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Molecular diagnostics are revolutionising
the clinical practice of infectious disease.
Their effects will be significant in acute-
care settings where timely and accurate
diagnostic tools are critical for patient
treatment decisions and outcomes. PCR
is the most well-developed molecular
technique up to now, and has a wide
range of already fulfilled, and potential,
clinical applications, including specific or
broad-spectrum pathogen detection,
evaluation of emerging novel infections,
surveillance, early detection of biothreat
agents, and antimicrobial resistance
profiling. PCR-based methods may also
be cost effective relative to traditional
testing procedures. Further advancement
of technology is needed to improve
automation, optimise detection
sensitivity and specificity, and expand
the capacity to detect multiple targets
simultaneously (multiplexing). This review
provides an up-to-date look at the
general principles, diagnostic value, and
limitations of the most current 
PCR-based platforms as they evolve
from bench to bedside.

Lancet Infect Dis 2004; 4: 337–48

Pathogen identification: scope of the problem
In the USA, hospitals report well over 5 million cases of
recognised infectious-disease-related illnesses annually.1

Significantly greater numbers remain unrecognised, both in
the inpatient and community settings, resulting in
substantial morbidity and mortality.2 Critical and timely
intervention for infectious disease relies on rapid and
accurate detection of the pathogen in the acute-care setting
and beyond. The recent anthrax-related bioterrorist events
and the outbreak of severe acute respiratory syndrome
(SARS) further underscore the importance of rapid
diagnostics for early, informed decision-making related to
patient triage, infection control, treatment, and vaccination
with life-and-death consequences for patients, health
providers, and the public.3–5 Unfortunately, despite the
recognition that outcomes from infectious illnesses are
directly associated with time to pathogen identification,
conventional hospital laboratories remain encumbered by
traditional, slow multistep culture-based assays, which

preclude application of diagnostic test results in the acute
and critical-care settings. Other limitations of the
conventional laboratory include extremely prolonged assay
times for fastidious pathogens (up to several weeks);
requirements for additional testing and wait times for
characterising detected pathogens (ie, discernment of species,
strain, virulence factors, and antimicrobial resistance);
diminished test sensitivity for patients who have received
antibiotics; and inability to culture certain pathogens in
disease states associated with microbial infection.2,6

The failure of either clinical judgment or diagnostic
technology to provide quick and accurate data for
identifying the pathogen infecting patients leads most
clinicians to adopt a conservative management approach.
Empiric intravenous antibiotic therapy (most common in
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Figure 1. Schematic of PCR. The PCR reaction takes place in a thermocycler. Each PCR cycle
consists of three major steps: (1) denaturation of template DNA into single-stranded DNA; 
(2) primers annealing to their complementary target sequences; and (3) extension of primers via
DNA polymerisation to generate new copy of the target DNA. At the end of each cycle the newly
synthesised DNA act as new targets for the next cycle. Subsequently, by repeating the cycle
multiple times, logarithmic amplification of the target DNA occurs.
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acute-care settings such as emergency departments and
intensive care units) offers the advantages of maximum
patient safety and improved outcomes. The benefits of
conservative management may be offset, however, by added
costs and potential iatrogenic complications associated with
unnecessary treatment and hospitalisations, as well as
increased rates of antimicrobial resistance.7–9 A rapid reliable
diagnostic assay, which allows for accurate identification of
infected patients and informed early therapeutic
intervention, would thus be invaluable for emergency and
critical care physicians.

For more than a decade, molecular testing has been
heralded as the “diagnostic tool for the new millennium”,
whose ultimate potential could render traditional hospital
laboratories obsolete.10–12 However, with the evolution of
novel diagnostics tools, difficult questions have arisen
regarding the role of such testing in the assessment of clinical
infectious diseases. As molecular diagnostics continue to
flow from bench to bedside, clinicians must acquire a
working knowledge of the principles, diagnostic value, and
limitations of varied assays.13 Here we discuss the most
promising molecular diagnostic techniques for infectious
diseases in hospital-based settings: the emphasis is on 
PCR-based methods since they have reached greatest
maturity; existing assays, current, and future applications are
described. Further, a framework for describing limitations
that have been encountered, as well as speculation regarding
the potential effect of these developments from the patient,
physician, hospital, and societal perspective is provided.

Nucleic-acid-based amplification: historical
perspective
The first nucleic-acid-based assays used DNA probe
technology.14–16 DNA probes are short, labelled, single-strand
segments of DNA that are designed and synthesised to
hybridise targeted complementary sequences of microbial
DNA. By contrast with traditional culture-based methods 
of microbial identification, which rely on phenotypic
characteristics, this molecular fingerprinting technique relies
on sequence-based hybridisation chemistry, which confers
greater specificity to pathogen identification. Direct detection
of target microbial DNA in clinical samples also eliminates
the need for cultivation, drastically reducing the time
required for reporting of results. In 1980, the description of
DNA hybridising probes for detecting enterotoxigenic
Escherichia coli in stool samples raised hopes that nucleic-
acid-based technologies would eventually replace traditional
culture techniques.17 Since that time, however, a more
restrained approach has been adopted due to recognition of
technical limitations of the methodology; most notably, the
large amount of starting target DNA required for analysis,
which results in poor detection sensitivity.18

