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ABSTRACT

Checkpoint programmed death-1 (PD-1)/programmed cell death ligands (PD-Ls) 

have been identified as negative immunoregulatory molecules that promote immune 
evasion of tumor cells. The interaction of PD-1 and PD-Ls inhibits the function of 

T cells and tumor-infiltrating lymphocytes (TIL) while increasing the function of 
immunosuppressive regulatory T cells (Tregs). This condition causes the tumor cells 
to evade immune response. Thus, the blockade of PD-1/PD-L1 enhances anti-tumor 

immunity by reducing the number and/or the suppressive activity of Tregs and by 
restoring the activity of effector T cells. Furthermore, some monoclonal antibodies 
blockading PD-1/PD-Ls axis have achieved good effect and received Food and Drug 

Administration approval. The role of PD-1/PD-Ls in tumors has been well studied, but 

little is known on the mechanism by which PD-1 blocks T-cell activation. In this study, 
we provide a brief overview on the discovery and regulatory mechanism of PD-1 and 
PD-L1 dysregulation in tumors, as well as the function and signaling pathway of PD-1 
and its ligands; their roles in tumor evasion and clinical treatment were also studied.

INTRODUCTION

Under normal physiological conditions, the major 

function of PD-1 is to inhibit effector T-cell activity and 

enhance the function and development of Tregs, which 

inhibit T-cell responses and prevent overstimulation of 

immune responses in peripheral tissues [1, 2]. The PD-1 

pathway can protect the host against autoimmunity [3]. 

PD-1 pathway plays a key role in the regulation 

of antifungal and virus immunity [4]. PD-1 knockout 

(Pdcd1−/−) mice can lead to tissue sensitive to infection 

or late onset autoimmune disease with variable incidence 

depending on the background strain carrying the PD1 

null animal [5-7]. Whereas, blockade of PD-1 enhances 

both proliferation of memory B cells and expansion 

of virus-specific CD8 T cells during chronic simian 
immunodeficiency virus (SIV) infection in macaques [8]. 
In persistently infected mice lacking CD4 T-cell help, 
blockade of the PD-1/PD-L1 inhibitory pathway had a 

beneficial effect on the ‘helpless’ CD8 T cells, restoring 
their ability to undergo proliferation, secrete cytokines, 

kill infected cells, and decrease the viral load [9].

Although tumor cells express numerous antigens, 

tumor evades T-cell responses and host immunity 

through negative regulators of the immune system, 

such as programmed death-1 (PD-1), programmed 

cell death-ligand-1 (PD-L1)/programmed cell death-

ligand-2 (PD-L2), cytotoxic T lymphocyte antigen 4 

(CTLA-4), T-cell immunoglobulin mucin 3 (TIM3), 
2B4, the B and T lymphocyte attenuator (BTLA), and 

lymphocyte-activation gene 3 (LAG3) [10-12]. Among 

these regulators, CTLA-4 is a type 1 transmembrane 
glycoprotein mainly expressed on activated T cells. 

CTLA-4 inhibits T-cell function through intracellular 
signaling regulation via T-cell receptor (TCR) and 
CD28 in tumors [12, 13]. LAG3 (CD223) is a type 
I membrane glycoprotein of the immunogloblin (Ig) 
superfamily expressed in several different cell types, such 

as plasmacytoid dendritic cells (DCs), B cells, natural 
killer T cells, γ and δ T cells, exhausted CD8+ T cells, 
and regulatory T cells (Tregs). Association of LAG3 

with PD-1 inhibits signaling passway in T-cell [12, 14]. 

TIM3 is a transmembrane molecule associated with CD8+ 
T-cell dysfunction and exhaustion. TIM3 is overexpressed 
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on Tregs in tumor microenvironment. Tregs is related 

to ovarian tumor size. Blockade of TIM3 restores the 
inhibitory functions of tumor-infiltrating Tregs [15]. PD-1 
and PD-L1/PD-L2 are identified as immune checkpoints 
that inhibit effector T-cell activity [1, 16].

PD-L1 is overrepresented in the presence of 

tumor and promotes immune evasion and growth of 

tumor by suppressing T-cell response [17]. PD-1/PD-L1 

plays critical roles in cancer immunology, and blocking 

antibodies against this receptor provide benefits in clinical 
trials, with the first of this class recently approved by the 
Food and Drug Administration (FDA) to treat patients 

with refractory malignancies [16]. Recently, blockade of 
PD-1/PD-L1 has been found to treat effectively cancer by 

enhancing immunity. Several studies on Abs blockade of 
the PD-1 receptor (nivolumab, MK3475, or combination 
of nivolumab with the anti-CTLA4 checkpoint inhibitor 
ipilimumab) have improved survival profiles and acquired 
high response rates in several solid tumors [18-22]. In 
melanoma refractory to targeted therapy, pembrolizumab 

which is a humanized monoclonal IgG4-kappa isotype 
antibody against PD-1 induced overall response rates 

(ORRs) of 21%-34%. Among the patients with refractory 
non-small cell lung cancer (NSCLC), pembrolizumab 
induced ORRs of 19%-25%. On the basis of these results, 
pembrolizumab was approved by the USA FDA to treat 
advanced melanoma and NSCLC [23].

The function of PD-1 in peripheral tolerance 

and anti-tumor immune response is well established. 

Moreover, blockade of the PD-1 pathway has achieved 
good effect on restraining tumor. However, the exact 

mechanism of dysregulation of PD-1 and its ligands is 

still unknown. In addition, the manner of PD-1 ligation 
exerting its effects on specific signaling targets and how 
these altered signaling events affect T-cell function are yet 

to be completely understood.

