
Computational Visual Media

https://doi.org/10.1007/s41095-021-0229-5 Vol. 7, No. 2, June 2021, 187–199

Research Article

PCT: Point cloud transformer

Meng-Hao Guo1, Jun-Xiong Cai1, Zheng-Ning Liu1, Tai-Jiang Mu1, Ralph R. Martin2, and
Shi-Min Hu1 (�)

c© The Author(s) 2021.

Abstract The irregular domain and lack of ordering

make it challenging to design deep neural networks for

point cloud processing. This paper presents a novel

framework named Point Cloud Transformer (PCT) for

point cloud learning. PCT is based on Transformer,

which achieves huge success in natural language processing

and displays great potential in image processing. It

is inherently permutation invariant for processing a

sequence of points, making it well-suited for point cloud

learning. To better capture local context within the

point cloud, we enhance input embedding with the

support of farthest point sampling and nearest neighbor

search. Extensive experiments demonstrate that the

PCT achieves the state-of-the-art performance on shape

classification, part segmentation, semantic segmentation,

and normal estimation tasks.

Keywords 3D computer vision; deep learning; point

cloud processing; Transformer

1 Introduction

Extracting semantics directly from a point cloud is

an urgent requirement in some applications such as

robotics, autonomous driving, augmented reality, etc.

Unlike 2D images, point clouds are disordered and

unstructured, making it challenging to design neural

networks to process them. Charles et al. [1] pioneered

PointNet for feature learning on point clouds by

using multi-layer perceptrons (MLPs), max-pooling,

1 BNRist, Department of Computer Science and

Technology, Tsinghua University, Beiing 100084, China.

E-mail: M.-H. Guo, gmh20@mails.tsinghua.edu.cn;

J.-X. Cai, junxiong20@mails.tsinghua.edu.cn; Z.-N. Liu,

lzhengning@gmail.com; T.-J. Mu, taijiang@tsinghua.edu.cn;

S.-M. Hu, shimin@tsinghua.edu.cn (�).

2 Cardiff University, Cardiff CF243AA, UK. E-mail:

ralph@cs.cf.ac.uk.

Manuscript received: 2021-03-04; accepted: 2021-03-26

and rigid transformations to ensure invariance under

permutations and rotations. Inspired by strong

progress made by convolutional neural networks

(CNNs) in the field of image processing, many recent

works [2–5] have considered to define convolution

operators that can aggregate local features for point

clouds. These methods either reorder the input point

sequence or voxelize the point cloud to obtain a

canonical domain for convolutions.

Recently, Transformer [6], the dominant framework

in natural language processing, has been applied

to image vision tasks, giving better performance

than popular convolutional neural networks [7, 8].

Transformer is a decoder–encoder structure that

contains three main modules for input (word)

embedding, positional (order) encoding, and self-

attention. The self-attention module is the core

component, generating refined attention feature for

its input feature based on global context. First, self-

attention takes the sum of input embedding and

positional encoding as input, and computes three

vectors for each word: query, key, and value through

trained linear layers. Then, the attention weight

between any two words can be obtained by matching

(dot-producting) their query and key vectors. Finally,

the attention feature is defined as the weighted

sum of all value vectors with the attention weights.

Obviously, the output attention feature of each word

is related to all input features, making it capable

of learning the global context. All operations of

Transformer are parallelizable and order-independent.

In theory, it can replace the convolution operation

in a convolutional neural network and has better

versatility. For more detailed introduction of self-

attention, please refer to Section 3.2.

Inspired by the Transformer’s success in vision

and NLP tasks, we propose a novel framework PCT

187



188 M.-H. Guo, J.-X. Cai, Z.-N. Liu, et al.

for point cloud learning based on the principles of

traditional Transformer. The key idea of PCT is

using the inherent order invariance of Transformer to

avoid the need to define the order of point cloud data

and conduct feature learning through the attention

mechanism. As shown in Fig. 1, the distribution of

attention weights is highly related to part semantics,

and it does not seriously attenuate with spatial

distance.

Point clouds and natural language are rather

different kinds of data, so our PCT framework must

make several adjustments for this. These include:

• Coordinate-based input embedding module.

In Transformer, a positional encoding module is

applied to represent the word order in natural

language. This can distinguish the same word

in different positions and reflect the positional

relationships between words. However, point clouds

do not have a fixed order. In our PCT framework,

we merge the raw positional encoding and the

input embedding into a coordinate-based input

embedding module. It can generate distinguishable

features, since each point has a unique coordinate

which represents its spatial position.

• Optimized offset-attention module. The

offset-attention module approach we proposed

is an effective upgrade over the original self-

attention. It works by replacing the attention

feature with the offset between the input of self-

attention module and attention feature. This has

two advantages. Firstly, the absolute coordinates

of the same object can be completely different

Fig. 1 Attention map and part segmentation generated by PCT.

First three columns: point-wise attention map for different query

points (indicated by ✩), yellow to blue indicating increasing attention

weight. Last column: part segmentation results.

with rigid transformations. Therefore, relative

coordinates are generally more robust. Secondly,

the Laplacian matrix (the offset between degree

matrix and adjacency matrix) has been proven to

be very effective in graph convolution learning [9].

From this perspective, we regard the point cloud as

a graph with the “float” adjacency matrix as the

attention map. Also, the attention map in our work

will be scaled with all the sum of each rows to 1. So

the degree matrix can be understood as the identity

matrix. Therefore, the offset-attention optimization

process can be approximately understood as a

Laplace process, which will be discuss detailed

in Section 3.3. In addition, we have conducted

sufficient comparative experiments, introduced in

Section 4, on offset-attention and self-attention to

prove its effectiveness.

