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PCR Biases Distort Bacterial and Archaeal Community
Structure in Pyrosequencing Datasets

Ameet J. Pinto, Lutgarde Raskin*

Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, United States of America

Abstract

As 16S rRNA gene targeted massively parallel sequencing has become a common tool for microbial diversity investigations,
numerous advances have been made to minimize the influence of sequencing and chimeric PCR artifacts through rigorous
quality control measures. However, there has been little effort towards understanding the effect of multi-template PCR
biases on microbial community structure. In this study, we used three bacterial and three archaeal mock communities
consisting of, respectively, 33 bacterial and 24 archaeal 16S rRNA gene sequences combined in different proportions to
compare the influences of (1) sequencing depth, (2) sequencing artifacts (sequencing errors and chimeric PCR artifacts), and
(3) biases in multi-template PCR, towards the interpretation of community structure in pyrosequencing datasets. We also
assessed the influence of each of these three variables on a- and b-diversity metrics that rely on the number of OTUs alone
(richness) and those that include both membership and the relative abundance of detected OTUs (diversity). As part of this
study, we redesigned bacterial and archaeal primer sets that target the V3–V5 region of the 16S rRNA gene, along with
multiplexing barcodes, to permit simultaneous sequencing of PCR products from the two domains. We conclude that the
benefits of deeper sequencing efforts extend beyond greater OTU detection and result in higher precision in b-diversity
analyses by reducing the variability between replicate libraries, despite the presence of more sequencing artifacts.
Additionally, spurious OTUs resulting from sequencing errors have a significant impact on richness or shared-richness based
a- and b-diversity metrics, whereas metrics that utilize community structure (including both richness and relative
abundance of OTUs) are minimally affected by spurious OTUs. However, the greatest obstacle towards accurately evaluating
community structure are the errors in estimated mean relative abundance of each detected OTU due to biases associated
with multi-template PCR reactions.
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Introduction

Next-generation sequencing (NGS) technologies increasingly

are being applied in microbial diversity studies by either targeting

the 16S rRNA gene [1] or by direct sequencing of genomic DNA

or RNA (through cDNA sequencing) extracted from environmen-

tal samples [2]. In particular, the use of 16S rRNA gene based

amplicon sequencing has become common in studies of microbial

communities in natural [3–5] and engineered [6,7] ecosystems.

Several massively parallel sequencing options are currently

available [2], but thus far only Roche’s 454 [8] and IIumina’s

GAIIx, HiSeq, and MiSeq [9–11] platforms have been utilized for

16S rRNA gene based amplicon sequencing. Two key features

that make these sequencing technologies very attractive include (1)

deep sequencing to explore the diversity that so far has been

undetected due to methodological constraints [8], and (2) the

ability to multiplex a large number of samples in the same

sequencing run through the inclusion of multiplexing barcodes

ligated to template specific PCR primers [12]. The benefits of

massively parallel sequencing have been accompanied by several

methodological challenges. First, the current technologies cannot

sequence the entire length of the 16S rRNA gene. Though

improvements towards increasing the sequencing length have been

rapid, the quality scores deteriorate after the first 250 sequenced

nucleotides for the 454-titanium platform [13] and Illumina

sequencing currently provides information only up to 200

nucleotides [10]. Therefore, sequencing studies have focused on

those hypervariable regions of the 16S rRNA gene from which

substantial taxonomic information can be inferred [14,15] and

that allow for discrimination similar to that provided by full length

gene sequence analysis [16].

Another focus of the amplicon based sequencing studies has

been to eliminate the effects of insertion/deletion type sequencing

errors and chimeric PCR artifacts on the estimation of diversity.

Approaches to minimize sequencing errors include the use of high

quality score thresholds to remove poor quality sequences [13,17],

sequence correction through correction of flowgrams [18],

denoising [19], and use of sequence pre-clustering [20]. The

elimination of chimeras has largely focused on their detection and

removal from large databases of short reads either by comparison

to reference datasets of good quality sequences or by comparing

each read to the others within each sample library [21–23].

Despite these rapid advances, some sequencing errors and

chimeras are retained in the processed datasets and severely
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inflate the estimated richness of the sample [24]. In addition to

sequencing errors and chimeras, PCR based methods introduce

biases that can affect the results of microbial community structure

analyses. For example, a large portion of the microbial diversity in

a sampled community may not be captured due to primer

mismatches [25]. Additionally, differential amplification efficien-

cies of the 16S rRNA genes in multi-template PCR reactions

[26,27] can influence the representation of the sampled commu-

nity by altering relative abundances of detected operational

taxonomic units (OTUs) and thus distort the original rank

abundance distribution. Such PCR biases can be particularly

significant since the current procedure for amplicon-sequencing

involves at least two different amplification steps, i.e., PCR

amplification during initial sample preparation using template

specific primers followed by emulsion PCR (emPCR) on Roche’s

454 or bridge PCR on Illumina platforms, prior to sequencing. In

some studies, an additional PCR step has been included to pre-

amplify the 16S rRNA gene prior to nested amplification with

454-compatible primers [28,29]. The amplification efficiency in

multi-template PCR reactions is affected by several parameters,

such as primer choice [30], the GC content of the target region

[31,32], thermocycling conditions [33], DNA template concen-

tration [26], and the relative abundance of the target sequences.

This topic of differential amplification and its effect on the

interpretation of community structure based on pyrosequencing

data have not been systematically studied thus far.

In this study, we evaluated how errors in mean relative

abundances of OTUs resulting from multi-template PCR bias

affected the representation of six mock communities constructed

by combining 33 bacterial and 24 archaeal 16S rRNA gene

sequences in three different ways, each. Additionally, we

compared distortions in community structure due to multi-

template PCR bias to the biases originating from the presence of

spurious OTUs, containing sequences with insertion/deletion type

errors and chimeric sequences, some of which are retained in

pyrosequencing data despite the use of quality control measures.

This study was conducted using data from two independent

sequencing runs at two different sequencing depths (as determined

by the final number of reads in each sequencing library). In doing

so, we also (1) determined the effect of sequencing depth on the

taxa detection frequency (defined below), the mean relative

abundance of OTUs, and the rank abundance distribution of

communities; (2) evaluated the influence of sequencing depth,

spurious OTUs, and errors in mean relative abundance on a- and

b-diversity metrics; and (3) determined diversity metrics that are

more reliable when used in conjunction with pyrosequencing data.

The mock communities were designed to include sequences of

strains covering broad phylogenetic diversity and variable GC

content to evaluate the effects of differences in amplification

efficiency, and were tested with newly designed bacterial and

archaeal primer sets that target the V3–V5 hypervariable region of

the 16S rRNA gene.

