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METHODOLOGY

PCycDB: a comprehensive and accurate 
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Abstract 

Background:  Phosphorus (P) is one of the most essential macronutrients on the planet, and microorganisms (includ-
ing bacteria and archaea) play a key role in P cycling in all living things and ecosystems. However, our comprehensive 
understanding of key P cycling genes (PCGs) and microorganisms (PCMs) as well as their ecological functions remains 
elusive even with the rapid advancement of metagenome sequencing technologies. One of major challenges is a lack 
of a comprehensive and accurately annotated P cycling functional gene database.

Results:  In this study, we constructed a well-curated P cycling database (PCycDB) covering 139 gene families and 10 
P metabolic processes, including several previously ignored PCGs such as pafA encoding phosphate-insensitive phos-
phatase, ptxABCD (phosphite-related genes), and novel aepXVWPS genes for 2-aminoethylphosphonate transporters. 
We achieved an annotation accuracy, positive predictive value (PPV), sensitivity, specificity, and negative predictive 
value (NPV) of 99.8%, 96.1%, 99.9%, 99.8%, and 99.9%, respectively, for simulated gene datasets. Compared to other 
orthology databases, PCycDB is more accurate, more comprehensive, and faster to profile the PCGs. We used PCycDB 
to analyze P cycling microbial communities from representative natural and engineered environments and showed 
that PCycDB could apply to different environments.

Conclusions:  We demonstrate that PCycDB is a powerful tool for advancing our understanding of microbially driven 
P cycling in the environment with high coverage, high accuracy, and rapid analysis of metagenome sequencing data. 
The PCycDB is available at https://​github.​com/​ZengJ​iaxio​ng/​Phosp​horus-​cycli​ng-​datab​ase.
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Background
Phosphorus (P) is an essential nutrient for energy metab-
olism, genetic materials, and cell structures of all biota 
[1]. Unlike nitrogen (N), which has the volatile form of 
N (e.g., N2, N2O), the atmosphere does not supply solu-
ble P [2]. Therefore, P is the second most limiting nutri-
ent because the primary source of P relies on weathering 
of rocks in natural ecosystems [3]. P limitation could be 
alleviated by applying P fertilizers in the agroecosystem 
[4], but excessive P applications can cause serious water 
pollution and eutrophication. Also, bacteria and archaea 
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(hereafter microorganisms) play important roles in main-
taining and regulating the P status through inorganic P 
(Pi) solubilization and organic P (Po) mineralization and 
thus increase nutrient acquisition by plants [5, 6]. For 
example, phosphate solubilizing microorganisms could 
release orthophosphate from organic materials by secret-
ing hydrolytic enzymes and organic acids, thus increas-
ing available P around the crop rhizosphere [6]. However, 
comprehensive understanding of P cycling genes (PCGs) 
and microorganisms (PCMs) remains unclear.

PCGs are generally classified into “extracellular” and 
“intracellular genes.” The former is further clustered 
into three groups: Pi solubilization and Po mineraliza-
tion genes (e.g., gcd, phy, phoD, and phnJ), transporter 
genes (e.g., pstS, ugpQ), and P starvation regulation genes 
(e.g., phoB, phoR) [1, 5, 7]. PhoB activated by phospho-
rylated-PhoR upregulates the expression of transport-
ers (e.g., PstSCAB) and phosphatases (e.g., PhoD, PhoA) 
to utilize P under deficiency [8], but the SenX3-RegX3 
two-component system instead of PhoB-PhoR responds 
to P starvation in mycobacteria [9]. Except for C-P lyase 
genes (e.g., phnHIJKL), phosphonates containing about 
30% of high-molecular-weight dissolved organic phos-
phorus (DOP) in the marine environment could be used 
by microorganisms through various processes mediated 
by transaminase gene (phnW), hydrolase gene (phnX), 
phosphonate breakdown factor A (pbfA), dehydroge-
nase gene (phny), dioxygenase gene (phnY), and oxyge-
nase gene (phnZ) [10–14]. Strikingly, PCGs involved in 
microbial metabolic processes are defined as “intracel-
lular genes” and are often excluded because they are not 
considered as a part of natural P turnover, and/or they 
do not typically participate in P cycling. However, these 
“intracellular genes” indeed mediate the biosynthesis of 
key phosphorus compounds. For example, α-D-ribose-1-
diphosphate-5P (PRPP), a key phosphonate compound in 
the nucleotide biosynthesis (i.e., purine and pyrimidine), 
could be synthesized by ribose 1,5-bisphosphokinase 
(phnN, once considered as an “extracellular gene”) and 
ribose-phosphate pyrophosphokinase encoded by prsA, 
which was excluded as an “intracellular gene” [15]. More-
over, phosphonoacetaldehyde is the central phosphonate 
compound for organophosphonate assembly such as 
2-aminoethylphosphonate (2AEP), phosphonoacetate, 
and methylphosphonate [11]. Thus, it is pivotal to expand 
PCGs beyond the current-defined “extracellular genes” 
for mechanistic understanding of P cycling processes and 
cellular P metabolisms in the environment.

Isolation of phosphate cycling bacterial strains and 
sequencing of functional and 16S rRNA gene ampli-
cons have provided new insights for microbially driven P 
cycling and possible mechanisms [16–18]. However, high 
proportions of microorganisms in diverse environments 

remain uncultured [19]. Also, it has been reported that 
about 20% of bacteria would be undetectable using cur-
rently available primers due to well-recognized biases 
[20]. Recently, metagenome sequencing analysis has 
proven to be a powerful method for understanding the 
microbially driven biogeochemical cycling (e.g., phos-
phorus, nitrogen, carbon, sulfur, and metals) in natural 
and engineered environments [21–24]. However, our 
understanding of P cycling microbial communities and 
their ecosystem functioning is still limited [25], and one 
of the major reasons is the lack of a comprehensive and 
accurately annotated database for analyzing PCGs and 
PCMs.