• Neighbor embedding module. Obviously,

every word in a sentence contains basic semantic

information. However, the independent input

coordinates of the points are only weakly related

to the semantic content. Attention mechanism is

effective in capturing global features, but it may

ignore local geometric information which is also

essential for point cloud learning. To address this

problem, we use a neighbor embedding strategy

to improve upon point embedding. It also assists

the attention module by considering attention

between local groups of points containing

semantic information instead of individual points.

With the above adjustments, the PCT becomes more

suitable for point cloud feature learning and achieves

the state-of-the-art performance on shape classification,

part segmentation, semantic segmentation, and normal

estimation tasks. All experiments are implemented

with Jittor [10] deep learning fremework. Codes are

available at https://github.com/MenghaoGuo/PCT.

The main contributions of this paper are summarized

as following:

1. We proposed a novel transformer based framework

named PCT for point cloud learning, which is

exactly suitable for unstructured, disordered point

cloud data with irregular domain.

2. We proposed offset-attention with implicit

Laplace operator and normalization refinement

which is inherently permutation-invariant and

more suitable for point cloud learning compared to

the original self-attention module in Transformer.



PCT: Point cloud transformer 189

3. Extensive experiments demonstrate that the

PCT with explicit local context enhancement

achieves state-of-the-art performance on shape

classification, part segmentation, and normal

estimation tasks.

2 Related work

2.1 Transformer in NLP

Bahdanau et al. [11] proposed a neural machine

translation method with an attention mechanism,

in which attention weight is computed through the

hidden state of an RNN. Self-attention was proposed

by Lin et al. [12] to visualize and interpret sentence

embeddings. Building on these, Vaswani et al. [6]

proposed Transformer for machine translation; it is

based solely on self-attention, without any recurrence

or convolution operators. Devlin et al. [13] proposed

bidirectional transformers (BERT) approach, which

is one of the most powerful models in the NLP

field. More lately, language learning networks such as

XLNet [14], Transformer-XL [15], and BioBERT [16]

have further extended the Transformer framework.

However, in natural language processing, the input

is in order, and word has basic semantic, whereas

point clouds are unordered, and individual points

have no semantic meaning in general.

2.2 Transformer for vision

Many frameworks have introduced attention into

vision tasks. Wang et al. [17] proposed a residual

attention approach with stacked attention modules

for image classification. Hu et al. [18] presented a

novel spatial encoding unit, the SE block, whose

idea was derived from the attention mechanism.

Zhang et al. [19] designed SAGAN, which uses self-

attention for image generation. There has also been

an increasing trend to employ Transformer as a

module to optimize neural networks. Wu et al. [8]

proposed visual transformers that apply Transformer

to token-based images from feature maps for vision

tasks. Recently, Dosovitskiy [7], proposed an image

recognition network, ViT, based on patch encoding

and Transformer, showing that with sufficient training

data, Transformer provides better performance than

a traditional convolutional neural network. Carion et

al. [20] presented an end-to-end detection transformer

that takes CNN features as input and generates

bounding boxes with a Transformer encoder–decoder.

Inspired by the local patch structures used in ViT

and basic semantic information in language word, we

present a neighbor embedding module that aggregates

features from a point’s local neighborhood, which can

capture the local information and obtain semantic

information.

2.3 Point-based deep learning

PointNet [1] pioneered point cloud learning. Sub-

sequently, Qi et al. [21] proposed PointNet++, which

uses query ball grouping and hierarchical PointNet

to capture local structures. Several subsequent works

considered how to define convolution operations on

point clouds. One main approach is to convert a point

cloud into a regular voxel array to allow convolution

operations. Tchapmi et al. [2] proposed SEGCloud

for pointwise segmentation. It maps convolution

features of 3D voxels to point clouds using trilinear

interpolation and keeps global consistency through

fully connected conditional random fields. Atzmon et

al. [4] presented the PCNN framework with extension

and restriction operators to map between point-

based representation and voxel-based representation.

Volumetric convolution is performed on voxels for

point feature extraction. MCCNN by Hermosilla et

al. [22] allows non-uniformly sampled point clouds;

convolution is treated as a Monte Carlo integration

problem. Similarly, in PointConv proposed by Wu et

al. [5], 3D convolution is performed through Monte

Carlo estimation and importance sampling.

A different approach redefines convolution to

operation on irregular point cloud data. Li et al. [3]

introduced a point cloud convolution network,

PointCNN, in which a χ-transformation is trained

to determine a 1D point order for convolution.

Tatarchenko et al. [23] proposed tangent convolution,

which can learn surface geometric features from

projected virtual tangent images. SPG proposed

by Landrieu and Simonovsky [24] divides the

scanned scene into similar elements, and establishes

a superpoint graph structure to learn contextual

relationships between object parts. Yang et al. [25]

used a parallel framework to extend CNN from the

conventional domain to a curved two-dimensional

manifold. However, it requires dense 3D gridded data

as input so is unsuitable for 3D point clouds. Wang et

al. [26] designed an EdgeConv operator for dynamic

graphs, allowing point cloud learning by recovering

local topology.



190 M.-H. Guo, J.-X. Cai, Z.-N. Liu, et al.

Various other methods also employ attention and

Transformer. Yan et al. [27] proposed PointASNL

to deal with noise in point cloud processing, using

a self-attention mechanism to update features for

local groups of points. Hertz et al. [28] proposed

PointGMM for shape interpolation with both multi-

layer perceptron (MLP) splits and attentional splits.

Unlike the above methods, our PCT is based on

Transformer rather than using self-attention as an

auxiliary module. While a framework by Wang and

Solomon [29] uses Transformer to optimize point cloud

registration, our PCT is a more general framework

which can be used for various point cloud tasks.

3 Transformer for point cloud

representation

In this section, we first show how the point cloud

representation learned by our PCT can be applied

to various tasks of point cloud processing, including

point cloud classification, part segmentation, and

normal estimation. Thereafter, we detail the design

of PCT. We first introduce a naive version of PCT by

directly applying the original Transformer [6] to point

clouds. We then explain full PCT with its special

attention mechanism, and neighbor aggregation to

provide enhanced local information.