PD-1 AND THE REGULATION OF PD-1 

EXPRESSION

PD-1 (also called CD279) was first isolated from 
2B4.11 (a murine T-cell hybridoma) and interleukin-3 

(IL-3)-deprived LyD9 (a murine hematopoietic progenitor 
cell line) by using subtractive hybridization technique 
[24]. PD-1 is encoded by the Pdcd1, which is located 

on chromosome 2 (2q37) [25-27]. PD-1 is one of the 

member of B7/CD28 family [28, 29]. PD-1 is also a 288 
amino acid (55 kDa) type I transmembrane protein of the 
immune globulin superfamily, comprising an extracellular 

N-terminal IgV-like domain, a transmembrane domain, 
and a cytoplasmic tail [24, 26, 30]. There are two tyrosine 

residues in the cytoplasmic tail of PD-1; the N-terminal 

of which is involved in a sequence defined as the 
immunoreceptor tyrosine-based inhibitory motif (ITIM, 
I/L/VXYXXL/V); the C-terminal tyrosine is engaged in 
a sequence defined as immunoreceptor tyrosine-based 

switch motif (ITSM, TxYxxL) [24, 25, 31, 32]. The 
amino acid sequence around the C-terminal tyrosine 
(TEYATIVF) of PD-1 is well conserved between mouse 
and human and is related to SHP-1 and SHP-2. Whereas, 
the N-terminal tyrosine of PD-1 does not associate with 

either SHP-1 or SHP-2 [33].
PD-1 can promote the development, immunity 

evasion, and prognosis of several kinds of solid tumor, 

such as NSCLC, melanoma, breast cancer (BC), and 
renal cell carcinoma (RCC) [34]. Thompson’s research 
showed that PD-1 was expressed in 56% of nephrectomy 
specimens of patients with RCC. PD-1 is also expressed 
in the T cells rather than in RCC tumor cells. Furthermore, 
the expression of PD-1 was associated with tumor stage, 

the presence of necrosis or sarcomatoid differentiation, 

and poor 5 year survival rate [35]. In classical Hodgkin 
lymphoma (cHL) and mediastinal large B-cell lymphoma, 

the extended PD-1 ligand/9p24.1 amplification region 
contains the Janus kinase 2 (JAK2) locus. JAK2 
amplification promoted protein expression and activity, 
specifically inducing PD-1 ligand transcription and 
enhancing sensitivity to JAK2 inhibition. Therefore, 
PD-1 ligand/9p24.1 amplification is a disease-specific 
structural alteration that increases both the gene dosage 

of PD-1 ligands and their induction by JAK2, defining 
the PD-1 pathway and JAK2 as complementary rational 
therapeutic targets [36]. Programmed death 1 expression 

in the peritumoral microenvironment is an independent 

prognostic factor for Overall Survival (OS) of patient 
of cHL and is related to poor prognosis in cHL [37]. 

Similarly, epithelial-originated malignancy patients with 
PD-1 positive expression on TILs exhibited significantly 
shorter OS than the PD-1 negative group [38].

PD-1 is inducibly expressed on activated immune 

cell types including CD4+ T cells, CD8+ T cells, B 
cells, natural killer T cells, activated monocytes, DCs, 
macrophages [10, 28, 29, 39]. Moreover, PD-1 is 
selectively upregulated in T cells because of persistent 

exposure to antigens; thus, the expression of PD-1 in T 

cells is one of the makers of exhausted T cells [40-42]. 

A few mechanisms are involved in PD-1 expression 

regulation [43, 44]. Two upstream conserved regulatory 

regions of PD-1 gene termed as conserved regions B 

and C (CR-B and CR-C) exist. CR-B and CR-C are 
hypersensitive to DNase I and are important for PD-1 
expression. CR-C was reported to contain a nuclear factor 
of activated T cells (NFAT) site, which is important for the 

transcriptional expression of Pdcd1, whereas, the role of 

CR-B is yet to be known [45]. In CD4+ and CD8+ T cells, 
the transcriptional activator nuclear factor of activated 

T cells c1 (NFATc1; also known as NFAT2) binding 

to CR-C and c-Fos binding to a site located in CR-B 
enhance the expression of PD-1 after TCR stimulation 
during the initial phases of Ag recognition [46, 47]. Xiao 
et al. identified that tumor-infiltrating T cells significantly 
upregulated the expression of the activator protein 1 (AP-
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1) subunit c-Fos. C-Fos (AP-1) directly binds to CR-B in 
the Pdcd1 (gene encoding PD-1) proximal promoter which 

increases PD-1 expression and enhances antitumor T cell 

function and restrained tumor growth [48, 49]. Bally et 
al. identified that NF-ΚB p65 binds to a region which 
located upstream of PD-1 gene in CR-C and enhances 
PD-1 expression following stimulation of macrophages 

with lipopolysaccharide (LPS) [50].
The 55 kDa src kinase-associated protein (SKAP55) 

and the adhesion and degranulation promoting adaptor 

protein (ADAP) are located at the killing synapses between 

CD8+ CTLs and tumor cells [51, 52]. Specifically, ADAP 
binds to SKAP55 and stabilizes its expression at protein 
level. Most importantly, ADAP-SKAP55 enhances 
PD-1 expression in a Fyn-, Ca2+-, and NFATc1 manner. 
ADAP-SKAP55 module enhances both total and activated 
NFATc1, which enhances PD-1 expression by binding to 

the promoter of PD-1. The ADAP-SKAP55-PD-1 pathway 
represents a “self-control” mechanism to control T-cell 

activation and adhesion precisely [46].

