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Justina Žurauskienė1 and Christopher Yau1,2*

Abstract

Background: Advances in single cell genomics provide a way of routinely generating transcriptomics data at the
single cell level. A frequent requirement of single cell expression analysis is the identification of novel patterns of
heterogeneity across single cells that might explain complex cellular states or tissue composition. To date, classical
statistical analysis tools have being routinely applied, but there is considerable scope for the development of novel
statistical approaches that are better adapted to the challenges of inferring cellular hierarchies.

Results: We have developed a novel agglomerative clustering method that we call pcaReduce to generate a cell state
hierarchy where each cluster branch is associated with a principal component of variation that can be used to
differentiate two cell states. Using two real single cell datasets, we compared our approach to other commonly used
statistical techniques, such as K-means and hierarchical clustering. We found that pcaReduce was able to give more
consistent clustering structures when compared to broad and detailed cell type labels.

Conclusions: Our novel integration of principal components analysis and hierarchical clustering establishes a
connection between the representation of the expression data and the number of cell types that can be discovered.
In doing so we found that pcaReduce performs better than either technique in isolation in terms of characterising
putative cell states. Our methodology is complimentary to other single cell clustering techniques and adds to a
growing palette of single cell bioinformatics tools for profiling heterogeneous cell populations.
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Background
Recent advances in single cell RNA sequencing (scRNA-

seq) technology has enabled the routine high-throughput

collection of quantitative gene expression measurements

across a range of tissue types and diversity of cellular states

at the level of the single cell [1–6]. The application of sin-

gle cell gene expression profiling has identified cell-to-cell

expression variability in phenotypically and/or genetically

identical cells that is masked in standard “population”

gene expression studies where the transcriptomes of thou-

sands to millions of cells are simultaneously measured and

averaged. This expression variability is driven by stochas-

tic gene expression mechanisms whose effects cannot be

measured in the context of a population of cells but only
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through the microcosm of a single cell. Consequently,

scRNA-seq has increasingly become the method of choice

in discovering molecular underpinnings of complex and

rare cell populations [7, 8], assessing tissue composition

[9–11], studying various diseases [12] and cell develop-

ment/lineage processes [13–16].

Our particular focus in this article is the utility of

scRNA-seq data to enable the identification of function-

ally distinct sub-populations that each possesses a dif-

ferent pattern of gene expression activity [17, 18]. These

sub-populations could indicate different cell types that

exhibit relatively stable, static behaviour but also cell states

representing intermediate stages in transient processes.

Traditionally, cell types have been defined by the func-

tional behaviour of certain cellular features, for example,

CD14+ monocytes show CD14 expression, but with the

availability of scRNA-seq the potential exists to develop a

richer taxonomy of cell types by extending the molecular

features used for characterisation to consider the whole
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Žurauskienė and Yau BMC Bioinformatics  (2016) 17:140 Page 2 of 11

transcriptome. The population of CD14 expressingmono-

cytes might in fact be a collection of distinct cell subtypes

each sharing a common CD14 expression signature but

also possessing a unique expression pattern of their own.

Unbiased discovery of cell types from scRNA-seq data

can be automated using unsupervised clustering algo-

rithms. Given expression profiles for a collection of single

cells, the objective of the algorithm is to partition the cells

into a number of cell types such that each cell type has

a significantly distinctive expression signature from the

others. Single cell analytical software pipelines have been

developed recently for single cell analysis that include

procedures for unbiased cell type identification.

In RaceID [19], K-means clustering with gap statistics

was used to identify six intestinal cell types, while rare

cell types were identified by examining outliers that could

not be explained by a background noise model. The Back-

SPIN method [9] uses a customized version of the SPIN

algorithm [20]. When applying the BackSPIN method to

3005 mouse cortex and hippocampus cells, the algorithm

identified 77 groups, stopping after 12 splits along the

deepest branch. This was manually limited to 5 splits per

branch and subsequent merging of the neuronal groups

into three main groups (each containing four subgroups)

and oligodendrocytes into one group (containing 3 sub-

groups) resulted in the nine main cell classes given in

the study [9]. Seurat [13, 21] applies a two-dimensional

t-SNE projection [22] to the most significant principal

component scores (a process they refer to as “spectral

t-SNE”) from a principal component analysis of the sin-

gle cell expression matrix. Density clustering (DBSCAN)

[23] is then used to identify cell type clusters in the two-

dimensional space. Seurat was used to classify 44,808

Drop-seq single cell expression profiles into 39 retinal cell

populations [21]. The SINCERA package [24] uses hier-

archical clustering using centered Pearson’s correlation

and average linkage as default settings for the similarity

measurement and linkage method respectively. SNN-cliq

[25] uses the concept of shared nearest neighbour (SNN)

to define similarities between data points (cells) and

achieves clustering by a graph theory-based algorithm.

