
Information Technology and Control 2017/4/46530

PCMAE: A Proxy Convertible
Multi-AE Scheme and Its Variant

ITC 4/46
Journal of Information Technology
and Control
Vol. 46 / No. 4 / 2017
pp. 530-545
DOI 10.5755/j01.itc.46.4.15819
© Kaunas University of Technology

PCMAE: A Proxy Convertible Multi-AE Scheme and Its Variant

Received 2016/07/31 Accepted after revision 2017/11/14

 http://dx.doi.org/10.5755/j01.itc.46.4.15819

Corresponding author: lin.hanyu@msa.hinet.net

Han-Yu Lin
Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan
e-mail: lin.hanyu@msa.hinet.net

This paper presents a novel proxy convertible multi-authenticated encryption (multi-AE) scheme and its vari-
ant with message linkages. The proposed scheme allows two or more original signers to cooperatively delegate
their signing power to an authorized proxy signer, such that the proxy signer can generate a valid authenticated
ciphertext on behalf of the original signing group and only a designated recipient is capable of decrypting the
ciphertext and verifying its embedded proxy multi-signature. Its variant with message linkages further ben-
efits the encryption of a large message by dividing it into many smaller message blocks. The proposed proxy
convertible multi-AE scheme and its variant can simultaneously fulfill the security requirements of confiden-
tiality and authenticity. Thus, they are applicable to those group-oriented confidential applications with proxy
delegation, e.g., proxy on-line auction, proxy contract signing and so on. In case of a later dispute over repudi-
ation, our proposed scheme also allows a designated recipient to convert the ciphertext into an original proxy
multi-signature for public verification. In addition, the security of confidentiality against indistinguishability
under adaptive chosen-ciphertext attacks (IND-CCA2) and that of unforgeability against existential forgery
under adaptive chosen-message attacks (EF-CMA) are proved in the random oracle model.
KEYWORDS: proxy multi-signature, convertible, authenticated encryption, message linkage.

1. Introduction
With the rapid development of electronic commerce
(eCommerce), the security of on-line transactions has
received the great attention. Generally speaking, cryp-
tographic techniques can be adopted to protect the
communication content over the Internet. Public key
encryptions [4] and digital signature schemes [5, 30]
are two fundamental cryptographic mechanisms which

primarily aim for providing confidentiality [9, 15] and
authenticity [30], respectively. The digital signature
scheme can further satisfy the requirement of non-re-
pudiation [31] to prevent the signer’s dishonesty.
Some applications, however, like the contract signing,
the savings withdrawal, on-line auctions and credit
card transactions require all the above security re-

531Information Technology and Control 2017/4/46

quirements simultaneously be achieved. A straight-
forward way would be sign-then-encrypt [36]. Yet,
the approach is costly in terms of computation efforts
and communication overheads. In some special cir-
cumstances, a proxy might be properly delegated to
conduct these confidential transactions, e.g., proxy
auctions and the contract signing by an authorized
proxy signer. Consider group-oriented applications
such as the joint account owned by two or more in-
dividuals. To withdraw money from such account, all
owners must cooperatively sign the withdrawal form
which can only be verified by the bank teller. In case
that account owners are unable to sign personally,
they can delegate their signing power to a proxy signer
who can legitimately conduct transactions on behalf
of them. It thus can be seen that the design of efficient
and provably secure cryptographic schemes fulfilling
such requirements is crucial and benefits to the prac-
tical implementation.

1.2. Related Work
In 1996, Mambo et al. [25, 26] extended the concept
of digital signature and introduced the notion of proxy
signatures. A proxy signature scheme allows the orig-
inal signer to delegate his signing power to an autho-
rized person called proxy signer, such that the proxy
signer can generate a valid proxy signature on behalf
of the original one. As to the proxy delegation, it can be
categorized into four different kinds as follows:
(i). Full delegation [25, 26]: The proxy signer uses the

private key which is the same as the one of the
original signer so that all (proxy) signatures are
signed with the same private key. Consequent-
ly, it is difficult for a verifier to identify the real
signer from a given signature. That is to say, it
cannot provide secure mechanisms to protect
any one of the original and the proxy signers
from being framed by the other.

(ii). Partial delegation [25, 26]: The proxy private
key is further derived from the original signer’s
one based on some cryptographic assumptions,
e.g., the factorization and the discrete logarithm
problems. It is infeasible to compute the original
signer’s private key from the proxy one. Yet, it
needs an additional revocation protocol as no in-
formation (e.g., the period of validity) is bonded
to the delegation. Moreover, a malicious original
signer can easily impersonate the proxy signer

by deriving the corresponding proxy private key.
(iii). Delegation by warrant [28, 37]: A warrant which

contains necessary proxy information, e.g., the
period of validity and the identifiers of the orig-
inal and the proxy signers, could be regarded as
the delegation authorization. The warrant is
then delivered to the proxy signer for convincing
anyone. However, transmitting and verifying the
certificate will incur extra computational and
communicational costs.

(iv). Partial delegation with warrant [16]: This ap-
proach integrates the merits of partial delega-
tion and delegation by warrant. It is also compu-
tationally infeasible for a proxy signer to derive
the original signer’s private key from the proxy
one. Besides, to certify the warrant and validate
the signature can be simultaneously carried out
within a single step, which helps reducing the
computational and communicational costs.

Obviously, the fourth approach, partial delegation with
warrant, is more flexible and secure as compared to the
first three. Because of its efficiency and security com-
pared with the others, we also adopt partial delegation
with warrant to implement the proposed scheme. Up to
the present, lots of variations of proxy signatures have
been proposed [10, 12-14, 16, 23, 33, 34, 36].
In 1994, Horster et al. [8] proposed an authenticated
encryption (AE) scheme which further provides dig-
ital signature schemes with the property of confiden-
tiality and only the designated recipient can verify the
signature instead of everyone. Since only the desig-
nated recipient has the ability to decrypt the cipher-
text and verify the corresponding signature, there
might be a potential drawback that the signer repudi-
ates his signature. In such a circumstance, it is even
difficult for an arbitrator to judge who is lying.
To deal with the case of a later dispute over repudi-
ation, Araki et al. [1] proposed a convertible limited
verifier signature scheme. However, the signature
conversion of their scheme requires the assistance of
the signer and incurs additional computation efforts,
which is considered to be inefficient and unworkable
if the signer is unwilling to cooperate with. More-
over, Zhang and Kim [48] also pointed out that their
scheme can not withstand a universal forgery attack
on an arbitrary chosen message.
In 2002, Wu and Hsu [40] proposed a convertible au-
thenticated encryption (CAE) scheme, in which the

Information Technology and Control 2017/4/46532

signature conversion is rather simple and can be solely
done by the recipient without any computation effort
or communication overhead. Huang and Chang [11]
proposed an enhanced scheme in the next year. How-
ever, both the Wu-Hsu and the Huang-Chang schemes
cannot fulfill the security requirement of confidential-
ity, i.e., the ciphertext is computationally distinguish-
able with respect to two candidate messages. To elim-
inate such a security weakness, Lv et al. [24] proposed
a secure and practical solution. In 2005, Wu et al. [41]
proposed generalized CAE schemes and adapted these
schemes based on elliptic curves [17, 25] for facilitat-
ing gradually popular applications like smart cards [7],
mobile phones and PDAs. Since then, lots of related
works [6, 21, 35, 39, 43] have been proposed.
In 2008, Chien [3] proposed a selectively CAE scheme
allowing either the signer or the designated recipient
to perform the signature conversion. In the next year,
Lee et al. [19] addressed a CAE scheme based on the
ElGamal cryptosystem. Considering the RSA crypto-
system, Wu and Lin [44] also presented a CAE scheme
based on RSA in 2009. Nevertheless, these schemes are
not suitable for the environment of multi-user setting.
To fulfill group-oriented application requirements, Wu
et al. [42] proposed a convertible multi-authenticated
encryption (CMAE) scheme which enables a signing
group composed of multiple signers to generate a valid
authenticated ciphertext. In 2010, Tsai et al. [34] re-
moved the necessity of using one-way hash functions.
Based on Wu et al.’s scheme, Chang [2] addressed an-
other variant with shared verification of multiple des-
ignated recipients. In 2012, Lu et al. [22] presented a
provably CMAE scheme for generalized group com-
munications. Later, Wu et al. [46] addressed a publicly
verifiable PCAE scheme for confidential applications
with proxy delegation. In 2014, Wu and Lin [45] pro-
posed a proxy CAE scheme based on RSA. In 2015, a re-
vocable CAE scheme [20] is also introduced. Yet, none
of the above group-oriented CAE schemes can deal
with the issue of proxy delegation. Although Lai and
Singh [18] had proposed a similar scheme called ID-
based multi-proxy multi-signcryption could solve the
same problem, their scheme incurred time-consuming
bilinear pairing operations and required extra key es-
crow mechanism.

1.3. Our Contribution
In this paper, we elaborate on the merits of CAE
schemes and proxy multi-signature schemes to pro-

pose a novel proxy convertible multi-AE scheme
and its variant with message linkages. The proposed
scheme allows a delegated proxy signer to generate a
valid authenticated ciphertext on behalf of the origi-
nal signing group, such that only a designated recipi-
ent can recover the message and verify its embedded
proxy multi-signature. When the case of a later dis-
pute over repudiation occurs, a designated recipient
can solely convert the authenticated ciphertext into
a publicly verifiable proxy multi-signature without
extra computation or communication cost. Besides,
we further propose a variant with message linkages
to benefit the encryption of a large message. We also
prove that the proposed scheme achieves the secu-
rity requirement of confidentiality against indistin-
guishability under adaptive chosen-ciphertext at-
tacks (IND-CCA2) and that of unforgeability against
existential forgery under adaptive chosen-message
attacks (EF-CMA) in the random oracle model. As
compared with related works, the proposed scheme
not only provides better functionalities, but also has
the provable security.

2. Preliminaries
In this section, we first describe the parties partic-
ipating in the proposed scheme and define the com-
posed algorithms.

2.1. Parties
Without loss of generality, there are (n + 2) parties
participating in a PCMAE scheme including a signing
group (composed of n original signers), an authorized
proxy signer and an intended recipient. All parties act
as probabilistic polynomial-time Turing machines
(PPTM). The original signers will deliver proxy cre-
dentials to the proxy signer. The latter is responsible
for producing an authenticated ciphertext on behalf
of the former. Yet, a dishonest proxy signer might re-
pudiate his ciphertext. Finally, the intended recipient
has the ability to decrypt the ciphertext and verify the
embedded proxy multi-signature. A PCMAE scheme
is said to be correct if the authorized proxy signer can
generate a valid authenticated ciphertext and only the
intended recipient is capable of decrypting it and ver-
ifying the proxy multi-signature.

533Information Technology and Control 2017/4/46

2.2. Algorithms
The proposed PCMAE scheme has the following four
algorithms:
 _ Setup: Initially, the Setup algorithm will generate

public parameters utilized in the system. Let k
be a security parameter. Taking as input 1k, the
algorithm outputs the parameter params.

 _ Credential-gen (CG): The CG algorithm is used for
producing the proxy credential for an authorized
proxy signer. The input information of it is
composed of the identity of proxy signer along with
the private keys of all original signers. The resulted
output is the corresponding proxy credentials.

 _ Proxy-sign (PS): With the PS algorithm, an
authorized proxy signer is able to generate a valid
ciphertext on behalf of the original signing group.
Thus, the input parameter includes a message
m, n proxy credentials, the intended recipient’s
public key and the proxy signer’s private key.
The corresponding output is an authenticated
ciphertext d.

 _ Uncover-verify (UV): The UV algorithm is used for
decrypting authenticated ciphertexts and checking
the validity of embedded proxy multi-signature. It
takes as input a ciphertext d, a decryption key and
all public keys of original and proxy signers. If the
inputted ciphertext d is valid, it returns the signed
message m and its converted proxy multi-signature
W which is publicly verifiable. Otherwise, an error
symbol ¶ is returned instead.

3. The Proposed PCMAE Schemes
We give a concrete construction of our PCMAE
scheme in this section. Also, a variant with message
linkage for manipulating a large message will be pre-
sented. The used notations are stated as Table 1. De-
tailed steps for each algorithm are shown as follows:

3.1. Basic Construction
 _ Setup: Taking as input a security parameter k, the

system authority (SA) selects two large primes
(p, q) and a generator g of order q, where |q| = k
and q | (p - 1). Let h1: {0, 1}k × Zp*→ Zq, h2: {0, 1}k

× Zp*× Zp*× Zp*→ Zq and h3: Zp*→ {0, 1}k be collision
resistant hash functions. The system’s public

Table 1
The used notations

Zp integers modulo p

Zp* multiplicative group of integers modulo p

x∈ Zp* element x in set Zp*

x ←Zp* sampling element x uniformly in set Zp*

a mod b modulo operation: reminder of a divided by b

a | b integer b is divisible by integer a

|x| bit-length of integer x, also absolute value of x

∑∑
∈= Si

i

n

i
i vv ,

1
sum of values vi for i = 1, 2, …, n, or for i∈S

∏∏
∈= Si

i

n

i
i vv ,

1
product of values vi for i = 1, 2, …, n, or for i∈S

⊗ logical operation XOR

 ¬ logical operation NOT

 ∧ logical operation AND

 ∨ logical operation OR

 ∀ for all

Pr[E] probability of event E occurring

parameters params = {p, q, g, h1, h2, h3}. Each user
Ui chooses his private key xi ∈ Zq and computes the
public key as .mod pgy ix

i =
 _ Credential-gen (CG): Let O = {U1, U2, …, Un} be the

group of n original users delegating their signing
power to the proxy signer Up. With the following
steps, Ui ∈ O distributes the proxy share to Up:

Step 1 Ui ∈O first chooses ti ∈R Zq to compute

 Ti = itg mod p, (1)

 and then sends Ti to Up and Uj O, for j
 i.
Step 2 Upon receiving all Tj’s, Ui computes

 pTT j
n
j mod1 , (2)

 i = ti xi h1(mw, T) mod q, (3)
where mw is the warrant consisting of the
identifier of the original and proxy
signers, the delegation duration and so on.
(i, mw, T) is then sent to Up.

Step 3 Upon receiving (i, mw, T), Up verifies

)(mod),(1 pygT Tmh
ii wi . (4)

If it does not hold, (i, mw, T) is
requested to be sent again.

We show that the verification of Eq. (4) works

correctly. From the right-hand side of Eq. (4), we
have

),(1 Tmh
i wi yg

),(),(11 Tmh
i

Txhxt wwii yg

 itg

)(mod pTi (by Eq. (1))
which leads to the left-hand side of Eq. (4).

– Proxy-sign (PS): For signing a message mR{0,

1}k on behalf of the original signing group O, Up
chooses r R Zq to compute

 R = gr mod p, (5)

 = ,
1

n

i
i (6)

 C =

n

i

Tmh
i py w

1

),(,mod1 (7)

 K = yv mod p, (8)
 S = r + (xph2(m, C, K, R)) mod q, (9)
 Q = h3(K) m, (10)

 and then delivers the warrant mw and the
authenticated ciphertext = (Q, S, R, T) to the
designated recipient Uv.

– Uncover-verify (UV): Upon receiving , Uv first

computes C as Eq. (7) and derives K as

 .mod)(1 pTCK vx (11)
He then recovers the message as

 m = Q h3(K), (12)
 and checks the redundancy embedded in m. Uv can

further verify the proxy multi-signature by checking
if

).(mod),,,(2 pCygRT RKCmh
p

S (13)

The correctness of Eqs. (12) and (13) can be easily
confirmed. From the right-hand side of Eq. (12),
we have

Q h3(K)

 = Q h3(pTC vx mod)(1) (by Eq. (11))

 = Q h3(pg vx mod)()
 (by Eqs. (4), (6) and (7))
 = m (by Eq. (8) and (10))

which leads to the left-hand side of Eq. (12).
If the authenticated ciphertext (Q, S, R, T) is

correctly generated, it will pass the test of Eq. (13).
From the right-hand side of Eq. (13), we have

Cyg RKCmh
p

S),,,(2

 Cyg RKCmh
p

RKCmhxr p),,,(),,,(22

 (by Eq. (9))

(1)

and then sends Ti to Up and Uj ∈ O, for j ∈ i.
Step 2 Upon receiving all Tj’s, Ui computes

∏ == pTT j
n
j mod1 (2)

 Ti = itg mod p, (1)

 and then sends Ti to Up and Uj O, for j
 i.
Step 2 Upon receiving all Tj’s, Ui computes

 pTT j
n
j mod1 , (2)

 i = ti xi h1(mw , T) mod q, (3)
where mw is the warrant consisting of the
identifier of the original and proxy
signers, the delegation duration and so on.
(i, mw, T) is then sent to Up.

Step 3 Upon receiving (i, mw, T), Up verifies

)(mod),(1 pygT Tmh
ii wi . (4)

If it does not hold, (i, mw, T) is
requested to be sent again.

We show that the verification of Eq. (4) works

correctly. From the right-hand side of Eq. (4), we
have

),(1 Tmh
i wi yg

),(),(11 Tmh
i

Txhxt wwii yg

 itg

)(mod pTi (by Eq. (1))
which leads to the left-hand side of Eq. (4).

– Proxy-sign (PS): For signing a message mR{0,

1}k on behalf of the original signing group O, Up
chooses r R Zq to compute

 R = gr mod p, (5)

 = ,
1

n

i
i (6)

 C =

n

i

Tmh
i py w

1

),(,mod1 (7)

 K = yv mod p, (8)
 S = r + (xph2(m, C, K, R)) mod q, (9)
 Q = h3(K) m, (10)

 and then delivers the warrant mw and the
authenticated ciphertext = (Q, S, R, T) to the
designated recipient Uv.