Results and Discussion

Design and Coverage of Bacterial and Archaeal 16S rRNA
Targeted Primers
We modified previously developed primers, Bact-338F/Bact-

909R [34,35] and Arch-340F/Arch-915R [36,37], targeting the

V3–V5 hypervariable region of the 16S rRNA gene for both

bacteria and archaea to improve coverage of existing sequences in

databases (Table 1 and Figure S1). The choice of the V3–V5

hypervariable region was motivated by previous successful

classification of bacterial amplicons in this region [14,35] and

the high correlation between phylogenetic information derived

from V3–V5/V4 regions with that from the full length 16S rRNA

gene [16]. Based on in-silico database searches, the new bacterial

primers match approximately 96% of the sequences present in the

Ribosomal Database Project (RDP) database (release 10) [55],

with greater than 90% coverage of most major phyla (Figure S1).

Additionally, the archaeal primers, which were modifications of

previous primers [28,37,38], matched approximately 87% of the

sequences in the RDP database, with high and equivalent

coverage of the major archaeal phyla, i.e., Crenarchaeota (88%),

Euryarchaeota (92%), and Korarchaeota (90%). We also designed the

reverse primers integrated with multiplexing barcodes to minimize

the interference of secondary structures, such as hairpins, homo-

dimers, and hetero-dimers during PCR reactions, and allow for

subsequent sorting of sequences from both archaeal and bacterial

libraries into their respective samples (Table S1). The successful

use of the new primers and multiplexing barcodes was demon-

strated by (1) the effective amplification of the 16S rRNA genes

from tested samples, and (2) the recovery of bacterial and archaeal

sequences in expected proportions for both sequencing runs.

Specifically, the ratios of bacteria:archaea obtained in the two

sequencing runs were 63:37 and 65:35, similar to the 60:40 ratio at

which the bacterial and archaeal amplicon pools were combined

prior to emPCR and sequencing.

To further check the coverage of the newly designed primers,

we tested them on DNA extracts from multiple environmental

samples. DNA extracted from samples collected from a drinking

water distribution system (DWDS), an anaerobic bioreactor

(ANBR), mouse gut cecal tissue (MGCT), surface water (SW),

a deep sea sample from the Gulf of California (GC), and the

Obsidian Pool in Yellowstone National Park (OP-YNP) were

tested with the bacterial primers designed in this study. The GC,

OP-YNP, and ANBR DNA extracts, as well as DNA extracted

from a freshwater aquaculture system (FAS) sample were tested

with the archaeal primers. Tables S2 and S3 provide the

taxonomic classification of sequences detected in each sample.

Despite high coverage of the archaeal primers for the Korarchaeota

phylum (Figure S1), none of the sequences detected in the OP-

YNP sample were classified to this phylum. To evaluate if

Korarchaeota were not detected due to the primers designed in this

study, we tested the OP-YNP DNA extract with published

korarchaeal primers in conjunction with general archaeal primers

in the following combination: Kora-228F/Univ-1406R, Kora-

228F/Kora-1236R, Arch-4F/Kora-1236R, Arch-112F/Kora-

1236R [36,39]. None of these primer combinations yielded

Korarchaeota sequences. Hence, we conclude that the non-detection

of Korarchaeota sequences using the archaeal primers was due to the

absence of this phylum in the OP-YNP DNA extract. One of the

sequences detected in the OP-YNP sample was classified as

Nanoarchaeota even though the primers showed no perfect matches

to any of the Nanoarchaeota sequences in the RDP database.

Additionally, the archaeal primers were able to capture sequences

representing various families within the Crenarchaeota phylum in the

OP-YNP sample and Thaumarchaeota sequences classified within

the Nitrosopumilaceae family in the GC samples. The primers also

captured multiple methanogenic Euryarchaeota sequences in the

ANBR samples, which were not found in the other three samples

tested. Likewise, the bacterial primers were able to detect

sequences representing a diverse array of phyla and families in

the six environmental samples tested. For example, they were able

to detect sequences in the DWDS sample that classified within the

Chlamydiae phylum. This is noteworthy because some Chlamydiae

are endosymbionts of amoebae [40], which can harbor and

protect bacterial pathogens [41]. The primers also detected many

PCR Biases Affect Reliability of Pyrosequencing

PLOS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e43093



sequences that classified within two different families of the

Aquificae phylum, which would have been missed with previously

used V3–V5 primers [34].

The GC Content of a Sample Library Affects the Number
of Final Reads
Previous work has shown that GC content may have a strong

effect on PCR [32,42,43] and whole genome amplification [44],

and on whole genome sequencing using the Illumina [45] and

454-GS-FLX and Titanium platforms [46]. So far, such a bias has

not been presented in the literature for amplicon based 454-

sequencing. Therefore, we evaluated whether the presence of GC

bias affects (1) how a sequence is represented within a sample (i.e.,

intra-sample GC bias) and/or (2) how a sample is represented

within a sequencing library (i.e., inter-sample GC bias). To

evaluate the effect of GC content, we exploited the variations in

GC contents of the V3–V5 regions of the 33 bacterial and 24

archaeal 16S rRNA gene sequences that were used to construct

two sets of three mock communities (Table S4 and Figures S2).

Specifically, the mock communities were constructed by dividing

the bacterial and archaeal sequences into low, medium, and high

GC clusters with 11 bacterial and eight archaeal sequences in each

cluster (Figure S2). Sequences within each GC cluster were mixed

at three different abundance levels to construct three bacterial and

three archaeal mock communities (Figure S2). This resulted in six

different mock communities with six different GC contents, three

each for bacteria and archaea. We PCR amplified the three

replicates of each mock community with reverse primers with

three different GC contents resulting in slightly different overall

GC contents for each mock community (Figure 1A). Since the

PCR products from each mock community replicate were mixed

in equimolar proportion prior to emPCR and sequencing, each

sample library should have contained an equal number of

sequences if GC content of the sample library did not result in

any biases. However, we were able to detect a significant

correlation between the number of reads in each sample and the

overall GC content of the sample (Figure 1B) (R=0.78, p,0.0001)

when all bacterial and archaeal sample libraries were considered.

The correlation was even stronger when only the archaeal libraries

were considered (R=0.89, p,0.0001). This clearly demonstrates

that samples with high GC content may be under-represented in

a 454-amplicon sequencing output, which is consistent with

previous observations for whole genome sequencing [44]. This

observation is particularly important since equal sequencing

depth, i.e., the number of reads per sample in a multiplexing

run, is critical for consistent comparisons of multiple samples. We

further evaluated whether any GC content bias could be attributed

towards errors in relative abundance of all the detected OTUs

(intra-sample bias), but were unable to find any suggestive

correlations. Nonetheless, the observations of GC bias at the

sample level (inter-sample bias) merit further systematic investiga-

tions to determine to what extent GC content can explain errors in

mean relative abundance of an OTU (intra-sample bias).

