mahalanobis distance provides more po-
werful genome scans compared to the test statistic previously implemented in pcadapt.
The abbreviation dist. stands for distance. Statistical power is averaged over the observed
proportion of false discoveries (ranging between 0% and 50%).
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Figure 5 – Statistical power averaged over the expected proportion of false discoveries
(ranging between 0% and 50%) for the divergence model with 3 populations. We assume
that adaptation took place in an external branch that follows the most recent population
divergence event.
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Figure 6 – Statistical power averaged over the expected proportion of false discoveries
(ranging between 0% and 50%) for a range expansion model with two refugia. Adaptation
took place during the recolonization event.
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Figure SI1 – Schematic description of the island and divergence model. For the island
model, adaptation occurs simultaneously in each population. For the island model, adap-
tation takes place in the branch leading to the second population.
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Figure SI2 – Proportion of false discoveries and statistical power as a function of the
number of principal components in a model of range expansion.
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Figure SI3 – Statistical power averaged over the expected proportion of false discoveries
(ranging between 0% and 50%) for the island model.

28

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 25, 2016. ; https://doi.org/10.1101/056135doi: bioRxiv preprint 

https://doi.org/10.1101/056135
http://creativecommons.org/licenses/by-nc/4.0/


0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6
FDR

P
o
w
e
r

Software

BayeScan

hapflk

OutFLANK

pcadapt

sNMF

No admixture                                       With admixture

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6
FDR

Figure SI4 – Statistical power as a function of the proportion of false discoveries for the
island model.
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Figure SI5 – Statistical power as a function of the proportion of false discoveries for the
divergence model.
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Figure SI6 – Statistical power as a function of the proportion of false discoveries for the
model of range expansion.
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Figure SI7 – Running times of the different software. The different software were run
on genotype matrices containing 300 individuals and from 500 to 50, 000 SNPs. The
characteristics of the computer we used to perform comparisons is the following : OSX El
Capitan 10.11.3, 2,5 GHz Intel Core i5, 8 Go 1600 MHz DDR3.
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