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Abstract

Background Principal component analysis (PCA) is frequently used in genomics applications for quality assessment

and exploratory analysis in high-dimensional data, such as RNA sequencing (RNA-seq) gene expression assays.

Despite the availability of many software packages developed for this purpose, an interactive and comprehensive

interface for performing these operations is lacking.

Results We developed the pcaExplorer software package to enhance commonly performed analysis steps with

an interactive and user-friendly application, which provides state saving as well as the automated creation of

reproducible reports. pcaExplorer is implemented in R using the Shiny framework and exploits data structures

from the open-source Bioconductor project. Users can easily generate a wide variety of publication-ready graphs,

while assessing the expression data in the different modules available, including a general overview, dimension

reduction on samples and genes, as well as functional interpretation of the principal components.

Conclusion pcaExplorer is distributed as an R package in the Bioconductor project (http://bioconductor.org/

packages/pcaExplorer/), and is designed to assist a broad range of researchers in the critical step of interactive data

exploration.

Keywords: Exploratory data analysis, Principal component analysis, RNA-Seq, Shiny, User-friendly, Reproducible

research, R, Bioconductor

Background
Transcriptomic data via RNA sequencing (RNA-seq) aim

to measure gene/transcript expression levels, summa-

rized from the tens of millions of reads generated by

next generation sequencing technologies [1]. Besides stan-

dardized workflows and approaches for statistical testing,

tools for exploratory analysis of such large data vol-

umes are needed. In particular, after counting the number

of reads that overlap annotated genes, using tools such

as featureCounts [2] or HTSeq [3], the result still is a

high-dimensional matrix of the transcriptome profiles,
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with rows representing features (e.g., genes) and columns

representing samples (i.e. the experimental units). This

matrix constitutes an essential intermediate result in the

whole process of analysis [4, 5], irrespective of the specific

aim of the project.

A wide number and variety of software packages have

been developed for accommodating the needs of the

researcher, mostly in the R/Bioconductor framework

[6, 7]. Many of them focus on the identification of dif-

ferentially expressed genes [8, 9] for discovering quanti-

tative changes between experimental groups, while others

address alternative splicing, discovery of novel transcripts

or RNA editing.

Exploratory data analysis is a common step to all these

workflows [5], and constitutes a key aspect for the under-

standing of complex biological systems, by indicating

potential problems with the data and sometimes also for

generating new hypotheses. Despite its importance for

generating reliable results, e.g. by helping the researchers
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uncovering outlying samples, or diagnosing batch effects,

this analysis workflow component is often neglected, as

many of the steps involved might require a considerable

proficiency of the user in the programming languages.

Among the many techniques adopted for exploring

multivariate data like transcriptomes, principal com-

ponent analysis (PCA, [10]) is often used to obtain an

overview of the data in a low-dimensional subspace

[11, 12]. Implementations where PCA results can be

explored are available, mostly focused on small sam-

ple datasets, such as Fisher’s iris [13] (https://gist.

github.com/dgrapov/5846650 or https://github.com/

dgrapov/DeviumWeb, https://github.com/benmarwick/

Interactive_PCA_Explorer) and have been developed

rather for generic data, without considering the aspects

typical of transcriptomic data (http://langtest.jp/shiny/

pca/, [14]). In the field of genomics, some tools are

already available for performing such operations [15–21],

yet none of them feature an interactive analysis, fully

integrated in Bioconductor, while also providing the basis

for generating a reproducible analysis [22, 23]. Alterna-

tively, more general software suites are also available (e.g.

Orange, https://orange.biolab.si), designed as user inter-

faces offering a range of data visualization, exploration,

and modeling techniques.

Our solution, pcaExplorer, is a web application

developed in the Shiny framework [24], which allows the

user to efficiently explore and visualize the wealth of infor-

mation contained in RNA-seq datasets with PCA, per-

formed for visualizing relationships either among samples

or genes.pcaExplorer additionally provides other tools

typically needed during exploratory data analysis, includ-

ing normalization, heatmaps, boxplots of shortlisted genes

and functional interpretation of the principal compo-

nents. We included a number of coloring and customiza-

tion options to generate and export publication-ready

vector graphics.

To support the reproducible research paradigm, we pro-

vide state saving and a text editor in the app that fetches

the live state of data and input parameters, and auto-

matically generates a complete HTML report, using the

rmarkdown and knitr packages [25, 26], which can e.g.

be readily shared with collaborators.

