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Abstract

Background: Proteins interact with other proteins or biomolecules in complexes to perform cellular functions.

Existing protein-protein interaction (PPI) databases and protein complex databases for human proteins are not

organized to provide protein complex information or facilitate the discovery of novel subunits. Data integration of

PPIs focused specifically on protein complexes, subunits, and their functions. Predicted candidate complexes or

subunits are also important for experimental biologists.

Description: Based on integrated PPI data and literature, we have developed a human protein complex database

with a complex quality index (PCDq), which includes both known and predicted complexes and subunits. We

integrated six PPI data (BIND, DIP, MINT, HPRD, IntAct, and GNP_Y2H), and predicted human protein complexes by

finding densely connected regions in the PPI networks. They were curated with the literature so that missing

proteins were complemented and some complexes were merged, resulting in 1,264 complexes comprising 9,268

proteins with 32,198 PPIs. The evidence level of each subunit was assigned as a categorical variable. This indicated

whether it was a known subunit, and a specific function was inferable from sequence or network analysis. To

summarize the categories of all the subunits in a complex, we devised a complex quality index (CQI) and assigned

it to each complex. We examined the proportion of consistency of Gene Ontology (GO) terms among protein

subunits of a complex. Next, we compared the expression profiles of the corresponding genes and found that

many proteins in larger complexes tend to be expressed cooperatively at the transcript level. The proportion of

duplicated genes in a complex was evaluated. Finally, we identified 78 hypothetical proteins that were annotated

as subunits of 82 complexes, which included known complexes. Of these hypothetical proteins, after our prediction

had been made, four were reported to be actual subunits of the assigned protein complexes.

Conclusions: We constructed a new protein complex database PCDq including both predicted and curated

human protein complexes. CQI is a useful source of experimentally confirmed information about protein

complexes and subunits. The predicted protein complexes can provide functional clues about hypothetical

proteins. PCDq is freely available at http://h-invitational.jp/hinv/pcdq/.
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Background
Proteins interact with other proteins or biomolecules to

perform their functions, and protein complexes are the

fundamental functional units of these macromolecular

systems. Comprehensive analysis of PPIs provides a valu-

able framework for understanding the protein functions

required for various biological processes in cells. More-

over, it can provide annotation clues about proteins with

unknown function [1-3].

An important issue for the elucidation of the functional

organization of the proteome is the extraction of infor-

mation about protein complex formation and function

from the PPI network.

In recent years, a number of well-organized public PPI

databases have become available, including Biomolecular

Interaction Network Database (BIND) [4,5], Database of

Interacting Proteins (DIP) [6], Molecular INTeraction

database (MINT) [7,8], Human Protein Reference Data-

base (HPRD) [9], IntAct [10], and Genome Network

Project Y2H data (GNP-Y2H; http://genomenetwork.nig.

ac.jp/index_e.html, NOT http://genomenetwork.nig.ac.

jp/ ). In the present PPI data, the main focuses are on

protein-binding partners or binary protein interactions.

Knowledge about how gene products form complexes,

interactions among complexes, or protein interconnec-

tivity in a complex is still scarce. The overlap of PPI

data entities across databases is relatively low. The exis-

tence of only a partial map of the whole interactome

space limits the broad application of systems modeling.

Accordingly, it is essential to integrate PPI data in order

to fill in as many holes in the interactome space as pos-

sible. Some integration of the above PPI data has been

conducted by STRING [11], OPHID [12], and HAPPI

[13]. However, protein complex information has been

poorly annotated in these resources.

Several human protein complex databases have been

developed to date, including CORUM [14,15] and disease-

related complex [16]. The protein complexes in CORUM

were collected only from literature. The database does not

provide information about many uncharacterized proteins

whose interactions are supported by PPI data. The dis-

ease-related complex database [16] is focused on disease

complexes, using information on proteins known to be

involved in similar disorders. Accordingly, it contains a

relatively small number of complexes (506) and lacks

many other important complexes.
In this study, we integrated human PPI data from the six

databases and predicted human protein complexes from

the integrated PPI data set by finding densely connected

regions with cluster properties in the PPI network based

on graph theory as described in our previous report [17].

The novelty of prediction methods is that we optimized

parameter settings for the prediction tool DBClus using an

original correct dataset. After prediction, experienced

annotators manually annotated the predicted protein com-

plexes according to our standardized procedures, using

literature mining and the wealth of annotation data in the

human full-length cDNA database “H-Invitational Data-

base” (H-InvDB) that we developed [18-20]. Using the

data from H-InvDB, we performed several analyses of the

annotated complexes to increase the validity of our anno-

tation. This is the first attempt at comprehensive manual

curation of human protein complexes predicted from PPI

networks.

