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and renal cell carcinoma
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Abstract:

Background: Programmed cell death protein (PD)-1 receptors and ligands on immune cells and kidney

parenchymal cells help maintain immunological homeostasis in the kidney. Dysregulated PD-1:PD-L1 binding

interactions occur during the pathogenesis of glomerulopathies and renal cell carcinoma (RCC). The regulation of

these molecules in the kidney is important to PD-1/PD-L1 immunotherapies that treat RCC and may induce

glomerulopathies as an adverse event.

Methods: The expression and function of PD-1 molecules on immune and kidney parenchymal cells were reviewed

in the healthy kidney, PD-1 immunotherapy-induced nephrotoxicity, glomerulopathies and RCC.

Results: PD-1 and/or its ligands are expressed on kidney macrophages, dendritic cells, lymphocytes, and renal

proximal tubule epithelial cells. Vitamin D3, glutathione and AMP-activated protein kinase (AMPK) regulate hypoxic

cell signals involved in the expression and function of PD-1 molecules. These pathways are altered in kidney disease

and are linked to the production of vascular endothelial growth factor, erythropoietin, adiponectin, interleukin (IL)-

18, IL-23, and chemokines that bind CXCR3, CXCR4, and/or CXCR7. These factors are differentially produced in

glomerulonephritis and RCC and may be important biomarkers in patients that receive PD-1 therapies and/or

develop glomerulonephritis as an adverse event

Conclusion: By comparing the functions of the PD-1 axis in glomerulopathies and RCC, we identified similar

chemokines involved in the recruitment of immune cells and distinct mediators in T cell differentiation. The

expression and function of PD-1 and PD-1 ligands in diseased tissue and particularly on double-negative T cells and

parenchymal kidney cells needs continued exploration. The possible regulation of the PD-1 axis by vitamin D3,

glutathione and/or AMPK cell signals may be important to kidney disease and the PD-1 immunotherapeutic

response.
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Background

The kidneys perform diverse functions in maintaining

human health. These include removing metabolic waste

products; contributing to water, electrolyte and acid-

base homeostasis; controlling blood pressure via regula-

tion extracellular volume and production of renin and

angiotensin; regulating vitamin D3 synthesis and

metabolism; and producing erythropoietin which is crit-

ical for red blood cell production [1]. Shifts in oxygen

consumption or plasma vitamin D3 (1α-25(OH)2D3)

levels disrupt various kidney functions [2, 3] and con-

tribute to the functions of the programmed cell death

protein (PD)-1 receptor and its ligands (PD-L1, PD-L2)

[4, 5]. The expression of these checkpoint molecules on

kidney immune cells and epithelial cells [6] is associated

with some forms of glomerulonephritis and renal cell

carcinoma (RCC) [7, 8]. PD-1 antibodies are being

assessed as therapies for renal cell carcinoma (RCC) and
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other cancers, and in this context, glomerular and tubu-

lointerstitial disease is a prominent immune-related ad-

verse event [9–11].

To explore the nephrotoxicity of PD-1 immunother-

apies, we examined the function and expression of PD-1

molecules in kidney homeostasis and disease. Because

nephrotic and nephritic glomerulopathies and tubuloin-

terstitial nephritis occur in response to PD-1 immuno-

therapy, we reviewed the PD-1 axis on immune and

parenchymal cells in these disorders. The pro-

inflammatory responses in glomerular and tubulointer-

stitial disease were contrasted with the immune toler-

ance known to occur in RCC through the expression of

PD-1 molecules on immune and kidney parenchymal

cells. Possible cell signals in regulating the kidney PD-1

axis were examined with a particular focus on the kidney

epithelium. The similarities and differences between

these diseases may provide insight into the nephrotox-

icity of PD-1 immunotherapies.