Multiple cytokines, such as the common γ-chain 
family (IL-2, IL-7, IL-15, and IL-21) and type I IFNs 
(IFN- and IFN-β) can also upregulate PD-1 expression 
[53]. However, with the exception of IFN-α inducing 
responses from an interferon-stimulated regulatory 

element (ISRE) located in CR-C, no direct effect 
of cytokine-induced factors regulating Pdcd1 gene 

expression has been shown [49]. Kato et al. demonstrated 

that the concentration of IL-6 was in a high level, which 
is correlated to poor growth of cytomegalovirus (CMV)-
specific T cells and high PD-1 expression on CMV 
specific T cells, and that disruption of IL-6 or the IL-6 
receptor (IL-6R) interaction recovered CMV-specific 
T-cell growth. IL-6 and IL-12 induce the signal transducer 
and activator of transcription (STAT) activity STAT3 
and STAT4, respectively, via the JAK family of proteins. 
STAT activity could change the chromatin structure of 
Pdcd1 and increase the PD-1 expression in splenic CD8 
T cells. The NFATc1/STAT regulatory regions interact 
with the promoter region of the Pdcd1 gene and increase 

PD-1 expression following cytokine stimulation. Austin 

et al. found that Pdcd1 was regulated by distal elements, 

which is a non-biased approach employed across the 

murine Pdcd1 locus. Their group also found four novel 

distal regulatory regions. Two of these elements is located 

on the side of CCCTC-binding factor (CTCF). The third 
element, located upstream of CR-C, bound NFATc1 
and STAT3 or STAT4 in response to TCR and IL-6 or 
IL-12 signaling, respectively. The final region, located 
close to the downstream CTCF site also bound NFATc1 
and STAT3 or STAT4. Each of the novel NFAT/STAT 
elements interacts with the Pdcd1 promoter region and the 

chromatin structure of each regulatory region is altered 

in response to T-cell activation and cytokine stimulation 

in CD8 T cells, demonstrating that NFAT/STAT elements 
is associated with PD-1 expression [49, 54]. Vascular 

Figure 1: The main signal pathways of PD-1 transcriptional regulation.
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endothelial growth factor-A (VEGF-A) promotes PD-1 
expression and other inhibitory checkpoints, which are 

involved in exhaustion of vascular endothelial growth 

factor receptor (VEGFR) expressing CD8+ T cells in vitro. 

Voron et al. identified that blockade of VEGF-A-VEGFR 
was sufficient to decrease PD-1 expression in intratumoral 
CD8+ T cells. Sunitinib, a multitarget tyrosine kinase 
inhibitor (TKI) that inhibits VEGFR1, R2, R3, platelet-
derived growth factor receptors, and stem cell factor 

receptor, has been shown to suppress PD-1 expression 

at the mRNA level in tumor-infiltrating T cells [43, 55]. 
In addition, endogenous transforming growth factor-β 
(TGF-β) is also involved partially in PD-1 expression 
through TCR activation in T cells [56]. The main signaling 
pathways of PD-1 transcriptional regulation are shown in 

Figure 1.

By contrast, some transcriptional repressors inhibit 

PD-1 expression [47]. T-bet binds directly to Pdcd1 within 

a region of ~500 bp upstream of the transcriptional start 

site, near or within the CR-B region. This condition 
directly represses Pdcd1 transcription. When the antigen 

is persisted, T-bet expression is decreased in T cells; thus 

PD-1 expression is increased and functions of T cells 

are inhibited [45]. Meanwhile, the repressive effect of 
T-bet on PD-1 expression is not enhanced when T-bet is 

overexpressed. This condition indicates that other factors 

may also participate in inhibiting PD-1 expression. The 

B lymphocyte-induced maturation protein 1 (Blimp-1), 

which is encoded by the prdm1 gene, represses PD-1 gene 

expression through a feed-forward repressive circuit. On 

one hand, Blimp-1 binds to a site between CR-B and 
CR-C of the PD-1 gene to inhibit directly PD-1 gene 
transcription. On the other hand, Blimp-1 inhibits the 

expression of NFATc1 and displaces it from CR-C, leading 
to downregulation of PD-1 expression [47].

PD-1 LIGANDS AND THE REGULATION 

OF THEIR EXPRESSION

PD-1 is involved in immune tolerance by 

suppressing activated immune cells via interaction with 

its ligands. Two known ligands of PD-1 are PD-L1 and 

PD-L2 [3, 29, 57]. B7-H1 was originally named as the first 
gene homolog of B7 molecules, and B7-H1 was renamed 

as PD-L1 after it has been identified as the first ligand 
of the receptor PD-1 (CD279) in the murine system [58]. 
PD-L1 gene is located in chromosome 9p24 [36, 59]. PD-

L1 is a 290-amino-acid transmembrane glycoprotein [58, 
60]. The second known counter-receptor of PD-1, called 

B7-DC or PD-L2, is also a member of the B7 family [58]. 
Hino et al. indicated that the degree of PD-L1 expression 

was correlated to the vertical growth of primary tumors 

in melanoma. Furthermore, multivariate analysis 

demonstrated that the survival rate of the PD-L1 high-

expression patients was remarkably lower than that of the 

low-expression patients with stage II melanoma, which 

indicated that PD-L1 expression was an independent, 

poor prognostic factor for malignant melanoma [61]. PD-

L2 may lead to local cytokine production that is beneficial 
to the tumor cells [62]. PD-L1 and PD-L2 play different 

roles in immune regulatory process although both are 

ligands of PD-1 [63]. PD-L1 inhibits T-cell function in 

peripheral tissues, whereas PD-L2 suppresses immune 

T-cell activation in lymphoid organs. PD-L2 inhibits type 

2 T-helper (Th-2) lymphocytes, but its role is yet to be 

fully understood [53, 64].