A comprehensive and accurate database is crucial for 
analyzing specific functional processes, pathways, and 
genes such as nifHK for N2 fixation, asrABC for sul-
fur reduction, pmoABC for methane oxidation, mcr-1 
for antibiotic resistance, and intI1 for mobile genetic 
elements as well as their associated microbial groups 
[26–30]. So far, a few orthology databases are avail-
able to decipher the functional genes/pathways from 
metagenome sequencing data [31–35]. These available 
databases contain various types of genes involved in 
many biogeochemical cycles, but still face great chal-
lenges, such as the low coverage of functional genes/
pathways, inaccurate annotations, exclusion of newly 
discovered genes, and long run-time. A recent study 
developed a pipeline for analyzing phosphatases in soil 
metagenomes using BLASTP search coupled with hid-
den Markov modeling, but this method needs manu-
ally curation [36]. The recently developed specific 
“small databases” such as NCycDB and SCycDB have 
been used to profile nitrogen and sulfur cycling micro-
bial communities with high coverage, accuracy, and 
short run-time [26, 28]. As more and more qPCR and 
metagenomic analyses detect PCGs in different envi-
ronments [1, 5, 37], the recovery of PCG diversity from 
metagenome sequencing data has become a demand-
ing task. Hence, it is necessary to develop a compre-
hensive, well-annotated, and well-validated database 
to fast profile P cycling microbial communities in the 
environment.

Here, we aimed to develop a comprehensive and accu-
rate P cycling functional gene database to accurately and 
rapidly analyze P cycling genes from the environment 
through metagenome sequencing data. We selected 
currently known 139 gene families from 10 P metabolic 
processes to construct a curated P cycling database (PCy-
cDB), which was integrated with four publicly available 
orthology databases and the NCBI RefSeq database. We 
applied criteria (e.g., identity, hit length) to filter sequence 
alignment results to reduce false positives. Additionally, 
we applied PCycDB to analyze the distribution of PCGs 
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in seven habitats including deep sea, eutrophic lake, 
mangrove, mariculture, surface ocean, permafrost, and 
wastewater treatment plant (WWTP). We demonstrate 
that PCycDB provides a new tool for comprehensive, 
accurate, and rapid analysis of P cycling microbial com-
munities. Furthermore, PCycDB could also be used to 
annotate PCGs with the sequences obtained from other 
platforms (e.g., MiSeq, MinION).

Methods
P cycling database construction
A modified method (Fig.  1) was developed to construct 
the PCycDB by integrating the UniProt, arCOG, COG, 
eggNOG, KEGG, and NCBI archaeal and bacterial Ref-
Seq databases [26, 28]. The initial collection of PCG 
families (e.g., pafA, gcd, pstSCAB, phoA) and function 
descriptions were retrieved based on previous litera-
tures [1, 5, 7, 10, 12, 38–46]. KEGG is a comprehensive 
database resource to analyze gene functions and utilities 
of the biological system [32]. Therefore, numerous phos-
phorus metabolism pathways (e.g., pyruvate metabolism, 
pentose phosphate pathway) in the KEGG database were 
referred to obtain PCG families for microbial metabolic 
processes (e.g., pps, deoB, purD) and function descrip-
tions (Additional file 1: Table S1).

Candidate PCGs were first extracted from the Swiss-
Prot database, which has been manually annotated, 

by keyword search against their gene names or func-
tion descriptions (Fig.  1a, Additional file  1: Table  S1) 
[47]. For those gene families whose sequences were 
not included in the Swiss-Prot (e.g., pbfA, phoX, and 
aepVXWPS), we manually retrieved them from IMG 
database according to the literatures [12, 45, 46]. Also, 
we included two novel phoA genes (Fjoh_3187 and 
Fjoh_3249) identified in Flavobacterium johnsoniae 
DSM2064 [45]. Candidate PCGs were then carefully 
checked based on their annotation to ensure the reli-
ability of the developed database. In addition, for those 
PCG sequences extracted from the TrEMBL database 
but without full manual annotations, they were merged 
with candidate sequences by a self-versus-self align-
ment using USEARCH v.11.0 with a 30% global identity, 
followed by a nearest neighbor clustering procedure to 
generate the core database for PCG families [26, 48].

The core database was expanded against four orthology 
databases including arCOG (ftp://​ftp.​ncbi.​nih.​gov/​pub/​
wolf/​COGs/​arCOG/, version ar14), COG (ftp://​ftp.​ncbi.​
nih.​gov/​pub/​COG/​COG20​20/​data/, version COG2020), 
eggNOG (http://​eggno​g5.​embl.​de/​downl​oad/​eggnog_​5.0/, 
version 5.0), and KEGG (http://​www.​genome.​jp/​kegg/, 
downloaded on Oct. 2, 2021) using USEARCH v.11.0 with 
a global identity of 30%. The representative sequences and 
homologues of PCGs were identified, extracted, and inte-
grated by manually checking their annotation results from 

Fig. 1  The technical flow for PCycDB construction. TP, true positives; FP, false positives

ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/arCOG/
ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/arCOG/
ftp://ftp.ncbi.nih.gov/pub/COG/COG2020/data/
ftp://ftp.ncbi.nih.gov/pub/COG/COG2020/data/
http://eggnog5.embl.de/download/eggnog_5.0/
http://www.genome.jp/kegg/
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the alignment table (Fig.  1b). Because the representative 
sequences of some gene families (e.g., gnd, ppk, pstB, pur-
FDNTL) retrieved from eggNOG and KEGG have an 
average identity over 95% against the core database, these 
sequences were clustered by CD-HIT at 95% identity to 
make PCycDB more compactable [49]. The NCBI RefSeq 
database (ftp://​ftp.​ncbi.​nlm.​nih.​gov/​refseq/​relea​se/, down-
loaded on Oct. 2, 2021) was employed to improve the com-
prehensiveness and integrality by searching against the 
developed PCycDB using USEARCH v.11.0 with an 80% 
global identity [27]. It should be noted that a strict cutoff 
(i.e., 80%) was applied in this step because of a large number 
of sequences in the NCBI RefSeq database. All amino acid 
representative sequences and nontarget homologues were 
de-duplicated and clustered by CD-HIT at 100% identity 
[49]. Finally, all representative sequences and homologues 
were selected to construct PCycDB.

Simulated gene dataset
As NCycDB is a manually curated database with 
N cycling gene families [26], those N cycling gene 
sequences were selected as true negatives for PCycDB 
validation. Then, a simulated gene dataset (Additional 
file 2: Simulated_gene_datase.fasta) containing 139 PCG 
families (12,972 sequences) and 68 N cycling gene fami-
lies (219,091 sequences) was constructed and compared 
against PCycDB using DIAMOND with an e-value of 
≤ 10−5 to estimate the accuracy of PCycDB (Fig.  1c). 
Although homologous sequences of NCycDB were 
excluded to increase the credibility, it should be noted 
that some genes have multiple functions. For example, 
phoR encoding a phosphate regulon sensor protein is 
defined as a benzalkonium chloride resistance gene in the 
BacMet database [50]. Thus, a few N cycling genes might 
be also considered as PCGs, resulting in false positives. 
To evaluate the accuracy of PCycDB, we calculated accu-
racy, positive predictive value (PPV), specificity, sensi-
tivity, and negative predictive value (NPV) based on the 
following equations:

(1)
Accuracy =

True Positives + True Negatives

True Positives + False Positives + True Negatives + False Negatives

(2)
Positive predict value =

True Positives

True Positives + False Positives

(3)Specificity =
True Negatives

True Negatives + False Positives

(4)Sensitivity =
True Positives

True Positives + False Negatives

A genome sequence dataset from a mock community
Considering that the whole genome sequencing and 
metagenome binning have been widely used to study 
the metabolic pathway in an individual microorganism, 
a mock microbial community (Additional file 3: Mock_
community.fasta) containing 50 bacterial genomes was 
constructed to further validate the accuracy of PCycDB 
(Fig. 1c). The protein sequences (.fasta file) and genome 
annotations (.gff file) of each genome were randomly 
retrieved from the NCBI genome or assembly data-
base. The detection ratio was calculated by dividing the 
number of PCG families predicted using PCycDB by 
the number of those described by the NCBI genome or 
assembly database. Those genomes with detection ratio 
> 1.0, = 1.0, or < 1.0 were defined as overestimated, 
exactly estimated, and underestimated, respectively. The 
simulated gene and mock community sequence datasets 
were searched against PCycDB using DIAMOND with 
an e-value ≤ 10−5.

Metagenome sequencing datasets
To test PCycDB applications for various environments, 
the developed PCycDB was used to analyze PCGs from 
seven habitats including deep sea (n = 6), eutrophic lake 
(n = 5), mangrove (n = 8), mariculture (n = 13), surface 
ocean (n = 6), permafrost (n = 9), and WWTP (n = 8). 
Metagenome sequencing datasets were collected from 
sequence read archive (SRA) in NCBI. To prevent fluctu-
ations produced by different sequencing strategies, only 
metagenome data sequenced by the Illumina HiSeq plat-
form with paired-end sequencing were selected (Addi-
tional file 1: Table S2).

Function and taxonomy annotation
Each metagenome was quality trimmed using sickle with 
a paired-end mode and a minimal quality of 20 [51]. 
The high-quality reads were assembled into contigs via 
de Bruijn graph with a multiple k-mer size (parament: 
--k-list 21, 29, 39, 59, 79, 99, 119, 141) strategy using 
MEGAHIT [52]. The open reading frames (ORFs) were 
predicted using Prodigal v2.6.3 [53] and annotated by 
searching against arCOG, COG, eggNOG, KEGG, and 
PCycDB using DIAMOND with an e-value of ≤ 10−5 and 
the same computational thread (option: −p 20). Only the 
alignment results aligned to PCycDB were filtered with 
an identity ≥ 30.0% and hit length ≥ 25 amino acids (aa). 

(5)

Negative predict value =
True Negatives

True Negatives + False Negatives

ftp://ftp.ncbi.nlm.nih.gov/refseq/release/
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The ORF abundance (coverage) was calculated using the 
following equation:

where N is the number of reads mapped to predicted 
ORFs, L is the sequence length of a target ORF, n is the 
number of predicted ORFs, l is the length of Illumina 
sequencing reads, and S is the sequencing data size (Gb) 
[54]. Meanwhile, those pafA ORFs were extracted to pro-
file the taxonomical composition based on the BLASTX 
search against the NCBI nonredundant database.