The PD-1 axis in the healthy kidney

Resident innate immune cells in the renal interstitium

include macrophages [12], dendritic cells (DCs) [13],

and mast cells [14]. Intravenous injection of small im-

mune complexes in a murine model showed that macro-

phages, localized around peritubular capillaries,

recognize immune complexes via Fc receptors (FcRs),

such as FcγRIV, and possibly monitor the trans-

endothelial transport of albumin into the kidney intersti-

tium [12]. The expression of PD-1 or its ligands, PD-L1

and PD-L2, on these macrophages in healthy tissue has

yet to be fully explored. PD-L1 and PD-L2 have been

identified on murine interstitial DCs and on DCs in the

kidney-draining lymph, which capture low-molecular

weight antigens and peptides [15]. Moreover, PD-L1+

DCs in kidney lymph nodes promote tolerance via PD-

L1 binding interactions with PD-1 expressed on cyto-

toxic T cells in the draining lymph [16]. Lastly, mast

cells localize to blood vessels, epithelial tissues and

neural connective tissue (i.e. the three layers of connect-

ive tissue that surround each nerve) in vivo [14] and ex-

press PD-L1 and PD-L2 on murine bone marrow-

derived mast cells in vitro [17]. PD-1 immunotherapies

may therefore alter the function of PD-1 and its ligands

on various immune cells in the healthy kidney.

Human primary renal proximal tubular epithelial cell

PD-L1 and PD-L2 expression has been shown in-vivo and

in vitro. In biopsies of patients with renal allografts, PD-L1

and PD-L2 mRNA are upregulated and surface expression

of PD-L1 was present on infiltrating cells and epithelial

cells in the tubulointerstitium. Moreover, in vitro PD-L1

blockade of tubular epithelial PD-L1 binding interactions

with PD-1 on CD4+ and CD8+ T cells reduces alloreactive

T cell proliferation and cytokine production [6],

suggesting a protective effect of PD-L1 on the tubular epi-

thelium (Fig. 1). Although PD-L1 is expressed on fibro-

blasts and endothelial cells in extra-renal tissues, the

presence of this checkpoint molecule on these cells in the

kidney has not yet been assessed [18]. The expression of

major histocompatibility class (MHC)-II molecules on

podocytes and mesangial cells [19, 20] suggests that

checkpoint molecules may be expressed on these cells, as

is the case with professional antigen presenting cells (e.g.

macrophages, DCs, and B cells) (Fig. 1). Because PD-1 li-

gands appear to promote tissue homeostasis, continued

research into the function of these molecules on kidney

parenchymal cells in response to disease and PD-1 im-

munotherapies appears warranted.

The PD-1 axis in glomerulopathies and tubulopathies

Glomerulopathies are acute or more often chronic kid-

ney disorders that develop in the glomeruli, although as-

sociated tubulointerstitial injury is common [21].

Glomerulopathies include both non-inflammatory

(nephrotic) and inflammatory forms (nephritic) and may

evolve strictly in the kidney (primary) or in response to

systemic disease (secondary) [22]. Both nephrotic and

nephritic syndromes have been associated with anti-PD-

1 therapy (Table 1). The pathophysiology of the glomer-

ulopathies is diverse. Identified factors may include viral

infections (e.g., cytomegalovirus, Epstein-Barr virus,

hepatitis C virus, herpes simplex virus), autoimmune dis-

orders (e.g., systemic lupus erythematosus (lupus), Good-

pasture syndrome, polyarteritis), certain drugs (e.g.,

antibiotics, diuretics, chemotherapeutics) [21, 34–36],

genetic mutations (e.g., (Apolipoprotein L1 (APOLI)), and

unknown factors associated with idiopathic disease (e.g.,

minimal change disease (MCD)). The development of

glomerulopathies secondary to PD-1 immunotherapy is

an increasingly recognized complexity of unknown eti-

ology. Patients administered proton pump inhibitors,

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)

antibodies, or nonsteroidal anti-inflammatory drugs

(NSAIDs) may have a greater risk to renal toxicities in

response to PD-1 immunotherapy, resulting in fatal toxic

events in as little as 2 weeks compared to greater than a

month with PD-1 immunotherapy alone [37, 38]. Under-

standing the functions of PD-1 receptors in the healthy

kidney and disease states that provoke tolerogenic or

autoimmune responses may be informative to PD-1

nephrotoxicity clinical presentation, treatment, and algo-

rithms for the use of PD-1 immunotherapy after the

resolution of this adverse event.