Construction and content
Integration of PPI data into H-InvDB proteins

The construction processes of the database are shown in

Figure 1. It begins with two kinds of integration: protein

sequences and PPI data sets. We have previously per-

formed the integration of human protein sequences in the

course of developing a comprehensive database of human

genes and transcripts called H-InvDB (http://www.h-invi-

tational.jp/) [18-20]. It is a unique database that integrates

into a single entity the annotation of sequences, structure,

function, expression, subcellular localization, evolution,

and the diversity of human genes and their encoded pro-

teins. It is useful as a platform for conducting in silico data

mining. Our international collaboration for analysis of

high-quality full-length cDNA clones, in addition to EST

assemblies and CAGE tags, has resulted in the integrative

annotation of 187,156 transcripts placed at 36,073 loci.

Based on the open reading frame (ORF) prediction of H-

InvDB transcript sequences, followed by the functional

annotation of experienced annotators, we identified

108,530 nonredundant human protein candidates. We

downloaded all protein sequences from GenBank [21],

RefSeq [22], and UniProt [23] databases by their accession

numbers and removed redundancies using BLASTCLUST

[24,25] with a threshold of 98% sequence similarity in 95%

alignment length coverage for both sequences. The result-

ing nonredundant sequences were named as “H-InvDB

proteins” (Release 5.0).

To integrate PPI information, we collected PPI data

from the six databases, BIND [4,5]; DIP [6]; MINT [7,8];

HPRD [9]; IntAct [10]; and GNP, as major resources for

PPI. We used XML and flat files from PPI databases;

BIND, DIP, MINT, HPRD, IntAct, and GNP on October

25, 2007. These databases, except for GNP, store experi-

mentally determined PPIs from many organisms collected

by literature curation, whereas GNP stores original Y2H

experimental data on humans. Computationally predicted

PPIs were excluded from this study. A standardized inter-

action data model is needed for storing PPI data from dif-

ferent sources. Following the method described in the

Atlas biological data warehouse [26], we designed data

loading applications for each PPI database and a relational

data storage system compliant with the Proteomics
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Standards Initiative Molecular Interaction Standard (PSI-

MI) controlled vocabulary [10], a community-standard

XML format for the presentation of protein interaction

data. This system allowed us to unify data from different

sources. We used only human PPIs in this study and did

not use cross-species PPI data such as human proteins

interacting with mouse proteins or data with ambiguous

taxonomic labels such as “Mammalia,” commonly found

in the HPRD download file. To survey human PPIs from

the landscape of the human interactome, we mapped the

PPI information onto the H-InvDB proteins. We removed

PPI data redundancies by evaluating sequence similarity

and then integrated human PPIs with the H-InvDB pro-

teins. As a result, we obtained 32,198 human PPIs com-

posed of 9,268 proteins.

Figure 2 shows the overlap of human PPIs across the

six databases. There are 6,234 nonredundant human PPIs

in BIND whereas DIP; MINT; HPRD; IntAct; and GNP

contain 1,037; 12,055; 2,913; 19,213; and 1,303 PPIs,

respectively. Figure 2a shows pairwise overlaps of PPIs

across the databases; MINT and IntAct share 6,089 PPIs,

which is the highest overlap among these databases. As

shown inFigure 2b, 6,671; 1,786; 102; and two PPIs are

shared in 2; 3; 4; and 5 databases, respectively, but there

are no PPIs in common among all the six databases.

There are 23,637 unique PPIs in the databases, represent-

ing 73% of the PPI dataset. The overlap across these data-

bases was relatively small, reflecting a much larger

human interactome space than that represented by the

currently known PPIs [27-29]. Thus, it is essential to

integrate the PPI data to achieve a complete view of the

human interactome.

Prediction of protein complexes with clustering tool

DPClus after parameter optimization using an original

reference protein complex set

In a PPI network, nodes represent proteins and edges

represent interactions. We previously developed an algo-

rithm called DPClus, which extracted densely connected

regions in a network and demonstrated that many of these

regions correspond to known protein complexes or pro-

tein functional units [17,30]. DPClus is a robust algorithm

unaffected by a high rate of false positives in data from

high-throughput interaction-detection techniques [17].

DPClus can detect clusters of networks that are separated

by sparse regions, keeping track of the periphery of a clus-

ter by monitoring cluster properties of its neighbor. Thus

the program considers two parameters, “network density”

and “cluster property.”

To evaluate the optimal values of these two parameters

for predicting protein complexes, we used a set of experi-

mentally determined protein complexes (the reference

protein complex set). We manually collected 89 protein

complexes from the scientific literature and retrieved 55

complexes from three-dimensional structures of human

protein complexes recorded in the PDB [31]. We per-

formed parameter optimization to select the two best

parameters to achieve the best match of the predicted set

Figure 1 A flowchart of the database construction process.
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with the reference complex set. DPClus was run many

times for all possible combinations of the two parameters

(network density and cluster property, varied from 0.0 to

1.0 with increments of 0.1). In the parameter optimiza-

tion process, DPClus was restricted to finding complex

sizes of three or more. For this case, a predicted complex

needs at least two proteins in common with a known

complex to be considered a match. Two scores were

checked for each parameter set: the sum of recalls, which

is a ratio of the number of matched proteins of a known

complex to those of a predicted complex, and the sum of

precisions, which is a ratio of the number of matched

proteins of a predicted complex to those of a known

complex. Recall and precision were zero when proteins

of a known complex matched fewer than two proteins of

a predicted complex. Recall and precision were one when

proteins of a known complex matched perfectly to the

proteins of a predicted complex. To avoid overprediction

of duplicated complexes, which shared several proteins

and matched an identical known complex, the best recall

and precision scores were divided by their frequencies.