– Uncover-verify (UV): Upon receiving , Uv first

computes C as Eq. (7) and derives K as

 .mod)(1 pTCK vx (11)
He then recovers the message as

 m = Q h3(K), (12)
 and checks the redundancy embedded in m. Uv can

further verify the proxy multi-signature by checking
if

).(mod),,,(2 pCygRT RKCmh
p

S (13)

The correctness of Eqs. (12) and (13) can be easily
confirmed. From the right-hand side of Eq. (12),
we have

Q h3(K)

 = Q h3(pTC vx mod)(1) (by Eq. (11))

 = Q h3(pg vx mod)()
 (by Eqs. (4), (6) and (7))
 = m (by Eq. (8) and (10))

which leads to the left-hand side of Eq. (12).
If the authenticated ciphertext (Q, S, R, T) is

correctly generated, it will pass the test of Eq. (13).
From the right-hand side of Eq. (13), we have

Cyg RKCmh
p

S),,,(2

 Cyg RKCmh
p

RKCmhxr p),,,(),,,(22

 (by Eq. (9))

(3)

where mw is the warrant consisting of the identifier
of the original and proxy signers, the delegation du-
ration and so on. (si, mw, T) is then sent to Up.
Step 3 Upon receiving (si, mw, T), Up verifies

Information Technology and Control 2017/4/46534

)(mod),(1 pygT Tmh
ii wiσ= . (4)

If it does not hold, (si, mw, T) is requested to be sent
again.
We show that the verification of Eq. (4) works cor-
rectly. From the right-hand side of Eq. (4), we have

),(1 Tmh
i wi ygσ

),(),(11 Tmh
i

Txhxt wwii yg −=

itg=

)(mod pTi= by Eq. (3)

which leads to the left-hand side of Eq. (4).
 _ Proxy-sign (PS): For signing a message m∈R{0,

1}k on behalf of the original signing group O, Up
chooses r ∈R Zq to compute

 Ti = itg mod p, (1)

 and then sends Ti to Up and Uj O, for j
 i.
Step 2 Upon receiving all Tj’s, Ui computes

 pTT j
n
j mod1 , (2)

 i = ti xi h1(mw, T) mod q, (3)
where mw is the warrant consisting of the
identifier of the original and proxy
signers, the delegation duration and so on.
(i, mw, T) is then sent to Up.

Step 3 Upon receiving (i, mw, T), Up verifies

)(mod),(1 pygT Tmh
ii wi . (4)

If it does not hold, (i, mw, T) is
requested to be sent again.

We show that the verification of Eq. (4) works

correctly. From the right-hand side of Eq. (4), we
have

),(1 Tmh
i wi yg

 R = gr mod p, (5)

 = ,
1

n

i
i (6)

 C =

n

i

Tmh
i py w

1

),(,mod1 (7)

 K = yv mod p, (8)
 S = r + (xph2(m, C, K, R)) mod q, (9)
 Q = h3(K) m, (10)

 and then delivers the warrant mw and the
authenticated ciphertext = (Q, S, R, T) to the
designated recipient Uv.

– Uncover-verify (UV): Upon receiving , Uv first

computes C as Eq. (7) and derives K as

 .mod)(1 pTCK vx (11)
He then recovers the message as

 m = Q h3(K), (12)
 and checks the redundancy embedded in m. Uv can

further verify the proxy multi-signature by checking
if

).(mod),,,(2 pCygRT RKCmh
p

S (13)

The correctness of Eqs. (12) and (13) can be easily
confirmed. From the right-hand side of Eq. (12),
we have

Q h3(K)

 = Q h3(pTC vx mod)(1) (by Eq. (11))

 = Q h3(pg vx mod)()
 (by Eqs. (4), (6) and (7))
 = m (by Eq. (8) and (10))

which leads to the left-hand side of Eq. (12).
If the authenticated ciphertext (Q, S, R, T) is

correctly generated, it will pass the test of Eq. (13).
From the right-hand side of Eq. (13), we have

Cyg RKCmh
p

S),,,(2

 Cyg RKCmh
p

RKCmhxr p),,,(),,,(22

 (by Eq. (9))

(5)

 Ti = itg mod p, (1)

 and then sends Ti to Up and Uj O, for j
 i.
Step 2 Upon receiving all Tj’s, Ui computes

 pTT j
n
j mod1 , (2)

 i = ti xi h1(mw, T) mod q, (3)
where mw is the warrant consisting of the
identifier of the original and proxy
signers, the delegation duration and so on.
(i, mw, T) is then sent to Up.

Step 3 Upon receiving (i, mw, T), Up verifies

)(mod),(1 pygT Tmh
ii wi . (4)

If it does not hold, (i, mw, T) is
requested to be sent again.

We show that the verification of Eq. (4) works

correctly. From the right-hand side of Eq. (4), we
have

),(1 Tmh
i wi yg

 R = gr mod p, (5)

 = ,
1

n

i
i (6)

 C =

n

i

Tmh
i py w

1

),(,mod1 (7)

 K = yv mod p, (8)
 S = r + (xph2(m, C, K, R)) mod q, (9)
 Q = h3(K) m, (10)

 and then delivers the warrant mw and the
authenticated ciphertext = (Q, S, R, T) to the
designated recipient Uv.

– Uncover-verify (UV): Upon receiving , Uv first

computes C as Eq. (7) and derives K as

 .mod)(1 pTCK vx (11)
He then recovers the message as

 m = Q h3(K), (12)
 and checks the redundancy embedded in m. Uv can

further verify the proxy multi-signature by checking
if

).(mod),,,(2 pCygRT RKCmh
p

S (13)

The correctness of Eqs. (12) and (13) can be easily
confirmed. From the right-hand side of Eq. (12),
we have

Q h3(K)

 = Q h3(pTC vx mod)(1) (by Eq. (11))

 = Q h3(pg vx mod)()
 (by Eqs. (4), (6) and (7))
 = m (by Eq. (8) and (10))

which leads to the left-hand side of Eq. (12).
If the authenticated ciphertext (Q, S, R, T) is

correctly generated, it will pass the test of Eq. (13).
From the right-hand side of Eq. (13), we have

Cyg RKCmh
p

S),,,(2

 Cyg RKCmh
p

RKCmhxr p),,,(),,,(22

 (by Eq. (9))

(6)

 Ti = itg mod p, (1)

 and then sends Ti to Up and Uj O, for j
 i.
Step 2 Upon receiving all Tj’s, Ui computes

 pTT j
n
j mod1 , (2)

 i = ti xi h1(mw, T) mod q, (3)
where mw is the warrant consisting of the
identifier of the original and proxy
signers, the delegation duration and so on.
(i, mw, T) is then sent to Up.

Step 3 Upon receiving (i, mw, T), Up verifies

)(mod),(1 pygT Tmh
ii wi . (4)

If it does not hold, (i, mw, T) is
requested to be sent again.

We show that the verification of Eq. (4) works

correctly. From the right-hand side of Eq. (4), we
have

),(1 Tmh
i wi yg

 R = gr mod p, (5)

 = ,
1

n

i
i (6)

 C =

n

i

Tmh
i py w

1

),(,mod1 (7)

 K = yv mod p, (8)
 S = r + (xph2(m, C, K, R)) mod q, (9)
 Q = h3(K) m, (10)

 and then delivers the warrant mw and the
authenticated ciphertext = (Q, S, R, T) to the
designated recipient Uv.

– Uncover-verify (UV): Upon receiving , Uv first

computes C as Eq. (7) and derives K as

 .mod)(1 pTCK vx (11)
He then recovers the message as

 m = Q h3(K), (12)
 and checks the redundancy embedded in m. Uv can

further verify the proxy multi-signature by checking
if

).(mod),,,(2 pCygRT RKCmh
p

S (13)

The correctness of Eqs. (12) and (13) can be easily
confirmed. From the right-hand side of Eq. (12),
we have

Q h3(K)

 = Q h3(pTC vx mod)(1) (by Eq. (11))

 = Q h3(pg vx mod)()
 (by Eqs. (4), (6) and (7))
 = m (by Eq. (8) and (10))

which leads to the left-hand side of Eq. (12).
If the authenticated ciphertext (Q, S, R, T) is

correctly generated, it will pass the test of Eq. (13).
From the right-hand side of Eq. (13), we have

Cyg RKCmh
p

S),,,(2

 Cyg RKCmh
p

RKCmhxr p),,,(),,,(22

 (by Eq. (9))

(7)

 Ti = itg mod p, (1)

 and then sends Ti to Up and Uj O, for j
 i.
Step 2 Upon receiving all Tj’s, Ui computes

 pTT j
n
j mod1 , (2)

 i = ti xi h1(mw, T) mod q, (3)
where mw is the warrant consisting of the
identifier of the original and proxy
signers, the delegation duration and so on.
(i, mw, T) is then sent to Up.

Step 3 Upon receiving (i, mw, T), Up verifies

)(mod),(1 pygT Tmh
ii wi . (4)

If it does not hold, (i, mw, T) is
requested to be sent again.

We show that the verification of Eq. (4) works

correctly. From the right-hand side of Eq. (4), we
have

),(1 Tmh
i wi yg

 R = gr mod p, (5)

 = ,
1

n

i
i (6)

 C =

n

i

Tmh
i py w

1

),(,mod1 (7)

 K = yv mod p, (8)
 S = r + (xph2(m, C, K, R)) mod q, (9)
 Q = h3(K) m, (10)

 and then delivers the warrant mw and the
authenticated ciphertext = (Q, S, R, T) to the
designated recipient Uv.

– Uncover-verify (UV): Upon receiving , Uv first

computes C as Eq. (7) and derives K as

 .mod)(1 pTCK vx (11)
He then recovers the message as

 m = Q h3(K), (12)
 and checks the redundancy embedded in m. Uv can

further verify the proxy multi-signature by checking
if

).(mod),,,(2 pCygRT RKCmh
p

S (13)

The correctness of Eqs. (12) and (13) can be easily
confirmed. From the right-hand side of Eq. (12),
we have

Q h3(K)

 = Q h3(pTC vx mod)(1) (by Eq. (11))

 = Q h3(pg vx mod)()
 (by Eqs. (4), (6) and (7))
 = m (by Eq. (8) and (10))

which leads to the left-hand side of Eq. (12).
If the authenticated ciphertext (Q, S, R, T) is

correctly generated, it will pass the test of Eq. (13).
From the right-hand side of Eq. (13), we have

Cyg RKCmh
p

S),,,(2

 Cyg RKCmh
p

RKCmhxr p),,,(),,,(22

 (by Eq. (9))

(8)

 Ti = itg mod p, (1)

 and then sends Ti to Up and Uj O, for j
 i.
Step 2 Upon receiving all Tj’s, Ui computes

 pTT j
n
j mod1 , (2)

 i = ti xi h1(mw, T) mod q, (3)
where mw is the warrant consisting of the
identifier of the original and proxy
signers, the delegation duration and so on.
(i, mw, T) is then sent to Up.

Step 3 Upon receiving (i, mw, T), Up verifies

)(mod),(1 pygT Tmh
ii wi . (4)

If it does not hold, (i, mw, T) is
requested to be sent again.

We show that the verification of Eq. (4) works

correctly. From the right-hand side of Eq. (4), we
have

),(1 Tmh
i wi yg

 R = gr mod p, (5)

 = ,
1

n

i
i (6)

 C =

n

i

Tmh
i py w

1

),(,mod1 (7)

 K = yv mod p, (8)
 S = r + (xph2(m, C, K, R)) mod q, (9)
 Q = h3(K) m, (10)

 and then delivers the warrant mw and the
authenticated ciphertext = (Q, S, R, T) to the
designated recipient Uv.

– Uncover-verify (UV): Upon receiving , Uv first

computes C as Eq. (7) and derives K as

 .mod)(1 pTCK vx (11)
He then recovers the message as

 m = Q h3(K), (12)
 and checks the redundancy embedded in m. Uv can

further verify the proxy multi-signature by checking
if

).(mod),,,(2 pCygRT RKCmh
p

S (13)

The correctness of Eqs. (12) and (13) can be easily
confirmed. From the right-hand side of Eq. (12),
we have

Q h3(K)

 = Q h3(pTC vx mod)(1) (by Eq. (11))

 = Q h3(pg vx mod)()
 (by Eqs. (4), (6) and (7))
 = m (by Eq. (8) and (10))

which leads to the left-hand side of Eq. (12).
If the authenticated ciphertext (Q, S, R, T) is

correctly generated, it will pass the test of Eq. (13).
From the right-hand side of Eq. (13), we have

Cyg RKCmh
p

S),,,(2

 Cyg RKCmh
p

RKCmhxr p),,,(),,,(22

 (by Eq. (9))

(9)

 Ti = itg mod p, (1)

 and then sends Ti to Up and Uj O, for j
 i.
Step 2 Upon receiving all Tj’s, Ui computes

 pTT j
n
j mod1 , (2)

 i = ti xi h1(mw, T) mod q, (3)
where mw is the warrant consisting of the
identifier of the original and proxy
signers, the delegation duration and so on.
(i, mw, T) is then sent to Up.

Step 3 Upon receiving (i, mw, T), Up verifies

)(mod),(1 pygT Tmh
ii wi . (4)

If it does not hold, (i, mw, T) is
requested to be sent again.

We show that the verification of Eq. (4) works

correctly. From the right-hand side of Eq. (4), we
have

),(1 Tmh
i wi yg

 R = gr mod p, (5)

 = ,
1

n

i
i (6)

 C =

n

i

Tmh
i py w

1

),(,mod1 (7)

 K = yv mod p, (8)
 S = r + (xph2(m, C, K, R)) mod q, (9)
 Q = h3(K) m, (10)

 and then delivers the warrant mw and the
authenticated ciphertext = (Q, S, R, T) to the
designated recipient Uv.

– Uncover-verify (UV): Upon receiving , Uv first

computes C as Eq. (7) and derives K as

 .mod)(1 pTCK vx (11)
He then recovers the message as

 m = Q h3(K), (12)
 and checks the redundancy embedded in m. Uv can

further verify the proxy multi-signature by checking
if

).(mod),,,(2 pCygRT RKCmh
p

S (13)

The correctness of Eqs. (12) and (13) can be easily
confirmed. From the right-hand side of Eq. (12),
we have

Q h3(K)

 = Q h3(pTC vx mod)(1) (by Eq. (11))

 = Q h3(pg vx mod)()
 (by Eqs. (4), (6) and (7))
 = m (by Eq. (8) and (10))

which leads to the left-hand side of Eq. (12).
If the authenticated ciphertext (Q, S, R, T) is

correctly generated, it will pass the test of Eq. (13).
From the right-hand side of Eq. (13), we have

Cyg RKCmh
p

S),,,(2

 Cyg RKCmh
p

RKCmhxr p),,,(),,,(22

 (by Eq. (9))

(10)

and then delivers the warrant mw and the authen-
ticated ciphertext d = (Q, S, R, T) to the designated
recipient Uv.

 _ Uncover-verify (UV): Upon receiving d, Uv first
computes C as Eq. (7) and derives K as

 .mod)(1 pTCK vx−= (11)
He then recovers the message as

 m = Q ⊕ h3(K), (12)
 and checks the redundancy embedded in m. Uv can

further verify the proxy multi-signature by checking
if

).(mod),,,(2 pCygRT RKCmh
p

S= (13)

The correctness of Eqs. (12) and (13) can be easily
confirmed. From the right-hand side of Eq. (12),
we have

Q ⊕ h3(K)

 = Q ⊕ h3(pTC vx mod)(1−) (by Eq. (11))

 = Q ⊕ h3(pg vx mod)(σ)
 (by Eqs. (4), (6) and (7))
 = m (by Eq. (8) and (10))

which leads to the left-hand side of Eq. (12).
If the authenticated ciphertext (Q, S, R, T) is

correctly generated, it will pass the test of Eq. (13).
From the right-hand side of Eq. (13), we have

Cyg RKCmh
p

S),,,(2

 Cyg RKCmh
p

RKCmhxr p),,,(),,,(22−+= σ

 (by Eq. (9))

(11)

He then recovers the message as

 .mod)(1 pTCK vx−= (11)
He then recovers the message as

 m = Q ⊕ h3(K), (12)
 and checks the redundancy embedded in m. Uv can

further verify the proxy multi-signature by checking
if

).(mod),,,(2 pCygRT RKCmh
p

S= (13)

The correctness of Eqs. (12) and (13) can be easily
confirmed. From the right-hand side of Eq. (12),
we have

Q ⊕ h3(K)

 = Q ⊕ h3(pTC vx mod)(1−) (by Eq. (11))

 = Q ⊕ h3(pg vx mod)(σ)
 (by Eqs. (4), (6) and (7))
 = m (by Eq. (8) and (10))

which leads to the left-hand side of Eq. (12).
If the authenticated ciphertext (Q, S, R, T) is

correctly generated, it will pass the test of Eq. (13).
From the right-hand side of Eq. (13), we have

Cyg RKCmh
p

S),,,(2

 Cyg RKCmh
p

RKCmhxr p),,,(),,,(22−+= σ

 (by Eq. (9))

(12)

and checks the redundancy embedded in m. Uv
can further verify the proxy multi-signature by
checking if

 .mod)(1 pTCK vx−= (11)
He then recovers the message as

 m = Q ⊕ h3(K), (12)
 and checks the redundancy embedded in m. Uv can

further verify the proxy multi-signature by checking
if

).(mod),,,(2 pCygRT RKCmh
p

S= (13)

The correctness of Eqs. (12) and (13) can be easily
confirmed. From the right-hand side of Eq. (12),
we have

Q ⊕ h3(K)

 = Q ⊕ h3(pTC vx mod)(1−) (by Eq. (11))

 = Q ⊕ h3(pg vx mod)(σ)
 (by Eqs. (4), (6) and (7))
 = m (by Eq. (8) and (10))

which leads to the left-hand side of Eq. (12).
If the authenticated ciphertext (Q, S, R, T) is

correctly generated, it will pass the test of Eq. (13).
From the right-hand side of Eq. (13), we have

Cyg RKCmh
p

S),,,(2

 Cyg RKCmh
p

RKCmhxr p),,,(),,,(22−+= σ

 (by Eq. (9))

(13)

The correctness of Eqs. (12) and (13) can be easily
confirmed. From the right-hand side of Eq. (12), we
have

 .mod)(1 pTCK vx−= (11)
He then recovers the message as

 m = Q ⊕ h3(K), (12)
 and checks the redundancy embedded in m. Uv can

further verify the proxy multi-signature by checking
if

).(mod),,,(2 pCygRT RKCmh
p

S= (13)

The correctness of Eqs. (12) and (13) can be easily
confirmed. From the right-hand side of Eq. (12),
we have

Q ⊕ h3(K)

 = Q ⊕ h3(pTC vx mod)(1−) (by Eq. (11))

 = Q ⊕ h3(pg vx mod)(σ)
 (by Eqs. (4), (6) and (7))
 = m (by Eq. (8) and (10))

which leads to the left-hand side of Eq. (12).
If the authenticated ciphertext (Q, S, R, T) is

correctly generated, it will pass the test of Eq. (13).
From the right-hand side of Eq. (13), we have

Cyg RKCmh
p

S),,,(2

 Cyg RKCmh
p

RKCmhxr p),,,(),,,(22−+= σ

 (by Eq. (9))

by Eq. (11)

 .mod)(1 pTCK vx−= (11)
He then recovers the message as

 m = Q ⊕ h3(K), (12)
 and checks the redundancy embedded in m. Uv can

further verify the proxy multi-signature by checking
if

).(mod),,,(2 pCygRT RKCmh
p

S= (13)

The correctness of Eqs. (12) and (13) can be easily
confirmed. From the right-hand side of Eq. (12),
we have

Q ⊕ h3(K)

 = Q ⊕ h3(pTC vx mod)(1−) (by Eq. (11))