3.1 Point cloud processing with PCT

Encoder. The overall architecture of PCT is

presented in Fig. 2. PCT aims to transform (encode)

the input points into a new higher dimensional feature

space, which can characterize the semantic affinities

between points as a basis for various point cloud

processing tasks. The encoder of PCT starts by

embedding the input coordinates into a new feature

space. The embedded features are later fed into

4 stacked attention module to learn a semantically

rich and discriminative representation for each point,

followed by a linear layer to generate the output

feature. Overall, the encoder of PCT shares almost

the same philosophy of design as the original

Transformer, except that the positional embedding is

discarded, since the point’s coordinates already

contain this information. We refer the reader to

Ref. [6] for details of the original NLP Transformer.

Formally, given an input point cloud P ∈ R
N×d

with N points each having a d-dimensional feature

description, a de-dimensional embedded feature Fe ∈

R
N×de is first learned via the Input Embedding

module. The point-wise do-dimensional feature

representation Fo ∈ R
N×do output by PCT is then

formed by concatenating the attention output of

each attention layer through the feature dimension,

followed by a linear transformation:

F1 = AT1(Fe)

Fi = ATi(Fi−1), i = 2, 3, 4 (1)

Fo = concat(F1, F2, F3, F4) · Wo

where ATi represents the ith attention layer, each

having the same output dimension as its input, and

Wo is the weights of the linear layer. Various

implementations of input embedding and attention

will be explained later.

To extract an effective global feature vector

Fg representing the point cloud, we choose to

concatenate the outputs from two pooling operators:

a max-pooling (MP) and an average-pooling (AP) on

the learned point-wise feature representation [26].

Classification. The details of classification

network using PCT is shown in Fig. 2. To classify

a point cloud P into Nc object categories (e.g.,

desk, table, chair), we feed the global feature

Fg to the classification decoder, which comprises

two cascaded feed-forward neural networks LBRs

(combining Linear, BatchNorm (BN), and ReLU

layers) each with a dropout probability of 0.5,

finalized by a Linear layer to predict the final

classification scores C ∈ R
Nc . The class label of the

point cloud is determined as the class with maximal

score.

Segmentation. For the task of segmenting the

point cloud into Ns parts (e.g., table top, table legs; a

part need not be contiguous), we must predict a part

label for each point, we first concatenate the global

feature Fg with the point-wise features in Fo. To

learn a common model for various kinds of objects,

we also encode the one-hot object category vector

as a 64-dimensional feature and concatenate it with

the global feature, following most other point cloud

segmentation networks [21]. As shown in Fig. 2, the

architecture of the segmentation network decoder

is almost the same as that for the classification

network, except that dropout is only performed on

the first LBR. We then predict the final point-wise

segmentation scores S ∈ R
N×Ns for the input point

cloud: Finally, the part label of a point is also

determined as the one with maximal score.



PCT: Point cloud transformer 191

Fig. 2 PCT architecture. The encoder mainly comprises an Input Embedding module and four stacked Attention module. The decoder mainly

comprises multiple Linear layers. Numbers above each module indicate its output channels. MA-Pool concatenates Max-Pool and Average-Pool.

LBR combines Linear, BatchNorm, and ReLU layers. LBRD means LBR followed by a Dropout layer.

Normal estimation. For the task of normal

estimation, we use the same architecture as in

segmentation by setting Ns = 3, without the object

category encoding, and regard the output point-wise

score as the predict normal.

3.2 Naive PCT

The simplest way to modify Transformer [6] for point

cloud use is to treat the entire point cloud as a

sentence and each point as a word, an approach

we now explain. This naive PCT is achieved by

implementing a coordinate-based point embedding

and instantiating the attention layer with the self-

attention introduced in Ref. [6].

First, we consider a naive point embedding, which

ignores interactions between points. Like word

embedding in NLP, point embedding aims to place

points closer in the embedding space if they are

more semantically similar. Specifically, we embed

a point cloud P into a de-dimensional space Fe ∈
R

N×de , using a shared neural network comprising two

cascaded LBRs, each with a de-dimensional output.

We empirically set de = 128, a relatively small value,

for computational efficiency. We simply use the

point’s 3D coordinates as its input feature description

(i.e., dp = 3) (as doing so still outperforms other

methods) but additional point-wise input information,

such as point normals, could also be used.

For the naive implementation of PCT, we adopt

self-attention (SA) as introduced in the original

Transformer [6]. Self-attention, also called intra-

attention, is a mechanism that calculates semantic

affinities between different items within a sequence

of data. The architecture of the SA layer is depicted

in Fig. 3 by switching to the dotted data flows.

Following the terminology in Ref. [6], let Q, K, V

be the query, key, and value matrices, respectively,

generated by linear transformations of the input

features Fin ∈ R
N×de as follows:

(Q, K, V ) = Fin · (Wq, Wk, Wv)

Q, K ∈ R
N×da , V ∈ R

N×de (2)

Wq, Wk ∈ R
de×da , Wv ∈ R

de×de

where Wq, Wk, and Wv are the shared learnable

Fig. 3 Architecture of Offset-Attention. Numbers above tensors are numbers of dimensions N and feature channels D/Da, with switches

showing alternatives of Self-Attention or Offset-Attention: dotted lines indicate Self-Attention branches.



192 M.-H. Guo, J.-X. Cai, Z.-N. Liu, et al.

linear transformation, and da is the dimension of the

query and key vectors. Note that da may not be

equal to de. In this work, we set da to be de/4 for

computational efficiency.