For the best prediction performance of DPClus, the two

parameters, network density and cluster property, were

optimized using the largest protein subunits of the refer-

ence complex set. We simulated prediction with 100 dif-

ferent parameter sets and the best, with network density

0.6 and cluster property 0.5, was determined from the

best ROC curves. With this parameter set, DPClus pre-

dicted 1,264 complexes matching 92 of the 144 known

complexes. The average recall and precision of these 92

matched complexes were 0.54 and 0.66, respectively. We

also calculated the average number of complexes that

share a common protein. On an average, each protein

was present in 1.24 complexes of the reference complex

set. Using the optimized parameters gave a result identi-

cal to that for the predicted set. With this parameter set

(network density 0.6, cluster property 0.5), we predicted

1,319 protein complexes in the integrated PPI network

composed of 32,198 human PPIs.

In prediction of protein complexes by DPClus, we

adopted the “overlapping clustering mode,” which

allows identical proteins to be classified into different

clusters, because it is biologically well established that

proteins can be present in multiple complexes at differ-

ent times and locations. For example, POLR2E/RPB5

(HIP000039507), POLR2F/RPB6 (HIP000096671),

POLR2H/RPB8 (HIP000027404), POLR2K/RPB12

(HIP000043404), and POLR2L/RPB10 (HIP000064404)

are conserved throughout RNA polymerases I, II, and

III [32]. Before complex prediction, we evaluated the

optimal values of DPClus parameters by comparing the

predicted complex set with the experimentally deter-

mined set of 144 reference complexes.

Manual annotation of the predicted protein complexes:

re-clustering, functional annotation, protein category,

complex quality index (CQI), and naming of complexes

Using the clusters or protein complexes predicted by

DPClus, we performed manual annotation by the follow-

ing procedures: 1) curators searched the scientific litera-

ture for evidence that the proteins of the predicted

complexes are experimentally defined complex members

or subunits, 2) missing proteins were manually added to

the predicted complexes if literature evidence showed that

they were subunits of the complexes, and 3) data such as

complex names; descriptions; localizations; and complex-

complex interactions (CCIs), and their subunit functions,

structures, expression profiles, gene loci, and PPIs among

protein subunits were integrated. We did not exclude pro-

teins that were predicted to be subunits but lacked litera-

ture evidence, instead considered them as complex

subunit candidates. The provision of predicted candidates

is one of the advantages of PCDq.

We assigned the protein subunits, or member proteins

of complexes, of the predicted complexes to three cate-

gories based on the evidence levels: category I, proteins

that are confirmed as subunits of known complexes in

the literature or as ternary structures in the PDB [31];

Figure 2 Overlap of human PPIs in six PPI databases. (a) Pairwise overlaps of PPIs across databases are shown in cells. The number of

nonredundant PPIs is shown in parentheses for each database. (b) Overlaps of PPIs shared in common in one, two, three, four, five, and six

databases are shown.
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category II, proteins for which no evidence of complex

membership were found in the literature, but which

have functions related to those of the shared category I

subunits in the predicted complexes according to their

protein definitions or Gene Ontology (GO) terms [33];

and category III, proteins that are predicted as complex

subunits by DPClus and do not fall into the other two

categories. Because our protein complex prediction

allowed the same proteins to be subunits of different

complexes, such shared proteins could be classified into

different categories in different complexes.

To summarize the categories of all the subunits in a

complex, we devised a CQI and assigned a CQI value to

each complex. CQI is an index of the different levels of

evidence for an annotated complex based on the protein

category, defined by “[Number of category I proteins].

[category II proteins].[category III proteins]/[Total num-

ber of proteins in a predicted complex].” For example, if

the CQI of a complex is “5.2.1/8,” the complex has eight

subunits with five, two, and one protein classified into

categories I, II, and III, respectively.

The predicted complexes were named based on scientific

names from the literature, if the majority of proteins in a

complex were common to a known complex and a name

(e.g., exosome, spliceosome) for the complex was available;

however, we used artificial descriptions using concatenated

gene symbols when not all symbols of proteins were avail-

able (e.g., GLI1-STK36-SUFU complex, DBNL-ITK-

PLCG1-SH3BP2 containing complex). Descriptions of

complexes were quoted from references with their PubMed

IDs. Functional categories and subcellular localizations

were added if the descriptions were available in the

literature.