 = Q ⊕ h3(pg vx mod)(σ)
 (by Eqs. (4), (6) and (7))
 = m (by Eq. (8) and (10))

which leads to the left-hand side of Eq. (12).
If the authenticated ciphertext (Q, S, R, T) is

correctly generated, it will pass the test of Eq. (13).
From the right-hand side of Eq. (13), we have

Cyg RKCmh
p

S),,,(2

 Cyg RKCmh
p

RKCmhxr p),,,(),,,(22−+= σ

 (by Eq. (9))

by Eqs. (4), (6) and (7)

 .mod)(1 pTCK vx−= (11)
He then recovers the message as

 m = Q ⊕ h3(K), (12)
 and checks the redundancy embedded in m. Uv can

further verify the proxy multi-signature by checking
if

).(mod),,,(2 pCygRT RKCmh
p

S= (13)

The correctness of Eqs. (12) and (13) can be easily
confirmed. From the right-hand side of Eq. (12),
we have

Q ⊕ h3(K)

 = Q ⊕ h3(pTC vx mod)(1−) (by Eq. (11))

 = Q ⊕ h3(pg vx mod)(σ)
 (by Eqs. (4), (6) and (7))
 = m (by Eq. (8) and (10))

which leads to the left-hand side of Eq. (12).
If the authenticated ciphertext (Q, S, R, T) is

correctly generated, it will pass the test of Eq. (13).
From the right-hand side of Eq. (13), we have

Cyg RKCmh
p

S),,,(2

 Cyg RKCmh
p

RKCmhxr p),,,(),,,(22−+= σ

 (by Eq. (9))

by Eq. (8) and (10)

which leads to the left-hand side of Eq. (12).
If the authenticated ciphertext (Q, S, R, T) is cor-
rectly generated, it will pass the test of Eq. (13).
From the right-hand side of Eq. (13), we have

 .mod)(1 pTCK vx−= (11)
He then recovers the message as

 m = Q ⊕ h3(K), (12)
 and checks the redundancy embedded in m. Uv can

further verify the proxy multi-signature by checking
if

).(mod),,,(2 pCygRT RKCmh
p

S= (13)

The correctness of Eqs. (12) and (13) can be easily
confirmed. From the right-hand side of Eq. (12),
we have

Q ⊕ h3(K)

 = Q ⊕ h3(pTC vx mod)(1−) (by Eq. (11))

 = Q ⊕ h3(pg vx mod)(σ)
 (by Eqs. (4), (6) and (7))
 = m (by Eq. (8) and (10))

which leads to the left-hand side of Eq. (12).
If the authenticated ciphertext (Q, S, R, T) is

correctly generated, it will pass the test of Eq. (13).
From the right-hand side of Eq. (13), we have

Cyg RKCmh
p

S),,,(2

 Cyg RKCmh
p

RKCmhxr p),,,(),,,(22−+= σ

 (by Eq. (9))
by Eq. (9)

CRgσ= (by Eq. (5))

)(mod pRT= (by Eqs. (2), (4) and (6))
which leads to the left-hand side of Eq. (13).

When a later dispute over repudiation occurs, Uv
can reveal the converted proxy multi-signature Ω = (S,
R, T, K), the warrant mw and the original message m
to prove the proxy signer’s dishonesty without any
additional cost. Thus, anyone can verify the converted
proxy multi-signature with the assistance of Eqs. (7)
and (13).

3.2 Variant with Message Linkages

Consider the practical implementation that the
original message may be large. It therefore will cause
the difficulty in encryption. In the subsection, we
propose a variant with message linkages to benefit the
encryption of a large message by dividing it into lots
of small message blocks. The construction is similar
as that in Section 3.1. We only describe the different
parts as follows:

– Proxy-sign (PS): For signing a large message m on
behalf of the original signing group O, Up first
divides the message m into n pieces, i.e., m = m1 ||
m2 || … || mn, mi’s ∈GF(p), and then chooses r ∈R
Zq and w0 = 0 to compute R, σ, C, K and S as Eqs.
(5) to (9). Up further computes

wi = mi ⋅ h3(wi − 1 ⊕ h3(K)) mod p,
for i = 1, 2,…, n, (10*)

and delivers the warrant mw along with δ = (S, R, T,
w1, w2, …, wn) to the designated recipient Uv.

– Uncover-verify (UV): Upon receiving it, Uv first
derives C and K as Eqs. (7) and (11), respectively.
He then computes

mi = wi ⋅ h3(wi − 1 ⊕ h3(K))−1 mod p,
for i = 1, 2,…, n, (12*)

and recovers the original message m as m1 || m2 || …
|| mn. Uv can further verify the proxy
multi-signature by checking Eq. (13).

We show that with the authenticated ciphertext
(S, R, T, w1, w2, …, wn) and the warrant mw, the
designated recipient Uv can recover the message m
and check its validity with Eq. (12*). From the
right-hand side of Eq. (12*), we have

wi ⋅ h3(wi − 1 ⊕ h3(K))−1

= mi ⋅ h3(wi − 1 ⊕ h3(K)) ⋅ h3(wi − 1 ⊕ h3(K))−1

(by Eq. (10*))
= mi (mod p)

which leads to the left-hand side of Eq. (12*).

4. Security Proof and Comparison

In this section, we briefly review the security notions,
state the security model and prove the security of our
proposed scheme. Some comparisons with related
schemes are also made.

4.1 Security Notions

Discrete Logarithm Problem; DLP
Let p and q be two large primes satisfying q | p −

1, and g a generator of order q over GF(p). The
discrete logarithm problem is, given an instance (y, p,
q, g), where y = gx mod p for some x ∈ Zq, to derive
x.

Discrete Logarithm (DL) Assumption
Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I

is the universe of all instances and |p| represents the
bit-length of p. For every probabilistic
polynomial-time algorithm A, every positive
polynomial P(⋅) and all sufficiently large k, the
algorithm A can solve the DLP with the advantage at
most 1/P(k), i.e.,

Pr[A(y, p, q, g) = Log p, q, g(y),

(p, q, g) ← Ik, y ← *
pZ] ≤ 1/P(k).

The probability is taken over the uniformly and
independently chosen instance with a given security
parameter k and over the random choices of A.

Definition 1. The (t, ε)-DL assumption holds if there
is no polynomial-time adversary that can solve the
DLP in time at most t and with the advantage ε.

Computational Diffie-Hellman Problem; CDHP
Let p and q be two large primes satisfying that q |

p − 1, and g a generator of order q over GF(p). The
computational Diffie-Hellman problem is, given an
instance (p, q, g, ga, gb) for some a, b ∈ Zq, to derive
gab mod p.

Computational Diffie-Hellman (CDH) Assumption
Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I

is the universe of all instances and |p| represents the
bit-length of p. For every probabilistic
polynomial-time algorithm A, every positive
polynomial P(⋅) and all sufficiently large k, the
algorithm A can solve the CDHP with the advantage
at most 1/P(k), i.e.,

Pr[A(p, q, g, ga, gb) = gab,
(p, q, g) ← Ik, a, b ← Zq] ≤ 1/P(k).

The probability is taken over the uniformly and
independently chosen instance with a given security
parameter k and over the random choices of A.

by Eq. (5)CRgσ= (by Eq. (5))

)(mod pRT= (by Eqs. (2), (4) and (6))
which leads to the left-hand side of Eq. (13).

When a later dispute over repudiation occurs, Uv
can reveal the converted proxy multi-signature Ω = (S,
R, T, K), the warrant mw and the original message m
to prove the proxy signer’s dishonesty without any
additional cost. Thus, anyone can verify the converted
proxy multi-signature with the assistance of Eqs. (7)
and (13).

3.2 Variant with Message Linkages

Consider the practical implementation that the
original message may be large. It therefore will cause
the difficulty in encryption. In the subsection, we
propose a variant with message linkages to benefit the
encryption of a large message by dividing it into lots
of small message blocks. The construction is similar
as that in Section 3.1. We only describe the different
parts as follows:

– Proxy-sign (PS): For signing a large message m on
behalf of the original signing group O, Up first
divides the message m into n pieces, i.e., m = m1 ||
m2 || … || mn, mi’s ∈GF(p), and then chooses r ∈R
Zq and w0 = 0 to compute R, σ, C, K and S as Eqs.
(5) to (9). Up further computes

wi = mi ⋅ h3(wi − 1 ⊕ h3(K)) mod p,
for i = 1, 2,…, n, (10*)

and delivers the warrant mw along with δ = (S, R, T,
w1, w2, …, wn) to the designated recipient Uv.

– Uncover-verify (UV): Upon receiving it, Uv first
derives C and K as Eqs. (7) and (11), respectively.
He then computes

mi = wi ⋅ h3(wi − 1 ⊕ h3(K))−1 mod p,
for i = 1, 2,…, n, (12*)

and recovers the original message m as m1 || m2 || …
|| mn. Uv can further verify the proxy
multi-signature by checking Eq. (13).

We show that with the authenticated ciphertext
(S, R, T, w1, w2, …, wn) and the warrant mw, the
designated recipient Uv can recover the message m
and check its validity with Eq. (12*). From the
right-hand side of Eq. (12*), we have

wi ⋅ h3(wi − 1 ⊕ h3(K))−1

= mi ⋅ h3(wi − 1 ⊕ h3(K)) ⋅ h3(wi − 1 ⊕ h3(K))−1

(by Eq. (10*))
= mi (mod p)

which leads to the left-hand side of Eq. (12*).

4. Security Proof and Comparison

In this section, we briefly review the security notions,
state the security model and prove the security of our
proposed scheme. Some comparisons with related
schemes are also made.

4.1 Security Notions

Discrete Logarithm Problem; DLP
Let p and q be two large primes satisfying q | p −

1, and g a generator of order q over GF(p). The
discrete logarithm problem is, given an instance (y, p,
q, g), where y = gx mod p for some x ∈ Zq, to derive
x.

Discrete Logarithm (DL) Assumption
Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I

is the universe of all instances and |p| represents the
bit-length of p. For every probabilistic
polynomial-time algorithm A, every positive
polynomial P(⋅) and all sufficiently large k, the
algorithm A can solve the DLP with the advantage at
most 1/P(k), i.e.,

Pr[A(y, p, q, g) = Log p, q, g(y),

(p, q, g) ← Ik, y ← *
pZ] ≤ 1/P(k).

The probability is taken over the uniformly and
independently chosen instance with a given security
parameter k and over the random choices of A.

Definition 1. The (t, ε)-DL assumption holds if there
is no polynomial-time adversary that can solve the
DLP in time at most t and with the advantage ε.

Computational Diffie-Hellman Problem; CDHP
Let p and q be two large primes satisfying that q |

p − 1, and g a generator of order q over GF(p). The
computational Diffie-Hellman problem is, given an
instance (p, q, g, ga, gb) for some a, b ∈ Zq, to derive
gab mod p.

Computational Diffie-Hellman (CDH) Assumption
Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I

is the universe of all instances and |p| represents the
bit-length of p. For every probabilistic
polynomial-time algorithm A, every positive
polynomial P(⋅) and all sufficiently large k, the
algorithm A can solve the CDHP with the advantage
at most 1/P(k), i.e.,

Pr[A(p, q, g, ga, gb) = gab,
(p, q, g) ← Ik, a, b ← Zq] ≤ 1/P(k).

The probability is taken over the uniformly and
independently chosen instance with a given security
parameter k and over the random choices of A.

by Eqs. (2), (4) and (6)

which leads to the left-hand side of Eq. (13).
When a later dispute over repudiation occurs, Uv
can reveal the converted proxy multi-signature
W = (S, R, T, K), the warrant mw and the original
message m to prove the proxy signer’s dishonesty
without any additional cost. Thus, anyone can ver-
ify the converted proxy multi-signature with the
assistance of Eqs. (7) and (13).

3.2. Variant with Message Linkages
Consider the practical implementation that the orig-
inal message may be large. It therefore will cause the
difficulty in encryption. In the subsection, we propose
a variant with message linkages to benefit the encryp-
tion of a large message by dividing it into lots of small
message blocks. The construction is similar as that
in Section 3.1. We only describe the different parts as
follows:
 _ Proxy-sign (PS): For signing a large message m

on behalf of the original signing group O, Up first
divides the message m into n pieces, i.e., m = m1 ||

535Information Technology and Control 2017/4/46

m2 || … || mn, mi’s ∈GF(p), and then chooses r ∈R Zq
and w0 = 0 to compute R, s, C, K and S as Eqs. (5) to
(9). Up further computes

wi = mi ⋅ h3(wi − 1 ⊕ h3(K)) mod p,
 for i = 1, 2,…, n, (10*)

mi = wi ⋅ h3(wi − 1 ⊕ h3(K))−1 mod p,
 for i = 1, 2,…, n, (12*)

 and recovers the original message m as m1 || m2 || …
|| mn. Uv can further verify the proxy
multi-signature by checking Eq. (13).

We show that with the authenticated ciphertext
(S, R, T, w1, w2, …, wn) and the warrant mw, the
designated recipient Uv can recover the message m
and check its validity with Eq. (12*). From the
right-hand side of Eq. (12*), we have

wi ⋅ h3(wi − 1 ⊕ h3(K))−1

 = mi ⋅ h3(wi − 1 ⊕ h3(K)) ⋅ h3(wi − 1 ⊕ h3(K))−1

 (by Eq. (10*))
 = mi (mod p)

which leads to the left-hand side of Eq. (12*).

4. Security Proof and Comparison

In this section, we briefly review the security notions,
state the security model and prove the security of our
proposed scheme. Some comparisons with related
schemes are also made.

4.1 Security Notions

Discrete Logarithm Problem; DLP
Let p and q be two large primes satisfying q | p −

1, and g a generator of order q over GF(p). The
discrete logarithm problem is, given an instance (y, p,
q, g), where y = gx mod p for some x ∈ Zq, to derive
x.

Discrete Logarithm (DL) Assumption

Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I
is the universe of all instances and |p| represents the
bit-length of p. For every probabilistic
polynomial-time algorithm A, every positive
polynomial P(⋅) and all sufficiently large k, the
algorithm A can solve the DLP with the advantage at
most 1/P(k), i.e.,

Pr[A(y, p, q, g) = Log p, q, g(y),

(p, q, g) ← Ik, y ← *
pZ] ≤ 1/P(k).

The probability is taken over the uniformly and
independently chosen instance with a given security
parameter k and over the random choices of A.

Definition 1. The (t, ε)-DL assumption holds if there
is no polynomial-time adversary that can solve the
DLP in time at most t and with the advantage ε.

Computational Diffie-Hellman Problem; CDHP

Let p and q be two large primes satisfying that q |
p − 1, and g a generator of order q over GF(p). The
computational Diffie-Hellman problem is, given an
instance (p, q, g, ga, gb) for some a, b ∈ Zq, to derive
gab mod p.

Computational Diffie-Hellman (CDH) Assumption

Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I
is the universe of all instances and |p| represents the
bit-length of p. For every probabilistic
polynomial-time algorithm A, every positive
polynomial P(⋅) and all sufficiently large k, the
algorithm A can solve the CDHP with the advantage
at most 1/P(k), i.e.,

Pr[A(p, q, g, ga, gb) = gab,
(p, q, g) ← Ik, a, b ← Zq] ≤ 1/P(k).

The probability is taken over the uniformly and
independently chosen instance with a given security
parameter k and over the random choices of A.

(10*)

and delivers the warrant mw along with d = (S, R, T, w1,
w2, …, wn) to the designated recipient Uv.
 _ Uncover-verify (UV): Upon receiving it, Uv first

derives C and K as Eqs. (7) and (11), respectively.
He then computes

wi = mi ⋅ h3(wi − 1 ⊕ h3(K)) mod p,
 for i = 1, 2,…, n, (10*)

mi = wi ⋅ h3(wi − 1 ⊕ h3(K))−1 mod p,
 for i = 1, 2,…, n, (12*)

 and recovers the original message m as m1 || m2 || …
|| mn. Uv can further verify the proxy
multi-signature by checking Eq. (13).

We show that with the authenticated ciphertext
(S, R, T, w1, w2, …, wn) and the warrant mw, the
designated recipient Uv can recover the message m
and check its validity with Eq. (12*). From the
right-hand side of Eq. (12*), we have

wi ⋅ h3(wi − 1 ⊕ h3(K))−1

 = mi ⋅ h3(wi − 1 ⊕ h3(K)) ⋅ h3(wi − 1 ⊕ h3(K))−1

 (by Eq. (10*))
 = mi (mod p)

which leads to the left-hand side of Eq. (12*).

4. Security Proof and Comparison

In this section, we briefly review the security notions,
state the security model and prove the security of our
proposed scheme. Some comparisons with related
schemes are also made.

4.1 Security Notions

Discrete Logarithm Problem; DLP
Let p and q be two large primes satisfying q | p −

1, and g a generator of order q over GF(p). The
discrete logarithm problem is, given an instance (y, p,
q, g), where y = gx mod p for some x ∈ Zq, to derive
x.

Discrete Logarithm (DL) Assumption

Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I
is the universe of all instances and |p| represents the
bit-length of p. For every probabilistic
polynomial-time algorithm A, every positive
polynomial P(⋅) and all sufficiently large k, the
algorithm A can solve the DLP with the advantage at
most 1/P(k), i.e.,

Pr[A(y, p, q, g) = Log p, q, g(y),

(p, q, g) ← Ik, y ← *
pZ] ≤ 1/P(k).

The probability is taken over the uniformly and
independently chosen instance with a given security
parameter k and over the random choices of A.

Definition 1. The (t, ε)-DL assumption holds if there
is no polynomial-time adversary that can solve the
DLP in time at most t and with the advantage ε.

Computational Diffie-Hellman Problem; CDHP

Let p and q be two large primes satisfying that q |
p − 1, and g a generator of order q over GF(p). The
computational Diffie-Hellman problem is, given an
instance (p, q, g, ga, gb) for some a, b ∈ Zq, to derive
gab mod p.

Computational Diffie-Hellman (CDH) Assumption

Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I
is the universe of all instances and |p| represents the
bit-length of p. For every probabilistic
polynomial-time algorithm A, every positive
polynomial P(⋅) and all sufficiently large k, the
algorithm A can solve the CDHP with the advantage
at most 1/P(k), i.e.,

Pr[A(p, q, g, ga, gb) = gab,
(p, q, g) ← Ik, a, b ← Zq] ≤ 1/P(k).

The probability is taken over the uniformly and
independently chosen instance with a given security
parameter k and over the random choices of A.