PD-L1 is expressed on immune cells, including 

T cells, B cells, DCs, and macrophages [3, 57]. PD-L1 
is overrepresented on several types of solid tumor cells, 

such as glioblastoma multiforme, NSCLC, and some 
hematologic malignancies [34]. Unlike PD-L1, which 

is expressed broadly, the expression of PD-L2/B7-

DC is limited. PD-L2 is expressed mainly on antigen-
presenting cells (APCs), including macrophages and 
myeloid DCs, and non-hematopoietic tissues, such 
as the lung [62, 63]. PD-L1 and PD-L2 are expressed 

on Respiratory tract epithelial cells (BEAS-2B cells). 
Moreover, the expression of respiratory tract epithelial 
cells is upregulated by respiratory tract virus infection or 

treatment with interferon-γ (IFN-γ) and IL-4. PD-L1 was 
moderately expressed, and PD-L2 was weakly expressed 

in unstimulated NCI-H292, BEAS-2B, and A549 cells 
[65]. Similarly, Kan-o et al. identified that polyinosinic-
polycytidylic acid (poly IC) upregulates the expression of 
B7-H1 via activation of the NF-κB. Poly IC increases the 
generation of reactive oxygen species, which enhances 

the activation of PI3Kδ and NF-κB. In addition, poly IC-
induced upregulation of B7-H1 was observably suppressed 

by a pan-PI3K inhibitor and partially by an inhibitor or a 
small interfering (si)RNA for PI3Kδ in BEAS-2B cells 
[66].

Both PD-L1 mRNA and protein can be upregulated 
by cytokines produced by infiltrating immune cells, such 
as IFN-γ, IL-4, IL-10, growth cell stem factors, bacterial 
LPS, and VEGF [10, 26, 44, 59, 67]. Several pathways 
exist that IFN-γ increases PD-L1 expression. Abiko et 
al. found that IFN-γ secreted by CD8+ lymphocytes 
upregulates PD-L1 in ovarian cancer cells and promotes 

progression of ovarian cancer. In mouse models, 
suppressing IFNGR1 (IFN-γ receptor 1) remarkably 
reduced the level of PD-L1 expression in tumor cells. 

By contrast, the injection of IFN-γ into subcutaneous 
tumors increased PD-L1 expression and promoted tumor 

growth [68]. Moreover, IFN-γ or toll-like receptor (TLR) 
stimulation upregulated PD-L1 expression in blast cells 

from patients with acute myeloid leukemia through MEK/
ERK- and MyD88/TRAF6 pathway [69]. Chen et al. 
demonstrated that protein kinase D isoform 2 (PKD2), 
which is induced by IFN-γ, is an important regulator of 
PD-L1 expression in human oral squamous carcinoma 
cells. Inhibition of PKD2 activation not only suppresses 
PD-L1 expression and enhances an anti-tumor effect but 
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also reduces drug resistance during chemotherapy [69]. By 

contrast, natural killer (NK) cell activation and secretion 
of IFN-γ significantly enhanced PD-L1 expression by 
activating JAK1, JAK2, and STAT1 in tumor cells. 
Inhibition of JAK pathway activation abrogates increased 
PD-L1 expression, which enhanced sensibility of tumor 

cells to NK cell activity [70]. Maine et al. identified that 
the concentrations of IL-10 and TGF-β in ascites were 
higher in patients with malignant ovarian tumors than with 

benign/border-line ovarian tumors. Both IL-10 and TGF-β 
can increase PD-L1 in monocytes in vitro. Blocking IL-10 
with a neutralizing antibody reduced PD-L1 expression 

[71].

PD-L1 can be upregulated not only by some 

inflammatory cytokines but also by constitutive oncogene 
pathway activation [72]. In gene level, oncogenic signaling 
pathways in tumor cells, such as IFN-γ/JAK2/IFN, ALK/
STAT3, PI3K, and MEK/ERK/STAT1 can activate PD-
L1 expression [72-74]. Chen et al. demonstrated that 
the expression of PD-L1 was higher in EGFR-mutant 
NSCLC cell lines than that in cell lines with wild-type 
EGFR. Three models of EGFR activation including EGF 
stimulation, EGFR-19del and EGFR-L858R mutation can 
increase PD-L1 expression via p-ERK1/2/p-c-Jun and 
p-AKT/p-S6 pathway [72]. Moreover, exposure to EGFR 
inhibitor-TKIs can decrease the expression of PD-L1 
[73]. Ota’s research has shown that the level of PD-L1 

expression in NSCLC cells positive for EML4-ALK is 
higher than those in wild-type for both EGFR and ALK. 
EML4-ALK can upregulate PD-L1 expression at the 
mRNA and protein levels in Ba/F3 via activating PI3K-
AKT [74]. The receptor tyrosine kinase c-Met binding 
to its ligand hepatocyte growth factor can remarkably 

promote the expression of PD-L1 via activating Ras-PI3K 
signaling pathway, and this condition can be disrupted 

following treatment of the cells with pharmacological 

inhibitors of c-Met [75]. Moreover, Parsa et al. identified 
that the loss of phosphatase and tensin homolog (PTEN) 

and the resulting activation of phosphatidylinositol-3-OH 

kinase (PI-3K) pathway enhanced PD-L1 expression in 
glioma [72, 76].