Database of protein complex annotations and

visualization tool PPI-Map for CCIs

The visualization tool PPI-Map in PCDq can show protein

interconnectivity of a complex, complex-external protein

interactions, and CCIs. To the best of our knowledge, PPI

view is the first database that can show CCIs in the human

interactome with detailed annotation. As shown in Figure 3,

using PPI-Map we have constructed a view of CCIs showing

the subcellar localizations of the annotated complexes. In

Figure 3, each node (circle) represents an individual com-

plex and each edge represents an interaction. To avoid

unnecessary complexity of the CCI network, 541 perfectly

or partially matched complexes and interactions comprising

more than 10 PPIs are shown. PPI-Map can be used to view

Figure 3 A view of CCIs with the subcellar localizations of the annotated complexes. Each node represents a complex and edges

represent interactions. Node size represents the number of proteins in a complex and the thickness of edges connecting complexes, which are

exponential to the number of PPIs between connected nodes. Node colors indicate subcellular localization of the annotated complexes; dark

red: nucleus, blue: cytoplasm, green: membrane, purple: nucleus and cytoplasm, yellow: Golgi apparatus, blue-green: cytoplasm and membrane,

light blue: cytoplasm, membrane and nucleus, orange: mitochondria, light red: endoplasmic reticulum, light green: endosome, gray: other

subcellular localization, black: NA/unknown.
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CCIs graphically with the ability to scale seamlessly and to

move and change the thickness of edges connecting com-

plexes. Users can edit (delete, move, expand, etc.,) nodes

and edges of the network.

The novel human protein complex database, called

PCDq, provides three main views: protein complex infor-

mation in the “protein complex view,” integrative overview

of a PPI in the “PPI view,” and network information

including both PPI and CCIs in “PPI-Map.” The complex

view provides names, functions, protein subunits, subunit

roles, and CQL. PPI view provides PPI partners for a spe-

cified protein. Finally the new visualization tool PPI-Map

allows users to visualize protein interactions graphically:

not only PPIs among the protein subunits but also CCIs,

via a seamless and detailed annotation of each protein

complex and its subunits. These three views have hyper-

links to one other and also to transcript/locus/protein

views of the H-InvDB human gene/transcript/protein

database. Considering all of these features, PCDq is a use-

ful platform for understanding protein function from the

viewpoint of protein complexes as another important

functional level, as well as their interactions. The CQI pro-

vides unique and reliable clues for inferring some roles of

proteins whose functions are unknown.

Statistics of PCDq

In total, we predicted and annotated 1,264 protein com-

plexes. A list of all annotated complexes is available at the

PCDq site. Category I contained 2,106, category II 299,

and category III 3,273 proteins, with protein subunit shar-

ing allowed (Table 1a). The average number of proteins

per complex was slightly different among the categories:

3.9 for category I proteins only, 4.3 for proteins in category

I and II, and 4.5 for proteins in all the three categories.

However, the size distribution in the datasets was quite

diverse. Figure 4a shows a plot of the number against the

size (number of protein subunits) of complexes. The rela-

tionship follows an inverse power law.

We defined three types of predicted complexes: per-

fectly matched, partially matched, and hypothetical com-

plex. These correspond to a complex with all subunits in

category I, a complex with at least two proteins in cate-

gory I, and a complex with all subunits in category III,

respectively (Table 1b). By this annotation, the number

of complexes was 136 for type I, 405 for type II, and 723

for type III Table 1b).

From information in the literature, we assigned func-

tional categories and subcellular localization to the anno-

tated complexes (Figure 5a,b). The major functional

categories were signal transduction (90 complexes, 19%),

transcription (61, 14%), cell cycle (52, 12%), and immune

response (49, 11%). More than 70% of the complexes are

localized in the cell nucleus (160, 33%), membranes (111,

22%), and cytoplasm (81, 16%).

Consistency of GO terms assigned to subunits in a

complex

Given that proteins in a complex cooperatively play a

biological role, it is expected that they are present in the

same location in a cell at a certain time and that they act

cooperatively in the same biological process or pathway.

To assess the quality of our protein complex annotation,

we calculated the enrichment ratio of consistency of GO

terms among subunits of a complex. This assessment is

based on the assumption that the same GO terms are

assigned to proteins in a single protein complex.

All GO terms of “biological process,” “cellular compo-

nent,” and “molecular function” assigned to the H-

InvDB transcripts were used for this study. The depth of

GO terms from the root in the GO hierarchy was set to

five and GO terms representing nodes with depth less

than five were ignored. If the GO term assigned to the

transcript had depth greater than five, the corresponding

parental node with depth five was reassigned and redun-

dancy was removed. As a control set representing the

entire proteome, we collected GO terms assigned to all

36,073 representative transcripts in H-InvDB. All pro-

tein subunits in 1,264 complexes were used as one set

of protein complexes (PCset1) for the assessment. To

construct the manually curated set of protein complexes

(PCset2), we collected only category I proteins from per-

fectly or partially matched complexes (these complexes

were defined in the subsection “Statistics of PCDq”) and

discarded category II or III proteins, which have not

been described as subunits of a complex in the litera-

ture. PCset2 contained 541 complexes.