Statistical analysis
All analyses were performed using R 4.0.5 if not speci-
fied. The most important filtering paraments for 
increasing the accuracy of PCycDB were determined 
using random forest analysis based on the alignment 
result. Seventy percent of alignment results were used 
to train the fit model, while the remaining was used to 
validate the accuracy of model. The two-tailed analy-
sis of variance (ANOVA) was used to calculate the sig-
nificant difference of detected gene families, run-time, 
and PCG coverage among seven habitats or different 
databases. The resulting P-values were adjusted by the 
Tukey’s multiple comparisons test using the GraphPad 
software (Version Prism 8.0.1, California, USA). The 
enrichment of PCGs within a habitat was tested by 
Fisher’s exact test with the P-value adjusted by Bonfer-
roni correction. A nonmetric multidimensional scal-
ing plot (NMDS) based on the Bray–Curtis distances 
was performed to reveal the beta diversity of PCGs. 
The significant difference of PCGs among different 
habitats was performed using multi-response permu-
tational procedure (MRPP) and analysis of similarity 
(ANOSIM) tests.

Results
Gene families and metabolic processes in PCycDB
We identified 139 key PCG families based on 863,513 
representative sequences and 320,183 homologues cov-
ering 10 phosphorus cycling processes (Additional file 1: 
Table S1). Two-component system, oxidative phosphoryl-
ation, transporters, and organic phosphoester hydrolysis 
are major processes for microbes to regulate, transport, 
and uptake P sources from the environment (Fig. 2a), and 
pyruvate, pentose phosphate, phosphonate and phosphi-
nate, purine, and pyrimidine metabolisms are responsible 
for cellular P metabolic processes to synthesize organic P 
compounds (Fig. 2b).

(6)Coverage =

n

1

N × l/L

S

Two‑component system
A total of nine gene families with 50,866 representative 
sequences and 13,780 homologues are retrieved for two-
component system, including phoU, phoR, phoB, phoP, 
SenX3, RegX3, pgtC, pgtB, and pgtA. These regulons are 
activated to modulate the expression of transporter genes 
(e.g., pstSCAB, pgtP) and phosphatase genes (e.g., phoA, 
phoD) under P depletion.

Transporters
Twenty-eight gene families including pgtP, pstSCAB, 
pit, htxB, ptxABC, phnD_phosphite, phnDEC, ugp-
BAEC, phnSVUT, glpT, and aepXVWPS are recruited 
for transporters. A total of 115,660 sequences and 
114,711 homologous orthology groups are collected. 
The orthophosphate outside the membrane is trans-
ported into the cell by permease proteins encoded by pst-
SCAB and pit. The hypophosphite and phosphite could 
be transported into cell by HtxB and PtxABC protein, 
respectively. Phosphoenolpyruvate (PEP) and phospho-
glycerate (PGA) enter the cell by binding to a phospho-
glycerate transporter protein (PgtP), while sn-glycerol-3P 
is transported by proteins encoded by ugpBAEC. The 
ATP-binding cassette transporters including PhnDEC, 
PhnSVUT, and AepXVWPS are responsible for 2-ami-
noethylphosphonate (2AEP) transport.

Organic phosphoester hydrolysis
Thirteen gene families with 15,902 sequences and 1022 
homologues are collected in the organic phosphoester 
hydrolysis process. Among them, phoA, phoD, and 
phoX code for alkaline phosphatases, and phoN, aphA, 
phoC, and olpA encode acid phosphatases. The opd gene 
encodes phosphotriesterase, and phy and appA code for 
phytases. The pafA gene encodes Pi-insensitive phospho-
monoesterase, and ugpQ and glpQ code for cytoplasmic 
glycerophosphoryl diester phosphodiesterase and peri-
plasmic glycerophosphoryl diester phosphodiesterase, 
respectively.

Pyruvate metabolism
Six gene families, including pps, ppdK, pyk, pckG, ppc, 
and pckA, are involved in pyruvate metabolism. Phos-
phoenolpyruvate is synthesized by dikinases (i.e., pps, 
ppdK) and carboxykinases (i.e., pckG, pckA). A total of 
42,872 representative sequences and 7824 homologues 
are included in this metabolic process.

Pentose phosphate pathway
The pentose phosphate pathway contains eight gene 
families including gdh, gcd, gnl, gntK, gnd, rpiA, prsA, 
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Fig. 2  An outline of key phosphorus metabolic processes. a Two-component system, oxidative phosphorylation, transporters, and organic 
phosphoester hydrolysis. b Pyruvate metabolism, phosphonate and phosphinate metabolism, phosphotransferase system (PTS), pentose 
phosphate pathway, purine metabolism, and pyrimidine metabolism. X may be O, F, C, or S; R is any alkyl group. PEP, phosphoenolpyruvate; PGA, 
including 2-phosphoglycerate and 3-phosphoglycerate; PRPP, α-D-ribose-1-diphosphate-5P; GAR, 5′-phosphoribosylglycinamide; FGAR, 5′-phosp
horibosyl-N-formylglycinamide; FGAM, 2-(formamido)-N1-(5′-phosphoribosyl) acetamidine; AIR, aminiimidazole ribotide; CAIR, 1-(5′-phospho-D-r
ibosyl)-5-amino-4-imidazolecarboxylate; N5-CAIR, 5-carboxyamino-1-(5-phospho-D-ribosyl)imidazole; SAICAR, 1-(5′-phospho-D-ribosyl)-5-amino-4-
(N-succinocarboxamide)-imidazole; AICAR, 1-(5′-phosphoribosyl)-5-amino-4-imidazolecarboxamide; FAICAR, 1-(5′-phosphoribosyl)-5-formamido-4-
imidazolecarboxamide
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and deoB with 49,974 representative sequences and 
22,752 homologous sequences. PRPP can be synthe-
sized through this pathway for nucleotide biosynthesis.