The nephrotic syndromes associated with PD-1 im-

munotherapy include minimal change disease (MCD) and

focal segmental glomerulosclerosis (FSGS). Both MCD

and FSGS, as with other causes of nephrotic syndrome,

manifest effacement of the glomerular filtration slits.
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These are passageways between adjacent podocyte foot

processes that provide size-selective and charge-selective

regulation of the passage of plasma molecules from the

glomerular capillary lumen, across the podocyte slit-

diaphragm, into Bowman space and on into the prox-

imal tubule lumen. Because the PD-1 immunotherapeu-

tic response is associated with MCD and FSGS, factors

involved in the development of these glomerulopathies

may be important to the function of PD-1 receptors in

the kidney.

MCD is an idiopathic nephrotic syndrome that is

responsive to immunosuppressive therapies and rarely

if ever progresses to end-stage kidney disease [39].

FSGS also involves podocyte injury and foot process

effacement but unlike MCD, often progresses to end-

stage kidney disease. FSGS is comprised of six syn-

dromes [40].

� Primary FSGS, idiopathic, likely due to a circulating

molecule

Fig. 1 Healthy juxtaglomerular apparatus, glomerulus, renal tubule, and perinephric lymph node. (1) The glomerular capillary network is supplied

by the afferent arteriole and drained by the efferent arteriole. (2) Specialized epithelial cells in the macula densa sense NaCl concentrations in the

distal tubule. (3) Low NaCl concentrations induce cells in the macula densa to secrete prostaglandins (PGE2), which promote afferent arteriolar

dilation. (4) PGE2 stimulates the release of pro-renin from juxtaglomerular cells, predominantly located around the afferent arteriole. (5) Pro-renin

is cleaved into renin by endothelial cell kallikrein and both renin and angiotensin converting enzyme (ACE) are key enzymes in the renin-

angiotensin system (RAS). (6) A trilaminar structure in the glomerular capillary wall, composed of the endothelium, glomerular basement

membrane, and podocyte foot processes, provides a size-selective and charge-selective filter regulating passage of macromolecules from plasma

into the urinary space. Podocytes can produce ACE2. (7) Extraglomerular and intraglomerular cells provide structural support and can produce

cytokines and ACE2. (8) Impermeable proteins and blood cells remain in the capillaries but permeable solutes (e.g., NaCl, glucose), small

molecules, and many proteins are filtered into Bowman space. (9) Proximal tubule epithelial cells produce vitamin D3 and express PD-L1 and PD-

L2 where PD-L1 may be integral in CD8 T cell tolerance. (10) Macrophages expressing Fc receptors surround peritubular capillaries and regulate

trans-endothelial transport of molecules into the renal interstitium. (11) Interstitial dendritic cells express PD-L1 and PD-L2. (12) Mast cells are

infrequently identified in the healthy interstitium. (13) Fibroblasts generate erythropoietin (EPO). (14) Dendritic cells regulate tolerance by

presenting innocuous peptides to CD8+ T cells in the renal lymph in association with PD-L1 ligation to CD8 PD-1
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Table 1 Glomerulopathy as a complication of anti-PD-1 immunotherapy in 13 cases

Underlying Disease Age Sex Disease Treatment Syndrome Syndrome Treatment Result

Metastatic clear cell
renal carcinoma [11]

70 M 10 months of nivolumab
3 mg/kg every 2 weeks
subsequent to pazopanib
600 mg daily

Diffuse tubular injury
with vacuoles and
immune complex-
mediated glomerulo
nephritis with cellular
crescents and necrosis

Methylprednisolone 40 mg
intravenously 2x/day that was
increased to 3x/day, 1g/day,
and tapered

Discharged

Metastatic
squamous cell anal
carcinoma [23]