Effect of Sequencing Depth and Relative Abundance on
Taxa Detection Frequency
Several b-diversity metrics, e.g., Jaccard, Hamming, unweight-

ed UniFrac [47], use a presence/absence approach, i.e., the level

of similarity between two samples is assessed by whether an OTU

detected in one sample was found in the other or not. Under such

scenarios, the taxa detection frequency (i.e., the ratio of the

number of taxa detected over the true number of taxa present in

a sample) becomes critical. Many factors may affect the detection

frequency. However, since plasmid inserted sequences were used

in this study, we were unable to assess the influence of DNA

extraction [48] and the effect of the whole genome on PCR

amplification of the 16S rRNA gene fragment [49]. Rather, we

evaluated how the taxa detection frequency was affected by

different OTU abundance distributions by making the probability

of detection equal for all sequences in mock community m1 and

variable in mock communities m2 and m3, i.e., corresponding to

the relative abundance of each sequence in these mock commu-

nities (Figure S2). Additionally, we determined the effect of

sequencing depth on the taxa detection frequency by indepen-

dently sequencing the replicate mock communities twice, with the

second run providing 6.460.8 and 6.160.7 fold more reads than

the first run for the bacterial and archaeal mock communities,

respectively (Table S5). We compared the experimentally observed

taxa detection frequencies to the theoretical estimates as de-

termined by random sub-sampling of the in-silico mock commu-

nities at multiple depths (Figures 2A–2F). The evaluation of taxa

detection frequency presented in this section is limited to good

sequences, i.e., those sequences that clustered with the reference

sequences included in the mock communities at a similarity cutoff

of 3%.

Greater than 80% of the experimental libraries for each of the

four uneven mock communities showed taxa detection frequencies

within bounds of what the theoretical sub-sampling efforts

revealed (Figures 2A–2F). An exception to this was the deeper

sequencing effort for bacterial mock community m2 (Figure 2B)

for which two of the six replicate libraries showed lower taxa

detection frequencies than would be expected by random

sampling. In addition, the taxa detection frequencies for the

smaller bacterial and archaeal libraries for the even communities

Table 1. Bacterial and archaeal primers targeting the V3–V5 region of the sequences used in this study and their respective
coverage for the sequences in the RDP database (release 10).

Domain Primer name Sequence Combined coverage of RDP database Reference

Bacteria Bact-338F1 CCTACGGGRGGCAGCAG 96.4% This study

Bact-338F2 ACWYCTACGGRWGGCTGC This study

Bact-338F3 CACCTACGGGTGGCAGC 54

Bact-909R CCGTCAATTYHTTTRAGT This study

Archaea Arch-340F CCCTAHGGGGYGCASCA 86.5% This study

Arch-915R GWGCYCCCCCGYCAATTC This study

Degeneracy code: R =A/G, Y = C/T, W=A/T, H =A/C/T.
Phylum and order level coverage for bacteria and archaea are provided in Figure S1.
doi:10.1371/journal.pone.0043093.t001

PCR Biases Affect Reliability of Pyrosequencing

PLOS ONE | www.plosone.org 3 August 2012 | Volume 7 | Issue 8 | e43093



were lower than expected. Specifically, a library size of 5206117

and 306621 sequences resulted in taxa detection frequencies of

0.9460.03 and 0.9760.00 for the bacterial and archaeal mock

community m1, respectively (Figures 2A and 2D). The lower than

expected taxa detection frequencies for the small libraries of mock

community m1 indicates that the detection of an OTU is not solely

dependent on its abundance, but is also affected by the ease with

which a sequence is amplified and by how susceptible it is to

insertion/deletion type errors and chimera formation. For

example, an approximate six to seven fold increase in sequencing

depth should have improved the taxa detection frequency across

all uneven mock communities. However, a significant improve-

ment in taxa detection frequency (p,0.05) with greater sequencing

depth was observed for only two of the four uneven mock

communities. Additionally, of the 33 sequences used in the

bacterial mock communities, the S. bryantii sequence was never

detected irrespective of its relative abundance. The S. bryantii

sequence used in these mock communities was determined to be

a putative chimera with two parents and the likely position of the

chimeric breakpoint was within the V3–V5 region. The non-

detection of this sequence cannot be attributed to the chimera

removal process used for the pyrosequencing data, since the

putative chimeric sequence was included in the reference

alignment used for chimera checking. Rather, it is likely that

issues with amplification of this full length 16S rRNA gene that

may have resulted in the formation of the putative chimera were

also responsible for its poor amplification during the PCR and

emPCR steps prior to pyrosequencing.

Effect of OTU Abundance Distribution and Sequencing
Depth on Mean Relative Abundance of OTUs
The relative abundances of all sequences at a 3% similarity

cutoff for bacterial and archaeal mock communities are shown in

Figures 3 and 4, respectively. It is clear that experimentally

determined mean relative abundance values for all OTUs showed

good reproducibility between replicate libraries, across two

independent sequencing runs, at two different sequencing depths,

and were not affected by the differences in the number of spurious

sequences in each sample library. The differences between the

mean relative abundances obtained for the two runs for almost all

of the OTUs were not significant (p.0.05). The larger sequencing

depth improved the reproducibility between replicates for

bacterial communities m1 and m2, and archaeal community

m1, while showing no significant (p.0.05) reduction in variance

for the other mock communities. The average experimental mean

relative abundances for all sequences were 1.662.7 and 1.664.5

fold greater than the theoretical values for bacterial and archaeal

mock communities, respectively. Some low abundance sequences

were not detected in both, the small and large, sequencing

libraries. As a result, a majority of the detected sequences were

present at a higher mean relative abundance as compared to the

theoretical (at the expense of the undetected OTUs), resulting in

a positive error in overall mean relative abundance of all detected

OTUs.