(12*)

and recovers the original message m as m1 || m2 || …
|| mn. Uv can further verify the proxy multi-signa-
ture by checking Eq. (13).
We show that with the authenticated ciphertext
(S, R, T, w1, w2, …, wn) and the warrant mw, the desig-
nated recipient Uv can recover the message m and
check its validity with Eq. (12*). From the right-
hand side of Eq. (12*), we have

wi ⋅ h3(wi − 1 ⊕ h3(K))−1

mi ⋅ h3(wi − 1 ⊕ h3(K)) ⋅ h3(wi − 1 ⊕ h3(K))−1

(b E (10*

by Eq.
(10*)

wi ⋅ h3(wi − 1 ⊕ h3(K))−1

 = mi ⋅ h3(wi − 1 ⊕ h3(K)) ⋅ h3(wi − 1 ⊕ h3(K))−1

 (by Eq. (10*))
 = mi (mod p)

which leads to the left-hand side of Eq. (12*).

4. Security Proof and Comparison

In this section, we briefly review the security notions,
state the security model and prove the security of our
proposed scheme. Some comparisons with related
schemes are also made.

4.1 Security Notions

Discrete Logarithm Problem; DLP
Let p and q be two large primes satisfying q | p −

1, and g a generator of order q over GF(p). The
discrete logarithm problem is, given an instance (y, p,
q, g), where y = gx mod p for some x ∈ Zq, to derive
x.

Discrete Logarithm (DL) Assumption

Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I
is the universe of all instances and |p| represents the
bit-length of p. For every probabilistic
polynomial-time algorithm A, every positive
polynomial P(⋅) and all sufficiently large k, the
algorithm A can solve the DLP with the advantage at
most 1/P(k), i.e.,

Pr[A(y, p, q, g) = Log p, q, g(y),

(p, q, g) ← Ik, y ← *
pZ] ≤ 1/P(k).

The probability is taken over the uniformly and
independently chosen instance with a given security
parameter k and over the random choices of A.

Definition 1. The (t, ε)-DL assumption holds if there
is no polynomial-time adversary that can solve the
DLP in time at most t and with the advantage ε.

Computational Diffie-Hellman Problem; CDHP

Let p and q be two large primes satisfying that q |
p − 1, and g a generator of order q over GF(p). The
computational Diffie-Hellman problem is, given an
instance (p, q, g, ga, gb) for some a, b ∈ Zq, to derive
gab mod p.

Computational Diffie-Hellman (CDH) Assumption

Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I
is the universe of all instances and |p| represents the
bit-length of p. For every probabilistic
polynomial-time algorithm A, every positive
polynomial P(⋅) and all sufficiently large k, the
algorithm A can solve the CDHP with the advantage
at most 1/P(k), i.e.,

Pr[A(p, q, g, ga, gb) = gab,
(p, q, g) ← Ik, a, b ← Zq] ≤ 1/P(k).

The probability is taken over the uniformly and
independently chosen instance with a given security
parameter k and over the random choices of A.

which leads to the left-hand side of Eq. (12*).

4. Security Proof and Comparison
In this section, we briefly review the security notions,
state the security model and prove the security of our
proposed scheme. Some comparisons with related
schemes are also made.

4.1. Security Notions
Discrete Logarithm Problem; DLP
Let p and q be two large primes satisfying q | p - 1, and
g a generator of order q over GF(p). The discrete loga-
rithm problem is, given an instance (y, p, q, g), where y
= gx mod p for some x ∈ Zq, to derive x.

Discrete Logarithm (DL) Assumption
Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I is

the universe of all instances and |p| represents the bit-
length of p. For every probabilistic polynomial-time
algorithm A, every positive polynomial P(×) and all
sufficiently large k, the algorithm A can solve the DLP
with the advantage at most 1/P(k), i.e.,

Pr[A(y, p, q, g) = Log p, q, g(y),

(p, q, g) ← Ik, y ← *
pZ] ≤ 1/P(k).

Pr[A(p, q, g, ga, gb) = gab,

(p, q, g) ← Ik, a, b ← Zq] ≤ 1/P(k).

The probability is taken over the uniformly and inde-
pendently chosen instance with a given security pa-
rameter k and over the random choices of A.
Definition 1. The (t, e)-DL assumption holds if there is
no polynomial-time adversary that can solve the DLP
in time at most t and with the advantage e.

Computational Diffie-Hellman Problem; CDHP
Let p and q be two large primes satisfying that q | p - 1,
and g a generator of order q over GF(p). The compu-
tational Diffie-Hellman problem is, given an instance
(p, q, g, ga, gb) for some a, b ∈ Zq, to derive gab mod p.

Computational Diffie-Hellman (CDH) Assumption
Let Ik = {(p, q, g) ∈ I | |p| = k} with k ∈ N, where I is
the universe of all instances and |p| represents the
bit-length of p. For every probabilistic polynomi-
al-time algorithm A, every positive polynomial P(×)
and all sufficiently large k, the algorithm A can solve
the CDHP with the advantage at most 1/P(k), i.e.,

Pr[A(y, p, q, g) = Log p, q, g(y),

(p, q, g) ← Ik, y ← *
pZ] ≤ 1/P(k).

Pr[A(p, q, g, ga, gb) = gab,
(p, q, g) ← Ik, a, b ← Zq] ≤ 1/P(k).

The probability is taken over the uniformly and inde-
pendently chosen instance with a given security pa-
rameter k and over the random choices of A.
Definition 2. The (t, e)-CDH assumption holds if there
is no polynomial-time adversary that can solve the
CDHP in time at most t and with the advantage e.

4.2. Security Model
The security requirements of the proposed PCMAE
scheme and its variant are message confidentiality
and unforgeability. The widely accepted notion for
the security of message confidentiality comes from
the definition of indistinguishability-based security,
i.e., the adversary attempts to distinguish a target ci-

Information Technology and Control 2017/4/46536

phertext with respect to two candidate messages. We
define these notions as follows:
Definition 3. (Confidentiality) A PCMAE scheme
is said to achieve the security requirement of confi-
dentiality against indistinguishability under adap-
tive chosen-ciphertext attacks (IND-CCA2) if there
is no probabilistic polynomial-time adversary A with
non-negligible advantage in the following game played
with a challenger B:
Setup: The challenger B first runs the Setup(1k) al-
gorithm and sends the system’s public parameters
params to the adversary A.
Phase 1: The adversary A can issue several kinds of
queries adaptively, i.e., each query might be based on
the result of previous queries:
 _ Credential-gen (CG) queries: A makes a CG query

with respect to the identity of target proxy signer. B
returns the corresponding proxy credentials.

 _ Proxy-sign (PS) queries: A chooses a message m and
then gives it to B who will return a corresponding
authenticated ciphertext d with the warrant mw.

 _ Uncover-verify (UV) queries: A submits an
authenticated ciphertext d along with the warrant
mw to B. If d is valid, B returns the recovered
message m and its converted proxy multi-signature
W; else, the error symbol ¶ is outputted as a result.

Challenge: The adversary A produces two messages,
m0 and m1, of the same length. The challenger B flips a
coin l ← {0, 1} and generates an authenticated cipher-
text d* for ml. The ciphertext d* is then delivered to A
as a target challenge.
Phase 2: The adversary A can issue new queries as
those in Phase 1 except the UV query for the target
ciphertext.
Guess: At the end of the game, A outputs a bit l′. The
adversary A wins this game if l′ = l. We define A’s ad-
vantage as Adv(A) = | Pr[l′ = l] − 1/2 |.
Definition 4. (Unforgeability) A PCMAE scheme is
said to achieve the security requirement of unforge-
ability against existential forgery under adaptive
chosen-message attacks (EF-CMA) if there is no prob-
abilistic polynomial-time adversary A with non-neg-
ligible advantage in the following game played with a
challenger B:
Setup: B first runs the Setup(1k) algorithm and
sends the system’s public parameters params to the

adversary A.
Phase 1: The adversary A adaptively makes CG and
PS queries as those in Phase 1 of Definition 3.
Forgery: Finally, A produces an authenticated ci-
phertext d* which is not outputted by the PS query.
The adversary A wins if d* is valid.

4.3. Security Proofs

We prove the security of our proposed scheme in the
random oracle model as Theorems 1 and 2, respec-
tively. The security proofs can be also applied to its
variant with message linkages, since they have almost
the same structure.
Theorem 1. (Proof of Confidentiality) The proposed
scheme is (t, qh1

, qh2
, qh3

, qCG, qPS, qUV, e)-secure against
indistinguishability under adaptive chosen-cipher-
text attacks (IND-CCA2) in the random oracle model
if there is no probabilistic polynomial-time adversary
that can (t’, e’)-break the CDHP, where

ε' ≥ (qh2
 + qh3

)−1(2ε − k
hhUV qqq

2

)1(
32
++

),

t' ≈ t + tλ(2qCG + 4qPS + 3qUV).

Here tl is the time for performing a modular exponen-
tiation over a finite field.
Proof: Fig. 1 depicts the proof structure of this The-
orem. Suppose that a probabilistic polynomial-time
adversary A can (t, qh1

, qh2
, qh3

, qCG, qPS, qUV, e)-break
the proposed scheme with non-negligible advantage
e under the adaptive chosen- ciphertext attack af-
ter running in time at most t and asking at most qhi

hi random oracle (for i = 1 to 3), qCG CG, qPS PS and
qUV UV queries. Then we can construct another algo-
rithm B that (t’, e’)-breaks the CDHP by taking A as a
subroutine. Let all involved parties and parameters
be defined the same as those in Section 3.1. The ob-
jective of B is to obtain (gxpxv mod p) by taking (p, q, g,
yp, yv) as inputs. In this proof, B simulates a challeng-
er to A in the following game.
Setup: The challenger B runs the Setup(1k) algorithm
and sends the system’s public parameters params =
{p, q, g, yo, yp, yv} to the adversary A.
Phase 1: A issues the following kinds of queries adap-
tively:

537Information Technology and Control 2017/4/46

 _ h1 oracle: When A makes an h1 oracle of (mw, T), B
returns O-Sim_h1(mw, T). The simulated random
oracle O-Sim_h1 operates as Fig. 2. Note that the
function insert(N, b) will insert the value b into the
array N.

 _ h2 oracle: When A makes an h2 oracle of (m, C, K,
R), B returns O-Sim_h2(m, C, K, R). The simulated
random oracle O-Sim_h2 operates as Fig. 3.

 _ h3 oracle: When A makes an h3 oracle of K, B returns
O-Sim_h3(K). The simulated random oracle
O-Sim_h3 operates as Fig. 4.

 _ CG queries: When A makes a CG query, B chooses

Figure 1
The proof structure of confidentiality in Theorem 1

Figure 2
Algorithm of the simulated random oracle O-Sim_h1

Fig. 1. The proof structure of confidentiality in
Theorem 1

– h1 oracle: When A makes an h1 oracle of (mw, T), B
returns O-Sim_h1(mw, T). The simulated random
oracle O-Sim_h1 operates as Fig. 2. Note that the
function insert(N, b) will insert the value b into the
array N.

Fig. 2. Algorithm of the simulated random oracle
O-Sim_h1

– h2 oracle: When A makes an h2 oracle of (m, C, K,
R), B returns O-Sim_h2(m, C, K, R). The simulated
random oracle O-Sim_h2 operates as Fig. 3.

– h3 oracle: When A makes an h3 oracle of K, B
returns O-Sim_h3(K). The simulated random oracle
O-Sim_h3 operates as Fig. 4.

– CG queries: When A makes a CG query, B chooses
a proper mw and then returns (mw, O-Sim_CG(mw))
as the result. The simulated CG oracle O-Sim_CG
operates as Fig. 5. Note that the function check(N,

b) will return a Boolean value depending on
whether the value b is stored in the array N.

Fig. 3. Algorithm of the simulated random oracle
O-Sim_h2

Fig. 4. Algorithm of the simulated random oracle
O-Sim_h3

Fig. 5. Algorithm of the simulated CG oracle
O-Sim_CG

– PS queries: When A makes a PS query for some
message m, B returns O-Sim_PS(m) as the result.
The simulated PS oracle O-Sim_PS operates as Fig.
6.

oracle O-Sim_h1(mw, T)
1: for i = 0 to qh1

− 1

2: if (Q_h1[i][0] = mw) and (Q_h1[i][1] = T)
then exit for; // It is an old query.

3: else if (Q_h1[i][0] = “”) then
// It is a new query.

4: insert(Q_h1, (mw, T));
5: A_h1[i] ← v1 ∈R Zq; exit for;
6: end if
7: next i
8: return A_h1[i];

oracle O-Sim_h2(m, C, K, R)
1: for i = 0 to qh2

− 1

2: if (Q_h2[i] = (m, C, K, R)) then
3: exit for; // It is an old query.
4: else if (Q_h2[i][0] = “”) then
5: insert(Q_h2, (m, C, K, R));
6: A_h2[i] ← v2 ∈R Zq; exit for;
7: end if
8: next i
9: return A_h2[i];

oracle O-Sim_h3(K)
1: for i = 0 to qh3

− 1

2: if (Q_h3[i] = K) then
3: exit for; // It is an old query.
4: else if (Q_h3[i] = “”) then
5: Q_h3[i] ← K;
6: A_h3[i] ← v3 ∈R {0, 1}k;

exit for;
8: end if
9: next i
10: return A_h3[i];

B

A
λ′

{p, q, g, yp, yv}

pg vp xx mod

h1, h2, h3 oracles

CG, PS, UV queries

(p, q, g, yp, yv)

oracle O-Sim_CG(mw)
1: do
2: Choose σi’s, v1 ∈R Zq;
3: pygT v

ii i mod1σ= ;

4: ∏ == pTT i
n
i mod1 ;

5: while (check(Q_h1, (mw, T)) = true)
6: insert(Q_h1, (mw, T));
7: insert(A_h1, v1);

// define h1(mw, T) = v1
8: return (T, T1, T2, ..., Tn, σ1, σ2, ..., σn);

Fig. 1. The proof structure of confidentiality in
Theorem 1

– h1 oracle: When A makes an h1 oracle of (mw, T), B
returns O-Sim_h1(mw, T). The simulated random
oracle O-Sim_h1 operates as Fig. 2. Note that the
function insert(N, b) will insert the value b into the
array N.

Fig. 2. Algorithm of the simulated random oracle
O-Sim_h1

– h2 oracle: When A makes an h2 oracle of (m, C, K,
R), B returns O-Sim_h2(m, C, K, R). The simulated
random oracle O-Sim_h2 operates as Fig. 3.

– h3 oracle: When A makes an h3 oracle of K, B
returns O-Sim_h3(K). The simulated random oracle
O-Sim_h3 operates as Fig. 4.

– CG queries: When A makes a CG query, B chooses
a proper mw and then returns (mw, O-Sim_CG(mw))
as the result. The simulated CG oracle O-Sim_CG
operates as Fig. 5. Note that the function check(N,

b) will return a Boolean value depending on
whether the value b is stored in the array N.

Fig. 3. Algorithm of the simulated random oracle
O-Sim_h2

Fig. 4. Algorithm of the simulated random oracle
O-Sim_h3

Fig. 5. Algorithm of the simulated CG oracle
O-Sim_CG

– PS queries: When A makes a PS query for some
message m, B returns O-Sim_PS(m) as the result.
The simulated PS oracle O-Sim_PS operates as Fig.
6.

oracle O-Sim_h1(mw, T)
1: for i = 0 to qh1

− 1

2: if (Q_h1[i][0] = mw) and (Q_h1[i][1] = T)
then exit for; // It is an old query.

3: else if (Q_h1[i][0] = “”) then
// It is a new query.

4: insert(Q_h1, (mw, T));
5: A_h1[i] ← v1 ∈R Zq; exit for;
6: end if
7: next i
8: return A_h1[i];

oracle O-Sim_h2(m, C, K, R)
1: for i = 0 to qh2

− 1

2: if (Q_h2[i] = (m, C, K, R)) then
3: exit for; // It is an old query.
4: else if (Q_h2[i][0] = “”) then
5: insert(Q_h2, (m, C, K, R));
6: A_h2[i] ← v2 ∈R Zq; exit for;
7: end if
8: next i
9: return A_h2[i];

oracle O-Sim_h3(K)
1: for i = 0 to qh3

− 1

2: if (Q_h3[i] = K) then
3: exit for; // It is an old query.
4: else if (Q_h3[i] = “”) then
5: Q_h3[i] ← K;
6: A_h3[i] ← v3 ∈R {0, 1}k;

exit for;
8: end if
9: next i
10: return A_h3[i];

B

A
λ′

{p, q, g, yp, yv}

pg vp xx mod

h1, h2, h3 oracles

CG, PS, UV queries

(p, q, g, yp, yv)

oracle O-Sim_CG(mw)
1: do
2: Choose σi’s, v1 ∈R Zq;
3: pygT v

ii i mod1σ= ;

4: ∏ == pTT i
n
i mod1 ;

5: while (check(Q_h1, (mw, T)) = true)
6: insert(Q_h1, (mw, T));
7: insert(A_h1, v1);

// define h1(mw, T) = v1
8: return (T, T1, T2, ..., Tn, σ1, σ2, ..., σn);

Figure 3
Algorithm of the simulated random oracle O-Sim_h2

Figure 4
Algorithm of the simulated random oracle O-Sim_h3

Fig. 1. The proof structure of confidentiality in
Theorem 1

– h1 oracle: When A makes an h1 oracle of (mw, T), B
returns O-Sim_h1(mw, T). The simulated random
oracle O-Sim_h1 operates as Fig. 2. Note that the
function insert(N, b) will insert the value b into the
array N.

Fig. 2. Algorithm of the simulated random oracle
O-Sim_h1

– h2 oracle: When A makes an h2 oracle of (m, C, K,
R), B returns O-Sim_h2(m, C, K, R). The simulated
random oracle O-Sim_h2 operates as Fig. 3.

– h3 oracle: When A makes an h3 oracle of K, B
returns O-Sim_h3(K). The simulated random oracle
O-Sim_h3 operates as Fig. 4.

– CG queries: When A makes a CG query, B chooses
a proper mw and then returns (mw, O-Sim_CG(mw))
as the result. The simulated CG oracle O-Sim_CG
operates as Fig. 5. Note that the function check(N,

b) will return a Boolean value depending on
whether the value b is stored in the array N.

Fig. 3. Algorithm of the simulated random oracle
O-Sim_h2

Fig. 4. Algorithm of the simulated random oracle
O-Sim_h3

Fig. 5. Algorithm of the simulated CG oracle
O-Sim_CG

– PS queries: When A makes a PS query for some
message m, B returns O-Sim_PS(m) as the result.
The simulated PS oracle O-Sim_PS operates as Fig.
6.

oracle O-Sim_h1(mw, T)
1: for i = 0 to qh1

− 1

2: if (Q_h1[i][0] = mw) and (Q_h1[i][1] = T)
then exit for; // It is an old query.

3: else if (Q_h1[i][0] = “”) then
// It is a new query.