Table 1 Protein and the complex annotation summary

Number of the proteins (a)

H-InvDB proteins 108,530

Proteins in the PPI data set 9,268

Proteins in the predicted complexes 4,513

Category I 2,106

Category II 299

Category III 3,273

Number of the complexes (b)

Perfectly matched 136

Partially matched 405

Hypothetical 723

Total 1,264

(a) Number of proteins in H-InvDB, the integrated PPI data set, and the

predicted complexes. The categorized proteins in the predicted complexes are

described in the text. Because complex sharing proteins could be classified

into more than one category as subunits of different complexes, the total

number of categorized proteins is greater than the number of nonredundant

proteins in the predicted complexes. (b) Type of the predicted complexes.

Three types of predicted complexes were defined by degree of matching to

known complexes (details are in the text). Total number of the predicted

complexes in this study is 1,264.
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First, we estimated the enrichment of some GO terms

in a complex compared to GO terms assigned to the

proteome. The proteome set comprised 36,073 proteins,

each derived from a distinct locus or gene of H-InvDB.

The enrichment of GO terms was examined against two

sets of protein complexes, PCset1 and PCset2. Signifi-

cance of enrichment of a given GO term in a complex

was tested by one-sided Fisher exact test for a 2 × 2

contingency table (A, B, C, D). “A” represents the num-

ber of subunits expressing the given GO term, and “B”

is the number of subunits not having the GO term in

the protein complex. “C” and “D” represent the corre-

sponding numbers estimated for the entire proteome.

To estimate the quality of protein complex annotation,

we defined another quality index, the “GO consistency

index.” This index for a given protein complex is esti-

mated by the following equation:

GO consistency index = Ncons/Nall,

where Ncons is the number of edges that connect two

proteins sharing the same GO term and Nall is the num-

ber of possible combinations (edges) for all subunits of

the complex.

It was observed that 450 of 1,264 PCset1 (35.6%) pro-

tein complexes had one or more enriched GO term

(Fisher exact test, p-value ≤ 0.01). In contrast, 254 of

the 541 PCset2 complexes (47%) had one or more

enriched GO term. The ratio of protein complexes hav-

ing enriched GO terms was greater in PCset2 than in

Figure 4 Relationship between complexes and subunits. (a) The relationship between complex size (number of different protein subunits of

each category; X-axis) and frequency (Y-axis). (b) Percentage of category I and II protein occupancy of the annotated complexes.

Figure 5 Protein complex profiles. (a) Distributions of functional categories of the annotated complexes. (b) Distribution of subcellular

localizations of the annotated complexes.
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PCset1, suggesting that the reliability of protein complex

annotation was refined by manual checking.

The degree of consistency of GO terms among subunits

in a complex was estimated; i.e., the homogeneity of GO

terms assigned to complex subunits. A consistency index

(see Materials and Methods) was used as an indicator of

homogeneity. With the object of estimating the degree of

GO term consistency expected by chance, 100 sets of ran-

domly selected genes from H-InvDB, all representative

transcripts with complex sizes matching our annotation of

PCset1, were created and used as a control. Average con-

sistency indexes were estimated to be 0.23, 0.41, and 0.04

for protein complexes of PCset1, PCset2, and the random

set, respectively. The value is higher in PCset1 (Student

t test, p-value 2.9E-111) than in the random set, and in

PCset2 than in PCset1 (p-value 1.6E-25). These results

are still statistically significant after Bonferroni multiple-

testing adjustment, which is relatively conservative. The

histogram of consistency indexes for the three sets is

shown in Figure 6. In particular, cases in which the consis-

tency index was 1.0 (i.e., all subunits shared common GO

terms with other subunits), increased dramatically after

manual curation, indicating the relatively high quality of

manual annotation and the advantage of protein complex

prediction followed by manual annotation as opposed to

only single computational prediction.

Intriguingly, we found 28 PCset1 unique complexes with

consistency index 1.0. Although the existence of the pro-

tein complexes has not yet been validated experimentally,

the compatibility between the prediction of protein com-

plexes by our clustering method and the consistency of

GO terms offers reliable candidates for novel functional

protein complexes to be validated by future experiments.

Similarity of gene expression profiles among proteins in

the same complexes

Based on the idea that coexpressed genes are more likely

to have the same or similar functions, cluster analysis of

gene expression data has been used to predict the func-

tions of non-annotated proteins [34,35]. Reversing the

process, we examined whether proteins in the same com-

plex (involved in the same functions) have similar expres-

sion profiles. For each complex, we compared the

expression profiles of protein subunits in the complex.