In addition, hypoxia-inducible factor-1α (HIF-
1α) is also a major regulator of PD-L1 mRNA and 
protein expression. Hypoxia causes a rapid, dramatic, 

and selective upregulation of PD-L1 in splenic myeloid-

derived suppressor cells (MDSCs), macrophages, DCs, 
and tumor cells in tumor-bearing mice through HIF-1α. 
Binding of HIF-1α to a transcriptionally active hypoxia-
response elements (HREs), HRE-4 and HRE-1, at two 
different HRE sites in the PD-L1 proximal promoter in 
hypoxic MSC-1 cells is comparable with their binding 
to an established HRE in VEGF, lactate dehydrogenase 
A (LDHA), and Glut1 genes [77]. Boes et al. identified 
that TLR3 triggering results in remarkably upregulation 

Figure 2: The main signal pathways of PD-L1 transcriptional regulation. Multiple pathways promote PD-L1 expression on 
transcriptional level.
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of PD-L1 on neuroblastoma cells. In addition, docking 
protein 3 (DOK3) increases PD-1 ligand expression 
through abrogating the intensity of calcium signaling at 

the transcriptional level. DOK3 recruits growth factor 
receptor-bound protein 2 (Grb2). Together, DOK3 and 
Grb2 sequester Bruton tyrosine kinase and diminish PLCγ 
2 activation and, thereby, attenuate calcium signaling. 

Calcineurin inhibition study demonstrated that calcium 
signaling directly negatively regulates PD-1 ligand 

gene expression [78-82]. Above all, the main signaling 
pathways of PD-L1 transcriptional regulation are shown 

in Figure 2.

Despite recent study efforts on PD-L2, the 

transcriptional regulation of the ligand is yet to be 

completely clarified [63]. Several inflammatory cytokines, 
especially IL-4, upregulate the expression of PD-L2 on 
DCs and macrophages [34, 83, 84].

FUNCTIONAL IMPLICATIONS OF 

ALTERED BIOCHEMICAL SIGNALING 

INDUCED BY PD-1

PD-1/PD-L1 axis inhibits T cell response

PD-1/PD-L1 suppresses the effector phase of T-cell 

response. This condition induces immune tolerance during 

different phases of T-cell responses, such as regulating 

the threshold for T-cell activation, inhibiting T-cell 

proliferation, and promoting apoptosis in activated T cells. 

The mechanism of PD-1/PD-L1 regulation is correlated 

with dephosphorylation of signaling molecules belonging 

to TCR pathway and transmission of inhibitory signal to 
T cells [31, 85-88]. TCR signaling leads to intracellular 
Ca2+ flux, which activates multiple signaling pathways 
required for differentiation and activation of T-cell. PD-1 
on T-cell binding to PD-L1 or PD-L2 on APC can activate 
Lck-mediated phosphorylation of cytoplasmic domain 

tyrosine and recruitment of SHP-2 to the C-terminal 
tyrosine of PD-1 cytoplasmic domain [27, 89]. SHP-2 and 
SHP-1 are two highly related tyrosine phosphatases, which 
dephosphorylate TCR-proximal signaling molecules, 
such as protein kinase Cθ, CD3ζ, PI3K and zeta-chain-
associated protein kinase (ZAP70), and Syk downstream 
of B cell antigen receptor (BCR), leading to inhibition 
of downstream signaling [89, 90]. SHP-2 and SHP-1 are 
recruited to ITSM of PD-1, leading to inhibition of the 
PI3K/AKT and mitogen-activated protein kinase signaling 
pathways downstream of the TCR and blockade of cell-
cycle progression in the immune cells [91]. Whereas, 

PD-1/PD-Ls inhibit Ca2+ flux increasing the number of 
engaged TCRs required to initiate a Ca2+ flux [92].

PI3K/Akt pathway activation increases Glut1 
expression and enhances glucose uptake inducing 

glycolysis and protein synthesis in T cells [93-95]. After 

PD-1 recruits the SHP-1 and SHP-2 phosphatase, PI3K/
Akt pathway was inhibited. This condition inhibits cell 

survival proteins, such as B-cell lymphoma-xL (Bcl-xL) 

which is important for the intrinsic apoptotic pathway; 

decreases expression of glucose transporters on the plasma 

membrane and general downregulation of glycolytic 

enzyme activity, which depresses proliferation of T cells, 

thereby restraining its survival and decreasing protein 

synthesis; inhibits CD28-mediated activation and triggers 
chromatin changes so that the promoter regions of IL-2, 
TNF-α, and IFN-γ are decreased [28, 96]. Downregulation 
of IL-2 secretion, driven partially through early growth 
response protein 2 (EGR2), induces CD8+ T and CD4+ 
T-cell anergy [97, 98].

Moreover, studies revealed that engagement of 
PD-1 by PD-L1 inhibited PLC-γ1 and RAS activation and 
suppressed MEK/Erk MAP pathway [99, 100]. CalDAG 
is activated downstream of PLC-γ156 promote Ras GRP1 
activation. Ras GRP1 promotes exchange of Ras-GDP 
to Ras-GTP, which suppresses MEK/Erk, suppressing 
T-cell proliferation. The effect of PD-1 on MEK/Erk and 
MAP kinases was selective because PD-1 ligation did not 
inhibit the activation of Jnk and p38 MAP kinases [100, 
101]. Engagement of PD-1 and PD-L1 inhibits multiple 

transcription factors of T cells expression, such as GATA-

3 and T-bet, repressing T-cell response [10, 102]. T-bet 

is a master transcription factor, which can downregulate 

inhibitory receptors and is essential for differentiation 

and function of Th1 cells, CD8+ T cells [45, 101, 103]. 
High level of T-bet maintains exhausted CD8+ T cells and 
represses inhibitory receptor expression [45]. In addition, 
the patients with increased level of T-bet+ lymphocytes in 

tumor of nest and stroma exhibit longer survival time than 

the low level of such cells [94, 104].