The Effect of Errors in Mean Relative Abundance on Rank
Abundance Distributions is Sample Specific
The experimental rank abundance distributions for all mock

communities were severely distorted due to the cumulative effects

of the errors in the experimentally determined mean relative

abundance of each OTU (Figure 5). For this exercise, the spurious

OTUs were ignored. We conducted a Kolmogorov-Smirnov test

to determine if the rank abundance distributions of the even

community, m1, could be distinguished from those of the two

uneven communities, m2 and m3 (m2 and m3 have identical rank

abundance distributions and a Kolmogorov-Smirnov test should

Figure 1. The mean percent GC content of the three bacterial and three archaeal mock communities (A) and the resulting reads
attributed to mock community replicates in the final 454-sequencing output expressed as percent reads in sequencing library
versus the GC content of the amplicon pool (B). Error bars in panel A represent variation in GC content between replicates of each community
resulting from differences in GC content of barcoded reverse primer. Black bars: bacteria, white bars: archaea. The red dotted line in panel B shows
the 95% confidence band for the regression line. Black symbols: bacteria, white symbols: archaea. Diamonds (e) and upper triangle (D): large library,
Squares (%) and lower triangle (=): small library.
doi:10.1371/journal.pone.0043093.g001
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not be able to distinguish between them). For both bacteria and

archaea, the rank abundance distributions were not significantly

different (p.0.05) (1) between the replicates of each mock

community within each sequencing run, (2) for each community

between two sequencing runs, and (3) for the two uneven

communities (i.e., m2 and m3) (data not shown). The rank

abundance distributions of bacterial m1 and m2 communities

were significantly different from each other for both sequencing

efforts. However, rank abundance distributions of bacterial m1

and m3 communities were only significantly different for the larger

libraries (Dlarge=0.36, plarge=0.03). Interestingly, despite starkly

different rank abundance distributions of m1 and m2/m3 mock

communities, none of the experimental rank abundance distribu-

tions for the archaeal mock communities were significantly

different from each other for both sampling efforts. This could

be attributed to the higher quantitative error in mean relative

abundance for the OTUs in the archaeal as compared to the

bacterial communities (Figures 4 and 5).

Effect of Spurious OTUs, Error in Mean Relative
Abundance, and Sequencing Depth on a-Diversity
To assess the influence of the spurious OTUs, errors in mean

relative abundance due to multi-template PCR biases, and

sampling effort, four different a-diversity metrics were calculated.

Two richness-based metrics included the number of observed

OTUs (ROBS) and the Chao1 estimator (RChao1), which utilizes

ROBS in combination with information about the number of

singletons and doubletons in the sample library to predict the

unsampled richness. Two structure-based metrics included the

Inverse Simpson index (DINVSIMP), which calculates diversity for

each community under conditions of uniform evenness, and the

Non-parametric Shannon index (DNPSHANNON), which measures

sample diversity without making any assumptions about the

underlying distribution while accounting for the unsampled

richness. Both DINVSIMP and DNPSHANNON utilize information

about the number of observed OTUs and their relative

abundance.

The presence of spurious OTUs resulted in significant over-

estimation in ROBS (Figures 6A and 6E), while the predicted

richness RChao1 was severely inflated due to its reliance on the

presence of singletons and doubletons in each library (Figures 6B

and 6F). The RChao1 value improved greatly for the even

communities after removing the spurious OTUs, while leading

to a severe underestimation of richness for the uneven commu-

nities. Additionally, the high variability (large standard deviations)

in the richness estimates was due to the random presence and

distribution of spurious OTUs among replicate sequence libraries

for each mock community. The variance for RChao1 for each

Figure 2. The taxa detection frequency for each of the replicate mock communities at different sequencing depths are compared to
detection frequency at different theoretical sampling depths. Open circles: sub-samples of in-silico mock communities with varying number
of sequences, red circles: large library, green circles: small library, solid lines: 95% confidence interval band for the in-silico sub-sampling efforts. A–C:
bacteria, D–F: archaea, A/D: mock1, B/E: mock 2, C/F: mock 3. Theoretical taxa detection frequencies for mock community 1 (bacteria and archaea) are
1.0 for most in-silico sub-sampling efforts and hence are not shown in panels A and D.
doi:10.1371/journal.pone.0043093.g002
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community was significantly (p,0.05) lower when the spurious

OTUs were removed. Consistent with this, the smaller libraries

showed lower variability among replicates as compared to the

larger libraries for both richness estimators, due to the presence of

fewer spurious OTUs. Non-parametric richness estimators, such

as RChao1, have been reported to be highly conservative (and thus

reliable) in their estimation of diversity [50]. However, our study

shows that the utility of using richness estimators as a measure of

Figure 3. Relative abundance of sequences used to generate bacterial mock communities. A: mock1, B: mock 2, C: mock 3. Dashed line:
theoretical relative abundance. The experimental mean relative abundance for small libraries (green circles) and large libraries (red circles) are shown
and error bars indicate standard deviations for triplicate samples. The grey box indicates a sequence that was not detected in any community; the
black box indicates an OTU that consisted of two sequences at a similarity cutoff of 3%.
doi:10.1371/journal.pone.0043093.g003

PCR Biases Affect Reliability of Pyrosequencing
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Figure 4. Relative abundance of sequences used to generate archaeal mock communities. A: mock1, B: mock 2, C: mock 3. Dashed line:
theoretical relative abundance. The experimental mean relative abundance for small libraries (green circles) and large libraries (red circles) are shown
and error bars indicate standard deviations for triplicate samples. The black box indicates an OTU that consisted of two sequences at a similarity
cutoff of 3%.
doi:10.1371/journal.pone.0043093.g004

PCR Biases Affect Reliability of Pyrosequencing
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Figure 5. Rank abundance profiles for the bacterial and archaeal mock communities. A–C: bacteria, D–F: archaea. Black lines: theoretical,
green lines: small libraries, red lines: large libraries. The Kolmogorov-Smirnov statistics at the left bottom of each panel are for comparisons between
large and small libraries. The Kolmogorov-Smirnov statistics to the right of each panel are for comparisons between the large libraries of m1/m2 and
m1/m3.
doi:10.1371/journal.pone.0043093.g005

PCR Biases Affect Reliability of Pyrosequencing
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a-diversity is compromised not only by the presence of spurious

OTUs in pyrosequencing data, as has been noted by previous

studies [51], but also due to distortions in rank abundance

distributions resulting from amplification biases in multi-template

PCR reactions. In contrast, the a-diversity estimators based on

structure, such as DINVSIMP and DNPSHANNON, were not

significantly (p.0.05) affected by the presence of spurious OTUs,

the errors in mean relative abundance, and differences in

sequencing depth between the two sequencing runs (Figures 6C,

6D, 6G, 6H). Even though DINVSIMP estimates were lower than

theoretical values for all mock communities, they still maintained

the theoretical trend in diversity, i.e., m1.m2, m3. Additionally,

DNPSHANNON values were very similar to the theoretical estimates

for all the mock communities, even with the smaller sequencing

effort, and maintained the theoretical trend in diversity similar to

DINVSIMP estimates. These results highlight the usefulness of the

structure-based over richness-based a-diversity metrics for pyr-

osequencing studies.