To attain optimum sensitivity, critical for most clinical
applications, researchers sought to directly amplify target
microbial DNA. The development of the PCR technique in
1985 answered this need, and provided what is now the 
best-developed and most widely used method for target
DNA amplification. Other approaches, including
amplification of the hybridising probes (eg, ligase chain

reaction and Q-beta replicase amplification) and amplifi-
cation of the signals generated from hybridising probes (eg,
branched DNA and hybrid capture), and transcription-based
amplification (eg, nucleic-acid-sequence-based amplification
and transcription-mediated amplification) have also been
incorporated into various detection systems.19 Detailed
descriptions of these technologies are beyond the scope of this
review, but are well summarised elsewhere.20

PCR: basic principles and overview
PCR is an enzyme-driven process for amplifying short regions
of DNA in vitro. The method relies on knowing at least partial
sequences of the target DNA a priori and using them to design
oligonucleotide primers that hybridise specifically to the
target sequences. In PCR, the target DNA is copied 
by a thermostable DNA polymerase enzyme, in the presence
of nucleotides and primers. Through multiple cycles of
heating and cooling in a thermocycler to produce rounds of
target DNA denaturation, primer hybridisation, and primer
extension, the target DNA is amplified exponentially (figure
1). Theoretically, this method has the potential to generate
billions of copies of target DNA from a single copy in less than
1 h. For more detailed discussion of the basic principles of
PCR see references 21–25.

Over the past two decades, PCR has been extensively
modified to expand its utility and versatility. Multiplex PCR
enables the simultaneous detection of several target
sequences by incorporation of multiple sets of primers.26 To
increase sensitivity and specificity, a double amplification
step can be done with appropriately designed “nested”
primers.27 Amplification may be made less specific to detect
divergent genomes by randomising portions of the primer
sets.28 Finally, RNA (rather than DNA) can be detected by
converting RNA into a complementary DNA copy, and then
amplifying (so-called reverse transcriptase PCR, or 
RT-PCR), enabling evaluation of RNA viruses or viable
organisms.27

A significant advancement in PCR technology is
quantitative real-time PCR, in which amplification and
detection of amplified products are coupled in a single
reaction vessel. For purposes of clinical applicability, this
process represents a major breakthrough since it eliminates
the need for laborious post-amplification processing 
(ie, gel electrophoresis) conventionally needed for amplicon
detection, and allows for measurement of product
simultaneous with DNA synthesis. One approach for 
real-time monitoring of amplicon production is to use
fluorescent DNA intercalating dyes, such as SYBR-Green I,
which bind non-specifically to double-stranded DNA
generated during amplification.29 A more popular alternative
approach is to use a fluorescent-labelled internal DNA probe
which specifically anneals within the target amplification
region. The choice of probe format depends on 
the compatibility of its hybridisation chemistry with the
experimental design. Variations in probe format include
TaqMan (Applied Biosystems; figure 2), fluorescence
resonance energy transfer (FRET), and molecular beacon
probes.30–32 Regardless of the format chosen, the internal probe
emits a fluorescent signal during each amplification cycle only

Review PCR-based diagnostics



For personal use. Only reproduce with permission from The Lancet.
THE LANCET Infectious Diseases Vol 4  June 2004    http://infection.thelancet.com 339

in the presence of target sequences, with
signal intensity increasing in proportion
to the amount of amplified products
generated. The amount of starting
templates in a specimen can be
quantified by comparing the exact cycle
number at which amplified products
accumulate significantly over baseline
with a pre-derived quantitative
standard. Development of automated
instrumentation with quantitative
capacity insures reproducibility.
Practical advantages of real-time PCR
over conventional PCR are thus myriad
and include speed, simplicity, repro-
ducibility, and quantitative capacity.

PCR-based diagnostics have been
effectively developed for a wide range of
microbes. Due to its incredible sensi-
tivity, specificity, and speed of ampli-
fication, PCR has been championed by
infectious disease experts for identifying
organisms that cannot be grown in vitro,
or in instances where existing culture
techniques are insensitive and/or need
prolonged incubation times.33,34 Appli-
cation to the clinical arena, however, has
met with variable success so far. Only a
limited number of assays have been
approved by the US Food and Drug
Administration (FDA; table 1) and fewer
still have achieved universal acceptance in clinical practice.47

Furthermore, surprisingly limited effort has been focused on
harnessing these time-saving diagnostics for emergency
department and other acute critical-care settings where time is
of the essence. A discussion of the progress made and the
obstacles remaining to be addressed follows. 

Specific PCR diagnostics: development and
clinical applications
With the increasing number of genomes of infectious
pathogens being sequenced, catalogues of genes can be
exploited to serve as amplification targets fundamental to
the design of clinically useful diagnostic tests. As a result,
over the past decade the number of PCR assays developed
commercially and in hospital-based laboratories (“in-
house”) has continued to expand. Among the assays that
have been developed for detection of specific microbes, three
are described in more detail below, along with a discussion
of their pros and cons relative to conventional diagnostic
methodologies (table 2).