Finally, the SC3 approach [26] which uses spectral trans-

formations, the K-means algorithm and complete-linkage

to perform consensus clustering.

A limitation of these methods is that they do not estab-

lish a connection between the representation of the data

to the number and nature of the cell types that can be

resolved. For example, Fig. 1 illustrates three clustering

structures derived from a single cell study of mouse sen-

sory neurons [27]. Four broad sensory neuronal cell types

(NF, TH, PEP, NP) were identified by examining clusters

of cells in the subspace spanned by the first few prin-

cipal components (PC2-4 shown in Fig. 1a) and using

expression of key (known) cell markers to label the clus-

ters. Using information contained in additional principal

components, the four major cell types could then be sub-

divided into further distinct cell subtypes. The presence

of these refined cell subtypes is clearly not obvious from

a visual inspection of the data in the subspace spanned by

PC2-4 (Fig. 1b,c).

We have developed an agglomerative clustering

approach that integrates principal components analysis

(PCA) and hierarchical clustering that we call pcaReduce.

This method seeks to establish a connection between the

reduced representations given by principal components

analysis and the number of resolvable cell types (clusters).

The approach is driven by the expectation that informa-

tion pertaining to large, broad classes of cell types are

likely be contained in low dimensional PC representa-

tions whilst refined cell type structure are only defined

in high dimensional PC representations. Our proposed

method is similar to the “iterative” principal component

analysis approaches used to establish putative cell types

in [27, 28]. However, the question we asked was whether

Fig. 1 Cellular hierarchies. Three hierarchically related clustering structures for a single cell mouse neuronal dataset [27]. The data has been
projected on to the first four principle directions, we report the three that allows best data visualisation; we used the given cellular labels to colour
cells according to the a 4, b 8, and c 11 cell subtypes identified in the original study
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we could recapitulate such results fully automatically in

an unsupervised fashion without prior knowledge of cell

type markers that was used in these studies. This ques-

tion is important in study conditions where there maybe

little or unreliable prior knowledge of cell types. We will

test our methods against existing approaches but note

that many existing approaches typically utilise different

combinations of standard dimensionality reduction and

clustering algorithms. Therefore, in our investigations,

instead of using these packages directly, we will explore

the utility of the constituents components (which might

be shared between approaches).

Methods
Let Xn×d denote a gene expression matrix, where n

is the number of cells measured across d number of

genes; i.e. each cell xi = {xi1, . . . , xid} is a d-dimensional

object. Further assume that Yn×q denotes a score matrix,

obtained after projecting data into first q principle direc-

tions, and Yi denotes a subset of cells, Yi ⊂ Y.

Our clustering algorithm begins by performing a

K-means clustering operation on the projection of the

original gene expression matrix, Xn×d, to the top K − 1

principal directions. The number of initial clusters K is

set to a sufficiently large value, say 30, to ensure most

cell types will be captured. Once the initial clusters are

determined, we take two subsets (Yi,Yj) that originate

from a pair of clusters (i, j) respectively, and calculate the

probability for those observations to be merged together,

p({Yi,Yj}|μij,�ij). We assume that the probability den-

sity function is a multivariate Gaussian with mean and

covariance matrix given by:

μij =
ni

ni + nj
μi +

nj

ni + nj
μj,

�ij =
ni

ni + nj
�i +

nj

ni + nj
�j,

(1)

where (ni, nj), (μi,μj) and (�i,�j) denote the sizes, cen-

troids and covariances of the clusters i and j respec-

tively. We repeat this for all possible pairs (i, j). We then

choose to merge two clusters by either (i) picking the pair

that has the highest probability or (ii) sampling a pair

of clusters to merge in proportion to their (normalised)

merged probabilities. The number of clusters will now

decrease to K − 1. We then project the data matrix on

to the first K − 2 principal directions, i.e. removing the

(K − 1)-st principal component that explains the lowest

degree of variance in the data, removing this dimen-

sion from the existing cluster centroids and covariance

matrices.