4: insert(Q_h1, (mw, T));
5: A_h1[i] ← v1 ∈R Zq; exit for;
6: end if
7: next i
8: return A_h1[i];

oracle O-Sim_h2(m, C, K, R)
1: for i = 0 to qh2

− 1

2: if (Q_h2[i] = (m, C, K, R)) then
3: exit for; // It is an old query.
4: else if (Q_h2[i][0] = “”) then
5: insert(Q_h2, (m, C, K, R));
6: A_h2[i] ← v2 ∈R Zq; exit for;
7: end if
8: next i
9: return A_h2[i];

oracle O-Sim_h3(K)
1: for i = 0 to qh3

− 1

2: if (Q_h3[i] = K) then
3: exit for; // It is an old query.
4: else if (Q_h3[i] = “”) then
5: Q_h3[i] ← K;
6: A_h3[i] ← v3 ∈R {0, 1}k;

exit for;
8: end if
9: next i
10: return A_h3[i];

B

A
λ′

{p, q, g, yp, yv}

pg vp xx mod

h1, h2, h3 oracles

CG, PS, UV queries

(p, q, g, yp, yv)

oracle O-Sim_CG(mw)
1: do
2: Choose σi’s, v1 ∈R Zq;
3: pygT v

ii i mod1σ= ;

4: ∏ == pTT i
n
i mod1 ;

5: while (check(Q_h1, (mw, T)) = true)
6: insert(Q_h1, (mw, T));
7: insert(A_h1, v1);

// define h1(mw, T) = v1
8: return (T, T1, T2, ..., Tn, σ1, σ2, ..., σn);

Fig. 1. The proof structure of confidentiality in
Theorem 1

– h1 oracle: When A makes an h1 oracle of (mw, T), B
returns O-Sim_h1(mw, T). The simulated random
oracle O-Sim_h1 operates as Fig. 2. Note that the
function insert(N, b) will insert the value b into the
array N.

Fig. 2. Algorithm of the simulated random oracle
O-Sim_h1

– h2 oracle: When A makes an h2 oracle of (m, C, K,
R), B returns O-Sim_h2(m, C, K, R). The simulated
random oracle O-Sim_h2 operates as Fig. 3.

– h3 oracle: When A makes an h3 oracle of K, B
returns O-Sim_h3(K). The simulated random oracle
O-Sim_h3 operates as Fig. 4.

– CG queries: When A makes a CG query, B chooses
a proper mw and then returns (mw, O-Sim_CG(mw))
as the result. The simulated CG oracle O-Sim_CG
operates as Fig. 5. Note that the function check(N,

b) will return a Boolean value depending on
whether the value b is stored in the array N.

Fig. 3. Algorithm of the simulated random oracle
O-Sim_h2

Fig. 4. Algorithm of the simulated random oracle
O-Sim_h3

Fig. 5. Algorithm of the simulated CG oracle
O-Sim_CG

– PS queries: When A makes a PS query for some
message m, B returns O-Sim_PS(m) as the result.
The simulated PS oracle O-Sim_PS operates as Fig.
6.

oracle O-Sim_h1(mw, T)
1: for i = 0 to qh1

− 1

2: if (Q_h1[i][0] = mw) and (Q_h1[i][1] = T)
then exit for; // It is an old query.

3: else if (Q_h1[i][0] = “”) then
// It is a new query.

4: insert(Q_h1, (mw, T));
5: A_h1[i] ← v1 ∈R Zq; exit for;
6: end if
7: next i
8: return A_h1[i];

oracle O-Sim_h2(m, C, K, R)
1: for i = 0 to qh2

− 1

2: if (Q_h2[i] = (m, C, K, R)) then
3: exit for; // It is an old query.
4: else if (Q_h2[i][0] = “”) then
5: insert(Q_h2, (m, C, K, R));
6: A_h2[i] ← v2 ∈R Zq; exit for;
7: end if
8: next i
9: return A_h2[i];

oracle O-Sim_h3(K)
1: for i = 0 to qh3

− 1

2: if (Q_h3[i] = K) then
3: exit for; // It is an old query.
4: else if (Q_h3[i] = “”) then
5: Q_h3[i] ← K;
6: A_h3[i] ← v3 ∈R {0, 1}k;

exit for;
8: end if
9: next i
10: return A_h3[i];

B

A
λ′

{p, q, g, yp, yv}

pg vp xx mod

h1, h2, h3 oracles

CG, PS, UV queries

(p, q, g, yp, yv)

oracle O-Sim_CG(mw)
1: do
2: Choose σi’s, v1 ∈R Zq;
3: pygT v

ii i mod1σ= ;

4: ∏ == pTT i
n
i mod1 ;

5: while (check(Q_h1, (mw, T)) = true)
6: insert(Q_h1, (mw, T));
7: insert(A_h1, v1);

// define h1(mw, T) = v1
8: return (T, T1, T2, ..., Tn, σ1, σ2, ..., σn);

a proper mw and then returns (mw, O-Sim_CG(mw))
as the result. The simulated CG oracle O-Sim_CG
operates as Fig. 5. Note that the function check(N,
b) will return a Boolean value depending on
whether the value b is stored in the array N.

 _ PS queries: When A makes a PS query for some
message m, B returns O-Sim_PS(m) as the result.
The simulated PS oracle O-Sim_PS operates as
Fig. 6.

 _ UV queries: When A makes a UV query for some
authenticated ciphertext d with the warrant mw,
B returns O-Sim_UV(d, mw) as the result. The
simulated UV oracle O-Sim_UV operates as Fig. 7.

Challenge: A generates two messages, m0 and m1, of
the same length. The challenger B flips a coin l ← {0,
1} and produces an authenticated ciphertext d* = (Q*,
S*, R*, T*) for ml by running the simulated Sim_Chal-

Information Technology and Control 2017/4/46538

Figure 5
Algorithm of the simulated CG oracle O-Sim_CG

Fig. 1. The proof structure of confidentiality in
Theorem 1

– h1 oracle: When A makes an h1 oracle of (mw, T), B
returns O-Sim_h1(mw, T). The simulated random
oracle O-Sim_h1 operates as Fig. 2. Note that the
function insert(N, b) will insert the value b into the
array N.

Fig. 2. Algorithm of the simulated random oracle
O-Sim_h1

– h2 oracle: When A makes an h2 oracle of (m, C, K,
R), B returns O-Sim_h2(m, C, K, R). The simulated
random oracle O-Sim_h2 operates as Fig. 3.

– h3 oracle: When A makes an h3 oracle of K, B
returns O-Sim_h3(K). The simulated random oracle
O-Sim_h3 operates as Fig. 4.

– CG queries: When A makes a CG query, B chooses
a proper mw and then returns (mw, O-Sim_CG(mw))
as the result. The simulated CG oracle O-Sim_CG
operates as Fig. 5. Note that the function check(N,

b) will return a Boolean value depending on
whether the value b is stored in the array N.

Fig. 3. Algorithm of the simulated random oracle
O-Sim_h2

Fig. 4. Algorithm of the simulated random oracle
O-Sim_h3

Fig. 5. Algorithm of the simulated CG oracle
O-Sim_CG

– PS queries: When A makes a PS query for some
message m, B returns O-Sim_PS(m) as the result.
The simulated PS oracle O-Sim_PS operates as Fig.
6.

oracle O-Sim_h1(mw, T)
1: for i = 0 to qh1

− 1

2: if (Q_h1[i][0] = mw) and (Q_h1[i][1] = T)
then exit for; // It is an old query.

3: else if (Q_h1[i][0] = “”) then
// It is a new query.

4: insert(Q_h1, (mw, T));
5: A_h1[i] ← v1 ∈R Zq; exit for;
6: end if
7: next i
8: return A_h1[i];

oracle O-Sim_h2(m, C, K, R)
1: for i = 0 to qh2

− 1

2: if (Q_h2[i] = (m, C, K, R)) then
3: exit for; // It is an old query.
4: else if (Q_h2[i][0] = “”) then
5: insert(Q_h2, (m, C, K, R));
6: A_h2[i] ← v2 ∈R Zq; exit for;
7: end if
8: next i
9: return A_h2[i];

oracle O-Sim_h3(K)
1: for i = 0 to qh3

− 1

2: if (Q_h3[i] = K) then
3: exit for; // It is an old query.
4: else if (Q_h3[i] = “”) then
5: Q_h3[i] ← K;
6: A_h3[i] ← v3 ∈R {0, 1}k;

exit for;
8: end if
9: next i
10: return A_h3[i];

B

A
λ′

{p, q, g, yp, yv}

pg vp xx mod

h1, h2, h3 oracles

CG, PS, UV queries

(p, q, g, yp, yv)

oracle O-Sim_CG(mw)
1: do
2: Choose σi’s, v1 ∈R Zq;
3: pygT v

ii i mod1σ= ;

4: ∏ == pTT i
n
i mod1 ;

5: while (check(Q_h1, (mw, T)) = true)
6: insert(Q_h1, (mw, T));
7: insert(A_h1, v1);

// define h1(mw, T) = v1
8: return (T, T1, T2, ..., Tn, σ1, σ2, ..., σn);

Figure 6
Algorithm of the simulated PS oracle O-Sim_PS

Fig. 6. Algorithm of the simulated PS oracle
-

Fig. 7. Algorithm of the simulated UV oracle
O-Sim_UV

Fig. 8. Algorithm of the simulated Sim_Challenge

oracle O-Sim_PS(m)
1: Choose a proper mw;
2: (T, T1, T2, ..., Tn, σ1, σ2, ..., σn) ←
 O-Sim_PS(mw);

3: Compute v1 ← O-Sim_h1(mw, T); σ =∑
=

n

i
i

1
σ ;

4: Compute C =∏
=

n

i

v
i py

1
mod1 ; K = yvσ mod p;

5: do
6: Choose S, v2 ∈R Zq;
7: ;mod12 pCTygR v

p
S −=

8: while (check(Q_h2, (m, C, K, R)) = true)
9: insert(Q_h2, (m, C, K, R));
10: insert(A_h2, v2); // define h2(m, C, K, R) = v2
11: Q = O-Sim_h3(K) ⊕ m;
12: return δ = (Q, S, R, T) and mw;

algorithm Sim_Challenge(mλ)
1: Choose a proper mw; v3 ∈R{0, 1}k and

S*, σ, v1, v2 ∈R Zq;

2: C =∏
=

n

i

v
i py

1
mod1 ; T* = ypσ C mod p;

3: insert(Q_h1, (mw, T*)); insert(A_h1, v1);
// define h1(mw, T*) = v1

4: ;mod** 1* 2 pCTygR v
p

S −=

5: insert(Q_h2, (mλ, C, null, R*));
6: insert(A_h2, v2);

 // Implicitly define h2(mλ, C, K*, R*) = v2,
where K* = (yvσ)xv mod p and B does not
know it.

7: Q* = v3 ⊕ m; // Implicitly define h3(K*) = v3
8: return δ = (Q*, S*, R*, T*) and mw;

oracle O-Sim_UV(δ, mw) // δ = (Q, S, R, T)

1: v1 = O-Sim_h1(mw, T); C =∏
=

n

i

v
i py

1
mod1 ;

2: if (check(Q_h2, (*, C, *, R)) = true) then
//h2(*, C, *, R) has ever been queried.

3: for j = 0 to qh2
 − 1

4: if (Q_h2[j][1] = C) and
 (Q_h2[j][3] = R) then
5: m = Q_h2[j][0];
6: K = Q_h2[j][2];
7: v2 = A_h2[j]; exit for;
8: end if
9: next j
10: v3 = O-Sim_h3(K);
11: if (m = Q ⊕ v3) and
 (pCygRT v

p
S mod2=)) then

12: return (m, R, S, T, K) and mw;
13: else
14: return ¶;
15: end if
16: else // h2(*, C, *, R) has never been queried.
17: return ¶;
18: end if

Figure 7
Algorithm of the simulated UV oracle O-Sim_UV

lenge(ml). The algorithm of Sim_Challenge operates
as Fig. 8.
Phase 2: A makes new queries as those stated in Phase
1 except the UV query for the target ciphertext d*.
Analysis of the game: Consider the above simu-
lations of CG and PS queries. One can see that the
simulated proxy credentials si’s and authenticated
ciphertext d are computationally indistinguishable
from those generated by the real scheme. We refer the

Fig. 6. Algorithm of the simulated PS oracle
-

Fig. 7. Algorithm of the simulated UV oracle
O-Sim_UV

Fig. 8. Algorithm of the simulated Sim_Challenge

oracle O-Sim_PS(m)
1: Choose a proper mw;
2: (T, T1, T2, ..., Tn, σ1, σ2, ..., σn) ←
 O-Sim_PS(mw);

3: Compute v1 ← O-Sim_h1(mw, T); σ =∑
=

n

i
i

1
σ ;

4: Compute C =∏
=

n

i

v
i py

1
mod1 ; K = yvσ mod p;

5: do
6: Choose S, v2 ∈R Zq;
7: ;mod12 pCTygR v

p
S −=

8: while (check(Q_h2, (m, C, K, R)) = true)
9: insert(Q_h2, (m, C, K, R));
10: insert(A_h2, v2); // define h2(m, C, K, R) = v2
11: Q = O-Sim_h3(K) ⊕ m;
12: return δ = (Q, S, R, T) and mw;

algorithm Sim_Challenge(mλ)
1: Choose a proper mw; v3 ∈R{0, 1}k and

S*, σ, v1, v2 ∈R Zq;

2: C =∏
=

n

i

v
i py

1
mod1 ; T* = ypσ C mod p;

3: insert(Q_h1, (mw, T*)); insert(A_h1, v1);
// define h1(mw, T*) = v1

4: ;mod** 1* 2 pCTygR v
p

S −=

5: insert(Q_h2, (mλ, C, null, R*));
6: insert(A_h2, v2);

 // Implicitly define h2(mλ, C, K*, R*) = v2,
where K* = (yvσ)xv mod p and B does not
know it.

7: Q* = v3 ⊕ m; // Implicitly define h3(K*) = v3
8: return δ = (Q*, S*, R*, T*) and mw;

oracle O-Sim_UV(δ, mw) // δ = (Q, S, R, T)

1: v1 = O-Sim_h1(mw, T); C =∏
=

n

i

v
i py

1
mod1 ;

2: if (check(Q_h2, (*, C, *, R)) = true) then
//h2(*, C, *, R) has ever been queried.

3: for j = 0 to qh2
 − 1

4: if (Q_h2[j][1] = C) and
 (Q_h2[j][3] = R) then
5: m = Q_h2[j][0];
6: K = Q_h2[j][2];
7: v2 = A_h2[j]; exit for;
8: end if
9: next j
10: v3 = O-Sim_h3(K);
11: if (m = Q ⊕ v3) and
 (pCygRT v

p
S mod2=)) then

12: return (m, R, S, T, K) and mw;
13: else
14: return ¶;
15: end if
16: else // h2(*, C, *, R) has never been queried.
17: return ¶;
18: end if

Fig. 6. Algorithm of the simulated PS oracle
-

Fig. 7. Algorithm of the simulated UV oracle
O-Sim_UV

Fig. 8. Algorithm of the simulated Sim_Challenge

oracle O-Sim_PS(m)
1: Choose a proper mw;
2: (T, T1, T2, ..., Tn, σ1, σ2, ..., σn) ←
 O-Sim_PS(mw);

3: Compute v1 ← O-Sim_h1(mw, T); σ =∑
=

n

i
i

1
σ ;

4: Compute C =∏
=

n

i

v
i py

1
mod1 ; K = yvσ mod p;

5: do
6: Choose S, v2 ∈R Zq;
7: ;mod12 pCTygR v

p
S −=

8: while (check(Q_h2, (m, C, K, R)) = true)
9: insert(Q_h2, (m, C, K, R));
10: insert(A_h2, v2); // define h2(m, C, K, R) = v2
11: Q = O-Sim_h3(K) ⊕ m;
12: return δ = (Q, S, R, T) and mw;

algorithm Sim_Challenge(mλ)
1: Choose a proper mw; v3 ∈R{0, 1}k and

S*, σ, v1, v2 ∈R Zq;

2: C =∏
=

n

i

v
i py

1
mod1 ; T* = ypσ C mod p;

3: insert(Q_h1, (mw, T*)); insert(A_h1, v1);
// define h1(mw, T*) = v1

4: ;mod** 1* 2 pCTygR v
p

S −=

5: insert(Q_h2, (mλ, C, null, R*));
6: insert(A_h2, v2);

 // Implicitly define h2(mλ, C, K*, R*) = v2,
where K* = (yvσ)xv mod p and B does not
know it.

7: Q* = v3 ⊕ m; // Implicitly define h3(K*) = v3
8: return δ = (Q*, S*, R*, T*) and mw;

oracle O-Sim_UV(δ, mw) // δ = (Q, S, R, T)

1: v1 = O-Sim_h1(mw, T); C =∏
=

n

i

v
i py

1
mod1 ;

2: if (check(Q_h2, (*, C, *, R)) = true) then
//h2(*, C, *, R) has ever been queried.

3: for j = 0 to qh2
 − 1

4: if (Q_h2[j][1] = C) and
 (Q_h2[j][3] = R) then
5: m = Q_h2[j][0];
6: K = Q_h2[j][2];
7: v2 = A_h2[j]; exit for;
8: end if
9: next j
10: v3 = O-Sim_h3(K);
11: if (m = Q ⊕ v3) and
 (pCygRT v

p
S mod2=)) then

12: return (m, R, S, T, K) and mw;
13: else
14: return ¶;
15: end if
16: else // h2(*, C, *, R) has never been queried.
17: return ¶;
18: end if

Figure 8
Algorithm of the simulated Sim_Challenge

539Information Technology and Control 2017/4/46

simulations of CG and PS queries to be perfect. Then
we evaluate the simulation of UV queries. From the
algorithms of O-Sim_UV, we find out that it is pos-
sible for an UV query of some valid d = (Q, S, R, T) to
return the error symbol ¶ on condition that A has the
ability to produce d without asking the corresponding
h2(ml, C, K, R) or h3(K) random oracles in advance. Let
UV_ERR be the event that an UV query returns the er-
ror symbol ¶ for some valid d during the entire game,
AC-V an event that the authenticated ciphertext d of a
UV query made by A is valid. QH2 and QH3 separately
denote the events that A has ever asked h2(ml, C, K, R)
and h3(K) random oracles beforehand. Then we can
express the error probability of any UV query as

Pr[AC-V | (¬QH3 ∨ ¬QH2)]
≤ Pr[AC-V | ¬QH3] + Pr[AC-V ∧ QH3 | ¬QH2]
= Pr[AC-V ∧ QH2 | ¬QH3]

+ Pr[AC-V ∧ ¬QH2 | ¬QH3]
+ Pr[AC-V ∧ QH3 | ¬QH2]

≤ k
h

kk
h qq

22
1

2
32 ++

= k
hh qq

2

1
32
++

.