Effect of Spurious OTUs, Error in Mean Relative
Abundance, and Sampling Effort on Deviation from
Theoretical Community Structure
Figure 7 shows principal coordinate analyses plots using the

Morisita-Horn distance (DMH distance) for the bacterial and

archaeal mock communities at two different sequencing depths

and with and without the inclusion of spurious OTUs. While the

sub-sampling efforts of the in-silico communities converged onto

the theoretical position with increasing sequencing depth, both the

bacterial and archaeal experimental libraries clustered indepen-

dently from the theoretical communities. Additionally, the re-

moval of spurious OTUs from each library did not result in any

significant movement towards the theoretical position. To further

assess the benefits of greater sequencing depth and removal of

spurious OTUs, we compared the DMH distances between the

experimental sequencing libraries and the theoretical communities

(Figure S3). A significant improvement with increased sequencing

depth, i.e., lower distance from theoretical, was only seen for three

of the six mock communities, specifically bacteria m1 (p = 0.003),

bacteria m2 (p,0.0001), and archaea m3 (p,0.0001), despite

having six to seven fold more sequences in the larger libraries as

compared to the smaller libraries. Hence, it is clear that the

benefits of greater sequencing depth in presenting a more accurate

picture of the sampled community were dependent on the OTUs

present and their relative abundance in any given sample.

However, the larger sequencing libraries were less susceptible to

the presence of spurious OTUs compared to the smaller

sequencing libraries (Figure S3), specifically bacteria m1

(p = 0.0001), bacteria m2 (p = 0.0007), and archaea m1

(p,0.0001) communities. This shows that, even though a greater

sequencing depth may not provide a more accurate representation

of all sampled communities, larger libraries may be less affected by

the presence of spurious OTUs than smaller libraries.

Effect of Spurious OTUs, Error in Mean Relative
Abundance, and Sampling Effort on b-Diversity
We calculated Jaccard (DJACCARD) and DMH distances between

the experimental libraries and compared them to the distances

between the theoretical communities. DJACCARD is a shared-

richness based metric, which utilizes a presence/absence approach

and estimates the distance between two samples based on the

number of OTUs unique to each sample. In contrast, DMH is

a shared-structure based metric and utilizes the relative abundance

of each shared and unique OTUs while estimating the distance

between two samples. The theoretical DMH distances between m1

and m2/m3 were 0.444 and 0.451, while the theoretical DMH

distances between m2 and m3 were 0.991 and 0.987, for bacterial

and archaeal mock communities, respectively. Figure 8 provides

a comparison between the experimentally determined pairwise

DMH distances and the theoretical values. The DMH for the larger

and smaller sequencing libraries were not significantly different,

indicating that deeper sequencing did not result in improved

accuracy (i.e., reduction in difference between experimental and

theoretical estimates) in b-diversity estimates for both bacterial or

archaeal communities. However, the variance between replicates

Figure 6. Diversity metrics calculated for the bacterial and archaeal mock communities. A–D: bacteria, E–H: archaea. Black bars:
theoretical, red bars: large libraries, red-hashed bars: large libraries with spurious sequences removed, green bars: small libraries, green-hashed bars:
small libraries with spurious sequences removed. The error bars indicate standard deviations for triplicate samples.
doi:10.1371/journal.pone.0043093.g006
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was significantly lower for the larger libraries as compared to the

smaller libraries (F-test, p,0.05), indicating improved precision

with deeper sequencing. Further, removal of spurious sequences

from both the large and the small libraries also did not improve the

DMH accuracy, indicating that the left over spurious sequences had

minimal impact on b-diversity. The lack of improved accuracy by

either deeper sequencing effort or spurious OTU removal clearly

indicates that the errors in mean relative abundance resulting from

multi-template PCR bias play a significant role in limiting the

accuracy of b-diversity estimates calculated using structure based

metrics.

Similar to a-diversity metrics, b-diversity measures that rely on

shared richness were highly vulnerable to both sampling effort and

the presence of spurious OTUs. For example, the DJACCARD

distance for m1–m2, m1–m3, and m2–m3 comparisons of the

theoretical communities is 0, since they have identical sequences

and the overlap between the three communities is perfect.

However, the pairwise DJACCARD distances between archaeal

m1–m2, m1–m3, and m2–m3 without the spurious OTUs were

0.3360.04, 0.2760.03, and 0.6260.06, respectively. The ,30%

difference between archaeal m1–m2 and m1–m3 is due to the fact

that 33% of the low abundance OTUs in each of the uneven

communities were not reliably detected in each library. The

difference between m2–m3 was approximately 60% since the high

abundance OTUs in m2 were the undetected low abundance

OTUs in m3 and vice versa. When all OTUs were considered,

including the spurious OTUs, the pairwise DJACCARD distances

between m1–m2, m1–m3, and m2–m3 were 0.7560.03,

0.6660.04, and 0.8560.01, respectively. It is clear that the

spurious OTUs had a significant effect on the b-diversity

comparisons between the three mock communities while using

the Jaccard index. The challenges associated with richness-based

metrics are more complicated for environmental samples, in which

rare taxa are expected to be detected only sporadically in replicate

sequencing libraries of the same sample [51] and will be

indistinguishable from the spurious OTUs.

Summarizing the Contributions of this Study
Amplicon-based pyrosequencing methods have major advan-

tages over the tools that have been extensively used in the past to

study microbial community structure. They offer multiplexing

capabilities similar or greater than those provided by common

DNA fingerprinting tools [52,53], while also delivering DNA

sequence information to identify taxa and relative abundance

values. However, it is important to consider how advanced

sequencing tools can be reliably applied to study environmental

systems while minimizing the effects of their current limitations.

To this end, our study provides several recommendations for the

appropriate use of pyrosequencing data to study microbial

communities.

Figure 7. Principal coordinate axes plot for bacterial and archaeal communities constructed using the Morisita-Horn distance
(DMH). A–C: bacteria, D–F: archaea. A/D: m1, B/E: m2, C/F: m3. Black squares indicate the theoretical mock community and the small open circles
denote the in-silico sequencing efforts at sampling depths varying from 1 to 90%. The red filled squares and red open squares represent the large
libraries with and without spurious OTUs, respectively, while green filled triangles and green open triangles indicate the small libraries with and
without spurious OTUs, respectively. The blue circle is the centroid of the experimental libraries.
doi:10.1371/journal.pone.0043093.g007
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First, we recommend that richness and shared richness metrics

should not be used to draw quantitative conclusions about a- and

b-diversity based on pyrosequencing data. These metrics are

significantly affected by the presence of sequencing errors and

variation in sequencing depth between samples (Figure 6A, B, E,

and F). Second, we show that structure-based metrics that utilize

richness and relative abundance of each OTU are less affected by

sequencing depth and errors (Figure 6C, D, G, and H) and can be

used reliably to draw quantitative conclusions about the sequenced

communities. Third, we show that greater sequencing depth does

not always result in a more accurate representation of the

sequenced community (Figure 7), since the errors in mean relative

abundance due to multi-template PCR bias significantly alter the

rank abundance distributions (Figure 5). In fact, in most situations,

the error in mean relative abundance is the primary impediment

to understanding microbial community structure (Figure 5).