First, we can use the query and key matrices to

calculate the attention weights via the matrix dot-

product:

Ã = (α̃)i,j = Q · KT (3)

These weights are then normalized (denoted SS in

Fig. 3) to give A = (α)i,j :

ᾱi,j =
α̃i,j√

da

αi,j = softmax(ᾱi,j) =
exp (ᾱi,j)∑

k

exp (ᾱi,k)

(4)

The self-attention output features Fsa are the

weighted sums of the value vector using the

corresponding attention weights:

Fsa = A · V (5)

As the query, key, and value matrices are

determined by the shared corresponding linear

transformation matrices and the input feature Fin,

they are all order independent. Moreover, softmax

and weighted sum are both permutation-independent

operators. Therefore, the whole self-attention process

is permutation-invariant, making it well-suited to

the disordered, irregular domain presented by point

clouds.

Finally, the self-attention feature Fsa and the input

feature Fin, are further used to provide the output

feature Fout for the whole SA layer through an LBR

network:

Fout = SA(Fin) = LBR(Fsa) + Fin (6)

3.3 Offset-Attention

Graph convolution networks [9] show the benefits

of using a Laplacian matrix L = D − E to replace

the adjacency matrix E, where D is the diagonal

degree matrix. Similarly, we find that we can

obtain better network performance if, when applying

Transformer to point clouds, we replace the original

self-attention (SA) module with an offset-attention

(OA) module to enhance our PCT. As shown in

Fig. 3, the offset-attention layer calculates the offset

(difference) between the self-attention (SA) features

and the input features by element-wise subtraction.

This offset feeds the LBR network in place of the SA

feature used in the naive version. Specifically, Eq. (5)

is modified to

Fout = OA(Fin) =LBR(Fin − Fsa) + Fin (7)

Fin−Fsa is analogous to a discrete Laplacian operator,

as we now show. First, from Eqs. (2) and (5), the

following holds:
Fin − Fsa = Fin − AV

= Fin − AFinWv

≈ Fin − AFin

= (I − A)Fin ≈ LFin (8)

Here, Wv is ignored since it is a weight matrix of

the Linear layer. I is an identity matrix comparable

to the diagonal degree matrix D of the Laplacian

matrix and A is the attention matrix comparable to

the adjacency matrix E.

In our enhanced version of PCT, we also refine the

normalization by modifying Eq. (4) as follows:

ᾱi,j = softmax(α̃i,j) =
exp (α̃i,j)∑

k

exp (α̃k,j)

αi,j =
ᾱi,j∑

k

ᾱi,k

(9)

Here, we use the softmax operator on the first dimension

and an l1-norm for the second dimension to normalize

the attention map. The traditional Transformer scales

the first dimension by 1/
√

da and uses softmax

to normalize the second dimension. However, our

offset-attention sharpens the attention weights and

reduces the influence of noise, which is beneficial for

downstream tasks. Figure 1 shows example offset

attention maps. It can be seen that the attention

maps for different query points vary considerably, but

are generally semantically meaningful. We refer to

this refined PCT, i.e., with point embedding and OA

layer, as simple PCT (SPCT) in the experiments.

3.4 Neighbor embedding for augmented local

feature representation

PCT with point embedding is an effective network

for extracting global features. However, it ignores the

local neighborhood information which is also essential

in point cloud learning. We draw upon the ideas of

PointNet++ [21] and DGCNN [26] to design a local

neighbor aggregation strategy, neighbor embedding,

to optimize the point embedding to augment PCT’s

ability of local feature extraction. As shown in

Fig. 4, neighbor embedding module comprises two

LBR layers and two SG (sampling and grouping)

layers. The LBR layers act as the basis point

embedding in Section 3.2. We use two cascaded SG



PCT: Point cloud transformer 193

Fig. 4 Left: Neighbor Embedding architecture. Middle: SG module with Nin input points, din input channels, k neighbors, Nout output

sampled points, and dout output channels. Top-right: example of sampling (colored balls represent sampled points). Bottom-right: example of

grouping with k-NN neighbors. Number above LBR: number of output channels. Number above SG: number of sampled points and its output

channels.

layers to gradually enlarge the receptive field during

feature aggregation, as is done in CNNs. The SG

layer aggregates features from the local neighbors for

each point grouped by k-NN search using Euclidean

distance during point cloud sampling.

More specifically, assume that SG layer takes a

point cloud P with N points and corresponding

features F as input and outputs a sampled point cloud

Ps with Ns points and its corresponding aggregated

features Fs. First, We adopt the farthest point

sampling (FPS) algorithm [21] to downsample P
to Ps. Then, for each sampled point p ∈ Ps, let

knn(p, P) be its k-nearest neighbors in P. We then

compute the output feature Fs as follows:

∆F (p) = concatq∈knn(p,P)(F (q) − F (p))

F̃(p) = concat(∆F (p), RP(F (p), k)) (10)

Fs(p) = MP(LBR(LBR(F̃ (p))))

where F (p) is the input feature of point p, Fs(p) is

the output feature of sampled point p, MP is the

max-pooling operator, and RP(x, k) is the operator

for repeating a vector x k times to form a matrix.

The idea of concatenating the feature among sampled

point and its neighbors is drawn from EdgeConv [26].

We use different architectures for the tasks of

point cloud classification, segmentation, and normal

estimation. For the point cloud classification, we only

need to predict a global class for all points, so the

sizes of the point cloud are decreased to 512 and 256

points within the two SG layer.

For point cloud segmentation or normal estimation,

we need to determine point-wise part labels or normal,

so the process above is only used for local feature

extraction without reducing the point cloud size,

which can be achieved by setting the output at each

stage to still be of size N .