Phosphotransferase system
Gene families including ptsI and ptsH are included in 
the phosphotransferase system. The ptsI gene codes 
for phosphoenolpyruvate-protein phosphotransferase, 
and ptsH encodes a phosphocarrier protein. A total 
of 11,192 sequences and 2539 homologous orthology 
groups are collected.

Oxidative phosphorylation
Two gene families including ppk and ppa are recruited 
in this metabolic process with a total of 32,190 repre-
sentative sequences and 5028 homologous sequences.

Phosphonate and phosphinate metabolism
A total of 24 gene families including pepM, pphA, 
ppd, fomC, phpC, mpnS, phnGHIJKLMNOPWXYZ, 
phny, pbfA, and phnPP are involved with a total of 
31,285 sequences and 20,862 homologues. Three 
important metabolic pathways including phnW-phnX, 
phnW-phny, and phnY-phnZ are responsible for the 
degradation of 2AEP to produce acetaldehyde, phos-
phonoacetate, and glycine, respectively.

Purine metabolism
Purine metabolism contains 25 gene families including 
ADE2, adk, gmk, ushA, guaAB, ndk, ppx, purABCDEF-
HKLMNOPQST, and spoT with a total of 333,930 repre-
sentative sequences and 79,528 homologous sequences. 
These gene families are responsible for the biosynthesis 
of ATP and GTP.

Pyrimidine metabolism
Pyrimidine metabolism is composed of 18 gene 
families including dcd, dut, cmk, ushA, ndk, nrdAB-
DEFJ, pyrEFHG, rtpR, thyA, and tmk with a total of 
191,825 sequences and 52,535 homologous orthol-
ogy groups. These gene families are responsible for 
the biosynthesis of TTP and CTP as well as DNA 
and RNA. The ndk gene encoding a nucleoside-
diphosphate kinase is included in both purine and 
pyrimidine metabolisms because it mediates the 
production of ATP, GTP, CTP, TTP, and UTP during 
nucleotide metabolism (Additional file  1: Table  S1). 
The ushA gene encoding 5′-nucleotidase has an 
important function in nucleotide (e.g., AMP, GMP, 
and IMP) salvage.

Others
Six gene families including htxA, ptxD, lysR, phnR, phnF, 
and phoH are also included in PCycDB. The phnR gene 
is the regulator for induction of phnA, and the LysR pro-
tein activates the transcription of phnWX operon. The 
hypophosphite and phosphite could be oxidized by HtxA 
and PtxD, respectively. A total of 7520 sequences and 642 
homologues are identified.

Validation of PCycDB with a simulated gene dataset
We first used a simulated gene dataset coupling 
with random forest analysis to evaluate the accu-
racy of PCycDB. The fit model with an accuracy of 
98.6% suggested that the identity and hit length were 
the two most important factors to discriminate true 
negatives from false positives (Additional file  1: 
Table  S3, S4). Positive predictive value (PPV) and 
specificity followed an S-shape curve and remark-
ably increased with identity (from 23.0 to 82.0%), 
indicating that false positives could be efficiently 
removed as identity increased (Fig.  3a and b). For 
example, when accuracy was 99.0% with a 30.0% 
identity cutoff, PPV and specificity were 85.0% and 
98.9%, respectively, and no reduction of sensitivity 
or negative predict value (NPV) was observed when 
the identity increased from 0.2 to 95.9% (Fig. 3c and 
d). Similarly, PPV and specificity increased with hit 
length (Fig.  3e and f ), but sensitivity and NPV dra-
matically decreased when the hit length was ≥ 80 
aa (Fig.  3g and h). These findings suggested that hit 
length was not an effective filtering factor to increase 
the accuracy of PCycDB; thus, the cutoff of hit length 
was empirically set to 25 aa [55]. With the above cri-
teria (i.e., 30.0% identity and 25 aa), the detection 
ratio of specific PCG was 99.9 ± 0.6% (Additional 
file  1: Table  S5), that is, all the known PCGs were 
sensitively detected by PCycDB.

Validation of PCycDB with a mock community
We further used a mock community containing 50 
microbial genomes to validate PCycDB and found that 
all genomes were overestimated with an identity cut-
off of 30.0% (Fig.  4a). The detection ratio varied from 
1.05 (Methanothermobacter sp. AS04akNAM 23) to 
2.42 (Flavobacterium columnare) with an average of 
1.47 ± 0.28. The results were consistent with the simu-
lated gene dataset, indicating the high false positives at 
a relatively low identity cutoff for genomes (i.e., 30.0%, 
Fig.  4b). The number of over-, exact-, and underesti-
mated genomes was 19, 9, and 22, respectively, at the 
90.0% identity. Unlike PPV calculated with the simu-
lated gene dataset, which showed a plateau phase, 
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Fig. 3  The accuracy of PCycDB against identity and hit length. The positive predictive value (PPV, a, e), sensitivity (b, f), specificity (c, g), and 
negative predictive value (NPV, d, h) were recorded along with the identity varied from 0.2 to 99.9% with a step by 0.1%, and the hit length ranged 
from 2 to 99 amino acids with a step of one. Left dash line represents a 30% identity cutoff, and right dash line means a 70% identity cutoff
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the detection ratio of some bacterial genomes (e.g., 
Desulfolutivibrio sulfoxidireducens) was substantially 
reduced at a high identity cutoff, causing false nega-
tives (Additional file  1: Table  S6). Interestingly, we 
observed an inverted V shape curve of exactly esti-
mated genomes against identity (Fig.  4c). Of these 50 
genomes, the number of exact estimated genomes 
reached a maximum at 80.0% identity (the turning 
point), with the detection ratios ranging from 0.81 
(Desulfuromonas acetoxidans) to 1.15 (Fusobacterium 
nucleatum subsp. polymorphum). However, consider-
ing that the detection ratio was 1.03 (slightly higher 
than 1) and the standard deviation was relatively low 
(0.10), we believed that using an identity of 70% should 
be suitable for genome annotation. In this case, the 
number of over-, exact-, and underestimated genomes 
was 26, 14, and 10, respectively, while annotation accu-
racy, PPV, sensitivity, specificity, and NPV for simu-
lated gene dataset were 99.8%, 96.1%, 99.9%, 99.8%, and 
99.9%, respectively.