75 F 2 months (5 cycles) of
2.4 mg/kg nivolumab
monotherapy subsequent
to colostomy with combined
5-fluororuacil and mitomycin
C with radiation

Membranoproliferative
glomerulonephritis

Prednisone 40 mg daily Deceased

Papillary renal cell
carcinoma type
2 [24]

62 M 4 cycles of nivolumab 3mg/kg
every 2 weeks subsequent to
a cMET inhibitor (INC280),
everolimus pazopanib

Early FSGS, due to
nivolumab or as a
paraneoplastic sign,
an acute tubular
necrosis, or a postrenal
obstruction

IV pulses of 1000 mg
methyl-prednisolone for 3
days, followed by prednisone
60 mg/day and mycophenolate
mofetil 750 mg twice daily

Discharged, relapse,
deceased

Metastatic lung
adeno-carcinoma [25]

71 F Pembrolizumab following
completion of carboplatin
and pemetrexed treatment

Focally crescentic
pauci-immune
glomerulonephritis

Pulse glucocorticoids followed
by high-dose glucocorticoids

Resolution of proteinuria
and hematuria

Squamous cell
carcinoma and the
development of
infectious
enterocolitis [26]

65 M Pembrolizumab 200 mg,
in six infusions, over 4 months
subsequent to radiation and
cisplatin

Pauci-immune
necrotizing crescentic
glomerulonephritis with
positive peri-nuclear
ANCA and myeloperoxi
dase (MPO)

Methylprednisolone 1000 mg/
day for 3 days, followed by
prednisone 60 mg/day tapered
to 50 mg/day. The patient also
received two doses of 1000
mg rituximab

Decreased proteinuria
and hematuria

Stage IV non-small-
cell lung cancer [27]

67 M Nivolumab 3 mg/kg every 2
weeks subsequent to

bevacizumab combined with
pemetrexed plus cisplatin
followed by maintenance
pemetrexed infusion.
Lansoprazole 15 mg/day
was also prescribed.

Acute tubulointerstitial
nephritis (ATIN)

Lansoprazole was discontinued
and administration of 500 mg
intravenous
methylprednisolone for 3 days
followed by 1 mg/kg/day oral
prednisolone

Positive drug induced
lymphocyte stimulating test
(DLST) for lansoprazole and
improved kidney function

Metastatic anal canal
non-mutated BRAF
melanoma [28]

76 F 3 cycles of nivolumab
(3 mg/kg) administered 8
weeks after ipilimumab (4
cycles of 3 mg/kg)
discontinuation

Nivolumab-induced
acute immune
interstitial nephritis

Oral prednisolone at a daily
dose of 0.5 mg/kg (40 mg)
and nivolumab eventually
discontinued

Improved kidney function

Stage IV melanoma
BRAF wild type [29]

68 M Single dose of pembrolizumab
(2 mg/kg) as first-line therapy

Acute renal failure with
nephrotic syndrome
due to a minimal
change disease related
to pembrolizumab

Oral prednisolone at 100 mg/
day and diuretics administered.
Pembrolizumab discontinued.

Renal function restored.
Ipilimumab (3 mg/kg) and
nivolumab (1 mg/kg)
resulted in a confirmed a
deep partial response after
3 doses

Metastatic melanoma
and prostate cancer
in remission [30]

64 M 5 cycles pembrolizumab
2 mg/kg every 3 weeks

Diffuse active
tubulointerstitial
nephritis with severe
acute tubular cell injury

IV methyl-prednisolone 1
g/day for three days followed
by oral prednisone 60 mg/day
and immunotherapy
discontinued

With improved renal
function patient resumed
treatment with ipilimumab
instead of pembrolizumab

Metastatic acral
melanoma [30]

78 F 3 cycles of nivolumab 3 mg/kg
[omeprazole was also prescribed]

Diffuse active chronic
tubulointerstitial
nephritis with acute
tubular cell injury

IV methyl-prednisolone 1 g/
day for 3 days followed by oral
prednisone 60 mg daily and
immunotherapy discontinued