The above clustering operation is then repeated so that

after every merge operation we remove a principal direc-

tion until only a single cluster remains. If sampling-based

merge operations are used, the whole process can be

repeated to obtain a number of alternative clusterings.

This will be useful for assessing the stability of the cluster-

ing results. Algorithm 1 gives a pseudo-code description.

Algorithm 1: The pcaReduce algorithm. Here

Xn×d is a gene expression matrix with n cells

(given in rows) and d genes (in columns); q is the

number of dimensions – effectively this refers to

the number of levels in the hierarchy; Y is a score

matrix, which is the output of PCA algorithm; μij

and �ij definition are given in Eq. (1); (i) and (ii)

denote two different merging settings: (i) merg-

ing is based on largest probability P(i, j) value; (ii)

merging is based on sampling according to P(i, j)

distribution.

Input: Xn×d and q ;

Output: a collection of q clusterings;

1 Y ←− PCA(Xn×d, dim=q);

2 (μ, �) ←− kmeans(Y , K = q + 1);

3 Q ←− q − 1;

4 for r = 1, . . . ,Q do

5 for all possible pairs (i, j) in

{1, . . . ,K} × {1, . . . ,K} do

6 P(i, j) ←− p
(

Yi ∪ Yj|μij,�ij

)

;

7 end for

8 (i) either choose pair (i, j) with largest

probability P(i, j) and merge clusters i and j;

9 (ii) or sample a pair (i, j) with probability

P(i, j) and merge clusters i and j;

10 q ←− q − 1;

11 Y ← Yn×q (i.e. remove last dimension);

12 update (μ, �);

13 K ← K − 1;

14 end for

Figure 2 gives an illustration of our method using an

autoencoder representation. Autoencoders are feedfor-

ward neural networks that accept d-dimensional input

data and report d-dimensional output data. The d nodes

in the input and output network layers are connected

via one or more hidden layers. Data transformations are

applied between each layer of the network. If a hid-

den layer has fewer nodes than its predecessor then

the information from the previous layer in the autoen-

coder network is forced into a lower dimensional form

hence performing dimensionality reduction. Each hidden

layer encodes a reduced dimensional representation of

the input data. In an autoencoder, the parameters gov-

erning the data transformations between the layers are

fitted to minimise the mean-squared error between the

original input data and the output representation. It can
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Fig. 2Method illustration using an autoencoder network. Clustering is applied to the data representation at each linear hidden layer. If there are
K − 1 linear hidden units, the data is projected into a subspace spanned by the top K − 1 principal components. Consistency between the
clusterings at each layer is maintained by enforcing a hierarchical constraint. a Graphical interpretation of an autoencoder network(s). b
Corresponding hierarchical structure

be shown that, when using linear transformations, the

optimal autoencoder is equivalent to doing principal com-

ponents analysis [29]. Using this analogy it is now clear

that pcaReduce can be seen as performing hierarchical

clustering on the different hidden layers of a linear autoen-

coder network linking different clustering structures to

different hidden layer representations of the input data.

This analogy is useful to explain our algorithm andwhy we

remove one principal component after each merge oper-

ation. We are in fact maintaining clustering consistency

across the hidden layer representations of the input data

in the autoencoder network.

Results
To demonstrate the performance of pcaReduce method,

we considered two single cell RNA-seq dataset exam-

ples. The first contains a collection of cells originating

from diverse biological tissues [30]; and the second dataset

the mouse sensory neuronal cells [27] discussed in the

Introduction. These were selected as they contained pre-

existing hierarchical cluster structures that can be used

to assess unsupervised algorithmic performance. Here we

show that pcaReduce can be applied to re-capture the

known cellular hierarchies andwe compare to other statis-

tical techniques, which are commonly applied to address

similar cell sub-typing problems. Below, all examples were

implemented using the free statistical computing platform

R (www.r-project.org).

Cells from disparate tissues

We obtained single cell RNA-seq dataset [30] for 300 cells

whose transcriptional measurements were taken across

8,686 genes (see Additional file 1, Section A for further

details on data preparation). The data were derived from

11 cell types: K562 – myeloid (chronic leukemia), HL60 –

myeloid (acute leukemia), CRL-2339 – lymphoblastoid;

https://www.r-project.org
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iPS – pluripotent; CRL-2338 – epithelial, BJ – fibrob-

last (from human foreskin), Kera – foreskin keratinocyte;

NPC – neural progenitor cells, GW(16, 21, 21+3) – gesta-

tional week (16,21, 21+3 weeks), fetal cortex (see Fig. 3a).

