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Abstract. We present PCR-GLOBWB 2, a global hy-

drology and water resources model. Compared to previ-

ous versions of PCR-GLOBWB, this version fully inte-

grates water use. Sector-specific water demand, ground-

water and surface water withdrawal, water consumption,

and return flows are dynamically calculated at every time

step and interact directly with the simulated hydrology.

PCR-GLOBWB 2 has been fully rewritten in Python and

PCRaster Python and has a modular structure, allow-

ing easier replacement, maintenance, and development of

model components. PCR-GLOBWB 2 has been imple-

mented at 5 arcmin resolution, but a version parameter-

ized at 30 arcmin resolution is also available. Both ver-

sions are available as open-source codes on https://github.

com/UU-Hydro/PCR-GLOBWB_model (Sutanudjaja et al.,

2017a). PCR-GLOBWB 2 has its own routines for ground-

water dynamics and surface water routing. These relatively

simple routines can alternatively be replaced by dynamically

coupling PCR-GLOBWB 2 to a global two-layer groundwa-

ter model and 1-D–2-D hydrodynamic models. Here, we de-

scribe the main components of the model, compare results of

the 30 and 5 arcmin versions, and evaluate their model per-

formance using Global Runoff Data Centre discharge data.

Results show that model performance of the 5 arcmin version

is notably better than that of the 30 arcmin version. Further-

more, we compare simulated time series of total water stor-

age (TWS) of the 5 arcmin model with those observed with

GRACE, showing similar negative trends in areas of preva-

lent groundwater depletion. Also, we find that simulated total

water withdrawal matches reasonably well with reported wa-

ter withdrawal from AQUASTAT, while water withdrawal by

source and sector provide mixed results.

1 Introduction

The last decades saw the development of an increasing num-

ber of global hydrological models (GHMs), e.g. VIC (Liang

et al., 1994; Nijssen et al., 2001), WMB (Fekete et al.,

2002), WaterGAP (Döll et al., 2003), H08 (Hanasaki et al.,
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2008a, 2018), and Mac-PDM (Gosling and Arnell, 2011)

(see Bierkens et al., 2014, Bierkens, 2015, and Kauffeldt et

al., 2016, for a more extensive list, also including land sur-

face models). GHMs have become essential tools to quan-

tify and understand the global terrestrial water cycle, as they

simulate the distributed hydrological response to weather and

climate variations at higher resolution (typically 0.5◦ × 0.5◦)

than used previously in general circulation models (GCMs),

with more sophisticated run-off generation processes and

river routing. As such, GHMs have been used for medium-

range to seasonal flood forecasting (Bierkens and van Beek,

2009; Alfieri et al., 2013; Candogan Yossef et al., 2013) as

well as for a myriad of water-related global change assess-

ments. Examples include the projection or estimation of fu-

ture flood and drought events (Sperna-Weiland et al., 2012;

Dankers et al., 2013; Prudhomme et al., 2013; Wanders et al.,

2015; Wanders and Wada, 2016), current and future flood

hazard and risk (Pappenberger et al., 2012; Hirabayashi et

al., 2013; Ward et al., 2013; Winsemius et al., 2013, 2016),

global groundwater depletion (Wada et al., 2010; Gleeson

et al., 2012), the contribution of terrestrial water stores to

global sea level change (Konikow, 2011; Wada et al., 2012;

Pohkrel et al., 2013), current and future water scarcity under

climate change and increasing population growth (Hanasaki

et al., 2008b; Wada et al., 2011a, b; Schewe et al., 2014;

Haddeland et al., 2014; Wada and Bierkens, 2014), telecon-

nections between climate oscillations and water availability

(Wanders and Wada, 2015), the impact of land use change on

global water resources (Rost et al., 2008; Sterling et al., 2015;

Bosmans et al., 2017), and trends in surface water tempera-

ture and cooling water potential (van Beek et al., 2012; van

Vliet et al., 2012). More recently, the output from global hy-

drological models has been extended to study socioeconomic

impacts, such as virtual water trade (Konar et al., 2013; Dalin

et al., 2017) and future agricultural production (Elliott et al.,

2013). These applications show that GHMs have become in-

valuable tools in support of global change research and envi-

ronmental assessments.

PCR-GLOBWB (PCRaster Global Water Balance) (van

Beek and Bierkens, 2009; van Beek et al., 2011) is one of the

recently developed GHMs. PCR-GLOBWB is a grid-based

global hydrological model developed at the Department of

Physical Geography, Faculty of Geosciences, Utrecht Uni-

versity, the Netherlands. The model, describing the terres-

trial part of the hydrological cycle, was first introduced in a

technical report by van Beek and Bierkens (2009) and then

formally published in a paper of van Beek et al. (2011), fo-

cusing on global water availability issues. PCR-GLOBWB

was originally developed to solve the global daily surface

water balance with a spatial resolution of 30 arcmin (about

50 km by 50 km at the Equator) and compare the resulting

freshwater availability with monthly sectoral water demand

in order to assess global-scale water scarcity (van Beek et

al., 2011; Wada et al., 2011a, b). In this first version of PCR-

GLOBWB (called PCR-GLOBWB 1 hereafter), similar to

other global-scale hydrological models, water demand and

water availability are treated independently, i.e. without di-

rect feedback between human water use and other terrestrial

water fluxes (e.g. Döll and Siebert, 2002; Wisser et al., 2010).

Since it was first introduced, PCR-GLOBWB has been ap-

plied extensively in global water resource assessment stud-

ies. For instance, a recent search on Scopus (accessed on

13 April 2018) for the key-word “PCR-GLOBWB” yielded

113 publications with collectively over 2500 citations. Since

the first version, several new model features have been intro-

duced such as a comprehensive water demand and irrigation

module (Wada et al., 2011b, 2014), a scheme for dynamic al-

location of sectoral water demand to available surface water

and groundwater resources, and the associated calculation of

return flow (de Graaf et al., 2014). These features essentially

introduced a two-way interaction among water demand, wa-

ter withdrawal, water consumption, and availability, partic-

ularly over irrigated areas where water demand is large and

return flow is significant. Nevertheless, all of these preceding

studies using PCR-GLOBWB were performed at a relatively

coarse resolution of 30 arcmin, limiting their subregional or

local applications. Additionally, some added functionalities,

such as the possibility to couple the land surface component

of PCR-GLOBWB to a global MODFLOW-based ground-

water model (Sutanudjaja et al., 2011, 2014; de Graaf et al.,

2015, 2017) and an extension to simulate surface water tem-

perature (van Beek et al., 2012), were incorporated in differ-

ent versions based on the original PCR-GLOBWB 1, leading

to divergent model code development.

The objective of this paper is to summarize and present the

new version of the model, PCR-GLOBWB 2, which consoli-

dates all components that have been developed since the orig-

inal version of the model was first introduced (van Beek et

al., 2011). The new version of the model, PCR-GLOBWB 2,

which is able to simulate the water balance at a finer spa-

tial resolution of 5 arcmin, supersedes the original PCR-

GLOBWB 1, which has a resolution of 30 arcmin only1. The

finer resolution of PCR-GLOBWB 2 allows a much better

representation of the effects of spatial heterogeneity in to-

pography, soils, and vegetation on terrestrial hydrological dy-

namics (Wood et al., 2011; Bierkens et al., 2014). Likewise,

it provides a better resolution for visualization that allows

stakeholders and decision makers to assess model simulation

output more easily and directly for the places they are specif-

ically interested in (Sheffield et al., 2010; Beven and Cloke,

2012). To assess the possible improvements, this paper also

presents the first evaluation results from the simulation of

PCR-GLOBWB 2 at 5 arcmin resolution and compares them

to a 30 arcmin version. As discharge data are commonly used

in hydrological model performance evaluation, the simulated

river discharge of PCR-GLOBWB 2 is compared to in situ

1Note that Wada et al. (2016) made a preliminary version of the

model that operates at 6 arcmin.
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discharge observations from the Global Runoff Data Centre

(GRDC, 2014).

The paper is organized as follows. Section 2 provides a

global description of PCR-GLOBWB 2, including its model

structure and the new components and functionalities that

have been added since PCR-GLOBWB 1. In Sect. 3 the

global application of PCR-GLOBWB 2 is demonstrated and

the results from a 58-year simulation (1958–2015) are evalu-

ated against observations of discharge, total water storage,

and reported withdrawal data. Section 4 summarizes and

concludes this paper and discusses possible future develop-

ments. Section 5 provides information about availability of

the model code and the underlying data.