With improved renal
function patient resumed
treatment with three cycles
of temozolomide

Stage IIA adeno-
carcinoma of the
lung [31]

57 M 4 cycles of biweekly treatments
with nivolumab subsequent to
radiotherapy and repeated
courses of cisplatin, pemetrexed,
and bevacizumab [rabeprazole
was also prescribed]

Nivolumab-induced
acute tubulointerstitial
nephritis with CD163+

M2 macrophage
infiltration

Prednisolone (55 mg, daily)
treatment was initiated.
Nivolumab and rabeprazole
were discontinued

Renal function improved
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� Post-adaptive FSGS, due to a mismatch between

glomerular load and glomerular capacity

� APOL1 FSGS, due to susceptibility variants in the

gene encoding apolipoprotein-L1, seen only in indi-

viduals with sub-Saharan ancestry

� High-penetrance genetic FSGS, associated with

mutations in >50 nuclear and mitochondrial genes

� Virus-associated FSGS, associated with HIV-1, prob-

ably with cytomegalovirus and possibly with parvo-

virus B-19 and Epstein-Barr virus

� Medication-associated FSGS, due to androgens,

bisphosphonates, interferon, lithium, chronic use of

nephrotoxic drugs, and others

The functions of PD-1 molecules in HIV-1 [41], cyto-

megalovirus [42], and Epstein-Barr virus [43] have been

reviewed elsewhere. PD-1 immunotherapies may there-

fore induce nephrotic syndromes by altering the activity

of underlying identified genes or pathogens.

The nephritic syndromes most often occur in response

to the generation of autoantibodies or to a dysregulated

complement system. Autoantibodies against viral anti-

gens or host tissue antigens can form circulating im-

mune complexes, which can become passively trapped

in the glomerular mesangium or subendothelial space

within the glomerular capillary. Alternatively, autoanti-

bodies or complement can directly bind components in

the glomeruli [44]. Antibodies that bind complement

factors can also alter complement activity. This may in-

clude autoantibodies directed against the complement

C3 (C3NeF) or C4 (C4NeF) convertases. These nephritic

autoantibodies are present in some forms of membrano-

proliferative glomerulonephritis (MPGN) [45]. The para-

crine activity between complement factors and PD-1

molecules are reviewed elsewhere [46].

MPGN is a histopathologic pattern characterized by

increased glomerular cellularity, capillary wall thickening

and mesangial expansion. Patients with MPGN may

present clinically with nephrotic syndrome or nephritic

syndrome [47, 48]. Three different forms of MPGN are rec-

ognized. The first is immune complex-associated MPGN

(IC-MPGN), which manifests in response to significant

glomerular immunoglobulin deposition and activation of

the complement classical pathway, leading to the formation

of the complement membrane attack complex (MAC) on

the surface of targeted cells [47, 48]. IC-MPGN is seen in

lupus nephritis, immunoglobulin (Ig)-A nephropathy,

infection-related glomerulonephritis and fibrillary glomer-

ulonephritis with polyclonal immunoglobulin deposits [48].

The contribution of altered PD-1 activity in these diseases

is discussed elsewhere [43, 49]. The additional forms are

complement-mediated and identified as C3 glomerulopathy

(C3G). The C3G category is divided into dense deposits

disease (DDD) and C3 glomerulonephritis (C3GN). DDD

involves osmiophilic electron-dense intramembranous de-

posits whereas C3GN includes nephritic factors and C3

deposits predominantly in the glomeruli, without intra-

membranous deposits [47, 48]. Crescentic glomeruloneph-

ritis can be identified in IC-MPGN and C3GN [50].

Pauci-immune glomerulonephritis (PIGN) is the most

common cause of crescentic glomerulonephritis. Approxi-

mately 95% of PIGN cases exhibit antineutrophil cytoplas-

mic antibodies (ANCA) specific to myeloperoxidase

(MPO-ANCA) or proteinase 3 (PR3-ANCA). Autoanti-

body binding to neutrophils induce neutrophil integrin ex-

pression and adherence to endothelial cells, which

promotes transmigration across the endothelium [51].