When the subunits of a complex are similar in their

expression profiles, the profile should provide some func-

tional information about a complex whose function is

unknown.

Expression profiles of 729 complexes were obtained

from the Human Anatomic Gene Expression Library (H-

ANGEL) [36], the satellite database of H-InvDB. From the

download file of H-ANGEL ("H-ANGEL_matrix.txt,”

Figure 6 Distributions of GO consistency index in PCset1, PCset2, and random set. Histogram of GO consistency index for protein

complexes in PCset1, PCset2, and random set shows a shift toward larger values in the PCset1 and PCset2 than in the random set.
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December 2007 version), gene expression data measured

by the iAFLP method [37] for 10 tissue categories were

extracted. For some loci, multiple iAFLP-tags correspond

to the same locus. In such cases, the different expression

profiles for a single locus were averaged over the tags. The

expression profile of a gene was expressed by a vector of

10 elements. The similarity of gene expression profiles

between two loci was calculated as the cosine of the two

vectors. The similarity of multiple gene expression profiles

for subunits of a protein complex was defined by the aver-

aged cosines of all combinations of all the different sub-

units. The cosines of a complex were evaluated by

simulation. For every number (k) of subunits in the com-

plex, we randomly selected k-genes from genes having

expression profiles. We then calculated the averages of the

cosines of the expression profiles. We repeated the proce-

dure 100,000 times for every number of subunits (k), and

used the results for p-value estimation.

Of 729 complexes, seven were found to have significant

gene expression similarity by a false discovery rate (FDR)

criterion of 0.05. FDR, the expected proportion of incor-

rectly rejected null hypotheses, is a widely used statistic

for multiple testing [38]. The seven complexes are shown

in Table 2.

Some of the most interesting complexes are those in

which the expression of the protein subunits is similar and

tissue specific. We found several such complexes using

entropy of gene expression profile. Among these com-

plexes, the fibrinogen complex (complex 130; liver specific,

average entropy 1.20) was such a case. Other examples are

the AK5-CPNE6-TRIM46 complex (complex 540) and the

troponin complex (complex 258). Though the FDRs of the

two complexes were not significant, 0.22 and 0.68, respec-

tively, the gene expression profiles were very similar with

cosines of 0.99 and 0.95, respectively. For troponin, the

gene expression of the subunits is specific to that of mus-

cle/heart tissue (average entropy 1.12). The gene expres-

sion profiles of the three subunits in troponin complex are

shown in Figure 7. The similarity of these expression pro-

files suggests that they function as a complex.

As shown above, the gene expression of the protein

subunits was not significantly similar in most of the pre-

dicted protein complexes. However, we found that the

gene expression of protein subunits is more likely to be

similar for large complexes.We calculated the p-values

of gene expression similarities for each complex and

plotted the distribution of p-values for different num-

bers of proteins in a complex (Figure 8). The figure

illustrates that similarity in gene expression of proteins

in the same complex increases as the number of protein

subunits (complex size) increases. This is the first report

of a relationship between expression similarity and com-

plex size in human PPI and is consistent with results

reported for yeast [39].

Relationship between the establishment of protein

complexes and gene duplication

To investigate the contribution of gene duplication to

the establishment of protein complexes, we examined

portions of duplicated genes (proteins) or paralogs in

the complexes.

For all combinations of subunits in a protein complex,

we evaluated whether the genes were paralogous (two

genes copied by segmental duplication) following the

method of Gu et al. [40]. Gene models that were

mapped onto “random” or “haplotype” contigs were not

used in the analysis. FASTA package version 34t25 [41]

was used for the analysis. In addition, we conducted

another paralog analysis with BLASTP using less strin-

gent criteria for the assignment of duplicated genes.

BLAST version 2.2.17 was used. If the gene pair showed

similarity with E-value less than 1E-05, we assigned it as

paralogous.

This paralog assignment method yielded 2,353 dupli-

cated genes in a total of 4,191 genes that were the com-

ponents of 1,264 complexes. Of the 1,264 complexes,

336 (26.5%) were judged to have at least one paralog

pair. Moreover, we obtained 218 complexes (17.2%) in

which more than half of the components were judged to

be paralogous to another gene in the same complex.

Using a less stringent method with BLASTP (E-value ≤

1E-05), these percentages were estimated to be 38.5%

and 27.3%, respectively.

The replication factor C (RFC) complex (complex 105)

is a good example of the formation of a protein complex

induced by gene duplication. This complex consists of

Table 2 Protein complexes comprising protein subunits with significantly similar gene expression profiles

Complex No. CQI Complex name cosine FDR # of genes

30 21.1.0/22 19S proteasome of the 26S proteasome 0.92 0.001 13

12 18.0.4/22 20S proteasome of the 26S proteasome 0.88 0.006 17

41 12.1.0/13 RNA polymerase II complex 0.92 0.008 10

68 0.0.11/11 COP9 signalosome (CSN) 0.92 0.014 9

953 0.0.3/3 GAGE6-GMCL1L containing complex 1.00 0.022 3

130 3.0.8/11 Fibrinogen 0.96 0.037 4

77 4.0.8/12 18S U11/U12 complex 0.89 0.041 14
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five RFC subunits and one binding partner, PCNA [42].