Implementation

General design of pcaExplorer

pcaExplorer is entirely written in the R programming

language and relies on several other widely used R pack-

ages available from Bioconductor. The main functionality

can be accessed by a single call to the pcaExplorer()

function, which starts the web application.

The interface layout is built using the

shinydashboard package [27], with the main panel

structured in different tabs, corresponding to the

dedicated functionality. The sidebar of the dashboard

contains a number of widgets which control the app

behavior, shared among the tabs, regarding how the

results of PCA can be displayed and exported. A task

menu, located in the dashboard header, contains buttons

for state saving, either as binary RData objects, or as

environments accessible once the application has been

closed.

A set of tooltips, based on bootstrap components in

the shinyBS package [28], is provided throughout the

app, guiding the user for choosing appropriate parame-

ters, especially during the first runs to get familiar with the

user interface components. Conditional panels are used to

highlight which actions need to be undertaken to use the

respective tabs (e.g., principal components are not com-

puted if no normalization and data transformation have

been applied).

Static visualizations are generated exploiting the base

and ggplot2 [29] graphics systems in R, and the pos-

sibility to interact with them (zooming in and displaying

additional annotation) is implemented with the rectangu-

lar brushing available in the Shiny framework. Moreover,

fully interactive plots are based on the d3heatmap and

the threejs packages [30, 31]. Tables are also displayed

as interactive objects for easier navigation, thanks to the

DT package [32].

The combination of knitr and R Markdown allows

to generate interactive HTML reports, which can be

browsed at runtime and subsequently exported, stored,

or shared with collaborators. A template with a complete

analysis, mirroring the content of the main tabs, is pro-

vided alongside the package, and users can customize it

by adding or editing the content in the embedded editor

based on the shinyAce package [33].

pcaExplorer has been tested on macOS, Linux,

and Windows. It can be downloaded from the Biocon-

ductor project page (http://bioconductor.org/packages/

pcaExplorer/), and its development version can be

found athttps://github.com/federicomarini/pcaExplorer/.

Moreover, pcaExplorer is also available as a Bio-

conda recipe [34], to make the installation procedure less

complicated (binaries at https://anaconda.org/bioconda/

bioconductor-pcaexplorer), as well to provide the package

in isolated software environments, reducing the burden of

software version management.

A typical modern laptop or workstation with at least

8 GB RAM is sufficient to run pcaExplorer on a

variety of datasets. While the loading and preprocess-

ing steps can vary according to the dataset size, the time

required for completing a session with pcaExplorer

mainly depends on the depth of the exploration.We antic-

ipate a typical session could take approximately 15-30

minutes (including the report generation), once the user

has familiarized with the package and its interface.
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Typical usage workflow

Figure 1 illustrates a typical workflow for the analysis

with pcaExplorer. pcaExplorer requires as input

two fundamental pieces of information, i.e. the raw count

matrix, generated after assigning reads to features such

as genes via tools such as HTSeq-count or feature-

Counts, and the experimental metadata table, which con-

tains the essential variables for the samples of interest

(e.g., condition, tissue, cell line, sequencing run, batch,

library type, . . . ). The information stored in the metadata

table is commonly required when submitting the data to

sequencing data repositories such as NCBI’s Gene Expres-

sion Omnibus (https://www.ncbi.nlm.nih.gov/geo/), and

follows the standard proposed by the FAIR Guiding

Principles [35].

The count matrix and the metadata table can be pro-

vided as parameters by reading in delimiter-separated

(tab, comma, or semicolon) text files, with identifiers as

row names and a header indicating the ID of the sam-

ple, or directly uploaded while running the app. A preview

of the data is displayed below the widgets in the Data

Upload tab, as an additional check for the input proce-

dures. Alternatively, this information can be passed in a

single object, namely a DESeqDataSet object, derived

from the broadly used SummarizedExperiment class

[7]. The required steps for normalization and trans-

formation are taken care of during the preprocessing

phase, or can be performed in advance. If not spec-

ified when launching the application, pcaExplorer

automatically computes normalization factors using the

estimateSizeFactors() function in the DESeq2

package, which has been shown to perform robustly in

many scenarios under the assumption that most of the

genes are not differentially expressed [36].