2 PCR-GLOBWB 2 – model description

2.1 General overview

PCR-GLOBWB 2 is a state-of-the-art grid-based global hy-

drology and water resources model. It is a component-based

model implementation in Python using open-source PCRas-

ter Python routines (Karssenberg et al., 2010, http://pcraster.

geo.uu.nl/, last access: 15 September 2017). The code is

distributed through GitHub. The computational grid covers

all continents except Greenland and Antarctica. Currently

two versions are available: one with a spatial resolution of

5 arcmin in latitude and longitude and one with a coarser res-

olution of 30 arcmin. Typical time steps for hydrology and

water use are 1 day while sub-daily time stepping is used for

hydrodynamic river routing. For all dynamic processes in-

volved, PCR-GLOBWB 2 uses a time-explicit scheme. For

each grid cell and each time step, PCR-GLOBWB 2 sim-

ulates moisture storage in two vertically stacked upper soil

layers (S1 + S2 in Fig. 1), as well as the water exchange

among the soil, the atmosphere, and the underlying ground-

water reservoir (S3 in Fig. 1). The exchange with the atmo-

sphere is comprised of precipitation, evaporation from soils,

open water, snow and soils, and plant transpiration, while

the model also simulates snow accumulation and snowmelt.

Sub-grid variability in land use, soils, and topography is in-

cluded and influences the schemes for run-off–infiltration

partitioning, interflow, groundwater recharge (from S2 to S3),

and capillary rise (from S3 to S2). Run-off, generated by

snowmelt, surface run-off, interflow, and baseflow, is routed

across the river network to the ocean or endorheic lakes and

wetlands. Routing can either be simple accumulation, sim-

plified dynamic routing using a method of characteristics, or

kinematic wave routing. In case the kinematic wave routing

is used, it is also possible to use a (simplified) floodplain in-

undation scheme and to simulate the surface water tempera-

ture.

PCR-GLOBWB 2 includes a simple reservoir operation

scheme that is applied to over roughly 6000 human-made

reservoirs, which are progressively introduced according to

Figure 1. Schematic overview of a PCR-GLOBWB 2 cell and

its modelled states and fluxes. S1, S2 (soil moisture storage), S3

(groundwater storage), Qdr (surface run-off – from rainfall and

snowmelt), Qsf (interflow or stormflow), Qbf (baseflow or ground-

water discharge), and Inf (riverbed infiltration from to groundwa-

ter). The thin red lines indicate surface water withdrawal, the thin

blue lines groundwater abstraction, the thin red dashed lines re-

turn flows from surface water use, and the thin dashed blue lines

return flows from groundwater use surface. For each sector, with-

drawal − return flow = consumption. Water consumption adds to

total evaporation. In the figure, the five modules that make up PCR-

GLOBWB 2 are portrayed on the model components.

their construction year, from the GRanD database (Lehner

et al., 2011). Human water use is fully integrated within the

hydrological model, meaning that at each time step (1) wa-

ter demands are estimated for irrigation, livestock, industry,

and households, (2) these demands are translated into actual

withdrawals from groundwater, surface water (rivers, lakes,

and reservoirs), and desalinization, subject to availability of

these resources and maximum groundwater pumping capac-

ity in place, and (3) consumptive water use and return flows

are calculated per sector.

As an option PCR-GLOBWB 2 can be partially or fully

coupled to a two-layer global groundwater model based on

MODFLOW (de Graaf et al., 2017). Recent work (Hoch

et al., 2017a, b) also includes coupling PCR-GLOBWB 2

to either Delft3D Flexible Mesh (Kernkamp et al., 2011)

or LISFLOOD-FP (Bates et al., 2010), which are model

codes that can be used to solve the 1-D–2-D shallow water

equations (or approximations thereof) for detailed inundation

studies.

www.geosci-model-dev.net/11/2429/2018/ Geosci. Model Dev., 11, 2429–2453, 2018
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2.2 Model structure and flexibility

PCR-GLOBWB 2 has a flexible modular structure (Fig. 1).

The modular structure of PCR-GLOBWB 2, both in terms of

model concepts and implementation (separate modules are

called from a main program), makes it easy to modify or

replace components according to specific objectives of the

model application, to introduce new modules or components

within the modelling system, and to couple it to existing

codes.

There are currently five main hydrological modules in

PCR-GLOBWB 2 as illustrated in Fig. 1 and briefly de-

scribed in Sect. 2.3: meteorological forcing, land surface,

groundwater, surface water routing, and irrigation and water

use. For an extensive description of the underlying equations

and methods used in each of these modules we refer to the

following sources:

– the meteorological forcing module from van

Beek (2008, http://vanbeek.geo.uu.nl/suppinfo/

vanbeek2008.pdf);

– the land surface module, groundwater module, and

surface water routing module from van Beek and

Bierkens (2009, http://vanbeek.geo.uu.nl/suppinfo/

vanbeekbierkens2009.pdf) and van Beek et al. (2011,

https://doi.org/10.1029/2010WR009791);

– the irrigation and water use module including

– calculation of water demand by Wada et al. (2014,

https://doi.org/10.5194/esd-5-15-2014);

– calculation of water withdrawal, consumption,

and return flows by de Graaf et al. (2014,

https://doi.org/10.1016/j.advwatres.2013.12.002),

Wada et al. (2014, https://doi.org/10.5194/esd-

5-15-2014), and Erkens and Sutanudjaja (2015,

https://doi.org/10.5194/piahs-372-83-2015).

Furthermore, for details about coupling to MOFLOW we re-

fer to

– one-way coupling from Sutanudjaja et

al. (2011, https://doi.org/hess-15-2913-

2011) and de Graaf et al. (2017,

https://doi.org/10.1016/j.advwatres.2017.01.011);

– two-way coupling from Sutanudjaja et al. (2014,

https://doi.org/10.1002/2013WR013807).

2.3 Description of the modules

Hereafter, we briefly describe the main features of the five

modules. Additionally, a (non-exhaustive) list of the model

state and flux variables is provided in Table A1, whereas Ta-

ble A2 lists the model inputs and parameters, including their

sources.

2.3.1 Meteorological forcing module

Meteorological forcing of PCR-GLOBWB 2 uses time se-

ries of spatial fields of precipitation, temperature, and ref-

erence evaporation. Reference potential evaporation can be

prescribed or calculated within the model and is used in the

land surface module to calculate land-cover-specific poten-

tial evaporation based on crop factors of the various land

cover types according to the FAO guidelines (Allen et al.,

1998). There are two options for calculating reference po-

tential evaporation: (1) using Hamon (1963) in case only

daily mean temperature is available, or (2) using Penman–

Monteith following the FAO guidelines (Allen et al., 1998)

if net radiation, wind speed, and vapour pressure deficit are

additionally available. See van Beek et al. (2008) for de-

tails. The resulting land-cover-specific potential evaporation

is subsequently used to compute the actual evaporation for

different land cover types in each cell. Apart from the cal-

culation of evaporation, temperature is also used to partition

precipitation into snow and rain and to drive snowmelt.

2.3.2 Land surface module

This core module of PCR-GLOBWB 2 covers the land–

atmosphere exchange, the vertical flow among soil compart-

ments and the eventual groundwater recharge, snow and in-

terception storage, and the run-off generation mechanisms.

These processes are simulated over a number of land cover

types and aggregated proportionally based on land cover

fractions within a model cell. Users can specify their own

land cover classification and introduce their own land cover

parameterization. The number of land cover types is config-

urable. The standard parameterization of PCR-GLOBWB 2

carries four land cover types consisting of tall natural vegeta-

tion, short natural vegetation, non-paddy irrigated crops, and

paddy irrigated crops (i.e. wet rice). There is also a parame-

terization set for six land cover types (Bosmans et al., 2017),

albeit still at 30 arcmin resolution only, which includes dis-

tinct types for pasture and rain-fed crops. For the standard

four land cover parameterization of PCR-GLOBWB, applied

in this paper, the land cover types of pasture and rain-fed

crops are integrated into the short natural vegetation type.

For each land cover type, separate soil conditions can be

specified. It should be noted that the soil and vegetation con-

ditions are in any case fully spatially distributed. Thus, veg-

etation properties (e.g. crop factor; leaf area index, LAI) and

soil properties (depth, saturated hydraulic conductivity, etc.)

vary not only among land cover types but may also vary from

cell to cell (e.g. per climate zone). In the standard parame-

terization, vegetation properties vary over the year using a

monthly climatology of phenology and crop calendars (i.e.

for the crop factor and LAI). The application of irrigation

water for paddy and non-paddy irrigation is carried out by

the irrigation and water use module. It is based on the FAO

guidelines of Allen et al. (1998) and is dependent on the

Geosci. Model Dev., 11, 2429–2453, 2018 www.geosci-model-dev.net/11/2429/2018/
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actual soil water storage (S1, S2) or paddy-inundated water

storages. All fluxes, from and to the land surface module in

Fig. 1, are thus calculated separately per land cover type. The

resulting vertical fluxes for each land cover type are inter-

ception evaporation, bare soil evaporation, snow sublimation,

and vegetation-specific transpiration. In the soil column, ver-

tical fluxes are driven by degrees of saturation of soil layers

and interact with the underlying groundwater store, S3 (see

e.g. van Beek and Bierkens, 2009; Sutanudjaja et al., 2011;

Sutanudjaja, 2012, for detailed explanation). Surface run-off

(Qdr, from precipitation and snowmelt) consists of infiltra-

tion excess run-off and saturation excess run-off following

a sub-grid approach that mimics variable source areas, i.e.

the improved Arno scheme (Todini, 1996; Hagemann and

Gates, 2003). Interflow or stormflow (Qsf), mostly occurring

in regolith soils on hillslopes, is also handled with a sub-grid

approach based on a run-off parameterization by Sloan and

Moore (1984). All fluxes are computed per land cover type

and balanced with the available storage to arrive at the net

flux that is used to update the storages for the next time step.