One of the earliest recognised applications of PCR for
clinical practice was for detection of Mycobacterium
tuberculosis.54,55 Disease characteristics favouring the
development of a non-culture-based test for tuberculosis
included week-long to month-long delays associated with
standard testing, and the public-health imperative associated
with early recognition, isolation, and treatment of infected
patients. Two PCR-based assays are approved by the FDA for

direct detection of M tuberculosis from clinical specimens
(table 1). Although these assays result in significant
improvements in time to diagnosis, the only FDA approved
use at this time is as a diagnostic adjunct to the conventional
smear and culture. Nonetheless, recent studies suggest that
more widespread use of these assays may significantly affect
patient management, clinical outcomes, and cost efficacy.56,57

Potential yet unrealised applications of the assay for use in
acute-care settings include earlier informed decision-making
for appropriate use of isolation beds in high prevalence sites,
regional outbreaks, or where isolation beds are scarce. The use
of this and other PCR-based diagnostics in these settings,
however, will have to be balanced against costs, expertise, and
time associated with routine around-the-clock availability of
testing, as discussed in more detail below.

Another PCR-based diagnostic assay, which has gained
widespread acceptance, is that for Chlamydia trachomatis.
Conventional detection systems for this organism 
(ie, culture and direct antigen testing by immunoassays),
have been limited by the requirement for specialised facilities
to culture this fastidious microbe, as well as inadequate
sensitivity and specificity of immunoassays relative to the
gold standard culture results.58 Laboratory development and
subsequent clinical validation testing have indicated
excellent sensitivity and specificity of the PCR assay leading
to its commercial development (table 1). Proven efficacy of
the PCR assay for both genital and urine samples has
resulted in its application to a range of clinical settings, most
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Figure 2. Real-time PCR using Taqman probe. Taqman probe is a single-stranded oligonucleotide
that is labelled with two different fluorescent dyes. On the 5� terminus is a reporter dye and on the 
3� terminus is a quenching dye. This oligonucleotide probe sequence is homologous to an internal
target sequence present in the PCR amplified product. When the probe is intact, the proximity of
the two fluorescent dyes results in quenching of the reporter dye emission by the quencher dye.
During the extension phase of PCR the probe is cleaved by 5� exonuclease activity of Taq
polymerase thereby releasing the reporter from the quencher and producing an increase in
reporter emission intensity which can detected and quantified. As amplification continues, the
amount of reporter dye signal measured is proportional to the amount of PCR product made.
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recently routine screening of emergency department patients
considered at risk for sexually transmitted diseases.59,60

Although studies in the acute-care settings have not yet used
PCR assays for C trachomatis on site and in real time (thus
not taking full advantage of the speed of PCR), routine use
of this assay in the aforementioned studies has resulted in
nearly three-fold greater rates of disease detection and
treatment relative to standard care.

Distinguishing life-threatening causes of fever from more
benign causes in children is a fundamental clinical dilemma
faced by clinicians, especially when infections of the central
nervous system are being considered. Bacterial causes of
meningitis can be highly aggressive but generally cannot be
differentiated on a clinical basis from aseptic meningitis, a
benign condition generally appropriate for outpatient
management.61 Culture methods often take several days to
show positive results and are confounded by poor sensitivity
or false-negative findings in patients receiving empiric anti-
microbials.62 One well developed assay, which has the potential
to influence the management of patients in the acute-care
setting, allows early and rapid diagnosis of diseases of viral
cause. Testing and application of a PCR assay for enteroviral
meningitis has been seen to be highly sensitive.63,64 With
reporting of results within 1 day, preliminary clinical trials
have shown significant decreases in hospital costs due to
decreased duration of hospital stays and courses of antibiotic
therapy.65,66 Other viral PCR assays, now routinely available,

include those for herpes simplex virus, cytomegalovirus,
Epstein-Barr virus, hepatitis viruses, and HIV.67 Each has a
proven cost-saving role in clinical practice, including detection
of otherwise difficult to diagnose infections, and a newly
realised capacity to monitor progression of disease and
response to therapy, vital to the management of chronic
infectious diseases.68

With the increasing number of genomes of infectious
pathogens being sequenced, catalogues of genes can be
exploited to serve as amplification targets. As a result, the
number of PCR assays developed both commercially and 
in-house continues to expand.

Broad-ranged PCR
The notion of a universal detection system has been proposed
for the identification of classes of pathogens and speaks most
directly to the future potential effect of PCR-based assays for
clinical practice in emergency and other acute critical-care
settings.69 Experimental work has focused on using sequences
of the 16S rRNA gene, an evolutionarily conserved gene seen
exclusively in bacterial species.70,71 By designing primers that
are complementary to these regions, investigators can, in
theory, establish the presence of any bacteria in an otherwise
sterile clinical specimen (such as cerebrospinal fluid or whole
blood). Clinical applications are profound. Acute-care
physicians could rapidly identify the presence of bacteraemia.
Previous empiric decision-making could be abandoned in
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Table 1. FDA-approved nucleic-acid-based assays for detection of microbial pathogens

Organism detected Trade name Company/institution Method Clinical sensitivity Clinical specificity

Chlamydia trachomatis Amplicor Roche PCR 93·219 98·4119

LCX Abbott LCR >9519 >9919

AMP Gen-Probe TMA 86·7–99·219 >9919

PACE 2 Gen-Probe Hybridisation 60·8–78·135 >9935

BDProbeTec Becton Dickinson SDA 94·036 >9936

Hybrid capture II CT-ID Digene Hybrid capture 95·437 9937

Cytomegalovirus CMV pp67 mRNA Organon Teknika NASBA 9538 9838

Hybrid capture CMV DNA test Digene Hybrid capture 9539 9539

Gardnerella vaginalis Affirm VIP III Becton Dickinson Hybridisation 9440 8140

Group A streptococcus GP-ST test Gen-Probe Hybridisation 88·619 97·819

Group B streptococcus IDI-StrepB Infectio Diagnostics Real-time PCR 9719 10019

HCV Amplicor HCV Roche PCR 9819 NA
Versant  HCV RNA qualitative assay Bayer TMA NA 9841