4 Experiments

We now evaluate the performance of naive PCT

(NPCT, with point embedding and self-attention),

simple PCT (SPCT, with point embedding and

offset-attention), and full PCT (with neighbor

embedding and offset-attention) on two public

datasets, ModelNet40 [30] and ShapeNet [31], giving a

comprehensive comparison with other methods. The

same soft cross-entropy loss function as Ref. [26] and

the stochastic gradient descent (SGD) optimizer with

momentum 0.9 were adopted for training in each case.

Other training parameters, including the learning

rate, batch size, and input format, were particular to

each specific dataset and are given later.

4.1 Classification on ModelNet40 dataset

ModelNet40 [30] contains 12,311 CAD models in 40

object categories; it is widely used in point cloud

shape classification and surface normal estimation

benchmarking. For a fair comparison, we used the

official split with 9843 objects for training and 2468

for evaluation. The same sampling strategy as used in

PointNet [1] was adopted to uniformly sample each

object to 1024 points. During training, a random

translation in [−0.2, 0.2], a random anisotropic scaling

in [0.67, 1.5], and a random input dropout were

applied to augment the input data. During testing, no

data augmentation or voting methods were used. For

all the three models, the mini-batch sizes were 32.250

training epochs were used and the initial learning



194 M.-H. Guo, J.-X. Cai, Z.-N. Liu, et al.

rates were 0.0001, with a cosine annealing schedule

to adjust the learning rate at every epoch.

Experimental results are shown in Table 1.

Compared to PointNet and NPCT, SPCT makes

a 2.8% and 1.0% improvement respectively. PCT

achieves the best result of 93.2% overall accuracy.

Note that our network currently does not consider

normals as inputs which could in principle further

improve network performance.

4.2 Normal estimation on ModelNet40

dataset

The surface normal estimation is to determine the

normal direction at each point. Estimating surface

normal has wide applications in, e.g., rendering. The

task is challenging because it requires the approach to

understand the shapes completely for dense regression.

We again used ModelNet40 as a benchmark, and used

average cosine distance to measure the difference

between ground truth and predicted normals. For

all the three models, a batch size of 32.200 training

epochs were used. The initial learning rates were also

set as 0.01, with a cosine annealing schedule used

to adjust learning rate every epoch. As indicated

in Table 2, both our NPCT and SPCT make a

Table 1 Comparison with state-of-the-art methods on the

ModelNet40 classification dataset. Accuracy means overall accuracy.

All results quoted are taken from the cited papers. P = points, N =

normals

Method Input #Points Accuracy

PointNet [1] P 1k 89.2%

A-SCN [32] P 1k 89.8%

SO-Net [33] P, N 2k 90.9%

Kd-Net [34] P 32k 91.8%

PointNet++ [21] P 1k 90.7%

PointNet++ [21] P, N 5k 91.9%

PointGrid [35] P 1k 92.0%

PCNN [4] P 1k 92.3%

PointWeb [36] P 1k 92.3%

PointCNN [3] P 1k 92.5%

PointConv [5] P, N 1k 92.5%

A-CNN [37] P, N 1k 92.6%

P2Sequence [38] P 1k 92.6%

KPConv [39] P 7k 92.9%

DGCNN [26] P 1k 92.9%

RS-CNN [40] P 1k 92.9%

PointASNL [27] P 1k 92.9%

NPCT P 1k 91.0%

SPCT P 1k 92.0%

PCT P 1k 93.2%

Table 2 Normal estimation average cosine-distance error on

ModelNet40 dataset

Method #Points Error

PointNet [1] 1k 0.47

PointNet++ [21] 1k 0.29

PCNN [4] 1k 0.19

RS-CNN [40] 1k 0.15

NPCT 1k 0.24

SPCT 1k 0.23

PCT 1k 0.13

significant improvement compared with PointNet and

PCT achieves the lowest average cosine distance.

4.3 Part segmentation task on ShapeNet

dataset

Point cloud part segmentation is a challenging task

which aims to divide a 3D model into multiple

meaningful parts. We performed an experimental

evaluation on the ShapeNet Parts dataset [31], which

contains 16,880 3D models with a training to testing

split of 14,006 to 2874. It has 16 object categories and

50 part labels; each instance contains no fewer than

two parts. Following PointNet [1], all models were

downsampled to 2048 points, retaining point-wise

part annotation. During training, random translation

in [−0.2, 0.2], and random anisotropic scaling in

[0.67, 1.5] were applied to augment the input data.

During testing, we used a multi-scale testing strategy,

where the scales are set in [0.7, 1.5] with a step of

0.1. For all the three models, the batch size, training

epochs, and the learning rates were set the same as

the training of normal estimation task.

Table 3 shows the class-wise segmentation

results. The evaluation metric used is part-average

Intersection-over-Union, and is given both overall

and for each object category. The results show that

our SPCT makes an improvement of 2.1% and 0.6%

over PointNet and NPCT respectively. PCT achieves

the best results with 86.4% part-average Intersection-

over-Union. Figure 5 shows further segmentation

examples provided by PointNet, NPCT, SPCT, and

PCT.

4.4 Semantic segmentation task on S3DIS

dataset

The S3DIS is a indoor scene dataset for point cloud

semantic segmentation. It contains 6 areas and 271

rooms. Each point in the dataset is divided into 13



PCT: Point cloud transformer 195

Table 3 Comparison on the ShaperNet part segmentation dataset. pIoU means part-average Intersection-over-Union. All results quoted are

taken from the cited papers

Method pIoU
air-

plane
bag cap car chair

ear-

phone
guitar knife lamp laptop

motor-

bike
mug pistol rocket

skate-

board
table

PointNet [1] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

Kd-Net [34] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

SO-Net [33] 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0

PointNet++ [21] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

PCNN [4] 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8

DGCNN [26] 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

P2Sequence [38] 85.2 82.6 81.8 87.5 77.3 90.8 77.1 91.1 86.9 83.9 95.7 70.8 94.6 79.3 58.1 75.2 82.8