The complex is known to be associated with DNA

synthesis [42], and the function and machinery are con-

served between yeast and human [43], indicating that

this is an ancient protein complex. Paralog assignment

suggested that three (RFC 36, 37, 40) of five RFC subunits

are paralogous; i.e., originating from a common ancestor,

whereas the result obtained by the less stringent BLASTP

method suggested that all five subunits are mutually para-

logous. The presence of the “RFC box” motif in all five

proteins and the consistency of exon-intron boundaries

also support the homologous relationships of these five

subunits. These results indicate that the enlargement of a

protein complex is mainly mediated by homologous inter-

actions and that gene duplication events markedly contri-

bute to the establishment of protein complexes.

Functional assignments for hypothetical proteins in the

annotated complexes

An important goal of proteomics is functional assignment

for proteins that cannot be annotated by homology alone.

Several approaches for functional assignment from PPIs

have been developed [1-3].

First, we explain the definition of proteins with no

functional assignments, known as “hypothetical proteins.”

H-InvDB proteins were analyzed with standardized func-

tional annotation by curators who classified the proteins

into several categories: i) identical to known human pro-

teins, ii) similar to known proteins (having 50% sequence

similarity), iii) interPro-domain-containing proteins, and

iv) hypothetical proteins (with no biological functions

inferred). The “hypothetical proteins” discussed here are

of the fourth category.

Next, we explain how the functions of those hypothe-

tical proteins can be inferred. In PDBq we found 78

hypothetical proteins (as defined in H-InvDB) in the 82

predicted complexes. Although the majority (61 pro-

teins, 78.2%) were subunits of 67 hypothetical complexes

(none of their subunits were reported as complexes in

the literature), 13 hypothetical proteins were subunits of

12 complexes whose functions were strongly deduced

because at least half of their subunits were annotated as

common to known complexes. A protein complex is

thought to be a functional unit in which proteins com-

bine to perform biological functions; accordingly, a

hypothetical protein can be assigned a function related

Figure 7 Relative percentage of gene expression levels of the troponin complex. The three gene loci of the troponin complex (complex

258) subunit proteins are expressed specifically in muscle/heart tissue.
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to that of the complex it joins. For example, two

hypothetical proteins HIP000013164 and HIP000053526

were in the “dREAM complex” (complex 24), which is

tightly bound to E2F-regulated promoters in G0 and

dissociates from these promoters in the S phase of the

cell cycle. In addition, some subunits of the complex

can also interact specifically with MYB and may be

involved in expression of MYB-dependent genes impor-

tant in G2/M progression [44]. We expected that these

two hypothetical proteins would then join the dREAM

complex and might play a role in the cell cycle. More-

over, we found that annotated complexes such as the “Fan-

coni anemia (FA) core complex” (complex 61), “INO80

complex” (complex 75), and “Lamins complex” (complex

101) include hypothetical proteins (HIP000177716 for the

FA core complex, HIP000079962 for the INO80 complex,

and HIP000024165 for the Lamins complex). These com-

plexes have DNA repair, DNA repair and transcription,

and nuclear organization functions, respectively. Accord-

ingly, these hypothetical proteins might also have functions

associated with those complexes. Table 3 summarizes the

13 hypothetical proteins and 12 complexes, including

hypothetical proteins as subunits and at least half of whose

subunits are common to known complexes and their CQIs.

After annotation, we found that some of the hypotheti-

cal proteins were reported in the literature as actual pro-

tein subunits (Table 3). The results show the high

potential value of our predicted complex data and indicate

that the complex annotation used for our database can be

a key tool for new discovery of protein complexes and

their functions.

Utility
PCDq comprises both known and predicted complexes

and subunits. The evidence level for each subunit was also

determined and summarized as a complex quality index

(CQI) for each protein complex.

The expected users of PCDq are both experimental biol-

ogists and computational scientists. Biologists can seek

candidate protein subunits for known or unknown protein

complexes and review the information (functions, gene

expressions, PPIs, etc.) about a protein complex. Compu-

tational scientists can collect integrated PPI network data-

sets with various levels of reliability using original

Figure 8 Box plot of gene expression profile similarity and the number of protein subunits in a complex. The y-axis indicates gene

expression similarity (negative logarithm of p-value of average cosine of gene expression profiles) in a complex; a higher value means that the

subunits of the complex show greater similarity in their gene expression profiles. The x-axis indicates the number of protein subunits with

expression data in the complex. The gene expression profiles similarity increases with the number of proteins.
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annotation in the form of protein categories and CQIs.