Also, to report the overall fluxes per cell, and to pass these

to other modules, the land-cover-specific fluxes are subse-

quently averaged (weighted by land cover type fractions).

For the standard parameterization of the land surface mod-

ule the following data sets are combined (see Table A2):

the cell fractions of various non-irrigation land cover types

are based on the map of Global Land Cover Characteris-

tics Database (GLCC) version 2.0 (Loveland et al., 2000)

with the land cover classification following Olson (1994a, b)

and the parameter sets from Hagemann et al. (1999) and

Hagemann (2002). Irrigation land cover types (i.e. paddy

and non-paddy), including their crop calendars and growing

season lengths, are parameterized based on the data set of

MIRCA2000 (Portmann et al., 2010) and the Global Crop

Water Model of Siebert and Döll (2010). We refer to van

Beek et al. (2011) for detailed descriptions.

2.3.3 Groundwater module

The groundwater module calculates groundwater storage dy-

namics subject to recharge and capillary rise (calculated by

the land surface module), groundwater discharge (Qbf, in

case of a positive groundwater storage), and riverbed infiltra-

tion (Inf). Groundwater discharge (assumed to be the same

as groundwater baseflow here) depends on a linear storage–

outflow relationship (Qbf = S3/J ) in which the proportional-

ity constant J is calculated following the drainage theory of

Kraijenhoff van de Leur (1958) based on drainage network

density and aquifer properties. Riverbed infiltration occurs

only in the case that Qbf becomes 0 by groundwater with-

drawal. Under persistent groundwater withdrawal (calculated

with the irrigation and water use module) that is larger than

the sum of recharge and riverbed infiltration, the groundwa-

ter storage S3 is allowed to become negative. In this case,

the part of the withdrawn groundwater in excess of the input

(recharge and riverbed infiltration) is seen as non-renewable

groundwater withdrawal leading to groundwater depletion

(permanent loss of groundwater from storage). In case with-

drawal becomes smaller than the input, the remaining input is

used to first fill the negative storage to zero, before baseflow

Qbf commences again. As an alternative, it is also possible

to limit the maximum volume of non-renewable groundwater

that can be extracted.

It is possible to use a full-fledged groundwater flow model

based on MODFLOW (Harbaugh et al., 2000) coupled to

PCR-GLOBWB 2 in order to calculate groundwater heads

and flow paths. This can be performed as a one-way cou-

pling in which PCR-GLOBWB 2 is first run with the standard

groundwater module (reservoir S3 with only vertical fluxes)

to yield time series of net groundwater recharge (recharge

– capillary rise) and surface water levels. These fluxes and

inputs are subsequently used to force the groundwater flow

model (see e.g. Sutanudjaja et al., 2011; de Graaf et al.,

2017). Another possibility is to use a two-way coupling in

which the groundwater module of PCR-GLOBWB 2 is re-

placed by the groundwater flow model. In this case, at each

time step fluxes are exchanged between the groundwater

model and the land surface module, and the groundwater

model and the surface water routing module (Sutanudjaja et

al., 2014).

2.3.4 Surface water routing module

Following an eight-point steepest-gradient algorithm across

the terrain surface (local drainage direction), all cells of

the modelled domain are connected to a strictly convergent

drainage network that together makes up the river basins and

sub-basins of the model domain. The lowermost cell is either

connected to the ocean or to an endorheic basin. Per cell,

the sum of the three daily run-off fluxes (Fig. 1) is aggre-

gated and routed along the drainage network until passing

the lowermost cell and being removed from the model. Rout-

ing can be carried out in three ways of increasing complexity:

(1) simple accumulation of the fluxes over the drainage net-

work, (2) a travel-time characteristic solution (Karssenberg

et al., 2007), and (3) the kinematic wave solution.

The first method is typically aggregated over longer time

steps (e.g. month or year) that are larger than the travel times

of water along the longest river length. The second routing

method includes an estimation of cell flow velocity based on

average discharge from the last 5 years and Manning’s equa-

tion, which assumes the energy slope to be equal to the bed

slope. This estimated velocity is used to move the volume

of water in the channel of a cell the corresponding distance

within one daily time step along the drainage network. This

method works reasonably well for relatively steep rivers in

humid climates for which the friction slope is close to the bed

slope and the rivers are equally filled with water throughout

the year. The third method is the kinematic wave approxi-

mation of the Saint-Venant equations with flow described by

www.geosci-model-dev.net/11/2429/2018/ Geosci. Model Dev., 11, 2429–2453, 2018
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Manning’s equation. Also, here, it is assumed that friction

slope and bed slope are equal, which makes it valid for rivers

without backwater effects. The kinematic wave is solved us-

ing a time-explicit variable sub-time stepping scheme based

on the minimum Courant number. Of these methods, the

kinematic wave solution simulates the propagation of the

flood wave more realistically while the others provide an ex-

pedient means to approximate discharge over longer periods.

Using the kinematic wave method, it is possible to model

floodplain inundation, which occurs if the discharge exceeds

the bankfull capacity of a channel. The excess discharge vol-

ume is spread over the entire cell from the lowest part of

the cell (based on a higher-resolution sub-grid DEM) yield-

ing a flooded area with an approximated flood depth. In case

of flooding, the simulated river flow is impacted by adjust-

ing the wetted area and wetted perimeter and calculating a

weighted Manning coefficient from the individual Manning

coefficients of the floodplains and the channel.

Lakes and reservoirs are part of the drainage network.

Lakes and reservoirs can extend over multiple cells, in which

case the storage is subdivided by area to ensure that lake and

reservoir levels are the same across their extent. The active

storage of lakes and the actual storage of reservoirs are dy-

namically updated; for the lake outflow a standard storage–

outflow relationship based on a rectangular cross section

over a broad-crested weir (Bos, 1989) is used, while reser-

voirs follow a release strategy. This strategy is, by default,

aimed at passing the average discharge, while maintaining

levels between a minimum and maximum storage (Wada et

al., 2014), but more elaborate strategies that take account

of downstream water demand are possible (e.g. van Beek

et al., 2011). Lakes and reservoir areas change based on

global volume–area relationships. All surface water areas,

which can be classified into several water types including

river channels, inundated floodplains, lakes and reservoirs,

are subject to open water evaporation calculated from refer-

ence potential evaporation multiplied with factors depending

on water types and depths. Moreover, surface waters are sub-

ject to surface water withdrawal calculated with the irrigation

and water use module.

If the kinematic wave approach is used, it can also be aug-

mented with an energy routing scheme to simulate surface

water temperature (van Beek et al., 2012). Finally, it should

be noted that it is possible to run the routing routine from

PCR-GLOBWB 2 as a stand-alone routine, which allows it

to be fed with the specific discharge from other land surface

models.

The routing methods that are available in PCR-

GLOBWB 2 will yield significant errors for wide lowland

rivers in which backwater effects are important. In this case,

it is possible to replace the surface water module for part

of the modelling domain with hydrodynamic models solving

the shallow water equations (Hoch et al., 2017a). Hoch et

al. (2017b) developed a generic coupler for this purpose that

enables coupling to multiple hydrodynamic modelling codes

(https://doi.org/10.5281/zenodo.597107).

Although any data set can be used to define the drainage

network and locate the lakes and reservoirs, the standard

parameterization of PCR-GLOBWB 2 that runs globally

uses the drainage network derived from the high-resolution

30 arcsec HydroSHEDS (Lehner et al., 2008) combined with

30 arcsec GTOPO30 (Gesch et al., 1999) and 1 km Hy-

dro1k (Verdin and Greenlee, 1996; USGS EROS Data Cen-

ter, 2006), lakes taken from the Global Lakes and Wetlands

Database (GLWD) (Lehner and Döll, 2004) and reservoirs

obtained from GRanD (Lehner et al., 2011).

2.3.5 Irrigation and water use module

In PCR-GLOBWB 1 water demand was calculated sepa-

rately from the hydrology and water availability calculated

as a post-processing step by subtracting upstream demand

(Wada et al., 2011a, b). In PCR-GLOBWB 2 water use (with-

drawal and consumption) is fully integrated. Hereafter, the

main features of the irrigation and water use module are de-

scribed in the following order: water demand, water with-

drawal, water consumption, and return flows.