In addition, as specified in the original study by [30], these

cell types could also be grouped into four disparate tis-

sue sources: blood, stem, skin and neural tissues. We refer

to these as the cell line-level and tissue-level classifica-

tions respectively and use these as ground-truth classes

in our performance assessment; i.e. we will focus on data

partitions into K = 11 and K = 4 clusters.

We applied pcaReduce to this dataset to construct a

hierarchical clustering of cells. First, we initially projected

the data into the subspace spanned by the first 30 prin-

cipal components following a PCA and performed an

initial K-means clustering to get initial cluster assign-

ments (using K = 31 clusters) [31]. After this, we applied

different merging strategies to construct the cellular hier-

archies: first, when merging is performed based on the

most probable cluster merge value (see (i) in Algorithm 1)

and, secondly, whenmerge candidates are probabilistically

sampled (see (ii) in Algorithmic overview section). The

former gives a single hierarchical clustering whilst the lat-

ter can give a range of candidates hierarchies based on

repeated sampling.

We compared the hierarchical clustering given by

pcaReduce for levels K = 4 and K = 11 to the true

cell line and tissue level classifications respectively using

the Adjusted Rand Index [32]. Note that, in Fig. 3a, the

projection of the eleven cell lines in two-dimensional

principal component space cannot be separated into dis-

tinct groups. It is only possible to do this in higher

dimensional representations. Figure 3b illustrates the per-

formance of pcaReduce using the sampling-based merge

operation where each line corresponds to a single run

of the method. Although, pcaReduce has no knowledge

of the true number of cell line or tissue labels, the cor-

respondence between the hierarchical clustering output

of pcaReduce and the true classification peaks at around

levels 4 and 11 of the hierarchies respectively which it

discovers without any prior knowledge.

In order to gain an understanding of the misclassifica-

tions, we looked specifically at the most probable hier-

archical structure identified using pcaReduce (Fig. 3c).

Compared to the known cell line and tissue labels (see

Additional file 1: Figure S1), the 11-cluster structure

given by pcaReduce did not fully differentiate the 11 cell

types. This is not unsurprising since the 11 cell types

included a set of three maturing neural cell types (GW16,

GW21 and GW21+3) that are highly related. Interestingly,
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b Performance of pcaReduce, the horizontal axis corresponds to a level in the hierarchical cluster structure reported by pcaReduce, the vertical axis
show the Adjusted Rand Index (ARANDI) score between the tissue-level (green) and cell-line level labels (in blue) and the clustering reported by
each level of the hierarchical clustering of pcaReduce. Each line correspond to a single run of pcaReduce using probabilistic sampling. c The most
probable cellular hierarchy identified using pcaReduce
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pcaReduce grouped these cell types together, which is not

an entirely inappropriate operation since the expression

variation between the maturing neural cells maybe rela-

tively low compared to unrelated cell types. There was

also some class splitting, for example, two sub-groups of

K562 cells were identified. Figure 3a qualitatively indi-

cates that this may make sense as some K562 cells were

closer in overall expression to HL60 cells than other

K562 cells.

At the 4-cluster level the assignments given by

pcaReduce gave some interesting group structures. The

ground truth tissue-level classification assumed the exis-

tence of blood, neural, dermal and stem cell types but

pcaReduce identified that the CRL-2338 and CRL-2339

cell lines should form a group. This is interesting as CRL-

2338 is a cell line derived from a primary stage IIA,

grade 3 invasive ductal carcinoma and CRL-2339 is a B

lymphoblastoid cell line initiated from peripheral blood

lymphocytes from the same patient. Pluripotent stem cells

(iPS) were also grouped by pcaReducewith neural progen-

itor cells (NPC) which is also reasonable if we consider

this a stem cell-like group. Overall, whilst pcaReduce did

not give a 4-cluster classification that was identical to the

original tissue classifications [30], the output produced are

not nonsensical. In comparison, the output of standard

hierarchical clustering failed to separate the cells both at

the cell line and tissue level into any obvious structure (see

Additional file 1: Figure S1).