These activated neutrophils release neutrophil extracellu-

lar traps (NETs) and granules that damage the endothe-

lium. Ruptures in the glomerular basement membrane

release plasma proteins and coagulation factors into Bow-

man space that promote parietal epithelial cell hyperplasia

and form crescentic glomerulonephritis [50].

Tubulointerstitial inflammation and damage are com-

mon in progressive glomerular disorders and are the de-

fining features in interstitial kidney disease [34, 35]. In a

multicenter retrospective analysis, patients receiving PD-

1/PD-L1 immunotherapy and a proton pump inhibitor

Table 1 Glomerulopathy as a complication of anti-PD-1 immunotherapy in 13 cases (Continued)

Underlying Disease Age Sex Disease Treatment Syndrome Syndrome Treatment Result

Recurrent gastric
cancer and liver
metastases
[32]

68 F 30 cycles of nivolumab
subsequent to
S-1 plus cisplatin (first-line),
paclitaxel monotherapy
(second-line) and irinotecan
monotherapy (third-line)

Acute granulomatous
tubulointerstitial
nephritis associated
with PD-L1+ lesions
and aggregated

CD3+ T cells

Nivolumab was discontinued,
and the patient was treated
with methylprednisolone 1.0
mg/kg (40 mg) daily

Nivolumab was reinstated
up to a total of 41 cycles
without kidney dysfunction
but the cancer was not
responsive

Hodgkin
lymphoma [33]

40 M 3 doses of camrelizumab
(200 mg every 2 weeks)
subsequent to classic
chemotherapy

Minimal change
disease

Camrelizumab was
discontinued and patient
was treated with prednisone
(1 mg/kg/day)

Renal function improved

Shown are the details of 13 cases which administration of anti-PD-1 antibody was followed by the appearance of glomerulopathy, either nephrotic
syndrome or glomerulonephritis. Ipilimumab: monoclonal antibody targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4); pembrolizumab,
nivolumab: monoclonal antibody targeting PD-1; S-1: oral dihydropyrimidine dehydrogenase inhibitory fluoropyrimidine based on a biochemical
modulation of 5-fluorouracil (5-FU)
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or a CTLA-4 inhibitor developed tubulointerstitial neph-

ritis in 93% of biopsied patients [37]. Renal biopsy is re-

quired for the diagnosis of anti-PD-1 immunotherapy-

induced glomerulopathies and tubulopathies. In the USA,

renal biopsy typically includes analysis of the tissue by light

microscopy, electron microscopy and characterization of

antibody deposition (IgG, IgM and IgA) and complement

deposition. Immune cell infiltrates of myeloid lineage

(monocytes, dendritic cells, neutrophils) and lymphoid

lineage (T cells, B cells, plasma cells) may be identified by

immunohistochemical staining, although this is typically a

research procedure and not part of most clinical renal bi-

opsy analyses [34, 35]. In a study assessing kidney biopsies

obtained from anti-PD-1 immunotherapy patients that de-

veloped acute kidney injury, biopsy samples manifesting

acute interstitial nephritis also showed increases in PD-L1

staining on tubular epithelial cell membranes compared to

control biopsy samples with acute tubular necrosis [9].

Additional pathologies associated with glomerulonephritis

as an adverse event of anti-PD-1 immunotherapeutic treat-

ment are described in Table 1.