PD-1 can also suppress cell cycle progression of 

T cell by influencing various regulators of the cell cycle. 
However, the mechanism is yet to be totally understood. 

PD-1 signaling prevents cell cycle progression in the G1 

phase by increasing the cyclin-dependent kinase (Cdk) 
inhibitors p27 kip1 and p15 INK4B and repressing the 
Cdk-activating phosphatase Cdc25A expression. PD-1 
inhibits Skp2 by inhibiting PIK3/Akt and Ras/MEK/ERK 
signaling leading to increase of p27kip1 and inhibition 

of Cdk2. Cdk2 restraint decreases phosphorylation of Rb 
and fails to phosphorylate the checkpoint inhibitor Smad3, 
which inhibits cell cycle progression from the G1 to the S 
phase in the Cdk2-specific site enhancing transcriptional 
activity of Smad3 and upregulating p15INK4B expression 

and restraining the Cdk-activating phosphatase Cdc25A 
[105, 106].
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PD-1/PD-L1 inhibits tumor-infiltrating 
lymphocytes (TIL) and increases immuno-

suppressive Treg function

Engagement of PD-1 and PD-L1 restrains the 

proliferation, survival, and effector function of CD8+ CTL 
and promotes apoptosis of TILs [10, 107]. High level of 
PD-1 expression along with other inhibitory receptors 

inhibits functions of TILs and decreases its quantity in 
tumor microenvironment [35, 83, 108]. In addition, TILs 
increase expression of PD-L1, tryptophan-catabolizing 

enzyme indoleamine-2,3-dioxygenase (IDO), and FoxP3+ 
Tregs in the melanoma tumor microenvironment. This 

condition indicates that TILs are involved in immune-
intrinsic negative feedback loop. IDO is in charge of 
the dissimilation of tryptophan, and influences immune 
reactions in several situations. PD-1/PD-L1 interaction 

increases the level of IDO, which exhausts T cells of 
essential tryptophan and suppresses its metabolites, 

leading to inhibition of T-cell activation and increasing 

the number of regulatory T cell [109, 110].

PD-1 pathway activation not only downregulates 

effector T-cell function but also increases immuno-

suppressive Treg function [63]. PD-L1 expression on 

non-hematopoietic and hematopoietic cells accelerates 

Treg development and improves Treg function in immune 

organs and autoimmune attacked tissues [3, 111]. PD-1−/− 

conventional CD4+ T cells demonstrated a remarkably 
diminished tendency toward differentiation into 

peripherally induced Treg (pTreg) cells, which showed 

that PD-1 is critical for the extrathymic differentiation of 

pTreg cells in vivo [112]. Previous studies suggested that 

the number of circulating Tregs of lung cancer patients 

was nearly twofold compared with healthy controls 

and the expression levels of PD-1 on Tregs were higher 

in lung cancer samples than in controls [113]. These 

results suggest that the PD-1/PD-L1 pathway plays a 

role in Treg induction and is associated with impaired 

adaptive immunity. In the tumor microenvironment, 
PD-1 expressed on Tregs accelerates CD4+ T cells 

differentiating into Foxp3+ Tregs under the circumstances 
of CD3 and TGF-β. Foxp3 is a critical transcription factor 
of Tregs, which suppress Th1 responses [94]. Foxp3+ 
Tregs is a highly immunosuppressive subset of CD4+ 
T cells that is critical in s uppressing proliferation and 

cytokine production of other T cells, inhibiting tumor-

specific immune responses and maintaining peripheral 
immune tolerance in cancer patients [114]. Meanwhile, 
Treg cells express constitutive high levels of PD-1, which 

enhance Treg functional response or proliferation and 

inhibit T cells responses [115, 116].

ANTIBODY BLOCKADE OF PD-1/PD-L1 ON 

THE TREATMENT OF TUMORS

Efficacy of inhibition of the PD-1 pathway

Blocking PD-1 passway successfully improves 

T-cell responses in vitro and promotes tumor regression 

in vivo in animals [117, 118]. In vitro, antibody blockade 

of PD-1/PD-L1 enhances antitumor immune responses 

by decreasing the number and/or the suppressive activity 

of regulatory T cells and by rescuing of the activity of 

effector T cells in tissues and the tumor microenvironment. 

In addition, PD-1/PD-L1 antibody blockade decreases the 
percentages of the highly immunosuppressive MDSC 
population. Likewise, blockade of PD-1 in B cells may 

also enhance activity of natural killer cells and increase 

antigen-specific antibody production via PD-1 positive 

(PD-1+) B cells [63, 119]. Several studies on syngeneic 
mouse tumor models demonstrated that the blockade of 

PD-1/PD-L1 enhances antitumor activity. The level of 

effector CD4+ T and CD8+ T cells, B cells, and myeloid-
derived suppressor cells increased in tumor in mice with 

PD-1 blockade injected with B16 melanoma cells; T cell 

proliferation and cytokine production were also enhanced, 

and tumor sites recruited more effector cells [120, 121]. 

Blockade of PD-1/PD-L1 has significant influences on 
different CD4+ T-cell subsets. PD-1 blockade enhanced 

Table 1: Results of trail using anti-PD-1 or anti-PD-L1 agents. 
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production of IFN, IL-2, TNF-α, IL-6, and IL-17 and the 
reduced production of the Th2 cytokines IL-5 and IL-13 
[122, 123]. This condition reveals that PD-1 blockade may 

promote antitumor activity through tipping the Th1/Th2 

balance and through stimulation of Th17 cells.