Fig. 1 Overview of the pcaExplorer workflow. A typical analysis with pcaExplorer starts by providing the matrix of raw counts for the

sequenced samples, together with the corresponding experimental design information. Alternatively, a combination of a DESeqDataSet and a

DESeqTransform objects can be given as input. Specifying a gene annotation can allow displaying of alternative IDs, mapped to the row names

of the main expression matrix. Documentation is provided at multiple levels (tooltips and instructions in the app, on top of the package vignette).

After launching the app, the interactive session allows detailed exploration capability, and the output can be exported (images, tables) also in form

of a R Markdown/HTML report, which can be stored or shared. (Icons contained in this figure are contained in the collections released by Font

Awesome under the CC BY 4.0 license)

https://www.ncbi.nlm.nih.gov/geo/
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Two additional objects can be provided to the

pcaExplorer() function: the annotation object is

a data frame containing matched identifiers for the

features of interest, encoded with different key types (e.g.,

ENTREZ, ENSEMBL, HGNC-based gene symbols), and a

pca2go object, structured as a list containing enriched

GO terms [37] for genes with high loadings, in each prin-

cipal component and in each direction. These elements

can also be conveniently uploaded or calculated on the fly,

and make visualizations and insights easier to read and

interpret.

Users can resort to different venues for accessing the

package documentation, with the vignette also embedded

in the web app, and the tooltips to guide the first steps

through the different components and procedures.

Once the data exploration is complete, the user can

store the content of the reactive values in binary RData

objects, or as environments in the R session. Moreover,

all available plots and tables can be manually exported

with simple mouse clicks. The generation of an inter-

active HTML report can be meaningfully considered as

the concluding step. Users can extend and edit the pro-

vided template, which seamlessly retrieves the values of

the reactive objects, and inserts them in the context of a

literate programming compendium [38], where narrated

text, code, and results are intermixed together, providing

a solid means to warrant the technical reproducibility of

the performed operations.

Deploying pcaExplorer on a Shiny server

In addition to local installation, pcaExplorer can also

be deployed as a web application on a Shiny server,

such that users can explore their data without the need

of any extra software installation. Typical cases for this

include providing a running instance for serving mem-

bers of the same research group, setup by a bioinfor-

matician or a IT-system admin, or also allowing explo-

ration and showcasing relevant features of a dataset

of interest.

A publicly available instance is accessible at http://shiny.

imbei.uni-mainz.de:3838/pcaExplorer, for demonstration

purposes, featuring the primary human airway smooth

muscle cell lines dataset [39]. To illustrate the full proce-

dure to setup pcaExplorer on a server, we documented

all the steps at the GitHub repository https://github.com/

federicomarini/pcaExplorer_serveredition. Compared to

web services, our Shiny app (and server) approach also

allows for protected deployment inside institutional fire-

walls to control sensitive data access.

Documentation

The functionality indicated above and additional func-

tions, included in the package for enhancing the data

exploration, are comprehensively described in the package

vignettes, which are also embedded in the Instructions

tab.

Extensive documentation for each function is provided,

and this can also be browsed at https://federicomarini.

github.io/pcaExplorer/, built with the pkgdown pack-

age [40]. Notably, a dedicated vignette describes the

complete use case on the airway dataset, and is

designed to welcome new users in their first experi-

ences with the pcaExplorer package (available at

http://federicomarini.github.io/pcaExplorer/articles/

upandrunning.html).

Results

Data input and overview

Irrespective of the input modality, two objects are used

to store the essential data, namely a DESeqDataSet

and a DESeqTransform, both used in the workflow

based on the DESeq2 package [4]. Different data trans-

formations can be applied in pcaExplorer, intended

to reduce the mean-variance dependency in the tran-

scriptome dataset: in addition to the simple shifted log

transformation (using small positive pseudocounts), it is

possible to apply a variance stabilizing transformation or

also a regularized-logarithm transformation. The latter

two approaches help for reducing heteroscedasticity, to

make the data more usable for computing relationships

and distances between samples, as well as for visualization

purposes [41].

The data tables for raw, normalized (using the median

of ratios method in DESeq2), and transformed data can

be accessed as interactive table in the Counts Table mod-

ule. A scatter plot matrix for the normalized counts can

be generated with the matrix of the correlation among

samples.

Further general information on the dataset is provided

in theData Overview tab, with summaries over the design

metadata, library sizes, and an overview on the num-

ber of robustly detected genes. Heatmaps display the

distance relationships between samples, and can be deco-

rated with annotations based on the experimental factors,

selected from the sidebar menu. Fine-grained control on

all the downstream operations is provided by the series

of widgets located on the left side of the app. These

include, for example, the number of most variant genes

to include for the downstream steps, as well as graphical

options for tailoring the plots to export them ready for

publication.