Macrophages in glomerulonephritis

Monocytes and macrophages are recruited by multiple fac-

tors, most notably by chemokine (C-C motif) ligand-2

(CCL2). This chemokine, also known as monocyte chemo-

attractant protein-1 (MCP-1), is produced in the kidney by

mesangial cells and proximal tubule epithelial cells in re-

sponse to cytokines (e.g., tumor necrosis factor (TNF),

interferon-γ, IL-1β) and by pathogen-associated molecular

patterns (PAMPs) (e.g. lipopolysaccharide) [52, 53]. Mesan-

gial cells and proximal tubule epithelial cells also produce

macrophage colony-stimulating factor (M-CSF), which

promotes differentiation of monocytes into macrophages

[54] (Fig. 2). The pathogenic role of macrophages in glom-

erulonephritis has been established in animal models that

demonstrate improved kidney function after macrophage

depletion [55, 56]. In addition, in a glomerulonephritis

murine model, glomerular macrophages expressed high

levels of PD-L1 and proteinuria was suppressed either by

blocking macrophage recruitment with anti-CD11b ther-

apy or alternatively by antagonizing PD-L1 function with

anti-PD-L1 therapy [55], suggesting a functional role of

PD-L1 activated macrophages in the disease.

Fibrotic lesions and germinal centers in glomerulonephritis

In the setting of glomerulonephritis, interferon-γ-

producing CD56brightNKp46+CD117+ natural killer (NK)

cells are recruited in human fibrotic kidney tissue [57].

Interferon-γ produced by these cells induces production

of the macrophage chemokine, CCL2, by mesangial cell

and proximal tubule epithelial cells [53]. In response to

tubular injury, macrophages, DCs, and mast cells are re-

cruited and may contribute to fibrosis through

production of transforming growth factor-β- or galectin-

3-induced fibroblast proliferation and protease remodel-

ing of the extracellular matrix (e.g., matrix

metalloprotease-9, chymase, and tryptase) [14, 58].

The resulting tubulointerstitial fibrotic lesions manifest

the following features: dysregulated production and

organization of extracellular matrix proteins and reduced

production of erythropoietin by fibroblasts [59], lymphatic

growth [60] and the development of germinal center struc-

tures containing follicular dendritic cell (FDC) networks, B

and T cell aggregates and plasma cells [61] (Fig. 2). In

murine splenic germinal center formation, PD-1 and the

ligands regulate the activity of B and T cells [62, 63], sug-

gesting that germinal centers formed in the kidney may

also require PD-1 cell signals, although this has not been

shown. Erythropoietin therapy in the murine nephritis

MRL/lpr strain promotes the formation of immunosup-

pressive T cell subsets [64]. Interstitial fibroblasts produce

erythropoietin and with further investigation, could regu-

late PD-1 cell signals associated with T cell suppression.

The PD-1 axis is therefore an attractive therapeutic target

to suppress both germinal center activity and fibrosis in

progressive kidney disease.

Neutrophils in glomerulonephritis

Although peripheral numbers of PD-L1-expressing neu-

trophils are elevated in lupus patients [65], this marker

is generally absent from neutrophils in the human kid-

ney and is absent from intraglomerular neutrophils in

the NZM2328 murine model of lupus nephritis [55].

Neutrophils, which contribute to the pathology of in-

flammation in the glomeruli and the interstitium in

lupus, are mainly recruited into the kidney by IL-8 re-

leased from cells activated by cytokines (e.g., TNF or IL-

1α), including podocytes, mesangial cells and proximal

tubular epithelial cells [66, 67]. In lupus nephritis, en-

hanced production of IL-8 occurs in response to the

cytokine IL-17 [68], which is produced predominantly

by double-negative TCRαβ+CD3+CD4-CD8- T cells [69].

The functions of double-negative T cells (i.e. those lack-

ing CD4 and CD8), which can also express PD-1 [70],

may therefore include the recruitment of neutrophils.

Lymphocytes in glomerulonephritis

Double-negative T cells [69], IL-17 producing CD4+ T

cells (Th17) [71], and interferon-γ producing CD4+ T

cells (Th1) [72] are recruited to the glomeruli and the

interstitium. The chemokine receptor, CXCR3, is

expressed on T cells and contributes to T cell recruit-

ment in murine glomerulonephritis [73, 74]. In renal bi-

opsy tissue from lupus nephritis patients, CXCR3+ T

cells are present in the kidney and co-localize with cells

which produce the CXCR3 ligand, CXCL10 [75]. Serum

levels of CXCL10 in lupus patients are positively
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correlated with anti-DNA antibody levels [76]. More-

over, in a murine tumor model, anti-PD-1 therapy in-

creases expression of CXCL10 at the tumor site [77].