Versant HCV RNA 3·0 Bayer BDNA NA 98·242

HIV Amplicor HIV-1 Monitor Test Roche RT-PCR NA >9919

Trugene HIV drug resistance and Visible Genetics DNA sequencing NA NA
OpenGene DNA sequencing
NucliSens EasyQ HIV-1 bioMerieux NASBA NA >9919

Procleix HIV-1/HCV Chiron TMA >9943 >9943

Versant HIV-1 RNA 3·0 Bayer BDNA 97·644

ViroSeq Applied Biosystems DNA sequencing NA NA
HPV Hybrid capture II HPV DNA Digene Hybrid capture >9945 85-9045

M tuberculosis TB Amplicor Roche PCR 79·4–91·919 >9919

E-MTD Gen-Probe TMA 90·9–95·219 >9919

Neisseria gonorrhoeae Amplicor Roche PCR NA NA
LCX Abbott LCR >9519 >9919

Hybrid capture II CT/GC Digene Hybrid capture 9346 98·546

BDProbeTec Becton Dickinson SDA 88·936 >9936

PACE-2 Gen-Probe Hybridisation 9735 9935

Trichomonas vaginalis Affirm VIP III Becton Dickinson Hybridisation 88–91 938 10038

BDNA=branched DNA; LCR=ligase chain reaction; NASBA=nucleic-acid-sequence-based amplification; PCR=polymerase chain reaction; RT-PCR=reverse transcriptase PCR;
SDA=strand displacement amplification; TMA=transcription mediated amplification; NA=not applicable. Adapted from reference 19.
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favour of educated practice, allowing appropriate, expeditious
decision-making about the need for antibiotic therapy and
hospitalisation. In principle, this approach could be applied to
other taxonomic groups of pathogens (eg, genus of species,
families of viruses, or fungi) by exploiting common features of
classes of organisms for broad-range PCR assay design.72

Validation of this technique for eubacterial detection has
focused on “high yield” clinical settings where expeditious
identification of the presence of systemic bacterial infection
has immediate high morbidity and mortality consequences.
Notable clinical trials have included assessment of patients at
risk for infective endocarditis,73–75 febrile infants at risk for
sepsis,76,77 febrile neutropenic cancer patients,78 and critically ill
patients in the intensive care unit.79 While several of these
studies have reported promising results (with sensitivity and
specificity for bacteraemia well above 90%), significant
technical difficulties remain, preventing general acceptance of
these assays in clinics and hospitals (see Limitations below). 

One significant investigational role for broad-range PCR
has been its use as a “molecular petri dish” to identify
emerging or existing infectious causes for diseases previously
described as idiopathic. The DNA amplified using this
broad-range approach may contain intervening sequence
information that is phylogenetically specific to a unique
microbe when compared with existing microbial genetic
databases. For example, sequencing of the 16S rRNA gene
amplified via highly conserved primer sets has led to the
identification of Bartonella henselae in bacillary
angiomatosis, and Tropheryma whipplei as the uncultured
bacillus associated with Whipple’s disease.80 Further, recent

epidemiological studies that suggest a strong association
between Chlamydia pneumoniae and coronary artery disease
serve as an example of the possible widespread, yet
undiscovered, links between pathogen and host which may
ultimately lead to new insights into pathogenesis and
development of novel life sustaining or saving therapeutics.81

The most recent, high-profile investigational use of 
broad-range PCR was in the molecular identification of a
coronavirus as the causative agent in SARS. In a variant
approach to PCR assay development, broad-based primers
with degenerate sequences designed to detect unknown
viruses were used to randomly amplify the genetic contents of
infected clinical isolates. A subset of the amplified sequences
showed homologies to the genus of coronavirus,82,83 consistent
with other confirmatory laboratory test results. Soon
afterwards, a coronavirus-specific PCR assay was developed
for rapid laboratory diagnosis of SARS.84 Notably, these
advancements came only weeks after the first reports of the
disease surfaced—a veritable tour de force bespeaking the
power of broad-range PCR.85

Antimicrobial resistance profiling
With multidrug-resistant pathogens on the rise, early
antimicrobial resistance profiling is crucial both for timely,
objective treatment of infected patients, as well as for broader
public-health surveillance. Conventional tests of this type are
limited by prolonged culturing time (48–72 h) and poor
accuracy due to variability in inoculum size and culturing
conditions. To address these shortcomings, nucleic-acid-
based assays are being advanced as genetic mechanisms of
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Table 2. The pros and cons of PCR-based versus conventional diagnostic methods for detection of three target organisms

Target Conventional diagnostic method PCR-based method
organism

Method Pros Cons Method Pros Cons
M tuberculosis Culture Allows susceptibility Inadequate sensitivity PCR High sensitivity (93%)/ Potential 

testing Prolonged time to (TB Aamplicor) specificity (98–100%)19 contamination
High specificity with result (>2 weeks) Rapid detection time Unable to assess
nucleic-acid-based Requires further identification No transport requirement viability
identification after positive culture Allows detection from Limited ability for

High cost (direct non-invasive specimens genotype and
and indirect) associated Best for diagnosis susceptibility testing
with delayed diagnosis and screening