Since A can make at most qUV UV queries, we can
further express the probability of UV_ERR as

Pr[UV_ERR] ≤ k
hhUV qqq

2

)1(
32
++

. (14)

Additionally, in the challenge phase, B has returned
a simulated authenticated ciphertext δ* = (Q*, S*,
R*, T*) where T* = ypσC mod p, which implies the
shared secret K* is implicitly defined as (yvσ)xv

mod p. Let GP be the event that the entire
simulation game does not abort. Obviously, if the
adversary A never asks h2(mλ, C, K*, R*) or h3(K*)
random oracles in Phase 2, the entire simulation
game could be normally terminated. We denote the
two events that A does make an h2(mλ, C, K*, R*)
and h3(K*) query in Phase 2 by QH2* and QH3*.
When the entire simulation game does not abort, it
can be seen A gains no advantage in guessing λ due
to the randomness of the output of the random
oracle, i.e.,

Pr[λ′ = λ | GP] = 1/2. (15)
Rewriting the expression of Pr[λ′ = λ], we have

Pr[λ′ = λ] = Pr[λ′ = λ | GP] Pr[GP]
+ Pr[λ′ = λ | ¬GP] Pr[¬GP]

≤ (1/2)Pr[GP] + Pr[¬GP]
(by Eq. (15))

= (1/2)(1 − Pr[¬GP]) + Pr[¬GP]
= (1/2) + (1/2)Pr[¬GP]. (16)

On the other hand, we can also derive that
Pr[λ′ = λ] ≥ Pr[λ′ = λ | GP] Pr[GP]

= (1/2)(1 − Pr[¬GP])
= (1/2) − (1/2)Pr[¬GP]. (17)

With inequalities (16) and (17), we know that
| Pr[λ′ = λ] − 1/2 | ≤ (1/2)Pr[¬GP]. (18)

Recall that in Definition 3, A’s advantage is defined
as Adv(A) = | Pr[λ′ = λ] − 1/2 |. By assumption, A
has non-negligible probability ε to break the
proposed scheme. We therefore have

ε = | Pr[λ′ = λ] − 1/2 |
≤ (1/2)Pr[¬GP] (by Eq. (18))
= (1/2)(Pr[QH2* ∨ QH3* ∨ UV_ERR])

≤ (1/2)(Pr[QH2*] + Pr[QH3*]
+ Pr[UV_ERR])

Combining Eq. (14) and rewriting the above
inequality, we get

(Pr[QH2*] + Pr[QH3*]) ≥ 2ε − Pr[UV_ERR]

≥ 2ε − k
hhUV qqq

2

)1(
32
++

.

If the event (QH2* ∨ QH3*) happens, we claim that
K* = (yvσ)xv mod p will be stored in some entry of
the Q_h2 or the Q_h3 array. Consequently, B has
non-negligible probability

ε' ≥ (qh2
+ qh3

)−1(2ε − k
hhUV qqq

2

)1(
32
++

)

to output vp xxgK =
−1

*σ and solve the CDHP.
The computational time required for B is t' ≈ t +
tλ(2qCG + 4qPS + 3qUV).

Q.E.D.

In 2000, Pointcheval and Stern introduced the
Forking lemma [29] to prove the security for generic
digital signature schemes in the random oracle model.
If we apply their techniques to prove our scheme, we
can also obtain the generic result as follows.

(The Forking Lemma) In the random oracle mode,
let (G, Σ, V) be a generic signature scheme and A a
probabilistic polynomial-time Turing machine whose
input only consists of public data. We denote
respectively by N1 and N2 the number of queries that
A can ask to the random oracle and the number of
queries that A can ask to the signer. Assume that,
within a time bound T, A produces, with probability ε
≥ 10(N2 + 1)(N2 + N1)/2k, a valid signature (m, σ1, h,
σ2) where σ1 = (mw, R, T, K), h = (h2(m, C, K, R),
h1(mw, T)) and σ2 = S. If the triples (σ1, h, σ2) can be
simulated without knowing the private key with an
indistinguishable distribution probability, then there
is another machine which has control over the
machine obtained from A replacing interaction with
the signer by simulation and produces two valid
signatures (m, σ1, h, σ2) and (m, σ1, h', σ2') such that
h2(m, C, K, R) ≠ h'2(m, C, K, R) in the expected time
T' ≤ 120686T/ε.

More concretely, in our scheme, we can first
obtain two equations below:

RT = gSyp
h2(m, C, K, R)C mod p,

RT = gS'yp
h'2(m, C, K, R)C mod p.

By combining the above two equalities, we can
further derive the private key xp as

xp = (S − S')/(h'2(m, C, K, R) − h2(m, C, K, R)).

Since A can make at most qUV UV queries, we can fur-
ther express the probability of UV_ERR as

Pr[UV_ERR] ≤ k
hhUV qqq

2

)1(
32
++

. (14)

Pr[λ′ = λ | GP] = 1/2. (15)

Pr[λ′ = λ] = Pr[λ′ = λ | GP] Pr[GP]
 + Pr[λ′ = λ | ¬GP] Pr[¬GP]

 ≤ (1/2)Pr[GP] + Pr[¬GP]
 (by Eq. (15))
 = (1/2)(1 − Pr[¬GP]) + Pr[¬GP]
 = (1/2) + (1/2)Pr[¬GP]. (16)

Pr[λ′ = λ] ≥ Pr[λ′ = λ | GP] Pr[GP]

 = (1/2)(1 − Pr[¬GP])
 = (1/2) − (1/2)Pr[¬GP]. (17)

| Pr[λ′ = λ] − 1/2 | ≤ (1/2)Pr[¬GP]. (18)

Recall that in Definition 3, A’s advantage is defined
as Adv(A) = | Pr[λ′ = λ] − 1/2 |. By assumption, A
has non-negligible probability ε to break the
proposed scheme. We therefore have

ε = | Pr[λ′ = λ] − 1/2 |
 ≤ (1/2)Pr[¬GP] (by Eq. (18))
 = (1/2)(Pr[QH2* ∨ QH3* ∨ UV_ERR])

 ≤ (1/2)(Pr[QH2*] + Pr[QH3*]
 + Pr[UV_ERR])

Combining Eq. (14) and rewriting the above
inequality, we get

(Pr[QH2*] + Pr[QH3*]) ≥ 2ε − Pr[UV_ERR]

 ≥ 2ε − k
hhUV qqq

2

)1(
32
++

.

If the event (QH2* ∨ QH3*) happens, we claim that
K* = (yvσ)xv mod p will be stored in some entry of
the Q_h2 or the Q_h3 array. Consequently, B has
non-negligible probability

ε' ≥ (qh2
 + qh3

)−1(2ε − k
hhUV qqq

2

)1(
32
++

)

to output vp xxgK =
−1

*σ and solve the CDHP.
The computational time required for B is t' ≈ t +
tλ(2qCG + 4qPS + 3qUV).

 Q.E.D.

In 2000, Pointcheval and Stern introduced the

Forking lemma [29] to prove the security for generic
digital signature schemes in the random oracle model.
If we apply their techniques to prove our scheme, we
can also obtain the generic result as follows.

(The Forking Lemma) In the random oracle mode,
let (G, Σ, V) be a generic signature scheme and A a
probabilistic polynomial-time Turing machine whose
input only consists of public data. We denote
respectively by N1 and N2 the number of queries that
A can ask to the random oracle and the number of
queries that A can ask to the signer. Assume that,
within a time bound T, A produces, with probability ε
≥ 10(N2 + 1)(N2 + N1)/2k, a valid signature (m, σ1, h,
σ2) where σ1 = (mw, R, T, K), h = (h2(m, C, K, R),
h1(mw, T)) and σ2 = S. If the triples (σ1, h, σ2) can be
simulated without knowing the private key with an
indistinguishable distribution probability, then there
is another machine which has control over the
machine obtained from A replacing interaction with
the signer by simulation and produces two valid
signatures (m, σ1, h, σ2) and (m, σ1, h', σ2') such that
h2(m, C, K, R) ≠ h'2(m, C, K, R) in the expected time
T ' ≤ 120686T/ε.

More concretely, in our scheme, we can first
obtain two equations below:

RT = gS
 yp

h2(m, C, K, R)C mod p,

RT = gS'
 yp

h'2(m, C, K, R)C mod p.
By combining the above two equalities, we can
further derive the private key xp as

xp = (S − S')/(h'2(m, C, K, R) − h2(m, C, K, R)).

(14)

Additionally, in the challenge phase, B has returned a
simulated authenticated ciphertext d* = (Q*, S*, R*, T*)
where T* = yp

s C mod p, which implies the shared secret
K* is implicitly defined as (yv

s)xv mod p. Let GP be the
event that the entire simulation game does not abort.
Obviously, if the adversary A never asks h2(ml, C, K*,
R*) or h3(K*) random oracles in Phase 2, the entire sim-
ulation game could be normally terminated. We denote
the two events that A does make an h2(ml, C, K*, R*) and
h3(K*) query in Phase 2 by QH2* and QH3*. When the
entire simulation game does not abort, it can be seen
A gains no advantage in guessing l due to the random-
ness of the output of the random oracle, i.e.,

Pr[UV_ERR] ≤ k
hhUV qqq

2

)1(
32
++

. (14)

Pr[λ′ = λ | GP] = 1/2. (15)

Pr[λ′ = λ] = Pr[λ′ = λ | GP] Pr[GP]
 + Pr[λ′ = λ | ¬GP] Pr[¬GP]

 ≤ (1/2)Pr[GP] + Pr[¬GP]
 (by Eq. (15))
 = (1/2)(1 − Pr[¬GP]) + Pr[¬GP]
 = (1/2) + (1/2)Pr[¬GP]. (16)

Pr[λ′ = λ] ≥ Pr[λ′ = λ | GP] Pr[GP]

 = (1/2)(1 − Pr[¬GP])
 = (1/2) − (1/2)Pr[¬GP]. (17)

| Pr[λ′ = λ] − 1/2 | ≤ (1/2)Pr[¬GP]. (18)

Recall that in Definition 3, A’s advantage is defined
as Adv(A) = | Pr[λ′ = λ] − 1/2 |. By assumption, A
has non-negligible probability ε to break the
proposed scheme. We therefore have

ε = | Pr[λ′ = λ] − 1/2 |
 ≤ (1/2)Pr[¬GP] (by Eq. (18))
 = (1/2)(Pr[QH2* ∨ QH3* ∨ UV_ERR])

 ≤ (1/2)(Pr[QH2*] + Pr[QH3*]
 + Pr[UV_ERR])

Combining Eq. (14) and rewriting the above
inequality, we get

(Pr[QH2*] + Pr[QH3*]) ≥ 2ε − Pr[UV_ERR]

 ≥ 2ε − k
hhUV qqq

2

)1(
32
++

.

If the event (QH2* ∨ QH3*) happens, we claim that
K* = (yvσ)xv mod p will be stored in some entry of
the Q_h2 or the Q_h3 array. Consequently, B has
non-negligible probability

ε' ≥ (qh2
 + qh3

)−1(2ε − k
hhUV qqq

2

)1(
32
++

)

to output vp xxgK =
−1

*σ and solve the CDHP.
The computational time required for B is t' ≈ t +
tλ(2qCG + 4qPS + 3qUV).

 Q.E.D.

In 2000, Pointcheval and Stern introduced the

Forking lemma [29] to prove the security for generic
digital signature schemes in the random oracle model.
If we apply their techniques to prove our scheme, we
can also obtain the generic result as follows.

(The Forking Lemma) In the random oracle mode,
let (G, Σ, V) be a generic signature scheme and A a
probabilistic polynomial-time Turing machine whose
input only consists of public data. We denote
respectively by N1 and N2 the number of queries that
A can ask to the random oracle and the number of
queries that A can ask to the signer. Assume that,
within a time bound T, A produces, with probability ε
≥ 10(N2 + 1)(N2 + N1)/2k, a valid signature (m, σ1, h,
σ2) where σ1 = (mw, R, T, K), h = (h2(m, C, K, R),
h1(mw, T)) and σ2 = S. If the triples (σ1, h, σ2) can be
simulated without knowing the private key with an
indistinguishable distribution probability, then there
is another machine which has control over the
machine obtained from A replacing interaction with
the signer by simulation and produces two valid
signatures (m, σ1, h, σ2) and (m, σ1, h', σ2') such that
h2(m, C, K, R) ≠ h'2(m, C, K, R) in the expected time
T ' ≤ 120686T/ε.

More concretely, in our scheme, we can first
obtain two equations below:

RT = gS
 yp

h2(m, C, K, R)C mod p,

RT = gS'
 yp

h'2(m, C, K, R)C mod p.
By combining the above two equalities, we can
further derive the private key xp as

xp = (S − S')/(h'2(m, C, K, R) − h2(m, C, K, R)).

(15)

Rewriting the expression of Pr[l′ = l], we have

Pr[UV_ERR] ≤ k
hhUV qqq

2

)1(
32
++

. (14)

Pr[λ′ = λ | GP] = 1/2. (15)

Pr[λ′ = λ] = Pr[λ′ = λ | GP] Pr[GP]
 + Pr[λ′ = λ | ¬GP] Pr[¬GP]

 ≤ (1/2)Pr[GP] + Pr[¬GP]
 (by Eq. (15))
 = (1/2)(1 − Pr[¬GP]) + Pr[¬GP]
 = (1/2) + (1/2)Pr[¬GP]. (16)

Pr[λ′ = λ] ≥ Pr[λ′ = λ | GP] Pr[GP]

 = (1/2)(1 − Pr[¬GP])
 = (1/2) − (1/2)Pr[¬GP]. (17)

| Pr[λ′ = λ] − 1/2 | ≤ (1/2)Pr[¬GP]. (18)

Recall that in Definition 3, A’s advantage is defined
as Adv(A) = | Pr[λ′ = λ] − 1/2 |. By assumption, A
has non-negligible probability ε to break the
proposed scheme. We therefore have

ε = | Pr[λ′ = λ] − 1/2 |
 ≤ (1/2)Pr[¬GP] (by Eq. (18))
 = (1/2)(Pr[QH2* ∨ QH3* ∨ UV_ERR])

 ≤ (1/2)(Pr[QH2*] + Pr[QH3*]
 + Pr[UV_ERR])

Combining Eq. (14) and rewriting the above
inequality, we get

(Pr[QH2*] + Pr[QH3*]) ≥ 2ε − Pr[UV_ERR]

 ≥ 2ε − k
hhUV qqq

2

)1(
32
++

.

If the event (QH2* ∨ QH3*) happens, we claim that
K* = (yvσ)xv mod p will be stored in some entry of
the Q_h2 or the Q_h3 array. Consequently, B has
non-negligible probability

ε' ≥ (qh2
 + qh3

)−1(2ε − k
hhUV qqq

2

)1(
32
++

)

to output vp xxgK =
−1

*σ and solve the CDHP.
The computational time required for B is t' ≈ t +
tλ(2qCG + 4qPS + 3qUV).

 Q.E.D.

In 2000, Pointcheval and Stern introduced the

Forking lemma [29] to prove the security for generic
digital signature schemes in the random oracle model.
If we apply their techniques to prove our scheme, we
can also obtain the generic result as follows.

(The Forking Lemma) In the random oracle mode,
let (G, Σ, V) be a generic signature scheme and A a
probabilistic polynomial-time Turing machine whose
input only consists of public data. We denote
respectively by N1 and N2 the number of queries that
A can ask to the random oracle and the number of
queries that A can ask to the signer. Assume that,
within a time bound T, A produces, with probability ε
≥ 10(N2 + 1)(N2 + N1)/2k, a valid signature (m, σ1, h,
σ2) where σ1 = (mw, R, T, K), h = (h2(m, C, K, R),
h1(mw, T)) and σ2 = S. If the triples (σ1, h, σ2) can be
simulated without knowing the private key with an
indistinguishable distribution probability, then there
is another machine which has control over the
machine obtained from A replacing interaction with
the signer by simulation and produces two valid
signatures (m, σ1, h, σ2) and (m, σ1, h', σ2') such that
h2(m, C, K, R) ≠ h'2(m, C, K, R) in the expected time
T ' ≤ 120686T/ε.

More concretely, in our scheme, we can first
obtain two equations below:

RT = gS
 yp

h2(m, C, K, R)C mod p,

RT = gS'
 yp

h'2(m, C, K, R)C mod p.
By combining the above two equalities, we can
further derive the private key xp as

xp = (S − S')/(h'2(m, C, K, R) − h2(m, C, K, R)).

by Eq. (15)

Pr[UV_ERR] ≤ k
hhUV qqq

2

)1(
32
++

. (14)

Pr[λ′ = λ | GP] = 1/2. (15)

Pr[λ′ = λ] = Pr[λ′ = λ | GP] Pr[GP]
 + Pr[λ′ = λ | ¬GP] Pr[¬GP]

 ≤ (1/2)Pr[GP] + Pr[¬GP]
 (by Eq. (15))
 = (1/2)(1 − Pr[¬GP]) + Pr[¬GP]
 = (1/2) + (1/2)Pr[¬GP]. (16)

Pr[λ′ = λ] ≥ Pr[λ′ = λ | GP] Pr[GP]

 = (1/2)(1 − Pr[¬GP])
 = (1/2) − (1/2)Pr[¬GP]. (17)

| Pr[λ′ = λ] − 1/2 | ≤ (1/2)Pr[¬GP]. (18)

Recall that in Definition 3, A’s advantage is defined
as Adv(A) = | Pr[λ′ = λ] − 1/2 |. By assumption, A
has non-negligible probability ε to break the
proposed scheme. We therefore have

ε = | Pr[λ′ = λ] − 1/2 |
 ≤ (1/2)Pr[¬GP] (by Eq. (18))
 = (1/2)(Pr[QH2* ∨ QH3* ∨ UV_ERR])

 ≤ (1/2)(Pr[QH2*] + Pr[QH3*]
 + Pr[UV_ERR])

Combining Eq. (14) and rewriting the above
inequality, we get

(Pr[QH2*] + Pr[QH3*]) ≥ 2ε − Pr[UV_ERR]

 ≥ 2ε − k
hhUV qqq

2

)1(
32
++

.

If the event (QH2* ∨ QH3*) happens, we claim that
K* = (yvσ)xv mod p will be stored in some entry of
the Q_h2 or the Q_h3 array. Consequently, B has
non-negligible probability

ε' ≥ (qh2
 + qh3

)−1(2ε − k
hhUV qqq

2

)1(
32
++

)

to output vp xxgK =
−1

*σ and solve the CDHP.
The computational time required for B is t' ≈ t +
tλ(2qCG + 4qPS + 3qUV).

 Q.E.D.

In 2000, Pointcheval and Stern introduced the

Forking lemma [29] to prove the security for generic
digital signature schemes in the random oracle model.
If we apply their techniques to prove our scheme, we
can also obtain the generic result as follows.