PointConv [5] 85.7 — — — — — — — — — — — — — — — —

PointCNN [3] 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.2 84.2 64.2 80.0 83.0

PointASNL [27] 86.1 84.1 84.7 87.9 79.7 92.2 73.7 91.0 87.2 84.2 95.8 74.4 95.2 81.0 63.0 76.3 83.2

RS-CNN [40] 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6

NPCT 85.2 83.2 74.5 86.7 76.8 90.7 75.4 91.1 87.3 84.5 95.7 65.2 93.7 82.7 56.9 73.8 83.0

SPCT 85.8 84.5 83.5 85.9 78.7 90.9 75.1 92.1 87.0 85.0 95.9 69.6 94.5 82.2 61.4 76.0 83.0

PCT 86.4 85.0 82.4 89.0 81.2 91.9 71.5 91.3 88.1 86.3 95.8 64.6 95.8 83.6 62.2 77.6 83.7

Fig. 5 Segmentations from PointNet, NPCT, SPCT, PCT, and ground truth (GT).

Table 4 Comparison on the S3DIS semantic segmentation dataset tested on Area5

Method mAcc mIoU
ceil-

ing
floor wall beam column window door chair table

book-

case
sofa board clutter

PointNet [1] 48.98 41.09 88.80 97.33 69.80 0.05 3.92 46.26 10.76 58.93 52.61 5.85 40.28 26.38 33.22

SEGCloud [2] 57.35 48.92 90.06 96.05 69.86 0.00 18.37 38.35 23.12 70.40 75.89 40.88 58.42 12.96 41.60

DGCNN [26] 84.10 56.10 — — — — — — — — — — — — —

PointCNN [3] 63.86 57.26 92.31 98.24 79.41 0.00 17.60 22.77 62.09 74.39 80.59 31.67 66.67 62.05 56.74

SPG [24] 66.50 58.04 89.35 96.87 78.12 0.00 42.81 48.93 61.58 84.66 75.41 69.84 52.60 2.10 52.22

PCNN [4] 67.01 58.27 92.26 96.20 75.89 0.27 5.98 69.49 63.45 66.87 65.63 47.28 68.91 59.10 46.22

PointWeb [36] 66.64 60.28 91.95 98.48 79.39 0.00 21.11 59.72 34.81 76.33 88.27 46.89 69.30 64.91 52.46

PCT 67.65 61.33 92.54 98.42 80.62 0.00 19.37 61.64 48.00 76.58 85.20 46.22 67.71 67.93 52.29



196 M.-H. Guo, J.-X. Cai, Z.-N. Liu, et al.

categories. For fair comparison, we use the same data

processing method as Ref. [1]. Table 4 shows that

our PCT achieves superior performance compared to

the previous methods.

4.5 Computational requirements analysis

We now consider the computational requirements

of NPCT, SPCT, PCT, and several other methods

by comparing the floating point operations required

(FLOPs) and number of parameters (Params) in

Table 5. SPCT has the lowest memory requirements

with only 1.36M parameters and also puts a low load

on the processor of only 1.82G FLOPs, yet delivers

highly accurate results. These characteristics make it

suitable for deployment on a mobile device. PCT

has best performance, yet modest computational

and memory requirements. If we pursue higher

performance and ignore the amount of calculation

and parameters, we can add a neighbor embedding

layer in the input embedding module. The results

of 3-layer embedding PCT are shown in Tables 6

and 7.

Table 5 Computational resource requirements

Method #Params #FLOPs Accuracy

PointNet [1] 3.47M 0.45G 89.2%

PointNet++(SSG) [21] 1.48M 1.68G 90.7%

PointNet++(MSG) [21] 1.74M 4.09G 91.9%

DGCNN [26] 1.81M 2.43G 92.9%

NPCT 1.36M 1.80G 91.0%

SPCT 1.36M 1.82G 92.0%

PCT 2.88M 2.32G 93.2%

Table 6 Comparison on the ModelNet40 classification dataset. PCT-

2L means PCT with 2 layer neighbor embedding and PCT-3L means

PCT with 3 layer neighbor embedding. Accuracy means overall

accuracy. P = points

Method Input #Points Accuracy

PCT-2L P 1k 93.2%

PCT-3L P 1k 93.4%

5 Conclusions

In this paper, we propose a permutation-invariant

point cloud transformer, which is suitable for learning

on unstructured point clouds with irregular domain.

The proposed offset-attention and normalization

mechanisms help to make our PCT effective.

Experiments show that PCT has good semantic

feature learning capability, and achieves state-of-

the-art performance on several tasks, particularly

shape classification, part segmentation, and normal

estimation.

Transformer has already revealed powerful

capabilities given large amounts of training data.

At present, the available point cloud datasets are

very limited compared to image. In future, we will

train it on larger datasets and study its advantages

and disadvantages with respect to other popular

frameworks. The encoder–decoder structure of

Transformer supports more complex tasks, such as

point cloud generation and completion. We will

extend the PCT to further applications. Besides, we

will attempt more precise methods to approximate

Laplacian operation and complete offset-attention.

Acknowledgements

This work was supported by the National Natural

Science Foundation of China (Project Number

61521002) and the Joint NSFC–DFG Research

Program (Project Number 61761136018).

References

[1] Charles, R. Q.; Hao, S.; Mo, K. C.; Guibas, L.

J. PointNet: Deep learning on point sets for 3D

classification and segmentation. IN: Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, 77–85, 2017.

[2] Tchapmi, L. P.; Choy, C. B.; Armeni, I.; Gwak, J.;

Savarese, S. SEGCloud: Semantic segmentation of

3D point clouds. In: Proceedings of the International

Conference on 3D Vision, 537–547, 2017.