Acid-fast Rapid detection Inadequate sensitivity/
stain specificity

C trachomatis Culture High specificity Low sensitivity (70–80%)49 PCR Rapid detection time Limited ability for 
(100%)48 Invasive specimen (Amplicor) Moderate to high  multidrug-resistance 
Detects only viable collection sensitivity (80–90%)19 testing
organisms Prolonged time to result with high specificity Currently used as an 
Allows further genotype Cold transport (95–100%)19 adjunctive test
or susceptibility testing High cost Probably cost effective51

Antigen detection High specificity Requires technical 
method (dfa) (98–99%)50 expertise

Allows assessment Moderate sensitivity
of specimen adequacy (80–90%)50

Rapid detection time Requires high expertise
No transport requirement

Enterovirus Viral isolation High specificity Prolonged time to result RT-PCR Higher sensitivity (98%)53

(100%)52 (10–14 days) (Amplicor EV) High specificity (94%)53

Low sensitivity (65–75%)53 Rapid detection time
Multiple cell lines needed More adaptable 
for isolation for serotyping
Serotyping time-consuming, Cost effective54

labour intensive, and costly 
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drug resistance are elucidated. Three examples of the clinical
applicability of resistance profiling follow.

Although the presence of a resistance gene does not
necessarily imply its expression and conferment of phenotypic
resistance, its absence does establish a lack of resistance
through that particular genetic mechanism: for example,
meticillin resistance is mediated by the mecA gene.
A distinctive feature of meticillin resistance is its heterogenous
expression. As such, when typical phenotypic susceptibility
testing is used to assess resistance, meticillin-resistant strains
may seem falsely susceptible to some �-lactam antibiotics in
vitro.86 For this reason, direct detection of the mecA gene by
PCR is more desirable. With its high detection sensitivity and
specificity, mecA PCR has gained wide acceptance and is
becoming the most reliable method of identifying meticillin-
resistant Staphylococcus aureus (MRSA).87

PCR-based resistance testing in M tuberculosis has also
been developed for the detection of rifampicin resistance.
Rifampicin resistance is well characterised and conferred by
mutations within a short sequence of the rpoB gene of 
M tuberculosis, which result in aminoacid substitutions in the
rpoB subunit of RNA polymerase.88 The Line Probe assay
(LiPA; Inno-Genetics) is a commercially available PCR-based
assay that targets the mutation-prone segment of the rpoB
gene.89 Correlation with standard resistance-detection
methods has been more than 90% and is shown to provide
clinicians with a drastic reduction in detection time, critical
for treatment decisions.90 Genotypic analysis of other 
M tuberculosis drug resistance is more challenging due to the
number of mutations and genetic loci involved. Technical
innovations (ie, multiplex PCR or DNA microarray) that
allow simultaneous amplification and analysis of multiple
target sequences will likely provide the means to surmount
this later limitation.91,92

With ever-increasing evidence supporting the prognostic
value of identifying drug-resistant mutations, routine
genotypic resistance testing is now standard care in the
treatment of HIV-infected patients.93–95 PCR followed by
nucleotide sequencing is the most commonly used method.
Although genotypic tests are more complex than typical
antimicrobial susceptibility tests, their ability to detect
mutations at concentrations too low to affect drug
susceptibility in a phenotypic assay provides insight into the
potential for resistance to emerge. They also have the
advantage of detecting transitional mutations that do not
themselves cause drug resistance but indicate the presence of
selective drug pressure, with potential importance for
individual patient treatment decisions.

Applications in bioterrorism 
The increasing threat of bioterrorism has gained
considerable attention in light of the anthrax outbreak that
came after the September 11, 2001 terrorist attacks. It has
become increasingly apparent that responsibility for the
rapid recognition and accurate diagnosis of real or suspected
bioterrorism events will fall principally to front-line acute-
care physicians who will be critical in initiating appropriate
response measures.96 Unfortunately, as was seen with the
2001 anthrax episode, the clinical presentation of

bioterrorism victims may be non-specific and difficult to
distinguish from commonly encountered disease processes.96

The previously described limitations of conventional
culture-based assays make such tests wholly inadequate for
detection of bioterrorism agents in suspected clinical
outbreaks. Furthermore, traditional microbiological methods,
which require prolonged incubation, increase biohazard risk
at the hospital laboratory due to unnecessary propagation of
bioterrorism pathogens in culture-based systems. Wide
recognition of these limitations has led to recent developments
and refinements of PCR-based assays for a number of category
A bioterrorism agents, including variola major, Bacillus
anthracis, Yersinia pestis, and Francisella tularensis.97–100 PCR
diagnostics for bioterrorism agents will likely be used both for
diagnosis of symptomatic individuals, as well as larger scale
screening of exposed victims (preclinical phase), who would
be candidates for early prophylactic therapy. 

Although most bioterrorism-induced illnesses resemble
natural outbreaks, there is the possibility that causative
bioterrorism agents are genetically engineered to increase
virulence, acquire resistance to antibiotics or vaccines, or
produce phenotypic characteristics that resemble multiple,
simultaneous infections, so-called binary agents (via
insertion of recombinant genes).101 In such cases, it is likely
that nucleic-acid-based approaches will be more invaluable
than conventional detection methods since they are the
more easily adaptable and capable of uncovering detailed
information embedded in genetic sequences. 