Water demand

Irrigation water demand is calculated based on the crop

composition (which changes per month and includes multi-

cropping) and the irrigated area per cell. As stated above,

these are obtained from MIRCA2000 (Portmann et al., 2010)

and the Global Crop Water Model (Siebert and Döll, 2010).

In the standard PCR-GLOBWB 2 parameterization the ir-

rigated areas change over time. In want of detailed data,

fractions of paddy and non-paddy irrigation, as well as the

crop composition per month, stay fixed (as obtained from

MIRCA2000), while the total irrigated area per cell changes

over time and is based on the FAOSTAT (http://www.fao.org/

faostat/en/\T1\textbackslash#home, last access: 15 Septem-

ber 2017) reported irrigated areas. Irrigation water demand

is computed using the FAO guidelines (Doorenbos and Pruit,

1977; Allen et al., 1998): in case of non-paddy irrigation,

water is applied whenever soil moisture falls below a pre-set

value and then the soil column is replenished up to field ca-

pacity. In case of paddy irrigation, the water level is kept at a

water depth of 5 cm above the surface until the late crop de-

velopment stage (∼ 20 days) before the harvest. After that,

no irrigation is applied anymore such that the water level

is allowed to drop to zero under infiltration and evaporation

(Wada et al., 2014). The net irrigation demand is augmented

to account for limited irrigation efficiency and losses. In or-

der to obtain irrigation water demand including losses, i.e.

gross irrigation demand, net irrigation water demand is mul-

tiplied with (1+fI ), with fI as a country-specific loss factor

obtained from Rohwer et al. (2007).
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Non-irrigation water demand covers three sectors: indus-

try, households, and livestock. For each of these sectors, the

gross demand and net demand are prescribed to the model.

The calculation of net non-irrigation water demand, which

varies with time, follows methods developed by Wada et

al. (2014). We refer to Wada et al. (2014) for an extensive

description. Trends in water demand are prescribed on an an-

nual basis as a function of population, electricity demand,

and gross domestic product (GDP) per capita. In addition,

domestic water demand exhibits a seasonal variation on the

basis of temperature. Domestic and industrial gross water de-

mand is calculated from net water demand using a country-

specific recycling ratio (RC) (based on development stage or

GDP per capita and additionally access to domestic water

demand): gross = net / (1−RC). This takes into account that

much of the domestic and industrial water is not consumed

but returned as surface water. For livestock, the return flow is

assumed to be zero, meaning all water is consumed.

Water withdrawal

The water withdrawal estimation is based on the work by

de Graaf et al. (2014) and Wada et al. (2014). In PCR-

GLOBWB 2 water withdrawal is set equal to gross water

demand (summed over all the sectors) unless sufficient wa-

ter is not available. In that case, water withdrawal is scaled

down to the available water and then allocated proportion-

ally to gross water demand per sector. Thus, no allocation

preference is available in the standard parameterization of

PCR-GLOBWB 2.

Water can be abstracted from three sources: surface wa-

ter, groundwater (fossil and non-fossil), and desalinated wa-

ter. The latter is prescribed (Wada et al., 2011a), while the

fractions of the other two sources are determined as a func-

tion of their relative abundance. Groundwater and surface

water availability are determined based on 2-year running

means of groundwater recharge and river discharge respec-

tively, thus keeping track of the prevalence of local resources

and their temporal change (de Graaf et al., 2014). These frac-

tions determine, on a monthly basis, from which source water

is abstracted. Surface water withdrawal is ceased if river dis-

charge falls below 10 % of the long-term average yearly dis-

charge under naturalized flow conditions (determined by run-

ning the model without withdrawal). If, for some reason, the

surface water amount is insufficient, the model falls back on

groundwater to meet the resulting gap. Groundwater is first

abstracted from the renewable groundwater storage, and if

this is not present, non-renewable groundwater is abstracted.

The amount of groundwater that can be abstracted is, how-

ever, capped by the groundwater pumping capacity, which

is based on data from the IGRAC GGIS database. The de-

scribed dynamic allocation scheme is not always in line with

local preferences or the infrastructure. However, there is a

possibility to use fractions of groundwater and surface water

withdrawal reported in the literature. For urban areas, we rely

on the data set of McDonald et al. (2014) that states whether

a surface water distribution infrastructure is available. If this

is the case, industrial and domestic water withdrawals are

mainly taken from surface water before abstracting ground-

water. If surface water infrastructure is limited, groundwater

source is prioritized (see e.g. Erkens and Sutanudjaja, 2015).

For urban areas that are not in the McDonald (2014) data set,

we give preference to the dynamic allocation scheme. For ir-

rigation, we use the ratios supplied by Siebert et al. (2010) in

regions where they are said to be reliable. In regions where

they are not fully reliable, we take the average ratio pro-

vided by Siebert et al. (2010) and the one provided by the

dynamic allocation scheme. For regions where the data of

Siebert (2010) are not reliable (i.e. extrapolated data), we

give preference to the dynamic allocation scheme.

Moreover, we cannot assume that all the water demand is

supplied from surface water and groundwater resources in

the same cell. Ideally, data about local water redistribution

networks and inter-basin transfers should be used to define

surface water and groundwater service areas. Unfortunately,

this information is not available at the global scale. There-

fore, in our current parameterization of PCR-GLOBWB 2,

we pool water availability of desalinated and surface water

over zones of approximately 1 arcdeg by 1 arcdeg size that

are truncated by country borders if applicable. For ground-

water, 0.5 arcdeg zones are used. The downside of the current

scheme is that a cell does not always have access to its near-

est water resource if this lies outside its prescribed service

area.

Water consumption and return flows

In case of irrigation, all the withdrawn water is applied to

the soil (non-paddy) or the water level on the field (paddy).

Part of that water is lost by transpiration and part by soil

and open-water evaporation. Transpiration and evaporation

together make up the irrigation water consumption. The re-

maining part of irrigated water is lost by percolation and con-

tributes to groundwater recharge as return flow. Irrigation ef-

ficiency (not including conveyance losses) could also be cal-

culated after the fact by the difference between withdrawal

and transpiration. In the case of domestic and industrial wa-

ter use, water consumption depends on the RC and equals

withdrawal × (1 − RC), while withdrawal × RC constitutes

return flow. All return flow is added to the surface water. For

livestock, the consumption is set equal to the withdrawal and

no return flow is assumed.

2.4 Model code

The original PCR-GLOBWB version 1 (van Beek et al.,

2011) was written in the PCRaster scripting language.

PCRaster (Wesseling et al., 1996) is a high-level program-

ming language that started as a dynamic raster-based Geo-

graphical Information System (GIS) and is tailored to spa-
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tiotemporal modelling for environmental and earth science

applications. The generic nature of PCRaster with its many

pre-existing built-in hydrological functions and its syntax

that reads like pseudo-code generally results in concise

model codes, short development times, and limited program-

ming errors. Karssenberg et al. (2010) developed a PCRaster

Python package such that PCRaster functions, implemented

in C++, can also be called via Python (http://www.python.

org/). Using PCRaster Python makes it possible for students

and beginner modellers to contribute to the model quickly,

while it allows experts to be more productive and focus on

the science rather than on the programming language syntax.

Realizing the aforementioned advantages, PCR-GLOBWB,

particularly starting from this version 2, has been rewritten

in the Python scripting language.

To allow for exchanges of model components and there-

fore evaluate different model configurations, a component-

based development approach (e.g Argent, 2004; Castronova

and Goodall, 2010) was followed while developing the PCR-

GLOBWB 2 model code. Each of the PCR-GLOBWB sci-

entific modules described in Sect. 2.3 is implemented in a

separate Python class that needs to implement initialization

and update methods. The latter designates changes of states

and fluxes per time step. Each module is initialized and ex-

ecuted by iteratively calling the update method via a main

model script.

To run the model, a so-called initialization file or config-

uration file is used (with extension .ini). In this file the fol-

lowing aspects are defined: the spatial and temporal domain,

the time step, the settings of the different modules (e.g. with

surface water routing, human water use, or not), and the lo-

cations and names of the parameter files and forcing files.

PCR-GLOBWB 2 uses NetCDF files for most input and all

output, thus making it easier to exchange data with other sci-

entists and use existing tools to analyse their output.

PCR-GLOBWB 2 generally runs best under Linux. In or-

der to run PCR-GLOBWB the following additional software

needs to be installed: PCRaster version 4, Python version 2.7

with Python packages NumPy and netCDF4, and GDAL ver-

sion 1.8 or higher.