Comparison of performance among different orthology 
databases
To evaluate the performance of PCycDB, we first com-
pared the comprehensiveness of PCycDB with other 
publicly available orthology databases. In comparison 
with PCycDB with 139 PCGs families, arCOG, COG, 
eggNOG, and KEGG contain 54, 120, 125, and 133 
PCG families, respectively (Fig.  5a), and they only have 
approximately half of representative sequences (Fig.  5b, 
blue cells). Especially, these orthology databases pro-
vide fewer representative sequences for acid and alkaline 
phosphatases (e.g., phoC, phoN, phoX) and phytases (e.g., 
phy, appA). Also, some key PCG families were still miss-
ing in the arCOG, COG, eggNOG, or KEGG databases, 
such as ppd, htxA, aepVXWPS, phnZ, and phnR. Sec-
ond, the genes of phoA, phoD, phoD, and pafA, which are 
divergent PCG families, could be well phylogenetically 
separated in PCycDB (Additional file  4: Fig. S1). How-
ever, we also observed that Flavobacterium PhoX was 
phylogenetically distant from other phoX genes, while 

Fig. 4  The accuracy of PCycDB validated by a mock community. a Heatmap showed the detection ratio of each genome involved in the mock 
community as identity increased, and white represents the detection ratio of 1.0. b The discrete tendency of detection ratios. c The number of over-, 
under-, or exact-estimated genomes at different identity cutoffs
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Fig. 5  Comparison of performance among different orthology databases. a The number of PCG families detected in different databases. b 
Comparison of comprehensiveness of PCGs families in four public orthology databases. PCycDB was used as a reference (i.e., 100%) for the 
comparison. “×” indicates that this gene family is absent in corresponding database. The baseline was set to 0.5 and colored as white, that is, blue 
color represents the comprehensiveness less than 0.5

Fig. 6  The composition and structure of PCGs in seven habitats (deep sea, n = 6; eutrophic lake, n = 5; mangrove, n = 8; mariculture, n = 13; 
surface ocean, n = 6; permafrost, n = 9; WWTP, n = 8). Bar plots showed the abundance of total PCGs (a), alkaline and acid phosphatases (b), and 
phoA, phoD, phoX, and phnW (c). Pie chart showed the taxonomical distribution of PafA (d). NMD analysis showed the beta-diversity of PCGs in 
seven habitats (e). The two-tailed analysis of variance (ANOVA) was used to calculate the significant difference of PCG abundance among seven 
habitats, and P-values were corrected by Tukey’s multiple comparison tests. The enrichment of the PCGs within a habitat was tested by Fisher’ exact 
test, with the P-value further adjusted using the Bonferroni correction. The significant difference of PCG patterns among different habitats was 
performed using multi-response permutational procedure (MRPP) and analysis of similarity (ANOSIM) tests. Different letters (“a,” “b,” “c,” or “d”) and 
asterisk represent the significant difference among these seven habitats. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001

(See figure on next page.)
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PafA and PhoD clusters were much closer, which are con-
sistent with recent studies [45, 46]. Third, we compared 
the detected PCG families and run-time of metagenome 
sequencing datasets using those databases. Among them, 
PCycDB detected more PCG families with an average of 
117.0 compared to arCOG (62.6), COG (91.5), eggNOG 
(89.2), and KEGG (91.2) databases (Additional file  4: 
Fig. S2a), and the run-time of PCycDB (201.3 s) was sig-
nificantly (P < 0.05, ANOVA test) shorter than that of 
eggNOG (1246.7 s) and KEGG (762.2 s) databases (Addi-
tional file 4: Fig. S2b). Thus, compared to these existing 
orthology databases, the specific PCycDB achieves a 
more comprehensive, more accurate, and faster analysis 
of PCGs from metagenome sequencing datasets.

Functional diversity revealed by PCycDB
We applied PCycDB to analyze the functional diversity 
of P cycling microbial communities from seven habitats, 
which represent typical habitats of natural and engi-
neered ecosystems. The total PCGs in eutrophic lake, 
mariculture, and WWTP were more abundant than 
deep sea, permafrost, and mangrove (Fig. 6a). Purine and 
pyrimidine metabolism were the most abundant pathway 
in modulating P turnover, followed by transporters and 
two-component system, indicating a large P requirement 
in all habitats (Additional file  4: Fig. S3). However, the 
gene abundance for organic phosphoester hydrolase in all 
habitats was low. The abundance of pstSCAB genes was 
significantly (P < 0.01, Fisher’s exact test) higher than that 
of phnDEC genes excepted for deep sea and mangrove 
(Additional file  4: Fig. S4). The abundance of alkaline 
phosphatase genes (i.e., phoA, phoD, and phoX) was sig-
nificantly higher than that of acid phosphatase genes in 
all habitats except for mangrove (Fig. 6b, P < 0.01, Fisher’s 
exact test). Interestingly, the abundance of phnW was sig-
nificantly (P < 0.05, Fisher’s exact test) higher than that 
of phoA, phoD, and phoX in marine-associated deep sea 
and surface ocean (Fig. 6c). Although Bacteroidetes only 
constituted a low proportion number (27%) of pafA fam-
ily, it accounted for 65% of the PafA abundance (Fig. 6d). 
NMDS plots revealed that the composition of PCGs was 
significantly (P < 0.001, MRPP and ANOSIM tests) differ-
ent among seven habitats (Fig. 6e), suggesting a habitat-
specific distribution of P cycling microbial communities.