In order to fully assess the performance of pcaReduce,

we compared it to a set of alternative approaches (see

Fig. 4). This includes popular methods such as: K-means,

hierarchical clustering (HC), Mclust – mixture mod-

elling for model-based clustering [33] combined with

tSNE – a nonlinear dimensionality reduction/visualisation

technique [22]; and recent single cell methodology –

SNN-Cliq, which determines similarities between cells

based on a shared nearest neighbours algorithm and

performs single cell clustering using a graph-theoretical

approach [25], and SC3 which uses spectral transforma-

tions of a cell-to-cell distance matrix followed by k-means

and consensus-based clustering [26]. Details regarding all

parameters and running specifications for each clustering

approach are summarised in Additional file 1.

Figure 4 shows the relative performance of the differ-

ent approaches. The score of t-SNE/Mclust (Method 11)

was used as a benchmark and the true number of cell lines

was given as a known parameter. The t-SNE algorithm

is a frequently used non-linear dimensionality reduc-

tion technique for single cell expression analysis and

Mclust is a well known and popular clustering algorithm

Fig. 4 Performance comparison on cell line data. Classification performance against known a tissue-level and b cell-line level labels. All points and
boxplots illustrate performance relative to the benchmark (Method 11) measured as ARANDI score. Numbers 1 − 11 correspond to clustering
methods in table below. Blue and green circles for Methods 1-2 illustrate consensus clustering of 100 runs of pcaReduce algorithm with sampling
and max merging settings respectively. Each point for Method 10 (SC3) corresponds to a different range of the parameter d. Further details can be
found in Additional file 1: Figure S3
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(based on Gaussian mixture models). The combination

provides considerable considering flexibility. When we

compared the classifications at K = 11 of the vari-

ous hierarchical clustering methods, including our own

pcaReduce, we found that the standard hierarchical clus-

tering approaches did less well than pcaReduce. For

example, Method 3 uses the same initial K-means clus-

ter initialisation as pcaReduce and cluster merging crite-

rion but does not use different data representations by

removing principal components after each merge. This

subtle alteration in methodology appears to make a fun-

damental difference in performance. Method 6 uses hier-

archical clustering applied to the same initial principal

component projection of the data as pcaReduce but per-

formance is again low and highly dependent on distance

measure used for the clustering (see Additional file 1:

Figure S4).

Whilst some methods had comparable performance to

pcaReduce in terms of capturing the cell line level classifi-

cations, their performance diminished for the tissue-level

ones. Here, the benchmark used was Method 11 when the

number of clusters (4) was given as an input parameter.

Despite this advantage it failed to identify any cluster-

ing structure even closely resembling the ground truth we

are using. Similarly, Method 7 uses hierarchical cluster-

ing applied to a t-SNE projection of the data, this had a

reasonable ARANDI score for the cell line level classifi-

cation but when the clusters were merged into 4 groups

these had no correspondence to the ground truth. SC3

was able to achieve comparable performance to pcaRe-

duce for specific range of values for a parameter d – the

number of eigenvectors retained following the spectral

transformation of the cell-to-cell distance matrix. How-

ever, the range of d that gave greatest concordance was not

the default setting (0.04N < d < 0.07N), see Additional

file 1: Figure S2. Overall, pcaReduce gave consistently pro-

vide clustering results that were closest to the ground

truth (see ARANDI score in Fig. 4) for both the cell line

and tissue classifications. Its performance suggests that

the gradual use of successively reduced dimensional rep-

resentations of the data helps to merge clusters together

in a sensible way.

Note, there is stochasticity in the clustering structures

produced by pcaReduce due to the random initialisa-

tion provided by the K-means algorithm and probabilistic

merge steps. Interestingly, motivated by the use of consen-

sus clustering in SC3, we applied an ensemble clustering

method across the pcaReduce clustering structures (see

Additional file 1 for details of the methods used), the

consensus clustering structure achieves a high level of

concordance with the cell line and tissue level classifica-

tion. Finally further details regarding sensitivity in initial

selection of q – the initial number of clusters used – is

shown in Additional file 1: Figure S3).

Mouse neuronal cells

We next returned to the mouse neuronal cell dataset dis-

cussed in the Introduction that contains measurements

across 25,334 genes [27]. The study classified cells accord-

ing to four principle neuronal groups: non-peptidergic

nociceptor cells (NP), peptidergic nociceptor cells (PEP),

neurofilament containing cells (NF), and tyrosine hydrox-

ylase containing cells (TH) (Fig. 5a). In addition to this,

it was suggested that the NP, PEP and NF cells possessed

further subtypes (Fig. 1b, c). We now examined whether

pcaReduce could recover these three layers of clustering

structures within its hierarchical output without the use

of marker genes.