Exploring Principal Components

The Samples View tab (Figure 2A) provides a PCA-

based visualization of the samples, which can be plot-

ted in 2 and 3 dimensions on any combination of

PCs, zoomed and inspected, e.g. for facilitating out-

lier identification. A scree plot, helpful for selecting the

http://shiny.imbei.uni-mainz.de:3838/pcaExplorer
http://shiny.imbei.uni-mainz.de:3838/pcaExplorer
https://github.com/federicomarini/pcaExplorer_serveredition
https://github.com/federicomarini/pcaExplorer_serveredition
https://federicomarini.github.io/pcaExplorer/
https://federicomarini.github.io/pcaExplorer/
http://federicomarini.github.io/pcaExplorer/articles/upandrunning.html
http://federicomarini.github.io/pcaExplorer/articles/upandrunning.html
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Fig. 2 Selected screenshots of the pcaExplorer application. a Principal components from the point of view of the samples, with a zoomable 2D

PCA plot (3D now shown due to space) and a scree plot. Additional boxes show loadings plots for the PCs under inspection, and let users explore

the effect of the removal of outlier samples. b Principal components, focused on the gene level. Genes are shown in the PCA plot, with sample

labels displayed as in a biplot. A profile explorer and heatmaps (not shown due to space) can be plotted for the subset selected after user

interaction. Single genes can also be inspected with boxplots. c Functional annotation of principal components, with an overview of the GO-based

functions enriched in the loadings in each direction for the selected PCs. The pca2go object can be provided at launch, or also computed during

the exploration. d Report Editor panel, with markdown-related and general options shown. Below, the text editor displays the content of the

analysis for building the report, defaulting to a comprehensive template provided with the package

number of relevant principal components, and a plot

of the genes with highest loadings are also given in

this tab.

The Genes View tab, displayed in Fig. 2B, is based on a

PCA for visualizing a user-defined subset of most variant

genes, e.g. to assist in the exploration of potentially inter-

esting clusters. The samples information is combined in

a biplot for better identification of PC subspaces. When

selecting a region of the plot and zooming in, heatmaps

(both static and interactive) and a profile plot of the corre-

sponding gene subset are generated. Single genes can also

be inspected by interacting with their names in the plot.

The underlying data, displayed in collapsible elements to

avoid cluttering the user interface, can also be exported in

tabular text format.

Functional annotation of Principal Components

Users might be interested in enriching PCA plots with
functional interpretation of the PC axes and direc-
tions. The PCA2GO tab provides such a functionality,
based on the Gene Ontology database. It does so by
considering subsets of genes with high loadings, for
each PC and in each direction, in an approach similar
to pcaGoPromoter [42]. The functional categories
can be extracted with the functions in pcaExplorer

(pca2go() and limmaquickpca2go()), which
conveniently wrap the implementation of the methods in



Marini and Binder BMC Bioinformatics          (2019) 20:331 Page 6 of 8

[43, 44]. This annotation is displayed in interactive tables
which decorate a PCA plot, positioned in the center of

the tab.

An example of this is shown in Fig. 2C, where we illus-

trate the functionality of pcaExplorer on a single-cell

RNA-seq dataset. This dataset contains 379 cells from

the mouse visual cortex, and is a subset of the data pre-

sented in [45], included in the scRNAseq package (http://

bioconductor.org/packages/scRNAseq/).

Further data exploration

Further investigation will typically require a more detailed

look at single genes. This is provided by the Gene Finder

tab, which provides boxplots (or violin plots) for their dis-

tribution, superimposed by jittered individual data points.

The data can be grouped by any combination of exper-

imental factors, which also automatically drive the color

scheme in each of the visualizations. The plots can be

downloaded during the live session, and this functionality

extends to the other tabs.

In the Multifactor Exploration tab, two experimental

factors can be incorporated at the same time into a PCA

visualization. As in the other PCA-based plots, the user

can zoom into the plot and retrieve the underlying genes

to further inspect PC subspaces and the identified gene

clusters of interest.

Generating reproducible results

The Report Editor tab (Fig. 2D) provides tools for

enabling reproducible research in the exploratory analysis

described above. Specifically, this tab captures the current

state of the ongoing analysis session, and combines it with

the content of a pre-defined analysis template. The output

is an interactive HTML report, which can be previewed in

the app, and subsequently exported.