Table 7 Comparison on the ShaperNet part segmentation dataset. pIoU means part-average Intersection-over-Union. PCT-2L means PCT

with 2 layer neighbor embedding and PCT-3L means PCT with 3 layer neighbor embedding

Method pIoU
air-

plane
bag cap car chair

ear-

phone
guitar knife lamp laptop

motor-

bike
mug pistol rocket

skate-

board
table

PCT-2L 86.4 85.0 82.4 89.0 81.2 91.9 71.5 91.3 88.1 86.3 95.8 64.6 95.8 83.6 62.2 77.6 83.7

PCT-3L 86.6 85.3 84.5 89.4 81.0 91.7 78.6 91.5 87.5 85.8 96.0 70.6 95.6 82.8 60.9 76.6 83.7



PCT: Point cloud transformer 197

[3] Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B.

PointCNN: Convolution on x-transformed points. In:

Proceedings of the 32nd International Conference on

Neural Information Processing Systems, 828–838, 2018.

[4] Atzmon, M.; Maron, H.; Lipman, Y. Point

convolutional neural networks by extension operators.

ACM Transactions on Graphics Vol. 37, No. 4, Article

No. 71, 2018.

[5] Wu, W. X.; Qi, Z.; Fuxin, L. PointConv:

Deep convolutional networks on 3D point clouds.

In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 9613–9622,

2019.

[6] Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.;

Jones, L.; Gomez, A. N.; Kaiser, L.; Polosukhin, I.

Attention is all you need. In: Proceedings of the

31st International Conference on Neural Information

Processing, 6000–6010, 2017.

[7] Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,

D.; Houlsby, N. An image is worth 16x16 words:

Transformers for image recognition at scale. arXiv

preprint arXiv:2010.11929, 2020.

[8] Wu, B.; Xu, C.; Dai, X.; Wan, A.; Zhang, P.; Tomizuka,

M.; Keutzer, K.; Vajda, P. Visual transformers: Token-

based image representation and processing for computer

vision. arXiv preprint arXiv:2006.03677, 2020.

[9] Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral

networks and locally connected networks on graphs.

In: Proceedings of the International Conference on

Learning Representations, 2014.

[10] Hu, S.-M.; Liang, D.; Yang, G.-Y.; Yang, G.-W.; Zhou,

W.-Y. Jittor: A novel deep learning framework with

meta-operators and unified graph execution. Science

China Information Sciences Vol. 63, No. 12, Article No.

222103, 2020.

[11] Bahdanau, D.; Cho, K. H.; Bengio, Y. Neural machine

translation by jointly learning to align and translate.

In: Proceedings of the 3rd International Conference on

Learning Representations, 2015.

[12] Lin, Z.; Feng, M.; dos Santos, C. N.; Yu, M.;

Xiang, B.; Zhou, B.; Bengio, Y. A structured self-

attentive sentence embedding. In: Proceedings of the

International Conference on Learning Representations,

2017.

[13] Devlin, J.; Chang, M.; Lee, K.; Toutanova, K.

BERT: Pre-training of deep bidirectional transformers

for language understanding. In: Proceedings of the

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies, Vol. 1, 4171–4186, 2019.

[14] Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J. G.;

Salakhutdinov, R.; Le, Q. V. XLNet: Generalized

autoregressive pretraining for language understanding.

In: Proceedings of the 33rd Conference on Neural

Information Processing Systems, 5754–5764, 2019.

[15] Dai, Z. H.; Yang, Z. L.; Yang, Y. M.; Carbonell, J.;

Le, Q.; Salakhutdinov, R. Transformer-XL: Attentive

language models beyond a fixed-length context. In:

Proceedings of the 57th Annual Meeting of the

Association for Computational Linguistics, 2978–2988,

2019.

[16] Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So,

C. H.; Kang, J. BioBERT: A pre-trained biomedical

language representation model for biomedical text

mining. Bioinformatics Vol. 36, No. 4, 1234–1240, 2020.

[17] Wang, F.; Jiang, M. Q.; Qian, C.; Yang, S.; Li, C.;

Zhang, H. G.; Wang, X.; Tang, X. Residual attention

network for image classification. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, 6450–6458, 2017.

[18] Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation

networks. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern

Recognition, 7132–7141, 2018.

[19] Zhang, H.; Goodfellow, I. J.; Metaxas, D. N.; Odena,

A. Self-attention generative adversarial networks. In:

Proceedings of the International Conference on Machine

Learning, 7354–7363, 2019.

[20] Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.;

Kirillov, A.; Zagoruyko, S. End-to-end object detection

with transformers. In: Computer Vision – ECCV

2020. Lecture Notes in Computer Science, Vol. 12346.

Vedaldi, A.; Bischof, H.; Brox, T.; Frahm, J. M. Eds.

Springer Cham, 213–229, 2020.

[21] Qi, C. R.; Yi, L.; Su, H.; Guibas, L. J. PointNet++:

Deep hierarchical feature learning on point sets in a

metric space. In: Proceedings of the 31st Conference

on Neural Information Processing Systems, 5099–5108,

2017.

[22] Hermosilla, P.; Ritschel, T.; Vázquez, P. P.; Vinacua,

À.; Ropinski, T. Monte Carlo convolution for

learning on non-uniformly sampled point clouds. ACM

Transactions on Graphics Vol. 37, No. 6, Article No.

235, 2018.

[23] Tatarchenko, M.; Park, J.; Koltun, V.; Zhou, Q.

Y. Tangent convolutions for dense prediction in 3D.

In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 3887–3896,

2018.



198 M.-H. Guo, J.-X. Cai, Z.-N. Liu, et al.

[24] Landrieu, L.; Simonovsky, M. Large-scale point cloud

semantic segmentation with superpoint graphs. In:

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 4558–4567, 2018.

[25] Yang, Y. Q.; Liu, S. L.; Pan, H.; Liu, Y.; Tong,

X. PFCNN: Convolutional neural networks on 3D

surfaces using parallel frames. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 13575–13584, 2020.