We applied pcaReduce and computed the correspon-

dence between its 4-, 8- and 11-cluster structures and

those in the original study. Figure 5b shows that the abso-

lute classification accuracy was relatively low compared

to the previous cell line experiment. This is unsurprising

as the four pre-dominant neural cell groups form a com-

plex cluster pattern in the subspace spanned by PC2-4

(see Fig. 5a) and would be hard to segregate in an entirely

unsupervised way as we propose. This is especially evi-

dent from PCA plots summarised in Additional file 1:

Figure S5, where we plot pairwise combinations of various

principle components and highlight cells that should cor-

respond to neuronal subtypes: NF3 and NF4 (lower-left)

and NP2 and NP3 (upper-right).

The performance of pcaReduce generally outperformed

the other approaches we tried across the three cluster-

ing structures (see Additional file 1: Figure S6) except for

Method 11 (t-SNE +Mclust), which used the true number

of clusters by default and acts as an artificial bench-

mark, and SC3 (Method 12). Interestingly, classification

performance was again increased by applying consensus

clustering across the pcaReduce sampled clustering struc-

tures. Although this had greater effect for the 4-cluster

structures than the 8- and 11-clusters. In the case of

SC3, the classification performance was sensitive to the

choice of the number of eigenvectors (d) used in the spec-

tral transformation step (see Additional file 1: Figure S7).

Strong classification performance was obtained using the

default range of d but we note that this range was cho-

sen based on optimizing against a number of single cell

datasets and their ground truth classifications includ-

ing this mouse neuronal dataset [26]. Outside of this

default range, performance varied and could be similar to

the levels obtained by other methods (Additional file 1:

Figure S7).

Using the most probable structure given by pcaReduce,

we noted that the three groups of the four top level groups

are predominantly dominated by NP, TH and NF cells

respectively (Fig. 5c) matching groups in the classifica-

tion by [27]. Marker gene expression patterns (obtained

from [27]) for these three groups also corresponded to
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Fig. 5 Application to single cell mouse neuronal data. a Data projected on to PC2-4 for visualisation and coloured by the four major neuronal cell
types. b Clustering performance of pcaReduce. c Cellular hierarchy identified using pcaReduce, further details are given in Additional file 1: Figure S4

those found in the original study confirming their identi-

ties (Fig. 6). The main source of discordance comes from

66 NP cells being assigned to the same group as 60 PEP

cells giving a combined group of these cells (NP/PEP)

not present in the original classification. When we exam-

ined the expression of the marker genes, we discovered

that the expression of these genes was strikingly simi-

lar between the NP and PEP groups found by [27] with

the only major difference being complete zero expres-

sion of Mrgprd in the PEP group whilst only some NP

cells show zero expression for this gene. Therefore it is

perhaps unsurprising that cells from these two groups

were merged by pcaReduce. Interestingly, the PEP and NP

cells correspond to sub-classes of nociceptors (peptidergic

and nonpeptidergic respectively). This combined NP/PEP

groups does subsequently become partitioned as the num-

ber of clusters was allowed to increase into subgroups

dominated by NP and PEP cells respectively. Note that

the use of t-SNE – a non-linear dimensionality reduction

technique – did not well-separate the four groups either

(Additional file 1: Figure S8), and it would not be obvious,

without known markers, how to delineate each group.

At the 11-cluster level pcaReduce identified multiple

subgroups of TH cells that had high Th gene expression

but possessed different patterns of expression in other

marker genes (Additional file 1: Figure S9). In contrast,

the original study [27] only possessed one Th group. This

difference alone drives much of the classification discor-

dance between pcaReduce and the original classes but this

discordance may not be an “error” but simply a differ-

ent choice of clustering compatible with the same data.

Further differences are driven by the combined NP-PEP

cluster generated by pcaReduce that is then propagated

down the hierarchical structure. Finally, the decomposi-

tion of the NF cluster by pcaReduce, splits the NF group

into three subgroups with striking similarity to the NF1,

NF2/3 and NF4/5 groups in [27].