Experienced users can add code for additional analyses

using the text editor, which supports R code completion,

delivering an experience similar to development environ-

ments such as RStudio. Source code and output can be

retrieved, combined with the state saving functionality

(accessible from the app task menu), either as binary data

or as object in the global R environment, thus guarantee-

ing fully reproducible exploratory data analyses.

Discussion
The application and approach proposed by our package

pcaExplorer aims to provide a combination of usabil-

ity and reproducibility for interpreting results of principal

component analysis and beyond.

Compared to the other existing software packages

for genomics applications, pcaExplorer is released

as a standalone package in the Bioconductor project,

thus guaranteeing the integration in a system with daily

builds which continuously check the interoperability with

the other dependencies. Moreover, pcaExplorer fully

leverages existing efficient data structures for storing

genomic datasets (SummarizedExperiment and its

derivatives), represented as annotated data matrices.

Some applications (clustVis, START App,Wilson) are also

available as R packages (either on CRAN or on GitHub),

while others are only released as open-source repositories

to be cloned (MicroScope).

Additionally, pcaExplorer can be installed both on

a local computer, and on a Shiny server. This is particu-

larly convenient when the application is to be accessed as

a local instance by multiple users, as it can be the case

in many research laboratories, working with unpublished

or sensitive patient-related data. We provide extensive

documentation for all the use cases mentioned above.

The functionality of pcaExplorer to deliver a tem-

plate report, automatically compiled upon the operations

and edits during the live session, provides the basis for

guaranteeing the technical reproducibility of the results,

together with the exporting of workspaces as binary

objects. This aspect has been somewhat neglected by

many of the available software packages; out of the ones

mentioned here, BatchQC supports the batch compila-

tion of a report based on the functions inside the package

itself. Orange (https://orange.biolab.si) also allows the cre-

ation of a report with the visualizations and output gener-

ated at runtime, but this cannot be extended with custom

operations defined by the user, likely due to the general

scope of the toolbox.

Future work will include the exploration of other dimen-

sion reduction techniques (e.g. sparse PCA [46] and t-SNE

[47] to name a few), which are also commonly used in

genomics applications, especially for single-cell RNA-seq

data. The former method enforces the sparsity constraint

on the input variables, thus making their linear combina-

tion easier to interpret, while t-SNE is a non-linear kernel-

based approach, which better preserves the local structure

of the input data, yet with higher computational cost and

a non-deterministic output, which might be not conve-

nient to calculate at runtime on larger datasets. For the

analysis of single-cell datasets, additional preprocessing

steps need to be taken before they can be further investi-

gated with pcaExplorer. The results of these and other

algorithms can be accommodated in Bioconductor con-

tainers, as proposed by the SingleCellExperiment

class (as annotated colData and rowData objects, or

storing low-dimensional spaces as slots of the original

object), allowing for efficient and robust interactions and

visualizations, e.g. side-by-side comparisons of different

reduced dimension views.

Conclusion
Here we presented pcaExplorer, an R/Bioconductor

package which provides a Shiny web based interface for

http://bioconductor.org/packages/scRNAseq/
http://bioconductor.org/packages/scRNAseq/
https://orange.biolab.si
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the interactive and reproducible exploration of RNA-seq

data, with a focus on principal component analysis. It

allows to perform the essential steps in the exploratory

data analysis workflow in a user-friendly manner, display-

ing a variety of graphs and tables, which can be readily

exported. By accessing the reactive values in the lat-

est state of the application, it can additionally generate

a report, which can be edited, reproduced, and shared

among researchers.

As exploratory analyses can play an important role

in many stages of RNA-seq workflows, we anticipate

that pcaExplorer will be very generally useful, mak-

ing exploration and other stages of genomics data analysis

transparent and accessible to a broader range of scientists.

In summary, our package pcaExplorer aims to

become a companion tool for many RNA-seq analyses,

assists the user in performing a fully interactive yet repro-

ducible exploratory data analysis, and is seamlessly inte-

grated into the ecosystem provided by the Bioconductor

project.

Availability and requirements
Project name: pcaExplorer

Project home page: http://bioconductor.org/packages/

pcaExplorer/ (release) and https://github.com/

federicomarini/pcaExplorer/ (development version)
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federicomarini.github.io/pcaExplorer/
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License:MIT
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