2.5 Differences between PCR-GLOBWB 1 and 2

PCR-GLOBWB 2 has the following new capabilities com-

pared to PCR-GLOBWB 1 (see van Beek et al., 2011; Wada

et al., 2011):

– the model was completely rewritten in PCRaster Python

and now has a modular structure;

– the inputs and outputs are in the form of NetCDF files

and output can be reported for daily monthly and yearly

time steps;

– parameterizations are available at 30 and 5 arcmin reso-

lutions;

– water use (demand, withdrawal, consumption, and re-

turn flow) is fully integrated;

– distinction is made between paddy and non-paddy irri-

gation and irrigation follows FAO guidelines;

– three different options for surface water routing are

available and a surface water temperature module is

fully integrated with the routing scheme;

– it is possible to run surface water routines separately

with specific discharge from other sources (e.g. other

land surface models);

– PCR-GLOBWB 2 can be coupled to a two-layer tran-

sient groundwater model (Sutanudjaja et al., 2014; de

Graaf et al., 2017) and to the hydrodynamic mod-

els Delft3D Flexible Mesh (Kernkamp et al., 2011) or

LISFLOOD-FP (Bates et al., 2010; Hoch et al., 2017b).

3 Model demonstration and evaluation

To test and evaluate the performance of PCR-GLOBWB 2,

we ran the model at both 30 and 5 arcmin resolution over the

period 1958–2015. We compared the results of both simula-

tions with discharge data from the Global Runoff Data Cen-

tre (GRDC, 2014), with total basin water storage estimates

from GRACE (Gravity Recovery and Climate Experiment;

Wiese, 2015) and with water withdrawal data from the FAO

AQUASTAT database (FAO, 2016).

3.1 Model run setup

3.1.1 Parameterization

We used the standard parameterization (parameters, forcing,

and their sources in Table A2) of PCR-GLOBWB 2 at 30

and 5 arcmin spatial resolutions to simulate global hydrology

at daily resolution over 1958–2015. Outputs were reported

as monthly averages. The parameterization was mostly un-

changed from that given in van Beek and Bierkens (2009),

but newer data sets, such as the GRAND (Lehner et al., 2011)

data set for reservoirs and MIRCA (Portmann et al., 2010)

for crop areas, were used if available. We stress that no cali-

bration was performed. We ran the model with human water

use options turned on and used the travel-time characteristic

solution routing option.

3.1.2 Forcing

The forcing data set is based on time series of monthly pre-

cipitation, temperature, and reference evaporation from the

CRU TS 3.2 data set of Harris et al. (2014) downscaled to

daily values with ERA40 (1958–1978, Uppala et al., 2005)

and ERA-Interim (1979–2015, Dee et al., 2011). CRU is

specified at 30 arcmin spatial resolution and directly usable.
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We used ERA40 and ERA-I results that had been resampled

by ECMWF’s resampling scheme from their original resolu-

tions (∼ 1.2 and ∼ 0.7◦) to 30 arcmin first. Here, resampling

means a form of spatial downscaling whereby the values of

the larger ERA40 and ERA-I grid cells are assigned to the

cell centres and then spatially interpolated onto 30 arcmin

grids. Precipitation was temporally downscaled by first ap-

plying a threshold of 0.1 mm day−1 to the ERA daily time se-

ries to estimate the number of rain days for ERA. The amount

of rainfall below this threshold was proportionally allocated

to the rain days. Next, the daily rainfall totals were scaled

in order to reproduce the CRU monthly precipitation total

using multiplicative scaling. Equally, monthly reference po-

tential evaporation, computed with Penman–Monteith from

the CRU data set, was scaled using multiplicative scaling and

downscaled to daily data proportional to Hamon (1967) evap-

oration calculated from daily ERA temperatures. We elected

not to calculate Penman–Monteith reference evaporation di-

rectly from the ERA40 and ERA-I data, in order to avoid the

large calculation times needed to process the required mete-

orological values. For the air temperature, an additive scal-

ing factor was used. To better simulate snow dynamics for

the 5 arcmin model, the temperature values from CRU were

further spatially downscaled to 5 arcmin using a temperature

lapse rate derived from the higher-resolution CRU CL 2.0

climatology (New et al., 2002). For areas in which the num-

ber of stations underlying the CRU data set was found to be

small, preference was given to directly using the meteorolog-

ical data from ERA. The method used to create the forcing

data set is described more extensively in van Beek (2008).

3.1.3 Spin-up

The large groundwater response times for certain regions

(e.g. Niger and Amazon) requires substantial spin-up for the

groundwater volumes to be in equilibrium with the current

climate. To reach this equilibrium, the model was spun up

using the average climatological forcing over the years 1958–

2000 back to back for 150 years to reach a dynamic steady

state. This spin-up was executed under naturalized condi-

tions, which means no reservoirs and no human water use.

3.1.4 Computation time and parallelization

The models were run on Cartesius, the Dutch national super-

computer (https://userinfo.surfsara.nl/systems/cartesius, last

access: 15 September 2017). Without parallelization, the wall

clock time for a 1-year global simulation run of the 30 arcmin

model was about 1 h. This entails that a 1-year global simu-

lation run with the 5 arcmin model might result in wall clock

times of at least 36 h. Hence, to speed up computation, the

5 arcmin model domain was divided into 53 groups of river

basins such that it could be run as 53 separate processes. With

this simple parallelization technique, the wall clock time for

a 1-year simulation run of the 5 arcmin model was reduced

to about 1 h again. Note that these computation times were

obtained for simulations with the travel-time characteristic

routing option. Calculation times would have been signifi-

cantly longer if the kinematic wave routing had been used

(e.g. about 6 h for a 1-year 5 arcmin global run including par-

allelization).

3.2 Data used for comparison

3.2.1 River discharge

We used discharge stations from GRDC (2014) to compare

simulated discharge from PCR-GLOBWB 2 with monthly

reported discharge. From all the globally available stations

in the database, we selected a subset of stations using the

following criteria: (1) allowing a not-more-than 15 % differ-

ence in the catchment area between PCR-GLOBWB 2 and

the area reported with the GRDC discharge station, (2) not

more than 1 cell distance between the station location and

the nearby location of a river in PCR-GLOBWB 2, and (3) at

least 1 year of discharge data. This yielded 5363 stations for

the 5 arcmin simulation, 3910 stations for the 30 arcmin sim-

ulation, and 3597 stations fulfilling the criteria for both res-

olutions. The minimum, median, and maximum catchment

sizes for the GRDC stations at the 5 arcmin resolution are re-

spectively 29, 2730, and 4.68 × 106 km2 and 31, 6560, and

4.68 × 106 km2 at the 30 arcmin resolution. As we jointly

compared the performance of both simulations, we used the

set of 3597 locations throughout. The average time series

length of these stations is equal to 36 years.

3.2.2 Total water storage

We compared total water storage (TWS) as simulated by

PCR-GLOBWB 2 with the TWS estimated from GRACE

(Gravity Recovery and Climate Experiment) gravity anoma-

lies. We used the JPL GRACE Mascon product RL05M

(Wiese, 2015; Watkins et al., 2015; Wiese et al., 2016). Scan-

lon et al. (2016) suggest that recent developments in mascon

(mass concentration) solutions for GRACE have significantly

increased the spatial localization and amplitude of recovered

terrestrial TWS signals. They also claim that one of the ad-

vantages of using the mascon solutions relative to traditional

SH (spherical harmonic) solutions is that it makes it much

easier for non-geodesists to apply GRACE data to hydro-

logic problems. Note that although the data of JPL RL05M

are represented on a 30 arcmin lat–long grid, they represent

the 3 × 3 arcdeg equal-area zones, which is the actual reso-

lution of JPL RL05M. We compared trends on a pixel-by-

pixel basis. Given the coarse resolution of GRACE products

of about 300 km by 300 km, we compared correlations only

for major river basins with an area of 900 000 km2 and up.
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Table 1. Global water balance components and human water withdrawal (km3 year−1 and mm year−1) over the period 2000–2015 as ob-

tained from the 30 and 5 arcmin simulations. The numbers are shown to high significance to show the water balance closure. This does not

mean that we pretend to know global discharge with a cubic-kilometre accuracy (actual accuracy of the large fluxes is more on the order of

103 km3).

30 arcmin 5 arcmin

km3 year−1 mm year−1 km3 year−1 mm year−1

Global water Precipitation 107 452 808 107 495 811

balance Desalinated water use 3 0.02 2 0.01

Run-off 42 393 319 43 978 332

Evaporation∗ 65 754 494 63 974 483

Change in total water storage −693 −5 −455 −3

Groundwater Groundwater recharge 27 756 209 25 521 193

budget Groundwater withdrawal 737 6 632 5

Non-renewable groundwater withdrawal 173 1 171 1

(groundwater depletion)

Renewable groundwater withdrawal 564 4 460 3

Withdrawal Agricultural water withdrawal 2735 21 2309 17

by sector (irrigation + livestock)

Domestic water withdrawal 380 3 314 2

Industrial water withdrawal 798 6 707 5

Withdrawal Total water withdrawal 3912 29 3330 25

by source Surface water withdrawal 3172 24 2697 20

Desalinated water use 3 0.02 2 0.01

Groundwater withdrawal 737 6 632 5

∗ Includes consumptive water use for livestock, domestic, and industrial sectors.