Discussion
In this paper we have presented an unsupervised hierar-

chical clustering approach for the identification of puta-

tive cell sub-populations from single-cell transcriptomics

profiles. Clustering occurs in a linearly transformed sub-

space obtained from principal component directions and,

at each level of our hierarchical clustering structure, the

similarity between clusters is measured in subspaces of

decreasing dimensionality by discarding principal direc-

tions as the number of clusters decreases. In doing so,

we presume that the variation contained in the first prin-

cipal components corresponds to the features of broad
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Fig. 6 Performance comparison on mouse neuronal data. Boxplots illustrate the expression levels of marker genes that define four major neuronal
classes. a Illustrates results obtained using pcaReduce algorithm, whereas (b) illustrate the ground truth. The information about marker genes was
obtained from [27]

cellular classes, whilst fine-scale variation in lower prin-

cipal directions correspond to the features of detailed

cellular sub-structure. We also implicitly assume that the

clusters are separable in the principal component sub-

spaces. For data sets where this does not apply, it maybe

possible to perform an non-linear transformation of the

data first, before applying pcaReduce although this would

lead to the loss of simple interpretation for the principal

components attached to each merge in the hierarchical

clustering.

We applied this technique to two illustrative single

cell datasets from the recent literature and showed that,

compared to a variety of existing clustering tools, our

approach was able to better recapitulate pre-existing clus-

ter structures across both – broad and detailed cellular

states; further, this was achieved simultaneously in a hier-

archical fashion. Interestingly when we specifically com-

pared pcaReduce to related variants of the method, which

did not use successively reduced dimensional representa-

tions, we showed that clustering performance was worse

for these alternate approaches. Intuitively, this might be

expected since the “distances” between cells in high-

dimensional spaces can be unstable depending on the

measure used. By using low-dimensional data represen-

tations to describe low-complexity cluster structures we

reduce the possibility that variability in higher dimen-

sions impacts on clustering performance. In summary, the

key advance of our method is that we provide consistent

clustering across different reduced dimension represen-

tations of the data. This is important because the choice

of reduced dimension representation will allow a different

number of clusters or cell types to be resolved. Although

we cannot define how many real cell types exists nor

which representation are optimal for finding them, pcaRe-

duce will return consistent clustering across the different

representations such that, for example, a 4-cluster struc-

ture will always be related to a 5-cluster representation

and that the extra cluster is related to the extra dimension

of information introduced.

Benchmarking our algorithm and related methods is

extraordinarily difficult since there is a lack realistic,

gold standard data sets with known cell types. The dis-

parate tissue data used in our first application has known

cell types but could be considered artificial in that the

constituent cell populations are derived from completely

independent cell lines and have a different genetic back-

ground. Furthermore, the tissue-level categorisation we

used as our ground-truth is potentially arbitrary. Alter-

native groupings of the cell lines could be made that are

qualitatively sensible. The mouse neuronal data is more

representative of the type of data that our method tar-

gets where themain is to explore expression heterogeneity

against a fixed genetic background but in such situations

the true cell types are unknown and, as our analysis has
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shown, there is potential subjectivity in how we define

novel cell types. Other data sets, such as the five primary

glioblastomas in [12], could be used by defining a cell

type as the glioblastoma from which the cells are derived

but again this would be examining expression variabil-

ity against a variable genetic background. Unfortunately,

as yet, there are no realistic simulation algorithms that

can generate suitable high-dimensional single cell gene

expression data.

Conclusions
We conclude by remarking that the absolute performance

of ours and other techniques can be rather limited in

an unsupervised setting, and further research is required

to combine local and global feature selection alongside

clustering/classification techniques is necessary in order

to better identify real cell types and states. Cluster val-

idation with single cell data is also challenging since

there are often no independent means of establishing the

validity of computationally derived cell types. We there-

fore emphasise that such tools are primarily exploratory

devices and more extensive functional validation is

required.

Finally, we previously described our hierarchical cluster-

ing approach within an autoencoder network framework.

This analogy offers the possibility for further method-

ological extensions. Our implementation uses principal

components analysis which in an equivalent autoen-

coder representations corresponds to using linear trans-

formation between hidden layers. However, non-linear

transformations can also be applied leading to give

greater flexibility and improved dimensionality reduc-

tion properties. We are currently exploring this fea-

ture and aim to implement it in the next version of

pcaReduce.

Availability and supporting data
The details of the data sets supporting the results of this

article are detailed in Additional file 1. The R source

code for pcaReduce is freely available from our Github

repository: https://github.com/JustinaZ/pcaReduce.
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