Thus, for users who would like to develop a method for

protein complex prediction, PCDq provides different

thresholds for dataset assembly using CQI.

Users can download the dataset of PCDq, including

protein complex list, their subunits (members), and

related functional annotation from the H-InvDB down-

load page (http://h-invitational.jp/hinv/dataset/down-

load.cgi, see “Results of computational analysis”).

Discussion
To assess the quality of our protein complex annotation,

we estimated the enrichment and the proportion of con-

sistency of GO terms among subunits of a complex. This

assessment is based on the assumption that the same GO

terms are assigned to the proteins in a single protein

complex. The proportions of protein complexes having

enriched GO terms and the degree of GO term consis-

tency were greater in the manually curated set of protein

complexes (PCset2) than in all the predicted complexes

(PCset1) or the random set, indicating the relatively high

quality of manual annotation and the advantage of pro-

tein complex prediction followed by manual annotation

as opposed to only single computational prediction.

Next, for each complex, we compared the expression

profiles of the protein subunits in the complex based on

the idea that proteins in the same complex would have

similar functions and that coexpressed genes are more

likely to have similar functions. The result showed that

the subunits of large complexes tend to be expressed

similarly. The ratio of duplicated genes to all the pro-

teins in a complex was evaluated, and the results indi-

cated that the enlargement of a protein complex is

mainly mediated by homologous interactions and that

gene duplication events markedly contribute to the

establishment of protein complexes.

Recent statistics of H-InvDB proteins show that 35% of

H-InvDB representative transcripts are hypothetical pro-

teins. Assigning functions to hypothetical proteins of

unknown function is one of the most important issues in

proteome analysis. Since subunits of a complex generally

tend to have the same biological function, prediction of a

protein complex allows increased confidence in the anno-

tation of hypothetical proteins. After the construction of

PCDq by protein complex prediction and annotation, we

found that 78 hypothetical proteins were contained in the

82 predicted complexes. Of these 78, 13 were subunits of

12 functionally annotatable complexes. These hypothetical

proteins are probably involved in biological processes

shared by other subunits of their complexes. Thus com-

plex prediction gives us some clues for inferring their

functions. For example, it is suggested that the hypotheti-

cal proteins HIP000013164 and HIP000053526 in the

dREAM complex function in the cell cycle, and that

HIP000177716 (FA core complex), HIP000079962 (INO80

complex), and HIP000024165 (Lamins complex) function

in DNA repair, DNA repair and transcription, and nuclear

organization, respectively. The remaining eight hypotheti-

cal proteins that could be assigned functions are summar-

ized in Table 3. In fact, when we checked the recent

literature after making the predictions, four of the thirteen

hypothetical proteins were found to be in fact subunits of

the predicted protein complexes, and their PCDq entries

were updated. Thus, protein complex prediction and

annotation offers clues to the functions of hypothetical

proteins.

Conclusions
We predicted and annotated 1,264 human protein com-

plexes from integrated PPI data. GO analysis increased

the reliability of both complex prediction and manual

annotation. The analysis of expression profiles and

Table 3 Hypothetical proteins whose functions can be easily inferred from their partners

HIP (protein ID) Complex No. CQI Name Confirmed later

HIP000013164 24 10.1.2/13 dREAM complex yes

HIP000053526 24 10.1.2/13 dREAM complex yes

HIP000177716 61 8.0.1/9 Fanconi anemia (FA) core complex yes

HIP000079962 75 11.0.2/13 INO80 complex yes

HIP000024165 101 4.0.1/5 Lamins complex no

HIP000046613 200 3.0.2/5 C8orf32-EFCBP2-RUNX1T1-ZNF652 containing complex no

HIP000038372 673 4.0.1/5 BCL2A1-BCL2L1-BCL2L2-HRK-PMAIP1 complex no

HIP000089800 922 2.0.1/3 HIF-1alpha-pVHL-ElonginB-ElonginC complex no

HIP000027799 940 3.0.1/4 SRGAP3-WASF1 containing complex no

HIP000060581 960 3.0.2/5 C19orf25-KNTC1-ZW10 containing complex no

HIP000015491 967 3.0.2/5 NONO-PSPC1-WBP4-ZNRD1 containing complex no

HIP000114159 1156 2.0.2/4 NUTF2-RAN complex no

HIP000091971 1310 4.0.3/7 SCF (Skp1, cullin 1, F-box) ubiquitin E3 ligase complex no

Thirteen hypothetical proteins whose complexes have at least half category I subunits are shown.
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duplicated genes made it clear that protein subunits

tend to be expressed similarly and are mutually paralo-

gous within complexes. Comprehensive protein complex

prediction and annotation will provide strong functional

annotation clues about hypothetical proteins. We con-

structed a new human protein complex database with

quality index (PCDq) to provide this comprehensive

annotation of human protein complexes.

Availability and requirements
PCDq is freely available at the URL http://h-invitational.jp/

hinv/pcdq/.
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