3.2.3 Water withdrawal

The water withdrawal for a large number of countries is taken

from FAO’s AQUASTAT database (FAO, 2016). These data

are on average reported every 5 years. We compared simu-

lated water withdrawal per sector and per water source (sur-

face water and groundwater) with reported values per country

and per reporting period, whenever available.

3.3 The global water balance simulated at 30 and

5 arcmin

We calculated the main global water balance components

from the 30 and 5 arcmin simulations over the period 2000–

2015. The results in Table 1 show that there are some dif-

ferences between the two model runs, but values are on the

same order of magnitude. The small difference in precipita-

tion is due to the fact that the area of the land cells is slightly

different at the two resolutions. Differences in evaporation

and run-off show that the run-off and evaporation parameter-

ization of PCR-GLOBWB 2 is not entirely scale consistent.

Differences in evaporation may also be causing the differ-

ences in irrigation water demand, which in turn may explain

the differences in water withdrawal. Recently, Samaniego et

al. (2017) applied their multiscale parameter regionalization

(MPR; creating spatially variable parameter fields) technique

to PCR-GLOBWB 2 for the Rhine basin, showing that pa-

rameterizations that yield the same hydrological fluxes at

different resolutions are possible. However, a global appli-

cation of this method to all PCR-GLOBWB 2 parameters is

not possible yet. Nonetheless, when comparing the results of

both model runs with data reported in the literature, it shows

that the global water balance components are similar to re-

cent assessments (e.g. by Rodell et al., 2015), and groundwa-

ter withdrawal and total withdrawal estimates match those of

previous studies (see Table 2).

From Table 1, it can also be seen that there is a nega-

tive change in total terrestrial water storage in both model

runs. Table 1 shows that this can only be partly explained by

groundwater depletion, which is localized to certain regions

(see also Sect. 3.4.2). Further analysis shows that this change

can also be attributed to the trends in precipitation forcing

used, particularly over the tropics.

3.4 Evaluation of the 30 and 5 arcmin simulations

3.4.1 Discharge

When evaluating the simulated discharge with discharge ob-

servations from GRDC, we used the monthly values and cal-

culated three different measures. The first one is the corre-

lation coefficient between monthly simulated and observed

Geosci. Model Dev., 11, 2429–2453, 2018 www.geosci-model-dev.net/11/2429/2018/



E. H. Sutanudjaja et al.: PCR-GLOBWB 2 2439

Table 2. Groundwater withdrawal and total water withdrawal compared to other studies (km3 year−1).

Source Year Value (km3 year−1)

Groundwater Wada et al. (2010) (from the IGRAC database) 2000 734 (± 87)

withdrawal Döll et al. (2012) 1998–2002 571

Döll et al. (2014) (their Table 2) 2003–2009 690–888

Döll et al. (2014) (their Table 6) 2000–2009 665

Pokhrel et al. (2015) 1998–2002 570 (± 61)

Hanasaki et al. (2018) 2000 789 (± 30)

This study (5 arcmin) 2000–2015 632

Total water Vörösmarty et al. (2005) 1995–2000 3560

withdrawal Oki and Kanae (2006) contemporary 3800

Döll et al. (2012) 1998–2002 4340

Döll et al. (2014) (their Table 2) 2003–2009 3000–3700

FAO (2016) 2010 3583

Hanasaki et al. (2018) 2000 3628 (± 75)

This study (5 arcmin) 2000–2015 3330

GRDC time series, which is a measure of reproducing cor-

rect timing of high and low discharge. A correlation coef-

ficient of 1 indicates perfect timing. The second measure is

the Kling–Gupta efficiency coefficient or KGE (Gupta et al.,

2009), which equally measures bias, differences in ampli-

tude, and differences in timing between monthly simulated

and observed GRDC time series. The KGE varies between

1 and minus infinity, where 1 means a perfect fit in terms of

bias, amplitude and timing. The last metric is the anomaly

correlation, i.e. the correlation among monthly time series

after the seasonal signal (climatology) has been removed.

This statistic measures the ability of the model to correctly

simulate timing of seasonal and inter-annual anomalies from

the yearly climatology. This is to test if the model is able

to capture the monthly-scale and inter-annual anomalies in

discharge (i.e. on the monthly scale) when the dominant sea-

sonal trend is removed from observations and simulations.

An anomaly correlation of 1 indicates perfect characteriza-

tion of inter-annual anomalies and values below 0 indicate a

lack thereof.

Figure 2 shows maps of the correlation coefficients for the

GRDC stations considered and Fig. 3 shows histograms of

correlation and KGE values. Both figures show that the eval-

uation results of the 5 arcmin simulation are generally bet-

ter than those of the 30 arcmin simulation. For the 30 arcmin

model, the number of catchments with KGE> 0, 0.3, and 0.6

are equal to 48, 26, and 7 % of the total catchments respec-

tively. For the 5 arcmin model, these values are respectively

equal to 63, 40, and 12 % of the total catchments. Note that

for both runs the standard parameterization was used. Possi-

ble explanations for the better performance of the 5 arcmin

run are a better delineation of the shape of the basins, par-

ticularly the smaller ones, a better characterization of basin

relief and the drainage network, more accurate sub-grid pa-

rameterization of soil and land cover due to a smaller scale

gap that needs to be overcome, better estimates of the basin

Figure 2. Maps of correlation between simulated and observed dis-

charge time series for 3597 GRDC discharge stations; (a) results

for the 5 arcmin simulation; (b) difference between results for 5 and

30 arcmin simulations.

storage, and better snow dynamics due to the downscaling of

temperature to 5 arcmin resolution. The KGE values are less

favourable than the correlation coefficients. This is mostly

due to biases in run-off caused by incorrect meteorological

forcing. It is difficult to exactly assess which of these factors

are most important in determining the improvement. Inspect-

ing the histograms of correlation and KGE (Fig. 3) shows
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Figure 3. Histograms of evaluation statistics showing the correlation and Kling–Gupta efficiency (KGE) values for the simulated discharge

for the 30 and 5 arcmin simulations based on 3597 GRDC discharge stations, (a) correlation 30 arcmin simulation, (b) correlation 5 arcmin

simulation, (c) KGE 30 arcmin simulation, and (d) KGE 5 arcmin simulation. Note that the percentage catchments with KGE<−1 are 21

and 12 % for 30 and 5 arcmin respectively.

that the improvement is mostly apparent for the smaller sized

catchments, which supports the notion that a better delin-

eation of the catchments’ shape, topography, and drainage

network could be the cause. However, disentangling these

individual effects would require further study. To investi-

gate the possible effects of better snow dynamics, we clas-

sified the GRDC stations into stations below 1000 m altitude

(above mean sea level) and those above 1000 m. The GRDC

stations above 1000 m are expected to experience precipita-

tion falling as snow during periods of the year. The results

in Fig. 4 clearly show that the improvement is larger for

the higher GRDC stations. This supports the explanation that

better snow dynamics due to temperature lapsing in combina-

tion with a better resolved digital elevation model is partly re-

sponsible for the superior results at 5 arcmin. We also investi-

gated if improvements were notably different among climate

zones, by separately calculating KGEs for GRDC stations in

the Köppen–Geiger zones A (tropical), B (desert), C (temper-

ate), and D (continental). The results (not shown) show that

the improvement is equally visible for climate zones A, B,

and C and less so for D (continental). Without further anal-

ysis this is difficult to explain. Note, however, that the con-

tinental climate zone is somewhat under-represented in the

GRDC data set due to the low measurement densities over

Russia, although it is well represented in the US. Thus, it

may be that the global improvements shown in Fig. 3 are

somewhat positively biased.

The maps of correlations (Fig. 2) show the best results in

Europe and North America where the meteorological forcing

is generally more accurate as a result of more data used in the

reanalysis products and higher station availability in the CRU

data set. Also, monsoon-dominated basins are well simulated
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Figure 4. Cumulative frequency distributions of Kling–Gupta efficiency (KGE) values for GRDC stations that are positioned below (a) and

above (b) 1000 m a.m.s.l. It can be expected that for the stations above 1000 m, the upstream area is influenced by snow dynamics.

Figure 5. Histograms of evaluation statistics showing the anomaly correlation for the simulated discharge for the 30 and 5 arcmin simu-

lations based on 3597 GRDC discharge stations, (a) anomaly correlation half-arc-degree simulation, and (b) anomaly correlation 5 arcmin

simulation.

due to the strong seasonal nature of both forcing and related

discharge. The improvement of the 5 arcmin simulation over

the 30 arcmin simulation in Europe is mostly seen in the Alps

and the Norwegian mountains. This reflects the fact that to-

pography and thus snow dynamics is better represented at

higher resolution as shown in Fig. 4. The least accurate re-

sults are obtained for some of the African rivers, in particular

the Niger, where the groundwater recession coefficients are

probably overestimated and inland delta evaporation is un-

derestimated, for some rivers in the Rocky Mountains, which

may be the result of errors in snow dynamics, and for conti-

nental eastern Europe, which is most likely explained by an

overestimation of the groundwater recession constants.