PD-1/PD-L1 blockade demonstrates suppression of 

tumor growth and less metastases. In the mouse model 
of bladder cancer, the antibody blockade of PD-1 can 

increase the number of circulating tumor-specific CD107a-
expressing CD8+ T cells and activated (CD25+ FoxP3-) 
CD4+ splenocytes, as well as significantly reduces tumor 
size [124]. Monoclonal antibodies blockade of PD-1/
PD-L1 has revealed great effect outcomes for a subset of 

patients with cancer, especially in PD-L1 positive tumors, 

such as melanoma, hepatocellular carcinoma, lung, 

kidney, and esophageal cancers, as well as hematological 

malignancies [19, 112]. The expression of PD-L1 in tumor 

cells is related to the response of PD-1/PD-L1 inhibitors 

and may be proposed as a potentially valuable predictive 

marker for the responsiveness of various cancers, 

including malignant melanoma, NSCLC, and RCC to PD-
L1 or PD-1 blocking antibodies [125].

Clinical trials of mAbs to PD-1

Pembrolizumab is a highly selective, humanized 

monoclonal IgG4-kappa isotype antibody against PD-1, 
which binds to the PD-1 receptor on T cells and prevents 

PD-1 binding to its ligands PD-L1 and PD-L2 [126]. 

Pembrolizumab is the first PD-1 checkpoint inhibitor 
for advanced melanoma approved by FDA after the 

CTLA-4 inhibitor-ipilimumab [127]. Pembrolizumab 
has remarkable anti-tumor activity and treatment-

related toxicity is acceptable. A total of 135 patients 

with advanced melanoma were in phase 1 study of 

pembrolizumab. Approximately 38%-52% of patients 
treated with doses ranging from 2 mg/kg every 3 weeks 

to 10 mg/kg every 2 weeks showed long-lasting objective 

responses. In addition, 81% of patients survived for 
at least 1 year from the beginning of treatment. Grade 

1 or 2 adverse events were shown in the majority of 

patients. 13% of patients have shown grade 3 or 4 adverse 
events. This result indicated that patients with advanced 

melanoma treated with pembrolizumab result in a high 

rate of sustained tumor regression [34]. Robert et al. 
assessed the clinical effect of pembrolizumab. 173 patients 

with advanced melanoma received pembrolizumab 

treatment. The follow-up time was 8 months and ORR 
was 26%. This result suggested that pembrolizumab is an 
effective treatment option for patients with ipilimumab-

refractory advanced melanoma, wherein few effective 

treatment options are available [126]. Another trail showed 

that treatment of advanced melanoma patients with 

pembrolizumab acquired an overall objective response 
rate of 33%, 12 month progression-free survival rate of 
35%, and median overall survival of 23 months; grade 3 

or 4 treatment-related adverse events occurred in 14% of 
patients with advanced melanoma [128].

Nivolumab is also a MAb of PD-1, which has 
shown positive therapeutic activity and an acceptable 

safety profile in treating tumors [19]. In December 
2014, the U.S. FDA granted an accelerated approval to 
nivolumab to treat patients with unresectable or metastatic 

melanoma and disease progression following ipilimumab 

and if patients are B-Raf proto-oncogene, serine/threonine 
kinase (BRAF) V600 mutation positive, which is a BRAF 
inhibitor [129]. Treatment with nivolumab was first 
reported in 2012 (sponsored by BMS). Overall response 
rates and median survival were 28% and 24 months, 
respectively. The 1 and 2 year survival rates were 62% 
and 43%, respectively [19, 89]. A multi-dose phase I 
dose-escalation trial extended the above findings. In this 
study, 296 patients with the same advanced cancers were 

given nivolumab at doses from 0.1 mg kg−1 to 10 mg kg−1 

every 2 weeks for up to 2 years. Objective responses were 

observed in 18.4% patients with NSCLC, 27.6% patients 
with melanoma, and 27.2% patients with RCC. No 
tumor responses were observed in patients with castrate-

resistant prostate cancer (CRPC) or carcinoma of colon 
and rectum (CRC). Treatment-related adverse events were 
fatigue, anorexia, nausea, rash, and diarrhea. Grade 3 or 4 

toxicities were reported in 14% of patients and evident at 
all dose levels without obvious dose dependency [130]. 

A study of 107 patients with melanoma were treated with 

nivolumab between 2008 and 2012 revealed an overall 
survival of 16.8 months. The 1 and 2 year survival rates 
were 62% and 43%, respectively. Objective responses 
were observed in 31% of patients. The appearance of irAE 
was 54%, but grades 3 and 4 adverse events were only 
seen in five patients (5%) [20].

Pidilizumab is a humanized IgG-1 kappa 
recombinant mAb. It was developed from a murine 
version, mCT-011 or BAT, that was generated with the 
immunization of Balb/c mice with membranes of a human 

B-cell lymphoma cell line [131]. In a Phase I study, 17 
patients with hematologic malignancies were treated 

with escalating doses of pidilizumab ( 0.2 to 6.0 mg/kg). 

Of the 17 treated patients no clear toxicity reaction was 

observed during therapy. 33% patients acquired clinical 
benefit and one acquired complete remission. The study 
showed the antibody to be safe and well tolerated in this 

patient population [132]. In an International Phase II Trial, 
66 patients with diffuse large B-cell lymphoma (DLBCL) 
were treated. Treatment-related adverse events was mild. 