Discussion
Phosphorus, the eleventh most abundant element on 
Earth, is indispensable by all microbes for their pivotal 
metabolic functions [11]. It is important to rapidly deci-
pher biogeochemical PCGs from metagenome sequenc-
ing data using an accurate database. In this study, we 
developed PCycDB with 139 gene families, identified 
key criteria (i.e., identity, hit length) for ensuring its 

annotation accuracy, and applied it to analyze PCGs from 
seven different habitats. The results demonstrate that 
PCycDB is a powerful tool for accurate, comprehensive 
and fast annotation of PCGs from the environment.

Compared to other databases, the PCycDB provides 
a more accurate annotation for metagenome sequenc-
ing data. First, the annotation of PCG families in PCy-
cDB is more accurate. Some enzymes have equivocal 
annotations in the KEGG database. For example, the 
gene encoding phosphonoacetaldehyde dehydroge-
nase (defined as phny in this study, EC: 1.2.1) and the 
gene encoding 2-aminoethylphosphonate dioxygenase 
(defined as phnY in this study, EC: 1.14.11.46) were both 
named phnY in KEGG, resulting in ambiguity. In addi-
tion, the genes of ugpQ (cytoplasmic glycerophosphoryl 
diester phosphodiesterase) and glpQ (periplasmic glyc-
erophosphoryl diester phosphodiesterase) have the same 
KO number (i.e., K00126). Second, the false positives are 
dramatically reduced by including 320,183 homologous 
sequences and implementing the best filtering param-
eters. To obtain the functional or taxonomic annotations 
from metagenome sequencing datasets, we generally 
search querying sequences against “large databases” such 
as NCBI nonredundant and/or KEGG databases using 
the default paraments as they include a certain set of 
sequences with different functions [21]. The bit score and 
e-value are the most commonly used filtering factors to 
promote the accuracy of functional annotations [5, 28]; 
however, false positives still remain with some functional 
gene databases [26]. For instance, assuming an ORF 
which was not phoA but had a 30.0% identity with phoD 
and a 60.0% identity with phoA, it would be annotated as 
phoA (false positive). This is the most frequent mistake 
when directly using the alignment results for downstream 
functional analysis. Including homologous sequences 
can reduce some false positives. In the above case, if that 
non-phoA ORF had a 70.0% identity with a homologous 
sequence, which had been added into the database, it 
would not be annotated as phoA. Although some non-
PCGs can be excluded through the homologous method, 
false positives would still be present when non-PCG 
sequences had a higher identity with PCGs than homo-
logues. Previously, the prediction of other function data-
bases such as integrase, CARD, and BacMet databases is 
restricted to a high identity cutoff greater than 80% [27, 
50, 56]. More recently, N cycling genes were annotated 
using NCycDB with an 85% identity threshold [26, 57]. 
However, false negatives can be increased at a high cut-
off, that is, a considerable proportion of real functional 
genes would be removed [58]. Hence, it is crucial to set 
an appropriate cutoff to further reduce false positives 
and false negatives. In this study, Random forest analy-
sis suggested that identity and hit length were the most 
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Fig. 6  (See legend on previous page.)
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powerful filtering factors to increase annotation accu-
racy. PPV, sensitivity, specificity, and NPV were all above 
96.1% with a cutoff of 70.0% identity and 25-aa length, 
demonstrating the high accuracy of PCycDB to profile 
PCGs from metagenome sequencing datasets. The cutoff 
of hit length is empirically set to 25 aa because it is suit-
able for one to annotate short metagenome reads or pre-
dicted ORFs (e.g., 150 bp) without a significant increase 
of false negatives.

We noticed that certain genomes involved in the mock 
community had a detection ratio greater than 1.0 even 
with a 90.0% identity cutoff. This might be explained by 
the fact that annotations of these genomes from NCBI 
are obsolete. For example, the genome of Bacillus subti-
lis subsp. subtilis str. 168 with a detection ratio of 1.23 at 
a 90.0% identity was submitted in 2009, and since then, 
several new functional genes and pathways have been 
studied, greatly advancing our understanding of natural 
P cycling [10, 11, 43]. Moreover, the genus of Bacillus has 
long been known as P-solubilizing bacteria (PSB) capa-
ble of excellent phosphate solubilization and mineraliza-
tion ability [4, 59]. The high detection ratio of PCGs in 
the mock community indicated that bacteria had more 
potential than previously recognized for mediating global 
P turnover. Therefore, we suggest that 30% identity and 
25 aa are appropriate to profile PCGs from metagenome 
sequencing data because all known PCGs were detected 
with a small number of false positives (1.06%). Alterna-
tively, one may use a stricter cutoff (i.e., 70.0% identity) to 
identify the PCGs from genomes and further reduce the 
false positives (< 0.25%).