Fourth, we show that the benefit of greater sequencing depth lies

in the improved precision of structure based b-diversity estimates

by reducing variability between replicates and that deeper

sequencing does not necessarily improve accuracy of b-diversity

estimates. A fifth contribution of this study is the observation that

the number of sequences in each sample library may be affected by

the GC content of the amplicon pool of each sample (inter-sample

bias). Based on this finding, we encourage future studies to

investigate the extent to which GC bias affects the relative

abundances of OTUs (intra-sample bias). Finally, we have tested

and made available updated designs of bacterial and archaeal 454-

compatible primers along with multiplexing barcodes. These

primers show high database coverage of most bacterial and

archaeal phyla and allow for simultaneous multiplexing of separate

bacterial and archaeal amplicon pools from the V3–V5 region of

the 16S rRNA gene.

Materials and Methods

Primer and Multiplexing Barcode Design
Primers targeting the V3–V5 region of the bacterial and

archaeal 16S rRNA gene were modified from previously published

primers [34,36,37,54] (Tables 1 and S1). The coverage of old and

new primer sets was checked against good quality sequences (as

defined based on Pintail scores by the RDP database) greater than

1,200 bp in the RDP database (Release 10) using the feature

Probematch (Figure S1 and Table 1) [55]. Multiplexing barcodes

were designed to allow for simultaneous sequencing of bacterial

and archaeal amplicons using Barcode Designer Software (http://

sourceforge.net/projects/jcvibard/). Information about design

criteria, barcode sequence, primer interactions, and secondary

structure potential is provided in Table S1. All primers were

synthesized and HPLC purified by Integrated DNA technologies

(Coralville, IA).

Mock Community Preparation
A total of 33 bacterial 16S rRNA gene sequences belonging to

27 different phyla and 24 archaeal 16S rRNA gene sequences

belonging to three different phyla were used to construct two sets

of three mock communities, all of which provided target regions

with perfect matches to the bacterial and archaeal primers

designed in this study, respectively. Of the 57 sequences used,

ten bacterial and five archaeal sequences were clones originating

from environmental samples, while the remaining sequences were

obtained from pure cultures of bacteria and archaea (Table S4).

Clones of near full length 16S rRNA gene fragments were

generated using PGEM-T Easy Vector II system (Promega Inc,

Madison, WI) according to manufacturer specifications. Informa-

tion about primers used to amplify near full length sequences are

provided in Table S6. Plasmids containing cloned inserts were

sequenced at the University of Michigan DNA sequencing core

(Ann Arbor, MI) and the sequences were deposited in Genbank

(accession numbers: JQ346727–JQ346782). Even though all

sequences included in the mock communities were checked for

chimeras, one bacterial sequence (S. bryantii) was at the end of the

study determined to be a putative chimera and hence was not

deposited in GenBank. The plasmid concentrations were quanti-

fied in triplicate using Quant-iT dsDNA assay kit (Invitrogen,

Carlsbad, CA) and quantified on a Nanodrop 3300 (Thermo

Scientific, Wilmington, DE). Following quantitation of plasmid

concentrations, two sets of three mock communities were

constructed as follows. The sequences were first divided into three

clusters each for bacteria and archaea based on the GC content

(mean % GC content6standard deviation) of the V3–V5 region

(Figure S2), i.e., low GC (bacteria: 51.162.1, archaea: 53.161.9),

medium GC (bacteria: 55.161.8, archaea: 58.360.5), and high

GC (bacteria: 59.363.3, archaea: 64.962.1) with 11 bacterial and

eight archaeal sequences in each cluster. The two sets of mock

communities consisted of mock1 (m1) (all sequences with equal

abundance), and two uneven communities, mock2 (m2) and

mock3 (m3). The four uneven communities were designed to have

three abundance levels with one GC cluster at each abundance

level. The relative abundance of each sequence in the three

bacterial and archaeal mock communities is provided in Figure S2.

Each mock community was prepared three times by independently

mixing each sequence, to generate technical replicates.

Environmental Samples
The PCR conditions were identical to those used for the mock

community samples and are detailed below. The OP-YNP,

MGCT, and GC samples were donated by M. Podar (Oak Ridge

National Laboratories), V. Young (University of Michigan), and

G. Dick (University of Michigan), respectively. The SW sample

was collected from the Huron River in Ann Arbor, Michigan,

while DWDS sample was collected from a local drinking water

distribution system [56]. The ANBR and FAS samples were

collected from a laboratory scale anaerobic bioreactor used to treat

low strength wastewaters at the University of Michigan and from

a fresh water aquaculture system located in Milwaukee, Wisconsin.

PCR Amplification and Sample Preparation for
Sequencing
The GC content of Bact-909R and Arch-915R primers with the

multiplexing barcodes and fusion primers varied between 47.8–

57.2% (52.561.9%, n = 70) and 58.5–66% (62.461.6%, n = 85)
(Table S1), respectively. The differences in multiplexing barcode

sequences altered the secondary structure formation potential for

each reverse primer. To account for any variability between

replicates due to differences in reverse primer characteristics, each

replicate of the mock communities was subjected to PCR with

primers that exhibited significantly different GC contents.

Specifically, the first (m1.1, m2.1, m3.1), second (m1.2, m2.2,

Figure 8. Comparisons of pairwise Morisita-Horn distance between bacterial and archaeal mock communities to the theoretical
pairwise distances. A–C: bacteria, D–F: archaea. A/D: m1–m2, B/E: m1–m3, C/F: m2–m3. Nine pairwise comparisons generated between three
replicate libraries for each community were used to construct each box.
doi:10.1371/journal.pone.0043093.g008
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m3.2), and third (m1.3, m2.3, m3.3) replicates of each mock

community were subjected to PCR with reverse primer with a GC

content of 47.8, 51.6, and 55.3% for bacterial communities and

60.4, 62.3, and 64.3% for archaeal communities, respectively. The

amplification of replicate mock communities with reverse primers

with varying GC fractions resulted in amplicon pools correspond-

ing to each replicate with slightly different GC contents

(Figure 1A). The PCR reactions were conducted in triplicate

[26] and were limited to 15 cycles to minimize formation of PCR

artifacts [57]. The plasmids containing 16S rRNA inserts were not

linearized prior to PCR, which may have resulted in slight

variations in PCR amplification efficiency between different

sequences in the mock communities. Each PCR reaction mix

contained 10 ml of PfuUltraII hotstart mastermix (Stratagene,

Santa Clara, CA), 0.2 mM of equimolar mix of the forward

primers (if more than one was used), 0.2 mM reverse primer,

0.3 mg/ml of bovine serum albumin (Invitrogen, Carlsbad, CA),

a final DNA template concentration of 4 ng/ml of DNA, and PCR

grade water to a total volume of 20 ml. The PCR thermocycling

conditions were as follows: 2 min at 95uC, and 15 cycles of 95uC

for 20 s, 50/55uC (bacteria/archaea) for 20 s, 72uC for 30 s,

followed by a final extension at 72uC for 3 min. The thermo-

cycling conditions and DNA template and primer concentrations

were optimized to maximize yield of PCR product in 15 cycles

(data not shown).