(The Forking Lemma) In the random oracle mode,
let (G, Σ, V) be a generic signature scheme and A a
probabilistic polynomial-time Turing machine whose
input only consists of public data. We denote
respectively by N1 and N2 the number of queries that
A can ask to the random oracle and the number of
queries that A can ask to the signer. Assume that,
within a time bound T, A produces, with probability ε
≥ 10(N2 + 1)(N2 + N1)/2k, a valid signature (m, σ1, h,
σ2) where σ1 = (mw, R, T, K), h = (h2(m, C, K, R),
h1(mw, T)) and σ2 = S. If the triples (σ1, h, σ2) can be
simulated without knowing the private key with an
indistinguishable distribution probability, then there
is another machine which has control over the
machine obtained from A replacing interaction with
the signer by simulation and produces two valid
signatures (m, σ1, h, σ2) and (m, σ1, h', σ2') such that
h2(m, C, K, R) ≠ h'2(m, C, K, R) in the expected time
T ' ≤ 120686T/ε.

More concretely, in our scheme, we can first
obtain two equations below:

RT = gS
 yp

h2(m, C, K, R)C mod p,

RT = gS'
 yp

h'2(m, C, K, R)C mod p.
By combining the above two equalities, we can
further derive the private key xp as

xp = (S − S')/(h'2(m, C, K, R) − h2(m, C, K, R)).

(16)

On the other hand, we can also derive that

Pr[UV_ERR] ≤ k
hhUV qqq

2

)1(
32
++

. (14)

Pr[λ′ = λ | GP] = 1/2. (15)

Pr[λ′ = λ] = Pr[λ′ = λ | GP] Pr[GP]
 + Pr[λ′ = λ | ¬GP] Pr[¬GP]

 ≤ (1/2)Pr[GP] + Pr[¬GP]
 (by Eq. (15))
 = (1/2)(1 − Pr[¬GP]) + Pr[¬GP]
 = (1/2) + (1/2)Pr[¬GP]. (16)

Pr[λ′ = λ] ≥ Pr[λ′ = λ | GP] Pr[GP]

 = (1/2)(1 − Pr[¬GP])
 = (1/2) − (1/2)Pr[¬GP]. (17)

| Pr[λ′ = λ] − 1/2 | ≤ (1/2)Pr[¬GP]. (18)

Recall that in Definition 3, A’s advantage is defined
as Adv(A) = | Pr[λ′ = λ] − 1/2 |. By assumption, A
has non-negligible probability ε to break the
proposed scheme. We therefore have

ε = | Pr[λ′ = λ] − 1/2 |
 ≤ (1/2)Pr[¬GP] (by Eq. (18))
 = (1/2)(Pr[QH2* ∨ QH3* ∨ UV_ERR])

 ≤ (1/2)(Pr[QH2*] + Pr[QH3*]
 + Pr[UV_ERR])

Combining Eq. (14) and rewriting the above
inequality, we get

(Pr[QH2*] + Pr[QH3*]) ≥ 2ε − Pr[UV_ERR]

 ≥ 2ε − k
hhUV qqq

2

)1(
32
++

.

If the event (QH2* ∨ QH3*) happens, we claim that
K* = (yvσ)xv mod p will be stored in some entry of
the Q_h2 or the Q_h3 array. Consequently, B has
non-negligible probability

ε' ≥ (qh2
 + qh3

)−1(2ε − k
hhUV qqq

2

)1(
32
++

)

to output vp xxgK =
−1

*σ and solve the CDHP.
The computational time required for B is t' ≈ t +
tλ(2qCG + 4qPS + 3qUV).

 Q.E.D.

In 2000, Pointcheval and Stern introduced the

Forking lemma [29] to prove the security for generic
digital signature schemes in the random oracle model.
If we apply their techniques to prove our scheme, we
can also obtain the generic result as follows.

(The Forking Lemma) In the random oracle mode,
let (G, Σ, V) be a generic signature scheme and A a
probabilistic polynomial-time Turing machine whose
input only consists of public data. We denote
respectively by N1 and N2 the number of queries that
A can ask to the random oracle and the number of
queries that A can ask to the signer. Assume that,
within a time bound T, A produces, with probability ε
≥ 10(N2 + 1)(N2 + N1)/2k, a valid signature (m, σ1, h,
σ2) where σ1 = (mw, R, T, K), h = (h2(m, C, K, R),
h1(mw, T)) and σ2 = S. If the triples (σ1, h, σ2) can be
simulated without knowing the private key with an
indistinguishable distribution probability, then there
is another machine which has control over the
machine obtained from A replacing interaction with
the signer by simulation and produces two valid
signatures (m, σ1, h, σ2) and (m, σ1, h', σ2') such that
h2(m, C, K, R) ≠ h'2(m, C, K, R) in the expected time
T ' ≤ 120686T/ε.

More concretely, in our scheme, we can first
obtain two equations below:

RT = gS
 yp

h2(m, C, K, R)C mod p,

RT = gS'
 yp

h'2(m, C, K, R)C mod p.
By combining the above two equalities, we can
further derive the private key xp as

xp = (S − S')/(h'2(m, C, K, R) − h2(m, C, K, R)).

(17)

With inequalities (16) and (17), we know that

| Pr[λ′ = λ] − 1/2 | ≤ (1/2)Pr[¬GP]. (18)
Recall that in Definition 3, A’s advantage is defined
as Adv(A) = | Pr[λ′ = λ] − 1/2 |. By assumption, A
has non-negligible probability ε to break the
proposed scheme. We therefore have

ε = | Pr[λ′ = λ] − 1/2 |
 ≤ (1/2)Pr[¬GP] (by Eq. (18))
 = (1/2)(Pr[QH2* ∨ QH3* ∨ UV_ERR])

 ≤ (1/2)(Pr[QH2*] + Pr[QH3*]
 + Pr[UV_ERR])

Combining Eq. (14) and rewriting the above
inequality, we get

(Pr[QH2*] + Pr[QH3*]) ≥ 2ε − Pr[UV_ERR]

 ≥ 2ε − k
hhUV qqq

2

)1(
32
++

.

If the event (QH2* ∨ QH3*) happens, we claim that
K* = (yvσ)xv mod p will be stored in some entry of
the Q_h2 or the Q_h3 array. Consequently, B has
non-negligible probability

ε' ≥ (qh2
 + qh3

)−1(2ε − k
hhUV qqq

2

)1(
32
++

)

to output vp xxgK =
−1

*σ and solve the CDHP.
The computational time required for B is t' ≈ t +
tλ(2qCG + 4qPS + 3qUV).

 Q.E.D.

In 2000, Pointcheval and Stern introduced the

Forking lemma [29] to prove the security for generic
digital signature schemes in the random oracle model.
If we apply their techniques to prove our scheme, we
can also obtain the generic result as follows.

(The Forking Lemma) In the random oracle mode,
let (G, Σ, V) be a generic signature scheme and A a
probabilistic polynomial-time Turing machine whose
input only consists of public data. We denote
respectively by N1 and N2 the number of queries that
A can ask to the random oracle and the number of
queries that A can ask to the signer. Assume that,
within a time bound T, A produces, with probability ε
≥ 10(N2 + 1)(N2 + N1)/2k, a valid signature (m, σ1, h,
σ2) where σ1 = (mw, R, T, K), h = (h2(m, C, K, R),
h1(mw, T)) and σ2 = S. If the triples (σ1, h, σ2) can be
simulated without knowing the private key with an
indistinguishable distribution probability, then there
is another machine which has control over the
machine obtained from A replacing interaction with
the signer by simulation and produces two valid
signatures (m, σ1, h, σ2) and (m, σ1, h', σ2') such that
h2(m, C, K, R) ≠ h'2(m, C, K, R) in the expected time
T ' ≤ 120686T/ε.

More concretely, in our scheme, we can first
obtain two equations below:

RT = gS
 yp

h2(m, C, K, R)C mod p,

RT = gS'
 yp

h'2(m, C, K, R)C mod p.
By combining the above two equalities, we can
further derive the private key xp as

xp = (S − S')/(h'2(m, C, K, R) − h2(m, C, K, R)).

(18)

Recall that in Definition 3, A’s advantage is defined
as Adv(A) = | Pr[l′ = l] − 1/2 |. By assumption, A has
non-negligible probability e to break the proposed
scheme. We therefore have

ε = | Pr[λ′ = λ] − 1/2 |
≤ (1/2)Pr[¬GP]
= (1/2)(Pr[QH2* ∨ QH3* ∨ UV_ERR])
 (1/2)(Pr[QH2*] + Pr[QH3*]

 + Pr[UV_ERR]) by Eq. (18)

Combining Eq. (14) and rewriting the above inequal-
ity, we get'

(Pr[QH2*] + Pr[QH3*]) 2 Pr[UV_ERR]

 2 k
hhUV qqq

2

)1(
32

.

' (qh2
 + qh3

)1(2 k
hhUV qqq

2

)1(
32

)

to output vp xxgK
1

* and solve the CDHP.
The computational time required for B is t' t +
t(2qCG + 4qPS + 3qUV).

 Q.E.D.

In 2000, Pointcheval and Stern introduced the

Forking lemma [29] to prove the security for generic
digital signature schemes in the random oracle model.
If we apply their techniques to prove our scheme, we
can also obtain the generic result as follows.

(The Forking Lemma) In the random oracle mode,
let (G, , V) be a generic signature scheme and A a
probabilistic polynomial-time Turing machine whose
input only consists of public data. We denote
respectively by N1 and N2 the number of queries that
A can ask to the random oracle and the number of
queries that A can ask to the signer. Assume that,
within a time bound T, A produces, with probability
 10(N2 + 1)(N2 + N1)/2k, a valid signature (m, 1, h,
2) where 1 = (mw, R, T, K), h = (h2(m, C, K, R),
h1(mw, T)) and 2 = S. If the triples (1, h, 2) can be
simulated without knowing the private key with an
indistinguishable distribution probability, then there
is another machine which has control over the
machine obtained from A replacing interaction with
the signer by simulation and produces two valid
signatures (m, 1, h, 2) and (m, 1, h', 2') such that
h2(m, C, K, R) h'2(m, C, K, R) in the expected time
T ' 120686T/.

More concretely, in our scheme, we can first
obtain two equations below:

RT = gS
 yp

h2(m, C, K, R)C mod p,

RT = gS'
 yp

h'2(m, C, K, R)C mod p.
By combining the above two equalities, we can
further derive the private key xp as

xp = (S S')/(h'2(m, C, K, R) h2(m, C, K, R)).

If the event (QH2* ∨ QH3*) happens, we claim that
K* = (yv

s)xv mod p will be stored in some entry of the
Q_h2 or the Q_h3 array. Consequently, B has non-neg-
ligible probability

(Pr[QH2*] + Pr[QH3*]) 2 Pr[UV_ERR]

 2 k
hhUV qqq

2

)1(
32

.

' (qh2
 + qh3

)1(2 k
hhUV qqq

2

)1(
32

)

to output vp xxgK
1

* and solve the CDHP.
The computational time required for B is t' t +
t(2qCG + 4qPS + 3qUV).

 Q.E.D.

In 2000, Pointcheval and Stern introduced the

Forking lemma [29] to prove the security for generic
digital signature schemes in the random oracle model.
If we apply their techniques to prove our scheme, we
can also obtain the generic result as follows.

(The Forking Lemma) In the random oracle mode,
let (G, , V) be a generic signature scheme and A a
probabilistic polynomial-time Turing machine whose
input only consists of public data. We denote
respectively by N1 and N2 the number of queries that
A can ask to the random oracle and the number of
queries that A can ask to the signer. Assume that,
within a time bound T, A produces, with probability
 10(N2 + 1)(N2 + N1)/2k, a valid signature (m, 1, h,
2) where 1 = (mw, R, T, K), h = (h2(m, C, K, R),
h1(mw, T)) and 2 = S. If the triples (1, h, 2) can be
simulated without knowing the private key with an
indistinguishable distribution probability, then there
is another machine which has control over the
machine obtained from A replacing interaction with
the signer by simulation and produces two valid
signatures (m, 1, h, 2) and (m, 1, h', 2') such that
h2(m, C, K, R) h'2(m, C, K, R) in the expected time
T ' 120686T/.

More concretely, in our scheme, we can first
obtain two equations below:

RT = gS
 yp

h2(m, C, K, R)C mod p,

RT = gS'
 yp

h'2(m, C, K, R)C mod p.
By combining the above two equalities, we can
further derive the private key xp as

xp = (S S')/(h'2(m, C, K, R) h2(m, C, K, R)).

to output vp xxgK =
−1

*σ and solve the CDHP. The
computational time required for B is t′ ≈ t + tl(2qCG +
4qPS + 3qUV).
 Q.E.D.

.

Information Technology and Control 2017/4/46540

In 2000, Pointcheval and Stern introduced the Fork-
ing lemma [29] to prove the security for generic dig-
ital signature schemes in the random oracle model.
If we apply their techniques to prove our scheme, we
can also obtain the generic result as follows.
(The Forking Lemma) In the random oracle model,
let (G, S, V) be a generic signature scheme and A a prob-
abilistic polynomial-time Turing machine whose in-
put only consists of public data. We denote respectively
by N1 and N2 the number of queries that A can ask to
the random oracle and the number of queries that A can
ask to the signer. Assume that, within a time bound T,
A produces, with probability e ≥ 10(N2 + 1)(N2 + N1)/2k,
a valid signature (m, s1, h, s2) where s1 = (mw, R, T, K),
h = (h2(m, C, K, R), h1(mw, T)) and s2 = S. If the triples
(s1, h, s2) can be simulated without knowing the pri-
vate key with an indistinguishable distribution proba-
bility, then there is another machine which has control
over the machine obtained from A replacing interac-
tion with the signer by simulation and produces two
valid signatures (m, s1, h, s2) and (m, s1, h′, s2′) such
that h2(m, C, K, R) ≠ h′2(m, C, K, R) in the expected time
T ′ ≤ 120686T/e.
More concretely, in our scheme, we can first obtain
two equations below:
RT = gS

 yp
h2(m, C, K, R)C mod p,

RT = gS’
 yp

h’2(m, C, K, R)C mod p.
By combining the above two equalities, we can further
derive the private key xp as
xp = (S - S′)/(h′2(m, C, K, R) - h2(m, C, K, R)).
Still, to give a tight reduction from the hardness of
DLP to our proposed scheme, we present another
more detailed security proof and the advantage anal-
ysis as Theorem 2.
Theorem 2. (Proof of Unforgeability) The proposed
scheme is (t, qh1

, qh2
, qh3

, qCG, qPS, e)-secure against exis-
tential forgery under adaptive chosen-message attacks
(EF-CMA) in the random oracle model if there is no
probabilistic polynomial-time adversary that can (t′,
e′)-break the DLP, where
e′ ≥4-1(e - 2-2k)3(qh2

-1),
t′ ≈ t + tl(4qCG + 8qPS).
Here tl is the time for performing a modular exponen-
tiation over a finite field.
Proof: Fig. 9 depicts the proof structure of this The-

orem. Suppose that A is a probabilistic polynomi-
al-time adversary A can (t, qh1

, qh2
, qh3

, qCG, qPS, e)-break
the proposed scheme with non-negligible advantage
e under the adaptive chosen-message attack after
running in time at most t and asking at most qhi

 hi ran-
dom oracle (for i = 1 to 3), qCG CG and qPS PS queries.
Then we can construct another algorithm B that (t′,
e′)-breaks the DLP by taking A as a subroutine. Let all
involved parties and notations be defined the same as
those in Section 3.1, h3 a collision resistant hash func-
tion and (h1, h2) random oracles. The objective of B is
to obtain)log(pgp yx = by taking (p, q, g, yp) as inputs.
In this proof, B simulates a challenger to A in the fol-
lowing game.
Setup: The challenger B runs the Setup(1k) algorithm
to obtain the system’s public parameters params = {p,
q, g} and comes up with a random tape composed of a
long sequence of random bits. Then B simulates two
runs of the proposed scheme to the adversary A on in-
put params, yo, yp, yv = gα mod p where α ∈ R Zq, and the
random tape.
Phase 1: A adaptively asks h1 and h2 random oracles,
CG and PS queries as those defined in Theorem 1.
Analysis of the game: According to the analyses of
Theorem 1, the simulations of CG and PS queries are
perfect. Namely, the adversary A can not distinguish

Figure 9
The proof structure of unforgeability in Theorem 2

B

A
 = (Q, S, R, T)

{p, q, g, yo, yp, yv = g mod p}

)log(pgp yx

h1 and h2 oracles

CG and PS queries

(p, q, g, yp)

541Information Technology and Control 2017/4/46

whether he is playing in either a simulation or a real
scheme. Let AC-V be the event that A forges a valid
authenticated ciphertext d = (Q, S, R, T) for his arbi-
trarily chosen message m. Since A has non-negligible
probability e to break the proposed scheme under
the adaptive chosen-message attack by the initial as-
sumption, we know that
Pr[AC-V] = e.
Now we further consider the situation where A is able
to output a valid d without asking h1 and h2 random
oracles in advance. Let NR be the event that A guesses
correct output values of h1(mw, T) and h2(m, C, K, R)
without asking the random oracles, i.e., Pr[NH] ≤ 2-2k.
Then, we can express the probability that A outputs
a valid forgery d = (Q, S, R, T) after asking the corre-
sponding random oracles as
Pr[AC-V ∧ ¬NH] ≥ (e - 2-2k).
With the initially selected private key α, B can recov-
ers m and obtain the multi-proxy signature (S, R, T, K)
along with mw.
Then B launches the second simulation. He again
runs A on input params, yo, yp, yv = gα mod p where α
∈ R Zq, and the same random tape. Since the adversary
A is given the same sequence of random bits, we can
anticipate that the i-th random query A asks will al-
ways be the same as the one in the first simulation. In
the second simulation, B returns identical results as
those he responds in the first time until A makes the
h2(m, C, K, R) query. At this time, B directly gives an-
other answer v2*∈R Zq rather than original v2. Mean-
while, A is then supplied with a different random tape
which also consists of a long sequence of random bits.
From the statement of “Forking lemma”, we can learn
that when A finally makes another valid forgery d* =
(Q*, S*, R, T*) where h2(m, C, K, R) ≠ h2*(m, C, K, R), B
could solve the DLP with non-negligible probability.
To analyze B’s success probability, we use the “Split-
ting lemma” [29] described below:
Let X and Y be the sets of possible sequences of ran-
dom bits and random function values provided to A
before and after the h2(m, C, K, R) query is issued, res-
pectively. It follows that on inputting a random value
(x || y) for any x ∈ X and y ∈ Y, A returns a valid forgery
with the non-negligible probability e, i.e.,
Pr x∈X, y∈Y [AC-V] = e.
By the “Splitting lemma”, there exists a subset D ∈ X
such that

(a) Pr[x ∈ D] = |D| × |X|-1 ≥ 2-1e.
(b) ∀x ∈ D, Pr y∈Y [AC-V] ≥ 2-1e.
If we let ρ ∈ D and y′ ∈ Y separately be the supplied
sequences of random bits and random function values
before and after A makes the h2(m, C, K, R) query, A is
able to make a valid forgery in the second simulation
with the probability of at least (2-1e)2 = 4-1e2, i.e.,
Prρ ∈D, y'∈Y [AC-V] ≥ 4-1e2.
Since we have known that A eventually returns anoth-
er valid d* = (Q*, S*, R, T*) with h2(m, C, K, R) ≠ h2*(m,
C, K, R) is qh2

-1, the probability of B to solve the DLP in
the second simulation can be represented as
e‘ ≥ (e - 2-2k)(4-1(e - 2-2k)2)(qh2

-1)
 4-1(e - 2-2k)3(qh2

-1).
Moreover, the computational time required for B in
one simulation is
t' ≈ t + tl(4qCG + 8qPS).
 Q.E.D.
According to Theorem 2, the proposed scheme is se-
cure against existential forgery attacks. That is, the
proxy private key can not be forged and the delegated
proxy signer can not repudiate having generated his
authenticated ciphertext. Hence, we obtain the fol-
lowing corollary.
Corollary 1. The proposed scheme satisfies the securi-
ty requirement of non-repudiation.