The histograms of the anomaly correlation are shown in

Fig. 5. The anomaly correlations are generally lower than

the correlations, showing that seasonality explains part of

the skill in many regions where seasonal variation is domi-

nant when compared to intra-annual or inter-annual variabil-

ity. Clearly, the 5 arcmin results are much better than those

of the half-degree simulation, indicating a higher skill with

regard to capturing inter-annual anomalies. Figure 6 shows a

map of the difference between the anomaly correlation and

the correlation for the 5 arcmin case. This map shows that

there are some regions where the anomaly correlation is bet-

ter than the correlation (blue colours), e.g. snow-dominated

regions in Canada and the Niger basin. These are catchments

where the model has difficulty reproducing the correct sea-

www.geosci-model-dev.net/11/2429/2018/ Geosci. Model Dev., 11, 2429–2453, 2018



2442 E. H. Sutanudjaja et al.: PCR-GLOBWB 2

Figure 6. Map showing for the 5 arcmin run the difference between

the correlation and the anomaly correlation between simulated and

observed discharge time series for 3597 GRDC discharge stations;

negative values mean that the correlation is higher than the anomaly

correlation.

sonality as a result of errors in snow dynamics (Canada) or

groundwater dynamics (Niger). Also, in the case of the Niger

River, not representing the inner delta flooding and resulting

high evaporation may be the cause of poor seasonal timing

of discharge.

3.4.2 Total water storage

Figure 7 compares the trends in 5 arcmin simulated TWS

with those from GRACE, estimated as the average change

in metres per year over the period 2003–2015. Generally,

the PCR-GLOBWB 2 simulation is able to capture major

groundwater-depleted regions as suggested by GRACE, such

as those in the Central Valley aquifer, the High Plains aquifer,

the North China Plain aquifer, and parts of the Middle East,

Pakistan, and India. For these regions, the absolute rates of

TWS change (i.e. TWS declines) of PCR-GLOBWB 2 are

generally larger, while the spatial pattern in the GRACE map

tends to be smoother. This is mainly due to the lower reso-

lution and spatial averaging used in the GRACE product, as

well as the fact that the current PCR-GLOBWB 2 simulation

does not include lateral groundwater flow among cells. In the

polar regions where GRACE estimates mass loss due to melt-

ing glaciers and ice sheets, PCR-GLOBWB 2 simulates ac-

cumulation as a result of a lack of glacier parameterization.

Finally, there are some clear differences over the Amazon

and some parts of Africa. A possible explanation are errors

in meteorological forcing data, which are not very accurate

in these parts, but also problems with the over-estimation of

PCR-GLOBWB’s groundwater response times in these re-

gions, which therefore fail to be sufficiently sensitive to re-

cent changes in terrestrial precipitation.

Further analyses were conducted at basin-scale resolution,

for which both TWS time series of PCR-GLOBWB 2 and

GRACE JPL RL05M were averaged over a river basin area

map derived from the 5 arcmin PCR-GLOBWB drainage net-

work. We identified all river basins with sizes larger than

900 000 km2, which is similar to the GRACE resolution.

Smaller river basins were merged to the nearest river basins

or grouped together. For the remaining map of large basins,

the correlations between PCR-GLOBWB 2 and GRACE

basin-average monthly and annual TWS time series were

calculated. Monthly correlation provides information about

PCR-GLOBWB’s ability to correctly time TWS seasonal

variability (with a value equal to 1 for perfect timing), while

the correlation for annual time series measures inter-annual

variability.

The results in Fig. 8 show that PCR-GLOBWB 2 is able to

capture GRACE’s TWS seasonality for most basins around

the world, with the exception of some cold regions in high

latitudes (e.g. the Yukon River basin, Iceland). This short-

coming is most likely due to the lack of a proper represen-

tation of glacier and ice processes in PCR-GLOBWB 2. As

expected, the correlation values for inter-annual time series

are generally lower than the ones for monthly time series.

There are some areas with negative correlation values, such

as the Amazon, Niger, and Nile river basins. Apart from the

uncertainty in the GRACE signal, these deficiencies may be

related to errors in model forcing and structural errors such

as errors in the groundwater response time and the effects of

wetlands that have not been represented sufficiently well.

3.4.3 Water withdrawal

We compared simulated water withdrawal data from PCR-

GLOBWB 2 with reported withdrawal data per country from

AQUASTAT (FAO, 2016). The results are shown subdivided

per source (Fig. 9) and per sector (Fig. 10). Total water with-

drawal and surface water withdrawal are simulated reason-

ably well (R2 between 0.84 and 0.96 and regression slopes

between 0.70 and 1.08). However, groundwater withdrawal is

underestimated for the smaller water users. A likely explana-

tion for this is occasional groundwater withdrawal by farmers

during dry periods in areas that have not been mapped as ir-

rigated crops in MIRCA, such as grasslands in Germany and

the Netherlands, for example, while this groundwater with-

drawal is reported in AQUASTAT.

When looking at water withdrawal per sector, results are

mixed. The largest agricultural water users are well captured,

but the smaller ones are clearly underestimated. This is re-

lated to the fact that in many regions of the smaller water

use countries, water is used for irrigation only occasionally

during dry summers, while these areas are not mapped as ir-

rigated crops in MIRCA. Also, many of these countries use

irrigation technology that is not part of MIRCA, e.g. subsur-

face drainage by artificially high surface water levels such as

in a number of developed delta regions in the world. How-

ever, even though these smaller countries are not well repre-

sented, PCR-GLOBWB 2 is still able to capture the big water

users, which have a significant impact on the water cycle and

are most important for global-scale analyses.
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Figure 7. Comparison of PCR-GLOBWB 2 total water storage trends (m year−1) with those estimated with GRACE over the period 2003–

2015. (a) TWS trends simulated with PCR-GLOBWB at 5 arcmin resolution (∼ 10 km at the Equator). Negative values indicate declining

TWS (e.g. groundwater-depleted regions). (b) TWS trends obtained based on the GRACE JPL RL05M Mascon product. The GRACE data

were resampled to the resolution of 30 arcmin, but they actually represent the 3 × 3 arcdeg (∼ 300 km × 300 km) area, which is the native

resolution of the GRACE signal.

Figure 8. (a) Correlation between monthly TWS time series simulated by PCR-GLOBWB 2 and the GRACE JPL RL05M Mascon product

over the period 2003–2015. (b) Comparison of annual TWS series (inter-annual variability). Comparison is only performed for the larger

basins over 900 000 km2, conforming to the 3 × 3 arcdeg resolution of GRACE.

Both industrial and domestic water withdrawals are un-

derestimated. The underestimation of industrial water with-

drawal is partly caused by the fact that we do not include

water withdrawal for thermoelectric cooling of power plants.

The underestimation of domestic water withdrawal comes

from the fact that we assume that the priority of water al-

location is proportional to demand. This means that in times

of shortage, water withdrawal is reduced with an equal per-

centage for agriculture, industry, and domestic use. In many

countries, however, there is a priority series, whereby domes-

tic demand is first met, industrial demand next, and agricul-

tural demand comes last. As a result, we underestimate do-

mestic water withdrawal and it also partly causes the under-

estimation of industrial water withdrawal. This is corrobo-

rated by plotting gross water demand (which would be with-

drawal if no shortage would occur) against AQUASTAT data.

These plots (not shown here) result in a regression slope of

0.68–0.75 for industrial demand and 0.78–0.92 for domestic

demand. These results thus reveal that the water allocation

scheme of PCR-GLOBWB 2 should be further improved.

4 Conclusions and future work

We presented the most recent version of the open-source

global hydrology and water resource model PCR-GLOBWB.

This version, PCR-GLOBWB 2, has a global coverage at
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Figure 9. Country water withdrawal (km3 year−1) by source and evaluation of simulations with PCR-GLOBWB 2 with reported values in

AQUASTAT (FAO, 2016). The scatter plots on the left (a, c, e) are for the period 1968–1992, while the right ones (b, d, f) are 1993–2015.

The uppermost plots (a, b) are for total water withdrawal, the middle ones (c, d) are groundwater withdrawal, and the lowermost charts (e, f)

are surface water withdrawal. The regression coefficient is based on regression to non-log-transformed data with the intercept kept at zero.
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(a) Country withdrawal for agricultural sector  in 1968–– 1992 (b) Country withdrawal for agricultural sector   in 1993– 2015

(c) Country withdrawal for industrial demand  in 1968 –1992 (d) Country withdrawal for industrial demand  in 1993 –2015

(e) Country withdrawal for domestic demand  in 1968– 1992 (f) Country withdrawal for domestic demand  in 1993– 2016
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Figure 10. Country water withdrawal (km3 year−1) by sector and evaluation of simulations with PCR-GLOBWB 2 with reported values in

AQUASTAT (FAO, 2016). The scatter plots on the left (a, c, e) are for the period 1968–1992, while the right ones (b, d, f) are 1993–2015.