Cost effectiveness 
PCR is more expensive than conventional approaches. The
direct costs of PCR reagents, equipment, dedicated space,
personnel training, and labour have been reported to be as
high as US$125 per reaction.102 Even among PCR methods,
there is variability in cost with the most expensive being
fluorogenic-based systems. Moreover, the labour intensity
needed for most assays as well as technical limitations of
most thermocyclers to do multiple runs of PCR
simultaneously have prevented routine around-the-clock
testing in the clinical setting. On the other hand, continued
refinement in PCR technology, as well as improvements in
automation and reproducibility via high throughput
robotics, will probably lead to increasing demand and
marked cost reductions to rates competitive with traditional
methods. Already, this development has been reported for
Neisseria gonorrhoeae and C trachomatis PCR tests which
now cost around $9 per reaction.103

In assessing the overall benefit of PCR, however, direct
monetary costs should not be the only consideration since
the assay has several significant advantages over traditional
methods. One study, which took a global methodological
approach to cost, involved assessment of perinatal screening
for Group B streptococcus using PCR versus culture
techniques.104 Considered variables of the assays in addition
to the direct monetary cost included infections averted,
mortality, infant disabilities, hospital stays, and the societal
benefits of healthy infants. Overall, the authors concluded
that the benefits of PCR outweighed its cost. Notably, this
result was reached even without inclusion of important but
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difficult-to-measure parameters, such as the societal benefit
of decreased drug resistance due to targeted therapy made
possible by the PCR assay.

Limitations of PCR and emerging innovations
The principal shortcomings in applying PCR assays to the
clinical setting include false-positive results from background
DNA contamination; the potential for false-negative test
results; detection sensitivity exceeding clinical significance;
and limited detection space of the assay or platform for
simultaneous identification of multiple species, virulence
factors, or drug resistance.

False positives
The widespread use of PCR in clinical settings has been
hampered largely by background contamination from exoge-
nous sources of DNA.105 In most pathogen-specific assays, the
predominant source of contamination is derived from “carry-
over” products from earlier PCR reactions, which can be
harboured and transmitted through PCR reagents, tubes,
pipettes, and laboratory surfaces. Coupled with the robust
amplification power of PCR, even very minor amounts of
carry-over contamination may serve as substrates for
amplification and lead to false-positive results. Meticulous
control measures such as good laboratory practices and
physical separation of preamplification and postamplification
areas can reduce contamination risks but are not foolproof.
The use of enzymatic inactivation of carry-over DNA (ie,
uracil N-glycosylase) can further reduce contamination risk.106

Contamination issues are most pronounced in assays that
use universal primers, such as those targeting conserved
regions of the eubacterial 16S rRNA gene. Here, the
ubiquitous presence of eubacterial DNA in either the
environment or working reagents may lead to false-positive
findings. Attempts to decontaminate PCR materials have
involved nearly all known methods of destroying DNA
including ultraviolet irradiation, chemical treatment, and
enzymatic digestion.107,108 None of these methods has been
shown to be entirely effective without significant diminution
of assay sensitivity. We have recently reported an alternative
method that uses a size-based ultrafiltration step for reducing
contaminating DNA from PCR reagents, primers, and DNA
polymerase before amplification. Although this method of
decontamination has been shown to be effective without
compromising detection sensitivity in vitro,109 validation, and
optimisation of the method in clinical samples needs further
study. More importantly, effective and reliable methods of
decontamination have not yet been developed for steps
outside the assay proper such as sample collection and
preparation. Towards this end, one promising area of
investigation involves development of methods to integrate
sample preparation, amplification and detection on a single
platform, the so-called “lab-on-a-chip”. Self-contained
microchip platforms thus hold promise for the best means of
decontamination and overall assay efficiency.110

False negatives
PCR assays for microbial detection may give false-negative
results for two principal reasons: the relatively small sample

volume permissible for PCR reactions; and problems
associated with PCR processing. The sample volume most
PCR assays can accommodate is quite small relative to the
volume used in conventional culture methods; as such, in
cases in which the concentration of infectious organisms is
low, the assay may yield false-negative findings. To account
for this, DNA extraction and purification steps are usually
performed before PCR amplification as a means of
concentrating total DNA from a larger sample volume.
Additional methods to optimise starting concentration of
target DNA for the PCR reaction include: selecting specimen
sources (eg, cerebrospinal fluid) or specimen fractions (eg,
buffy coat instead of whole blood) with the highest abundance
of microbial DNA for the DNA extraction; briefly cultivating
samples to increase microbial load before DNA extraction;20

or introducing specific capture probes to concentrate only
microbial DNA in a given sample.111 Several sample processing
obstacles may also lead to false-negative findings. Three of the
most commonly encountered problems are (1) inadequate
removal of PCR inhibitors in the sample, such as
haemoglobin, blood culture media, urine, and sputum; (2)
ineffective release of microbial DNA content from the cells; or
(3) poor DNA recovery after extraction and purification steps.
Methods to ensure best sample processing include: incorpo-
rating internal amplification controls (eg, the human �-globin
gene) to the PCR assay to monitor for presence of both
purified sample DNA as well as potential PCR inhibitors;112

and inducing various chaotropic, enzymatic, or thermal
methods of cell lysis to effectively liberate microbial DNA
content.20 Because of the varying effectiveness of each of these
measures, efforts to improve an assay’s detection sensitivity
may need to be individually adjusted based on the assay’s
clinical application and the microbial pathogen of interest.