Following PCR amplification, the triplicate PCR reactions for

each sample preparation were pooled and purified. The amount of

PCR product from each sample was quantified in triplicate using

Quant-iT dsDNA assay kit (Invitrogen, Carlsbad, CA) on

a Nanodrop 3300 (Thermo Scientific, Wilmington, DE). Two

different PCR product pools were generated, one each for bacteria

and archaea. Each pool had equal amounts of PCR product

originating from either mock community or environmental

sample. Both PCR product pools were then run on 2% agarose

gel at 50 Volts for 60 min. The bands corresponding to 600–

700 bp for bacteria and 600–900 bp for archaea were excised and

purified using a Qiaquick Gel Extraction kit (Qiagen, Valencia,

CA). A larger range of amplicon sizes was extracted for archaea as

the V3–V5 region of C. maquilingensis is 733 bp in size. Following

gel extraction, both PCR product pools were re-purified using

a Qiaquick PCR purification kit (Qiagen, Valencia, CA). The

purified archaeal and bacterial amplicon pools were quantified as

described above, and were mixed in 60:40 (bacteria:archaea)

proportions to generate the final amplicon pool and sent for 454-

titanium sequencing.

454-titanium Sequencing
Amplicon pools of the mock communities were sequenced on

two separate occasions at two different sequencing facilities. For

both runs, sequencing was performed from the V5 to the V3

region. The first sequencing run included the 18 mock community

samples combined with 60 environmental samples and was

performed at the Michigan State University Research Technology

Support Facility (East Lansing, Michigan) on 1/8th pico-titer plate.

This run yielded 30,910 reads with a pass rate of 20% giving 300–

600 reads per sample after quality filtering (detailed below). The

second sequencing run included the 18 mock community samples

and 12 environmental samples and was conducted at the

University of South Carolina Environmental Genomic Core

Facility (Columbia, SC) on 1/8th pico-titer plate. This run yielded

73,403 sequences with a pass rate of 37% and provided between

2,000–3,000 sequences per sample after quality filtering (described

below). The observed pass rates, between 20–40%, are expected

for amplicons longer than 400 bp on the 454 sequencing platform

as compared to 50–60% pass rates for amplicons shorter than

400 bp [58].

Sequence Data Processing and Analyses
All data processing was conducted using Mothur [59]. We did

not utilize Denoising protocols [18–20] while processing the

pyrosequencing output in this study. Denoising protocols employ

sequence correction approaches to reduce the level of noise in

pyrosequencing data originating from the sequencing process and

PCR amplification. Though denoising generally is an essential step

towards processing pyrosequencing datasets, the goal of this study

was not to correct the noise, but assess its impact on the

interpretation of the sampled community structure and compare it

to other factors such as sequencing depth and errors in mean

relative abundance of OTUs. Additionally, the mock communities

in this study were composed of known sequences. Hence, we were

able to identify spurious sequences and selectively remove them

from the experimental dataset and assess the changes in

community structure and membership resulting from their re-

moval. As a result, we did not use denoising protocols, but a simple

yet stringent quality filtering protocol (detailed below) to ensure

removal of sequencing noise at a defined quality control threshold.

Specifically, the sequences were quality filtered to allow a max-

imum of 1 bp mismatch with the reverse primer, 0 mismatches

with the barcode, 0 ambiguous bases, and an average quality score

(qaverage) of 25 over a sliding window of 50 bp over the read length.

The 1 bp mismatch with the primer was allowed since the primer

region is not used for any subsequent analyses and this allows for

retention of sequences that may otherwise be good. However, we

did not allow any mismatches with the barcodes since they are

used for sample sorting and may affect how sequences are binned.

If the qaverage over the defined sliding window dropped below 25,

the distal end of the read was trimmed and only the sequencing

end was retained. Following this, all reads that were quality

trimmed below 200 bp were removed from the library. The

remaining sequences were aligned against a custom seed

alignment with k-mer searching using a k-size of 8.0 and

Needleman-Wunsch pairwise alignment. The seed alignment for

the mock communities was generated by aligning near-full length

reference sequences used in the mock communities using the

SINA-aligner [60]. Sequences whose alignment did not terminate

at the V5 region were removed as poorly aligned sequences.

Subsequently, the remaining sequences were checked for the

presence of chimeras by comparing against the same seed

alignment using the UCHIME algorithm [21] in Mothur and

any sequences flagged as chimeras were removed. All the reads

retained after the chimera removal step were considered quality

filtered reads. Information about the number of quality filtered

and chimera-free reads in each mock community sample are

provided in Table S5.

Next, two alignments each consisting of three in-silico bacterial

or archaeal mock communities were merged with the bacterial or

archaeal experimental alignments, respectively. The in-silico mock

communities were generated by combining all sequences in the

same relative abundances as shown in Figure S2. This was done so

the lowest abundance sequences had one read each in m2 and m3.

The medium and high abundance sequences were then adjusted

accordingly to yield final bacterial and archaeal in-silico mock

communities with 11,891 and 8,640 reads, respectively. The size

of the even mock community, m1, was increased to match the total

reads in the respective uneven mock communities. After merging

the alignments for experimental and in-silico mock communities,

the resulting alignment was filtered using the vertical =T and

trump= ., options in Mothur. This ensures that sequences are
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compared along similar parts of the 16S rRNA gene, while

calculating the distance matrix [16]. The resulting filtered

alignment was 388 and 603 columns for bacteria and archaea,

respectively. A distance matrix was generated in PHYLIP format

[61], and the sequences were clustered into OTUs using the

average neighbor method [18].

All the experimental reads that clustered with one of the

reference sequences at a similarity cutoff of 3% [17] were

categorized as ‘‘good’’ sequences, while the others were tagged

as spurious sequences. The relative abundance of each OTU was

estimated based on the percent reads in each sample library

clustering with the respective reference sequence at a similarity

cutoff of 3%. To separate the effects of sequencing depth and

errors in mean relative abundance from that of spurious OTUs on

community structure evaluations, all the spurious sequences were

removed and the libraries with only good sequences, referred to as

‘‘good libraries’’, were analyzed alongside the libraries with all the

sequences included and the in-silico mock communities. Addition-

ally, to assess the effect of sequencing depth alone, the in-silico

bacterial and archaeal sequence libraries were randomly sub-

sampled in triplicate to generate three sub-sample libraries each,

containing 1, 5, 10, 20, 50, 70, and 90% of the sequences in the

original in-silico libraries. These sub-sample libraries were analyzed

alongside the experimental libraries with and without spurious

sequences and the complete in-silico libraries. The entire workflow

is also presented in Figure S4.