The uppermost plots (a, b) are for withdrawal for agricultural purposes, the middle ones (c, d) are industrial withdrawal, and the lowermost

charts (e, f) are domestic. The regression coefficient is based on regression to non-log-transformed data with the intercept kept at zero.
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5 arcmin resolution. Apart from the higher resolution, the

new model has an integrated water use scheme, i.e. every

day sector-specific water demand is calculated, resulting in

groundwater and surface water withdrawal, water consump-

tion, and return flows. Dams and reservoirs from the GRanD

database (Lehner et al., 2011) are added progressively ac-

cording to their year of construction. PCR-GLOBWB 2 has

been rewritten in Python and uses PCRaster Python functions

(Karssenberg et al., 2007). It has a modular structure, which

makes the replacement and maintenance of model parts eas-

ier. PCR-GLOBWB 2 can be dynamically coupled to a global

two-layer groundwater model (de Graaf et al., 2017; Su-

tanudjaja et al., 2014, 2011), and a one-way coupling to

hydrodynamic models for large-scale inundation modelling

(Hoch et al., 2017b) is also available.

Comparing the 5 arcmin with 30 arcmin simulations using

discharge data, we clearly find an improvement in the model

performance of the higher-resolution model. We find a gen-

eral increase in correlation, anomaly correlation, and KGE,

indicating that the higher-resolution model is better able to

capture the seasonality, inter-annual anomalies, and the gen-

eral discharge characteristics. Also, PCR-GLOBWB 2 is able

to reproduce trends and seasonality in total water storage

as observed by GRACE for most river basins. It simulates

the hotspots of groundwater decline that abound in GRACE

as well. Simulated total water withdrawal matches reason-

ably well with reported water withdrawal from AQUASTAT,

while water withdrawal by source and sector provide mixed

results.

Future work will concentrate on further improving the wa-

ter withdrawal and water allocation scheme, developing a

full dynamic (two-way) coupling with hydrodynamic mod-

els, developing 5 and 1 km resolution (or higher) parameter-

izations of PCR-GLOBWB 2 using scale-consistent parame-

terizations (e.g. using MPR; Samaniego et al., 2017), incor-

porating a crop growth model, and solving the full surface

energy balance. Other foreseeable developments are using

the model in probabilistic settings and in data-assimilation

frameworks.

Code and data availability. PCR-GLOBWB 2 is open source and

distributed under the terms of the GNU General Public License

version 3, or any later version, as published by the Free Software

Foundation. The model code is provided through a GitHub repos-

itory: https://github.com/UU-Hydro/PCR-GLOBWB_model (Su-

tanudjaja et al., 2017a, https://doi.org/10.5281/zenodo.595656).

This keeps users and developers immediately aware of any new

revisions. Also, it allows developers to easily collaborate, as they

can download a new version, make changes, and suggest and up-

load the newest revisions. The configuration INI files for the global

30 and 5 arcmin models and the associated model parameters and

input files are provided at https://doi.org/10.5281/zenodo.1045338

(Sutanudjaja et al., 2017b). Development and maintenance of the

official version (main branch) of PCR-GLOBWB 2 is conducted

at the Department of Physical Geography, Utrecht University. Yet,

contributions from external parties are welcome and encouraged.

For news on the latest developments and papers published based on

PCR-GLOBWB 2, we refer to http://www.globalhydrology.nl and

for the underlying PCRaster Python code to http://pcraster.geo.uu.

nl.
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Appendix A

Table A1. List (non-exhaustive) of state and flux variables defined in PCR-GLOBWB.

Description Symbol Unit

Interception storage Sint m

Snow cover/storage in water equivalent thickness (excluding liquid part Sslq) Sswe m

Liquid/meltwater storage in the snowpack Sslq m

Upper and lower soil storages S1 and S2 m

Surface water storage (lakes, reservoirs, rivers, and inundated water) Swat m

Groundwater storage (renewable part) S3 m

Fossil groundwater storage (non-renewable) Snrw m

Total groundwater storage = S3 + Snrw Sgwt m

Total water storage thickness = Sint + Sswe + Sslq + S1 + S2 + Sgwt TWS m

Potential evaporation Epot m day−1

Evaporation flux from the intercepted precipitation Eint m day−1

Evaporation from meltwater stored in the snowpack Eslq m day−1

Bare soil evaporation Esoil m day−1

Transpiration from the upper and lower soil stores T1 and T2 m day−1

Total land evaporation = Eint +Eslq +Esoil + T1 + T2 Eland m day−1

Surface water evaporation Ewat m day−1

Total evaporation = Eland +Ewat Etot m day−1

Direct run-off Qdr m day−1

Interflow, shallow sub-surface flow Qsf m day−1

Baseflow, groundwater discharge Qbf m day−1

Specific run-off from land Qloc m day−1

Local change in surface water storage Qwat m day−1

Total specific run-off Qtot m day−1

Routed channel (surface water) discharge Qchn m3 s−1

Net fluxes from the upper to lower soil stores Q12 m day−1

Net groundwater recharge, fluxes from the lower soil to groundwater stores RCH =Q23 m day−1

Surface water infiltration to groundwater Inf m day−1

Desalinated water withdrawal Wsal m day−1

Surface water withdrawal Wwat m day−1

Renewable groundwater withdrawal W3 m day−1

Non-renewable groundwater withdrawal (groundwater depletion) Wnrw m day−1

Total groundwater withdrawal =W3 +Wnrw Wgwt m day−1

Water withdrawal allocated for irrigation purposes Airr m day−1

Water withdrawal allocated for livestock demand/sector Aliv m day−1

Water withdrawal allocated for agricultural sector = Airr +Aliv Aagr m day−1

Domestic water withdrawal Adom m day−1

Industrial water withdrawal Aind m day−1
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Table A2. List of model inputs and parameters.

Description Symbol Unit References/sources

Upper and lower soil store parameters FAO (2007) soil map;

van Beek and Bierkens (2009)

– Soil thickness Z1 and Z2 m

– Residual soil moisture content θr-1 and θr-2 m3 m−3

– Soil moisture at saturation θs-1 and θs-2 m3 m−3

– Soil water storage capacity per soil layer: SC = Z/(θs − θr) SC1 and SC2 m

– Soil matric suctions at saturation ψs-1 and ψs-2 m

– Exponent in the soil water retention curve β1 and β2 dimensionless

– Saturated hydraulic conductivities of upper and lower soil stores K1 and K2 m day−1

– Total soil water storage capacities = SCupp + SClow Wmax m

Land cover fraction: land cover areas (including flcov m2 m−2 GLCC v2.0 map (USGS, 1997);

extent of irrigated areas) over cell areas Olson (1994a, b); MIRCA2000 data set

(Portmann et al., 2010); FAOSTAT (2012)

Topographical parameters DEM m HydroSHEDS (Lehner et al., 2008);

Hydro1k (Verdin and Greenlee, 1996);

GTOPO30 (Gesch et al., 1999)

– Cell-average DEM DEMavg m

– Floodplain elevation DEMfpl m

Root fractions per soil layer Rfupp & Rflow dimensionless Canadell et al. (1996);

van Beek and Bierkens (2009)

Arno scheme (Todini, 1999; Hagemann and Gates, 2003) βarno dimensionless Canadell et al. (1996);

exponents defining soil water capacity distribution Hagemann et al. (1999); Hagemann (2002);

van Beek (2008); van Beek and Bierkens (2009)

Ratio of cell-minimum soil storage to Wmax fwmin m m−1 van Beek (2008);

van Beek and Bierkens (2009)

Ratio of cell-maximum soil storage to Wmax fwmax m m−1 van Beek (2008);

van Beek and Bierkens (2009)

Parameters related to phenology Hagemann et al. (1999);

Hagemann (2002); van Beek (2008);

van Beek and Bierkens (2009)

– Crop coefficient Kc dimensionless

– Interception capacity Sint-max m

– Vegetation cover fraction Cv m2 m−2

Groundwater parameters GLHYMPS map (Gleeson et al., 2014);

van Beek (2008); van Beek and Bierkens (2009)

– Aquifer transmissivity KD m2 day−1

– Aquifer specific yield Sy m3 m−3

– Groundwater recession coefficient J−1 day−1

Meteorological forcing van Beek (2008); CRU (Harris et al., 2014);

ERA40 (Uppala et al., 2005);

ERA-Interim (Dee et al., 2011)

– Total precipitation P m day−1

– Atmospheric air temperature Tair
◦C or K

– Reference potential evaporation and transpiration Eref,pot m day−1

Others

– Non-irrigation sectoral water demand m day−1 Wada et al. (2014)

(i.e. livestock, domestic, and industrial)

– Desalinated water m day−1 Wada et al. (2011a); FAO (2016)

– Lakes and reservoirs GLWD1 (Lehner and Döll, 2004);

GRanD (Lehner et al., 2011)
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