Clinical significance of positive PCR
PCR assays may detect microbial pathogens at concentrations
below those of previously established gold standard reference
methods. Distinguishing whether this result represents a
false-positive finding and establishing the clinical significance
of these findings is challenging. In the past, discrepant
analysis based on the results of additional ancillary tests was
used to provide estimates of sensitivity and specificity in the
presence of an imperfect gold standard.113 One example can
be seen in assessments of novel nucleic acid-based assays in
detecting C trachomatis.114,115 In these studies, “false positives”
(DNA-amplification positive and tissue culture negative)
were adjudicated by either antigen detection methods or
another well-established DNA-amplification test. Despite its
popularity, recent concerns have been raised regarding the
potential bias incurred by discrepant analysis in favour of the
new tests.116,117 Up to now, the issue has not been completely
resolved.

The complexity of the clinical interpretation of positive
PCR findings is further underscored by one study that
reported that a universal PCR assay (using primers from
conserved regions of the 16S rRNA gene) amplified
eubacterial DNA in blood samples from healthy people.118 It
is unknown whether such findings are indicative of latent
disease processes or sub-clinical colonisation. Moreover, the
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finding that microbial DNA can be detected even after
successful antimicrobial treatment suggests that the assays
detect both viable and non-viable organisms.119,120 Clearly,
interpretive guidelines based on the correlation of test results
with clinical presentation and existing standards will be
required before these assays can be used for definitive
diagnosis and/or treatment decisions.

One breakthrough in establishing the meaning of positive
PCR results involves the development of reliable quantitative
measures of pathogen load. While traditional PCR assays are
used primarily for dichotomous outcome, innovative real-
time PCR methods allow for quantitative measurement of
starting template in the sample, which will probably be useful
in differentiating benign colonisation from either latent 
or active disease. Other non-PCR amplification methods 
with quantitative capacities include branched DNA and
nucleic-acid-sequence-based amplification. Quantification of
pathogen load is already well established in clinical virology
(eg, HIV-1, cytomegalovirus, hepatitis B virus, hepatitis C
virus, and Epstein-Barr virus), where it has proven useful in
assessing disease severity or monitoring treatment
efficacy.121–126 The value and importance of PCR-based

pathogen quantifications in clinical bacteriology remains
under investigation.127

Alternative innovations regarding PCR technologies may
help in differentiating viable from non-viable organisms,
important for clinical practice decisions. RNA is known to be
rapidly degraded with a typical half-life of minutes after cell
death; thus, it has been proposed as a more accurate indicator
of viable microorganisms.128,129 In some clinical situations,
detection of RNA species by RT-PCR has been shown to
correlate well with the presence of viable organisms and has
been effectively used to monitor antibiotic therapy.130–134

Clinical application of RNA-based approaches will need
further improvement, however, because they have been
hampered in development by difficulties in extracting
detectable concentrations of intact RNA from small numbers
of bacteria. 

Limited detection space for characterising the
detected pathogen
Conventional methods for pathogen detection will not be
supplanted by PCR-based assays if the latter cannot 
be elaborated to further characterise detected pathogens. As
described previously, genetic sequences contain rich sources of
information that can be analysed to ascertain pathogens’
species or strains, virulence factors, and antimicrobial
susceptibilities. However, to do so in a single reaction, simulta-
neous amplification of several target genes is needed.
Repeating amplifications with different primer pairs, so-called
multiplexing, is notoriously difficult since often one or more
of the target sequences do not amplify.91

Recent studies have shown that PCR can be used for
simultaneous reproducible amplification of multiple DNA
fragments in a single reaction, provided that only a single
primer set is used for amplification of all these fragments.
Repetitive-sequence-based PCR (rep-PCR), which uses
consensus PCR primers to amplify DNA sequences located
between successive repetitive elements in eubacterial
genomes, has been shown to simultaneously amplify
fragments of different sizes, allowing discrimination of
bacteria at the subspecies level.135,136 This conceptual
breakthrough has led various investigators to develop and
explore various technical approaches which harness the same
idea. By exploiting the conserved and variable sequences on
the 16S rRNA gene, we have shown through use of
quantitative PCR that a single consensus primer set can
multiplex amplify multiple species of the 16S rRNA gene with
equal efficiencies.109 Similarly, ligation-dependent PCR (figure
3)137 and padlock probes with rolling circle amplification
(figure 4),138 which are both probe amplification methods,
have also shown that multiple genetic targets can be queried
simultaneously by using a single primer pair for
amplification. Both of these assays rely on multiple
oligonucleotide probes, each containing a unique target
sequence and a consensus primer sequence, that are
amplifiable in the presence of their targets. Progress in these
approaches could greatly enhance throughput in genotyping
pathogens detected, and may represent the next generation of
PCR-based assays that hold tremendous promise with regard
to their clinical applications.
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Even if this problem is resolved, the best way in which 
to analyse the resultant PCR products remains unclear.
While PCR product detection and analysis have typically
been achieved using gel-electrophoresis and sequencing
techniques, these approaches are laborious and time-
consuming, which detracts from clinical applicability.139 The
introduction of real-time PCR technology with the potential
use of differentially labelled fluorescent probes for
simultaneous identification of multiple amplified products
in a single assay holds promise.140 Unfortunately, current
ability to spectrally differentiate multiple fluorescent signals
is quite limited.