We also demonstrate that PCycDB are more compre-
hensive compared to other databases. First, we include 
more PCG families in PCycDB. Previously, only some 
PCGs attributed to “extracellular enzymes” were inves-
tigated in forest soils, agroecosystems, and mined 
areas because these genes played an important role in 
respective research habitats [1, 5, 7]. Admittedly, phos-
phatases can be secreted outside the cell membrane by 
bacteria [1]. However, while the transporter system of 
pstSCAB and phnDEC complexes has been recognized 
as periplasmic binding proteins, there was no sufficient 
evidence to support that the phnGHIJKLMNOP genes 
encoding C-P lyases could also be released outside the 
membrane [60, 61]. Thus, the jargon of “extracellu-
lar genes” or “intracellular genes” should be carefully 
defined. Furthermore, it is important to uncover the 
metabolic mechanism of how microorganisms assimi-
late P into their biomass after acquiring orthophos-
phate. Second, we include more P cycling pathways 
in PCycDB. In addition to phosphoesters with C-O-P 
bonds, phosphonates that contain more stable C-P 

bonds consist of about one-third of total dissolved 
organic phosphorus (DOP) in marine environments 
[10]. 2AEP has been considered as the most abundant 
phosphonates in the ocean and could be transported 
by three transport systems, PhnDCE, PhnSTUV, and 
novel AepXVWSP [14, 38, 62]. It has been demon-
strated that the genes of aepXVW, aepS, and aepP are 
Pi-insensitive, indicating the ecological role of marine 
and terrestrial bacteria capable of 2AEP catabolism [14]. 
In addition, three important metabolic pathways for the 
degradation of 2AEP are included in PCycDB, includ-
ing phnW-phnX, phnW-phny, and phnY-phnZ. While 
pstSCAB and phoD are regulated by a two-component 
system PhoB-PhoR under P deficiency [63], the genes 
of phnW and phnX which cleave C-P bond of 2AEP are 
mediated by lysR [10], and phosphonoacetate hydrolase 
encoded by phnA is induced by another transcriptional 
regulator gene phnR [43]. A recent study reported that 
2-amino-1-hydroxyethlyphosphonate (R-HEAP) could 
also be utilized by bacteria as a phosphorus source 
via a pbfA-phnW-phny pathway [12]. These genes are 
often excluded because they were not considered as 
participants in P cycling. Third, PCycDB have more 
representative sequences of PCGs. The arCOG data-
base includes fewer types of PCGs families because it 
is designed for functional annotation of archaea [35]. 
However, COG, eggNOG, and KEGG have fewer rep-
resentative sequences of PCGs especially for those 
involved in organic phosphoester hydrolysis processes; 
thus, the diversity/abundance of some PCGs could be 
underestimated. By including these “intracellular PCGs” 
which were usually neglected in previous studies and 
expanding the comprehensiveness of representative 
sequences, PCycDB facilitates the current insights into 
our understanding of microbial P cycling and metabolic 
mechanisms.

To understand the P cycling microbial communities 
in different environments, the profile of PCGs was deci-
phered using PCycDB. The results revealed that PCGs 
were widespread across different environments, indicat-
ing that P cycling is a common and important process 
in natural and engineered ecosystems. Meanwhile, we 
found that the composition of PCGs was variable among 
diverse habitats. The heterostructure of nutrient availabil-
ity, temperature, moisture, and humic substances might 
play an important role in the intervention of unique PCG 
paradigm [64–66]. The high abundance of pstSCAB iden-
tified in this study was supported by the finding that the 
pstSCAB was a prominent transporter system for inor-
ganic phosphorus uptake [67]. Phosphatases play a cru-
cial role in acquiring P source from phosphoesters for 
microorganisms and mitigating eutrophication caused by 
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P contamination [68, 69]. The genes encoding the alkaline 
phosphates were predominant in most habitats, indicating 
that the mineralization potential by hydrolyzing the C-O-P 
bonds was the main mechanism by which microorganisms 
acquired orthophosphate [7]. Intriguingly, phnW coding 
for 2AEP transaminase was prevalent across the environ-
ments examined. Similarly, a certain abundance of phnW 
was found in previous studies [1, 5]. These findings sug-
gested that 2AEP was an important P source for microbes 
not only in marine environments but also in other habitats 
to meet their P requirements [11, 13]. The high abundance 
of pafA carried by Bacteroidetes indicates that Bacteroi-
detes lack most ATP-binding cassette transporters and 
need an additional way for organic molecules uptake [46]. 
These functional and taxonomic results evidence that PCy-
cDB is a sensitive, accurate, and broad-spectrum database 
to analyze PCGs and PCMs in different environments.

Conclusions
We developed an accurate, comprehensive, and well-
curated P cycling functional gene database for metage-
nome sequencing data analysis with four orthology 
public databases and the NCBI RefSeq database inte-
grated. Importantly, key genes encoding the intracellu-
lar P metabolic processes, Pi-insensitive phosphatase, 
and novel 2AEP transporters are included in the 
PCycDB, which should broaden our insights into 
microbially driven global biogeochemical P cycling. 
The accuracy is enhanced by including homologous 
sequences and using identity and hit length as effective 
filters. By applying the PCycDB to analyze P cycling 
microbial communities from seven habitats, we 
showed that PCycDB was widely applicable to accu-
rately annotate PCGs from different environments. 
Thus, the constructed PCycDB is a powerful tool for 
rapidly analyzing P cycling microbial communities and 
their underlying mechanisms with high coverage and 
high accuracy.
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