4.4. Comparisons
We compare the proposed scheme with some relat-
ed works including Lv et al.’s (LWK for short) [24],
Tso et al.’ (TOO for short) [35], Araki et al.’ (AUI for
short) [1], the Wu-Hsu (WH for short) [40], Wu et
al.’s (WHT for short) [42], Chang’s (Cha for short)
[2], Tsai’s (Tsa for short) [34] and the Lin-Yeh (LY for
short) [22] schemes in terms of functionalities and
security proofs. Detailed comparisons are demon-
strated as Table 2. Since WHT and Cha schemes also
have provable security, we further compare our work
with them in terms of computational efforts which
is evaluated by the number of required modular ex-
ponentiation operations. The performance compar-
ison is demonstrated as Table 3. From these tables, it
can be seen that the proposed scheme provides not
only better functionalities, but also lower computa-
tional costs.

Information Technology and Control 2017/4/46542

5. Conclusions
In this paper, we have proposed a novel PCMAE
scheme to solve the group-oriented delegation prob-
lem for confidential transactions. The proposed
scheme allows the proxy signer to produce an au-
thenticated ciphertext on behalf of the original sign-
ing group and only the designated recipient is capa-
ble of recovering the message and verifying its proxy
multi-signature for guaranteeing the confidentiality.
Its variant with message linkages further benefits
the transmission of a large message by dividing it
into many smaller message blocks. It is not neces-
sary to establish a session key in advance between
a proxy signer and a designated recipient. Without
revealing the private key, a designated recipient can
independently convert the authenticated ciphertext
into an ordinary proxy multi-signature for the public
arbitration in case of a later repudiation. Since the
converted proxy multi-signature is obtained during
the message recovery and signature verification pro-

Table 2
Comparisons in terms of functionalities and security proofs

 Scheme
Item LWK TOO

WH AUI WHT
Cha

Tsa
LY Ours

Multi-User Environment No No No Yes Yes Yes

Proxy Delegation No No No No No Yes

Message Linkages Yes No No No No Yes

Signature Conversion Yes Yes Yes Yes Yes Yes

No Conversion Cost Yes Yes No Yes Yes Yes

Proof of Confidentiality No No No Yes No Yes

Proof of Unforgeability No No No Yes No Yes

Table 3
Comparisons in number of required modular exponentiation operations

 Scheme
Item WHT Cha Ours

Computational Costs* 3n2 - n + 5 3n2 - n + 5 3n + 7

Remark *: Let n be the size of original signing group. The computational costs include those executed by each original signer, proxy
signer and the designated recipient.

cess, the signature conversion process requires no
extra computation efforts and communication over-
heads. In addition, we also proved that the proposed
scheme achieves the security requirement of confi-
dentiality against indistinguishability under adaptive
chosen-ciphertext attacks (IND-CCA2) and that of
unforgeability against existential forgery under adap-
tive chosen-message attacks (EF-CMA) in the ran-
dom oracle model. As compared with related works,
ours not only provides better functionalities, but also
has provable security.

Acknowledgements

The author would like to thank anonymous referees
for their valuable suggestions. This work was sup-
ported in part by the Ministry of Science and Tech-
nology of Republic of China under the contract num-
ber MOST 106-2221-E-019-008.

543Information Technology and Control 2017/4/46

References
1. Araki, S., Uehara, S., Imamura, K. The Limited Verifier

Signature and Its Application. IEICE Transactions on
Fundamentals, 1999, E82-A(1), 63-68.

2. Chang, T. Y. A Convertible Multi-Authenticated En-
cryption Scheme for Group Communications. Informa-
tion Sciences, 2008, 178(17), 2008, 3426-3434.

3. Chien, H. Y. Selectively Convertible Authenticated En-
cryption in the Random Oracle Model. The Computer
Journal, 2008, 51(4), 2008, 419-434.

4. Diffie, W., Hellman, M. New Directions in Cryptog-
raphy. IEEE Transactions on Information Theory,
1976, IT-22(6), 644-654. https://doi.org/10.1109/
TIT.1976.1055638

5. ElGamal, T. A Public Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms. IEEE Transac-
tions on Information Theory, 1985, IT-31(4), 469-472.
https://doi.org/10.1109/TIT.1985.1057074

6. Elkamshoushy, D. H., AbouAlsoud, A. K., Madkour, M.
New Proxy Signcryption Scheme with DSA Verifier.
Proceedings of the 23th National Radio Science Confer-
ence (NRSC 2006), 2006, 1-8. https://doi.org/10.1109/
NRSC.2006.386345

7. Hendry, M. Smart Card Security and Applications, Ar-
tech House, Inc., 1997.

8. Horster, P., Michel, M., Peterson, H. Authenticated En-
cryption Schemes with Low Communication Costs.
Electronics letters, 1994, 30(15), 1212-1213. https://doi.
org/10.1049/el:19940856

9. Hou, F., Wang, Z., Tang, Y., Liu, Z. Protecting Integrity
and Confidentiality for Data Communication. Proceed-
ings of the 9th International Symposium on Computers
and Communications (ISCC), 2004, 1(28), 357-362.

10. Hsu, C. L., Wu, T. S., Wu, T. C. New Nonrepudiable
Threshold Proxy Signature Scheme with Known Signers.
The Journal of Systems and Software, 2001, 58(2), 119-
124. https://doi.org/10.1016/S0164-1212(01)00032-2

11. Huang, H. F., Chang, C. C. An Efficient Convertible Au-
thenticated Encryption Scheme and Its Variant. Pro-
ceedings of the 5th International Conference on Infor-
mation and Communications Security (ICICS2003),
Springer-Verlag, Berlin, 2003, 382-392. https://doi.
org/10.1007/978-3-540-39927-8_35

12. Hwang, S. J., Chen, C. C. A New Multi-Proxy Multisig-
nature Scheme, 2001 National Computer Symposium,
2001, 19-26.

13. Hwang, M. S., Lin, I. C., Eric Lu, J. L. A Secure Nonrepu-
diable Threshold Proxy Signature Scheme with Known
Signers. International Journal of Informatica, 2000,
11(2), 1-8.

14. Hwang, S. J., Shi, C. H. A Simple Multi-Proxy Signature
Scheme. Proceedings of the 10th National Conference
on Information Security, 2000, 134-138.

15. Jacob, J. A Uniform Presentation of Confidentiality Prop-
erties. IEEE Transactions on Software Engineering, 1991,
17(11), 1186-1194. https://doi.org/10.1109/32.106973

16. Kim, S., Park, S., Won, D. Proxy Signatures, Revisited.
ICICS’97, Springer-Verlag, 223-232, 1997.

17. Koblitz, N. Elliptic Curve Cryptosystems. Mathemat-
ics of Computation, 1987, 48(177), 203-209. https://doi.
org/10.1090/S0025-5718-1987-0866109-5

18. Lal, S., Singh, T. New ID Based Multi-Proxy Multi-Sign-
cryption Scheme from Pairings. Computing Re-
search Repository, Cryptography and Security, arX-
iv:cs/0701044, 2007.

19. Lee, C. C., Hwang, M. S., Tzeng, S. F. A New Convertible
Authenticated Encryption Scheme Based on the El-
Gamal Cryptosystem. International Journal of Foun-
dations of Computer Science, 2009, 20(2), 351-359.
https://doi.org/10.1142/S0129054109006607

20. Lin, H. Y. RPCAE: A Novel Revocable Proxy Convert-
ible Authenticated Encryption Scheme. International
Journal of Information Security, 2015, 14(5), 431-441.
https://doi.org/10.1007/s10207-014-0269-2

21. Lin, H. Y., Wu, T. S. Bilinear Pairings Based Convertible
Authenticated Encryption Scheme with Provable Recip-
ient. Proceedings of 2008 International Computer Sym-
posium (ICS 2008), Taipei, Taiwan, November 2008.

22. Lu, C. F., Hsu, C. L., Lin, H. Y. Provably Convertible
Multi-Authenticated Encryption Scheme for Gener-
alized Group Communications. Information Scienc-
es, 2012, 199(15), 154-166. https://doi.org/10.1016/j.
ins.2012.02.051

23. Lu, R., He, D., Wang, C. On the Security of an Identi-
ty-Based Threshold Proxy Signature Scheme with
Known Signers. Proceedings of the 3rd Internation-
al Conference on Natural Computation 2007 (ICNC
2007), IEEE Press, Piscataway, U.S.A., 2007, 3, 210-214.
https://doi.org/10.1109/ICNC.2007.515

24. Lv, J., Wang, X., Kim, K. Practical Convertible Au-
thenticated Encryption Schemes Using Self-Certified

Information Technology and Control 2017/4/46544

Public Keys. Applied Mathematics and Computation,
2005, 169(2), 1285-1297. https://doi.org/10.1016/j.
amc.2004.10.057

25. Mambo, M., Usuda, K., Okamoto, E. Proxy Signature for
Delegating Signature Operation. Proceedings of the 3rd
ACM Conference on Computer and Communications
Security, ACM Press, 1996, 48-57.

26. Mambo, M., Usuda, K., Okamoto, E. Proxy Signatures:
Delegation of the Power to Sign Messages. IEICE Trans-
actions on Fundamentals of Electronic Communications
and Computer Science, 1996, E79-A(9), 1338-1354.

27. Miller, V. Use of Elliptic Curves in Cryptography. Ad-
vances in Cryptology − CRYPTO’85, Springer-Verlag,
1985, 417-426.

28. Neuman B. C. Proxy-Based Authentication and Ac-
counting for Distributed Systems. Proceedings of the
13th International Conference on Distributed Comput-
ing Systems, 1993, 283-291.

29. Pointcheval, D., Stern, J. Security Arguments for Digi-
tal Signatures and Blind Signatures. Journal of CRYP-
TOLOGY, 2000, 13, 361-369. https://doi.org/10.1007/
s001450010003

30. Rivest, R., Shamir, A., Adleman, L. A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems.
Communications of the ACM, 1978, 21(2), 120-126.
https://doi.org/10.1145/359340.359342

31. Schneider, S. Formal Analysis of a Non-Repudia-
tion Protocol. Proceedings of 11th IEEE Computer
Security Foundations Workshop, IEEE Press, Pis-
cataway, USA, 1998, 54-65. https://doi.org/10.1109/
CSFW.1998.683155

32. Stallings, W. Cryptography and Network Security: Prin-
ciples and Practices, 4th Ed., Pearson, 2005.

33. Sun, H. M., Lee, N. Y., Hwang, T. Threshold Proxy Sig-
natures. IEE Proceedings of Computers & Digital Tech-
niques, 1999, 146(5), 259-263. https://doi.org/10.1049/
ip-cdt:19990647

34. Tsai, J. L., Wu, T. S., Lin, H. Y., Lee, J. E. Efficient Con-
vertible Multi-Authenticated Encryption Scheme
Without Message Redundancy or One-Way Hash Func-
tion. International Journal of Innovative Computing,
Information and Control, 2010, 6(9), 3843-3852.

35. Tso, R., Okamoto, T., Okamoto, E. An Improved Sign-
cryption Scheme and Its Variation. Proceedings of the
4th International Conference on Information Technol-
ogy (ITNG ‘07), 2007, 772-778. https://doi.org/10.1109/
ITNG.2007.34

36. Tzeng, S. F., Yang, C. Y., Hwang, M. S. A Nonrepudiable
Threshold Multi-Proxy Multisignature Scheme with
Shared Verification. Future Generation Computer Sys-
tems, 2004, 20(5), 887-893. https://doi.org/10.1016/j.
future.2004.01.002

37. Varadharajan, V., Allen, P., Black, S. An Analysis of the
Proxy Problem in Distributed System. Proceedings of
1991 IEEE Computer Society Symposium on Research
in Security and Privacy, 1991, 255-277. https://doi.
org/10.1109/RISP.1991.130793

38. VISA and MasterCard Inc. Secure Electronic Transac-
tion (SET) Specification, Version 1.0, 1997.

39. Wang, Q., Cao, Z. Efficient ID-Based Proxy Signature and
Proxy Signcryption from Bilinear Pairings. Computa-
tional Intelligence and Security, Springer-Verlag, 2005,
3802, 167-172. https://doi.org/10.1007/11596981_25

40. Wu, T. S., Hsu, C. L. Convertible Authenticated Encryp-
tion Scheme. The Journal of Systems and Software,
2002, 62(3), 205-209. https://doi.org/10.1016/S0164-
1212(01)00143-1

41. Wu, T. S., Hsu, C. L., Lin, H. Y. Efficient Convertible Au-
thenticated Encryption Schemes for Smart Card Appli-
cations in Network Environments. Proceedings of the
9th World Multi-Conference on Systemics, Cybernet-
ics and Informatics (WMSCI 2005), Orlando, Florida,
U.S.A., July 2005.

42. Wu, T. S., Hsu, C. L., Tsai, K. Y., Lin, H. Y., Wu, T. C. Con-
vertible Multi-Authenticated Encryption Scheme. In-
formation Sciences, 2008, 178(1), 256-263. https://doi.
org/10.1016/j.ins.2007.06.011

43. Wu, T. S., Lin, H. Y. ECC Based Convertible Authenti-
cated Encryption Scheme Using Self-Certified Public
Key Systems. International Journal of Algebra, 2008,
2(3), 109-117.

44. Wu, T. S., Lin, H. Y. Secure Convertible Authenticated
Encryption Scheme Based on RSA. Informatica, 2009,
33(4), 481-486.

45. Wu, T. S., Lin, H. Y. Provably Secure Proxy Convert-
ible Authenticated Encryption Scheme Based on RSA.
Information Sciences, 2014, 10, 577-587. https://doi.
org/10.1016/j.ins.2014.03.075

46. Wu, T. S., Lin, H. Y., Ting, P. Y. A Publicly Verifiable
PCAE Scheme for Confidential Applications with Proxy
Delegation. Transactions on Emerging Telecommuni-
cations Technologies, 2012, 23(2), 172-185. https://doi.
org/10.1002/ett.1522

47. Xue, Q., Cao, Z. A Nonrepudiable Multi-Proxy Multisig-
nature Scheme. Proceedings of 1st Joint Workshop on

545Information Technology and Control 2017/4/46

Mobile Future & Symposium on Trends in Communi-
cations (SympoTIC’04), IEEE Press, Piscataway, USA,
2004, 102-105.

48. Zhang, F., Kim, K. A Universal Forgery on Araki et al.’s Con-
vertible Limited Verifier Signature Scheme. IEICE Trans-
actions on Fundamentals, 2003, E86-A(2), 2003, 515-516.

This paper presents a novel proxy convertible multi-authenticated encryption (multi-AE) scheme and its vari-
ant with message linkages. The proposed scheme allows two or more original signers to cooperatively delegate
their signing power to an authorized proxy signer, such that the proxy signer can generate a valid authenticated
ciphertext on behalf of the original signing group and only a designated recipient is capable of decrypting the
ciphertext and verifying its embedded proxy multi-signature. Its variant with message linkages further ben-
efits the encryption of a large message by dividing it into many smaller message blocks. The proposed proxy
convertible multi-AE scheme and its variant can simultaneously fulfill the security requirements of confiden-
tiality and authenticity. Thus, they are applicable to those group-oriented confidential applications with proxy
delegation, e.g., proxy on-line auction, proxy contract signing and so on. In case of a later dispute over repudi-
ation, our proposed scheme also allows a designated recipient to convert the ciphertext into an original proxy
multi-signature for public verification. In addition, the security of confidentiality against indistinguishability
under adaptive chosen-ciphertext attacks (IND-CCA2) and that of unforgeability against existential forgery
under adaptive chosen-message attacks (EF-CMA) are proved in the random oracle model.

Straipsnyje pristatoma nauja konvertuojama tarpinio serverio multi-autentifikuota šifravimo (multi-AE)
schema ir jos variantas su pranešimų ryšiais. Siūloma schema leidžia dviem ar daugiau pirminių pasirašiu-
siųjų bendrai perduoti įgaliojimą autorizuotam tarpinio serverio įgaliotiniui pasirašyti. Tokiu būdu, tarpinio
serverio įgaliotinis gali pirminės pasirašymo grupės vardu sukurti pagrįstą autentifikuotą šifruotą tekstą ir tik
paskirtasis gavėjas gali iššifruoti šifro tekstą bei patikrinti jame esančius daugiapakopius tarpinio serverio pa-
rašus. Schemos variantas su pranešimų sąsajomis dar labiau pagerina didelės žinutės šifravimą, dalindamas ją
į daugybę mažesnių pranešimo blokų. Siūloma konvertuojama multi-AE tarpinio serverio schema ir jos varian-
tas vienu metu gali atitikti ir konfidencialumo ir autentiškumo saugumo reikalavimus. Taigi, jie gali būti panau-
dojami į grupes orientuotuose konfidencialiuose taikymo atvejuose su tarpinio serverio įgaliojimu, pavyzdžiui,
internetiniuose aukcionuose ar sutarčių pasirašyme tarpiniuose serveriuose ir pan. Jei kyla ginčas dėl atsisa-
kymo, autorių siūloma schema paskirtam gavėjui leidžia konvertuoti šifro tekstą į originalų daugiapakopį tarpi-
nio serverio parašą viešam patvirtinimui. Atsitiktinio orakulo modelyje įrodyta konfidencialumo apsauga nuo
neatpažįstamumo adaptyvių pasirinktų šifruotų tekstų atakų (IND-CCA2) ir nuo neatskiriamumo adaptyvių
pasirinktų žinučių atakų (EF-CMA) metu.

Summary / Santrauka