Another possible approach that can be used to analyse
multiple amplified sequences is to incorporate microarray
technology. DNA microarrays are constructed by spatially
isolating specific genome sequences to prearranged areas 
on a microchip.141–143 Fluorescently labelled amplification
products are then allowed to anneal to complementary
sequences on the chip, and the resultant pattern is spectrally
analysed. The main advantage of using microarrays for
pathogen detection is the potentially large number of target
sequences the system can discriminate simultaneously. The
use of microarray technology for pathogen detection is still
in the development phase however. Efforts to improve
sensitivity, reproducibility, and to streamline approaches to
complex data analysis are still needed before these platforms
can be used clinically. 

A final novel approach for analysing amplified products
is mass spectrometry. The recent advent of matrix assisted
laser description/ionisation (MALDI) technology coupled

with time of flight mass spectrometry
(TOF-MS) has created a robust means
to characterise mostly proteins, but
increasingly, nucleic acid. In MALDI-
TOF-MS, the organic molecule—for
example an amplified product—is
ionised and subsequently identified
based on its mass-to-charge ratio
(figure 5).144–149 The advantages 
of MALDI-TOF-MS lie in the inherent
accuracy and the high-speed (1 second)
of signal acquisition, making this
technology an attractive candidate for
high-throughput DNA analysis. 

Practical aspects of rapid and
point-of-care testing
The real-time PCR-based platform
holds great promise in replacing
conventional laboratory-based testing
for future point-of-care testing. 
With advancements in automation,
integration of specimen preparation
with target identification, and
miniaturisation, it will become much
easier to bring analyses near bedside 
to be done by less-trained personnel.
The ability to interface with high
throughput PCR systems is already

seen in many new automated extraction instruments.
Technical limitations of most PCR instruments to run
overlapping reactions in parallel have restricted analyses to
batches, thereby compromising the assay’s overall
turnaround time. However, with the new generation of
thermocycler (eg, SmartCycler, Cepheid), separate PCR
reactions, each with a unique set of cycling protocols and
data analysis, can now be done simultaneously.
Furthermore, the recent introduction of hand-held battery-
operated real-time PCR instruments (BioSeeq, Smiths
Detection-Edgewood BioSeeq) is the latest iteration of the
moving trend from laboratory to near patient testing.150

Ultimately, as “lab-on-a-chip” technologies mature, routine
point-of-care testing will be realised. 

The true effect of PCR development for true point-of-
care testing remains to be seen. Significant practical and
regulatory requirements slow and often halt the transition 
of laboratory developments for bedside applications.
Compliance with federal, state, and local regulations must be
met when operating point-of-care testing devices. Novel
tests must go through the complex and time-consuming
process of FDA approval. For in-house assays, strict clinical
laboratory improvement amendment requirements must be
met to define the operational characteristics of the assay
relative to current gold standards. Institutional resources,
manpower issues, and cost effectiveness also have to be
carefully considered when making decisions about the
practicalities of replacing traditional diagnostic
methodologies. Additional programmatic steps for true
point-of-care testing must be developed to insure
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effectiveness, including (1) operational turn-around time 
(vs speed of the test); (2) education of practitioners in
interpretation of results; (3) development of protocols for
optimal treatment and decision-making based on results 
of novel tests; and (4) establishment of quality assurance 
and quality improvement programmes. As PCR-based
technologies continue to mature, each of these issues will
need to be systematically addressed in order to realise their
benefit for routine patient care.151

Continuing clinical need: how PCR diagnostics
may revolutionise clinical care
PCR technology offers a great potential in the arena of
infectious disease. A universally reliable infectious disease
diagnostic system will certainly become a fundamental tool
in the evolving diagnostic armamentarium of the 21st
century clinician. For front-line acute care physicians, or
physicians working in disaster settings, a quick universal
PCR assay, or panels of PCR assays targeting categories of
pathogens involved in specific syndromes such as
meningitis, pneumonia, or sepsis, would allow for rapid
triage and early aggressive targeted therapy. Resources

could thus be appropriately applied, and patients with
suspected infections rapidly risk-stratified to the different
treatment settings, depending on the pathogen and
virulence. The ability to discern species and subtype would
allow for more precise decision-making regarding
antimicrobial agents. Patients who are colonised with highly
contagious pathogens could be appropriately isolated on
entry into the medical setting without delay. Targeted
therapy would diminish development of antibiotic
resistance, because the identification of antibiotic-resistant
strains would permit precise pharmacological intervention.
Both physicians and patients would benefit from less
repetitive testing and elimination of wait times for
traditional laboratory results. Furthermore, links with data
management systems, locally, regionally, and nationally,
would allow for effective epidemiological surveillance with
obvious benefits for antibiotic selection and control of
disease outbreaks.

It is certain that the individual patient will benefit
directly from this approach. Patients with unrecognised or
difficult-to-diagnose infections could be identified and
treated promptly. Inpatient stays would be reduced with a
concomitant decrease in iatrogenic events. Societal benefits
will need to be carefully explored with attention to relative
costs of the novel diagnostics in relation to existing
standards.
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Data for this review were identified by a search of Medline
and from the references of relevant articles. Search terms
used were: “PCR”, “molecular diagnostics”, “emerging
infectious disease”, “bioterrorism agents”, “antimicrobial
resistance”, “DNA microarrays”, and “mass spectrometry”.
Only English language papers were considered.
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