Diversity, Classification and Similarity Estimates and their
Statistical Significance
The environmental sequence libraries were classified using the

classification seed files provided through Mothur and using the k-

nearest neighbor approach and a cutoff of 80%. If an expected

class was not detected in a sample, then the presence/absence

confirmation for this class was further conducted using specific

primers available in the literature as discussed in the Results and

Discussion section. For all experimental mock community libraries

(with and without spurious sequences) and in-silico libraries (full

and sub-sample), a- and b-diversity metrics based on the OTU-

based approach were estimated using Mothur. The a-diversity

metrics included the number of observed OTUs (ROBS), the

Chao1 estimator (Rchao1), Inverse-Simpson (DINVSIMP) metric, and

non-parametric Shannon (DNPSHANNON) metric. The Morisita-

Horn similarity index (DMH) and Jaccard Index (DJACCARD) were

used to calculate distance between samples to evaluate b-diversity.

Microsoft Excel and SPSS statistical package were used for

statistical analyses not provided through the Mothur platform. The

mean relative abundance of OTUs were compared using the two-

tailed student t-test without making assumptions about the

variances (a=0.05). The non-parametric Kolmogorov-Smirnov

test was used to determine whether the experimental rank

abundance distributions generated at different sampling efforts

and community structures were significantly different. The F-test

was used to compare variances of diversity and pairwise distance

estimates across replicate samples at different sampling efforts with

and without spurious sequences (a=0.05).

Supporting Information

Figure S1 Coverage of the newly designed primers (red-Table

S1) and previously used primers (blue-Table S8-Bact-338F old+-

Bact-909R old, Arch-340F+Arch-934R) [1–3] targeting the V3–

V5 hypervariable regions of (A) bacterial and (B) archaeal 16S

rRNA genes. Coverage for Crenarchaeota and Euryarchaeota is shown

at the order-level, while other bacterial and archaeal coverage is

shown at the phylum level. Coverage was checked by using the

probe match function against the RDP database (Release 10) for

good quality sequences greater than 1,200 bp and allowing

0 mismatches [4]. Note that the phylum Thaumarchaeota does not

contain any sequences in the RDP database. However, sequences

from the Nitrosopumilaceae family (proposed member of Thaumarch-

aeota [5]) were detected in environmental samples analyzed in this

study and are therefore included in this analysis. Additionally,

even though the new and old archaeal primer sets do not target

Nanoarchaeota, sequences identified as Nanoarchaeota were detected in

environmental samples tested in this study.

(DOC)

Figure S2 The relative abundance of the 33 and 24 sequences

used in the (A) bacterial and (B) archaeal mock communities. Solid

line: m1, dotted line: m2, dashed line: m3. The relative abundance

values (%) corresponding to each abundance level are shown next

to the plots.

(DOC)

Figure S3 Morisita-Horn distance (DMH) between experimental

libraries and theoretical communities for bacterial (A, B, C) and

archaeal (D, E, F) mock communities. Panels A and D indicate the

effect of sequencing depth on DMH (red bars: large libraries, green

bars: small libraries), Panels B/E and C/F indicate the influence of

removal of spurious OTUs on DMH for the large libraries (red

bars: large libraries, red-hashed bards: large libraries-spurious

OTUs removed) and small libraries (green bars: small libraries,

green-hashed bars: small libraries-spurious OTUs removed),

respectively. The stars indicate DMH values that were significantly

different (p,0.05).

(DOC)

Figure S4 Schematic showing workflow from the raw sequenc-

ing libraries up to the generation of the ‘‘working file’’ of sequences

used for all the results presented in this study. Details for each step

are presented in the materials and methods section.

(DOC)

Table S1 Sequence information for template specific bacterial

and archaeal primers, multiplexing barcodes, and thermodynamic

and secondary structure parameters. (A) Sequence information for

the three bacterial forward primers, Bact-338F1, Bact-338F2, and

Bact-338F3, and thermodynamic parameters for the primers when

used in combination with Titanium fusion primer B. (B) Sequence

information for the reverse bacterial primer Bact-909R and

designed barcodes. Also provided are the thermodynamic

parameters for the most stable hairpin, homo-dimer, and hetero-

dimer interactions with the three forward primers. (C) Sequence

information for the archaeal forward primer, Arch-340F, and

thermodynamic parameters for the primer when used in

combination with Titanium fusion primer B. (D) Sequence

information for the reverse archaeal primer Arch-915R and

designed barcodes. Also provided are the thermodynamic

parameters for the most stable hairpin, homo-dimer, and hetero-

dimer interactions with the forward primer. Units for thermody-

namic parameters: dG=kcal/mole, dH= kcal/mole, dS= cal/

mole.K, Tm= uC. The barcodes were designed with the following

constraints: (1) ten nucleotides in length, (2) maximum of five flows

for complete resolution, and (3) a minimum Levenshtein distance

of 3 between any two barcodes. The fusion primer-barcode-

template primer combinations were screened for potential for

formation of homo-dimers, hetero-dimers, and hairpin structures

using dinamelt as a primary screening tool followed by the

Oligoanalyzer tool available through IDT-DNA (http://www.

idtdna.com/analyzer/applications/oligoanalyzer/) and only pri-
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mers that were free from potential secondary structure issues were

retained.

(XLS)

Table S2 The detection of bacterial sequences in environmental

samples at resolution down to the order level. The classification

was conducted on quality filtered and chimera free sequence

libraries for each sample. Green boxes indicate sequence classes

that were detected.

(PDF)

Table S3 The detection of archaeal sequences in environmental

samples at resolution down to the family level. The classification

was conducted on quality filtered and chimera free sequence

libraries for each sample. Green boxes indicate sequence classes

that were detected.

(PDF)

Table S4 Information about the source of each sequence, the

length of near full-length 16S rRNA gene sequences amplified, the

length of the V3–V5 region, and the GC content and length of the

longest homopolymer in the full length and V3–V5 region.

(DOC)

Table S5 The number of sequences obtained for each bacterial

and archaeal mock community before and after quality filtering

and chimera removal. Sm- small library generated during first

sequencing run, lg-large library generated during second sequenc-

ing run.

(DOC)

Table S6 Primers used to amplify near full-length 16S rRNA

gene sequences used to generate the mock communities.

(DOC)
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