At 16 months after the first treatment, progression-free 
survival (PFS) was 0.72 (90% CI, 0.60 to 0.82). Among 
the 24 high-risk patients, PFS was 0.70 (90% CI, 0.51 to 
0.82). The study suggested an on-target in vivo effect of 

pidilizumab [133].

AMP-224 is the first recombinant B7-DC-Fc fusion 
protein. In a PhaseI trial, patients with advanced solid 
tumors received low dose cyclophosphamide (CTX) on 
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Day 0, followed by AMP-224 (IV infusion, 0.3 to 30 
mg/kg) on Days 1 and 15 of each 28-day cycle. Infusion 
reactions were observed at higher doses (86% at the 10 
mg/kg dose). No drug-related inflammatory adverse events 
were identified contrary to PD-1 blocking antibodies [17].

Clinical trials of mAbs to PD-L1

MPDL3280A is a humanized IgG4 anti-PD-L1-
specific mAb, which is most effective in patients where 
the immunity response is suppressed by PD-L1 [134]. In 
a phase I MPDL3280A trial, 38 patients with metastatic 
melanoma exhibited an ORR of 29% with a 24 week 
Progression-Free-Survival (PFS) of 43%. This agent was 
expanded in 52 patients with NSCLC and 55 patients 
with renal cancer. ORR were 22% and 13%, respectively. 
Breakthrough designations have also been granted for the 

clinical development of nivolumab for resistant Hodgkin’s 
lymphoma and MPDL2380a in advanced bladder cancer 
[135].

BMS-936559 is also a PD-L1-specific IgG4 mAb, 
which inhibits the binding of PD-L1 with PD-1 and 

CD80. A Phase I trial showed good curative effect of 
BMS-936559. Up to 207 patients with solid tumor were 
treated with BMS-936559 for 12 weeks (median duration 
of therapy). Approximately 9% of patients had toxic 
effects of grades 3 or 4. Complete or partial response were 
showed in 17 patients [136]. A phase II trial has shown 
activity in NSCLC patients. Notably, 5 of 49 NSCLC 
patients had an objective response, and the response 

lasted for ≥24 weeks in 3 patients. In this study, the 
adverse reaction belonged to grades 1 or 2, including rash, 

hypothyroidism, and hepatitis [137].

MEDI4736 is a fully-human anti-PD-L1 antibody, 
which has a triple mutation in its Fc domain to avoid 

antibody-dependent cell-mediated cytotoxicity [127]. In 
a phase I trial, MEDI4736 was administered every 2 or 3 
weeks in a 3 + 3 dose escalation in 26 patients with solid 
tumors. Grade 1 and 2 adverse events were appeared in 

34%. Diarrhea, fatigue, rash, and vomiting are the mainly 
side effects [138]. Their research indicated that MEDI4736 
was a promising agent to inhibit malignant processes.

Anti-PD-1 versus anti-CTLA-4 agents

The anti-CTLA-4 and anti-PD-1 treatments are 
correlated with clinical benefits. However, cancer patients 
trested with anti-PD-1 agents acquire better PFS and 
ORR comparied to anti-CTLA-4 treatment. Subgroup 
analyses demonstrated significant PFS (RR: 0.92 vs. 0.74; 

P < 0.00001) and ORR (RR: 0.95 vs. 0.76; P = 0.0004) 

improvement with anti-PD-1 treatment compared with 

anti-CTLA-4 when each was compared with the control 
treatments [139]. Similarly, treatment with pembrolizumab 
was better tolerated and demonstrated superior PFS 

compared with chemotherapy in ipilimumab-refractory 

melanoma patients enrolled in phase 2 KEYNOTE-002 
trial [128]. Moreover, no clinically meaningful differences 
were noted between pembrolizumab doses. In the 
randomized phase 3 KEYNOTE-006 trial, pembrolizumab 
(10 mg/kg every 2 and 3 weeks) had fewer toxicities and 

significantly improved PFS, OS, and ORR compared with 
ipilimumab [128]. The ORR of nivolumab treatment in 
ipilimumab-refractory patients was lower compared with 

ipilimumab-naive patients, while the ORRs of the two 
groups were higher than the control group. Subgroup 
analyses revealed that the survival benefit was significantly 
high with anti-PD-1 treatment regardless of previous 

response to ipilimumab treatment, thereby suggesting that 

nivolumab or pembrolizumab is a good choice as the first-
line treatment [139]. Similarly, the CheckMate 067 trial 
demonstrated that combined treatment with ipilimumab 

and nivolumab has better ORR compared with nivolumab 
monotherapy, especially in PD-L1-positive patients [139, 

140]. Collectively, a certain patient population may 
selectively respond to anti-PD-1 treatment and benefit 
from the combination treatment with anti-CTLA-4 agents 
and anti-PD-1 agents.

CONCLUSIONS

The co-inhibitory factor PD-1 binds to its ligands, 

PD-L1 or PD-L2, to transmit inhibitory signals in T cells 

and anti-apoptotic signals in tumor cells. Thus, PD-1 

binding is characterized as one of the major mechanisms of 

tumor immune escape. Furthermore, blockade of the PD-1/

PD-L1 interaction may help restore anti-tumor immunity 

by several ways, such as the increase of TILs that restrain 
Treg function and increase the cytokine secretion. Some 
recent clinical trials on the antibody blockade of PD-1 

and PD-L1 also demonstrated effective response. Despite 

several previous studies on the important role of PD-1 

in inhibiting T-cell activation, the biochemical signaling 

effects of PD-1 are yet to be fully understood. Therefore, 

further studies on PD-1 are needed. When the checkpoint 

PD-1 is better understood, cancer immunotherapy will be 

more effective.
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