[26] Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S. E.; Bronstein, M.

M.; Solomon, J. M. Dynamic graph CNN for learning

on point clouds. ACM Transactions on Graphics Vol.

38, No. 5, Article No. 146, 2019.

[27] Yan, X.; Zheng, C. D.; Li, Z.; Wang, S.; Cui, S.

G. PointASNL: Robust point clouds processing using

nonlocal neural networks with adaptive sampling. In:

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 5588–5597, 2020.

[28] Hertz, A.; Hanocka, R.; Giryes, R.; Cohen-Or, D.

PointGMM: A neural GMM network for point clouds.

In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 12051–

12060, 2020.

[29] Wang, Y.; Solomon, J. Deep closest point:

Learning representations for point cloud registration.

In: Proceedings of the IEEE/CVF International

Conference on Computer Vision, 3522–3531, 2019.

[30] Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang,

L.; Tang, X.; Xiao, J. 3D ShapeNets: A deep

representation for volumetric shapes. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, 1912–1920, 2015.

[31] Yi, L.; Kim, V. G.; Ceylan, D.; Shen, I. C.; Yan, M.

Y.; Su, H.; Lu, C.; Huang, Q.; Sheffer, A.; Guibas, L.

A scalable active framework for region annotation in

3D shape collections. ACM Transactions on Graphics

Vol. 35, No. 6, Article No. 210, 2016.

[32] Xie, S. N.; Liu, S. N.; Chen, Z. Y.; Tu, Z. W.

Attentional ShapeContextNet for point cloud recognition.

In: Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 4606–4615,

2018.

[33] Li, J. X.; Chen, B. M.; Lee, G. H. SO-net: Self-

organizing network for point cloud analysis. In:

Proceeding of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 9397–9406, 2018.

[34] Klokov, R.; Lempitsky, V. Escape from cells: Deep kd-

networks for the recognition of 3D point cloud models.

In: Proceeding of the IEEE International Conference

on Computer Vision, 863–872, 2017.

[35] Le, T.; Duan, Y. PointGrid: A deep network for

3D shape understanding. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 9204–9214, 2018.

[36] Zhao, H.; Jiang, L.; Fu, C.; Jia, J. PointWeb:

Enhancing local neighborhood features for point cloud

processing. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 5560–5568,

2019.

[37] Komarichev, A.; Zhong, Z. C.; Hua, J. A-CNN:

Annularly convolutional neural networks on point

clouds. In: Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 7413–

7422, 2019.

[38] Liu, X. H.; Han, Z. Z.; Liu, Y. S.; Zwicker, M.

Point2Sequence: Learning the shape representation

of 3D point clouds with an attention-based sequence

to sequence network. In: Proceedings of the AAAI

Conference on Artificial Intelligence, Vol. 33, 8778–

8785, 2019.

[39] Thomas, H.; Qi, C. R.; Deschaud, J. E.;

Marcotegui, B.; Goulette, F.; Guibas, L. KPConv:

Flexible and deformable convolution for point clouds.

In: Proceedings of the IEEE/CVF International

Conference on Computer Vision, 6410–6419, 2019.

[40] Liu, Y. C.; Fan, B.; Xiang, S. M.; Pan, C. H. Relation-

shape convolutional neural network for point cloud

analysis. In: Proceeding of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 8887–

8896, 2019.

Meng-Hao Guo received his bachelor

degree in Xidian University. Now he is

a Ph.D. candidate in the Department

of Computer Science and Technology,

Tsinghua University. His research

interests include computer graphics,

computer vision, and machine learning.

Jun-Xiong Cai is currently a

postdoctoral researcher at Tsinghua

University, where he received Ph.D.

degree in computer science and

technology in 2020. His research

interests include computer graphics,

computer vision, and 3D geometry

processing.



PCT: Point cloud transformer 199

Zheng-Ning Liu received his bachelor

degree in computer science from

Tsinghua University in 2017. He is

currently a Ph.D. candidate in the

Department of Computer Science and

Technology, Tsinghua University. His

research interests include 3D computer

vision, 3D reconstruction, and computer

graphics.

Tai-Jiang Mu is currently an assistant

researcher at Tsinghua University, where

he received his B.S. and Ph.D. degrees

in computer science and technology

in 2011 and 2016, respectively. His

research interests include computer

vision, robotics, and computer graphics.

Ralph R. Martin received his Ph.D.

degree from Cambridge University in

1983. He is currently a emeritus

professor with Cardiff University. He

has authored over 250 papers and 14

books, covering such topics as solid and

surface modeling, intelligent sketch input,

geometric reasoning, reverse engineering,

and various aspects of computer graphics. He is a Fellow of

the Learned Society of Wales, the Institute of Mathematics

and its Applications, and the British Computer Society. He

is currently the Associate Editor-in-Chief of Computational

Visual Media.

Shi-Min Hu is current a professor in

the Department of Computer Science

and Technology, Tsinghua University,

Beijing, China. He received his Ph.D.

degree from Zhejiang University in 1996.

His research interests include digital

geometry processing, video processing,

rendering, computer animation, and

computer-aided geometric design. He has published more

than 100 papers in journals and refereed conferences. He

is the Editor-in-Chief of Computational Visual Media, and

on editorial boards of several journals, including Computer

Aided Design and Computer & Graphics. He is a senior

member of IEEE and ACM, and Fellow of CCF and SMA.

Open Access This article is licensed under a Creative

Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and reproduc-

tion in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link

to the Creative Commons licence, and indicate if changes

were made.

The images or other third party material in this article are

included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and

your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission

directly from the copyright holder.

To view a copy of this licence, visit http://

creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available

free of charge from http://www.springer.com/journal/41095.

To submit a manuscript, please go to https://www.

editorialmanager.com/cvmj.