Therapeutically targeting CXCL10 or CXCR3 may there-

fore reduce the inflammatory response in glomerulo-

nephritis [75, 76] and may possibly affect the PD-1 axis.

In addition, murine splenic self-reactive double-negative

T cells can express PD-1 and this subset produces higher

levels of IL-17 compared to their PD-1-/- counterparts

[70]. Double-negative T cells and FOX3P+ T regulatory

cells (Tregs) are present in lupus renal biopsies [78]. The

evaluation of PD-1 on these subsets in human kidney bi-

opsy, as a biomarker or therapeutic target, remains to be

explored.

Cytokines in glomerulonephritis

In glomerulonephritis, increased production of the cyto-

kines IL-23 and IL-18, generated by antigen presenting

Fig. 2 The microenvironment in glomerulonephritis. Types of glomerulopathy that may occur during PD-1 immunotherapy include minimal

change disease (MCD), focal segmental glomerulosclerosis (FSGS), pauci-immune glomerulonephritis (PIGN), and membranoproliferative

glomerulonephritis (MPGN). (1) In MCD, injured podocytes undergo foot process effacement whereby they lose filtration slits and cell-cell

junctions, leading to loss of the size-selective and charge-selective filtration barrier. (2) FSGS also involves podocyte injury that progresses to the

obliteration of the capillary lumens. (3) Antineutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis is a primary form of PIGN.

Autoantibodies activate neutrophils to adhere to the endothelium, and these cells migrate into tissue and release damage-associated molecular

pattern molecules (DAMPs). Activated neutrophils also release neutrophil extracellular traps (NETs) and granules that damage the endothelium

and rupture the glomerular basement membrane. The subsequent release of plasma proteins and coagulation factors into Bowman space

promote parietal epithelial cell hyperplasia and result in crescentic glomerulonephritis. (4) Immune complex MPGN (IC-MPGN) is characterized by

capillary wall thickening, mesangial expansion, and may involve the formation of crescentic glomerulonephritis. Complement C1q binds

autoantibodies which bind to mesangial cells and promote the deposition of the membrane attack complex (MAC). This pore-forming complex

can damage cells in a lethal or sublethal manner. The subsequent wound repair response encourages cell proliferation. (5) Inflammatory cytokines

induce mesangial cell and proximal tubule epithelial cell production of CCL2, which recruits macrophages and monocytes, and M-CSF, which

promotes monocyte to macrophage differentiation. (6) Tubulointerstitial fibrotic lesions are characterized by excessive accumulation of

extracellular matrix (ECM) molecules and the recruitment of natural killer (NK) cells, macrophages, dendritic cells (DCs), and mast cells. (7)

Germinal center structures may form and contain follicular dendritic cell (FDC) networks, B and T cell aggregates and plasma cells can form. (8)

Lymphangiogenesis can occur in glomerulonephritis. (9) Epithelial cells produce stromal cell-derived factor 1 (SDF1) to recruit B and T cells and

IL-8 for neutrophil chemotaxis. (10) Myeloid cells produce IL-23 and IL-18, which induces the formation of Th17 and Th1 cells. These cells are are

recruited to the interstitium and glomerulus, in part, by myeloid CXCXL10. NK cells and Th1 cells produce interferon (IFN)-γ. Most IL-17 producing

cells in glomerulonephritis are CD3+CD4-CD8- double negative. CD4+ IL-17 producing cells are also present. (11) IFN-α is primarily secreted by

activated plasmacytoid DCs and by human proximal tubular epithelial cells in the interstitium. Cytotoxic T lymphocytes (CTL) are generated that

destroy target cells. (12) Proteinuria is an identified marker of nephritis. (13) Immune checkpoint inhibitor (ICI) therapies may block homeostatic

interactions that normally suppress inflammation. (14) Glomerulonephritis blood markers can include elevated levels of autoantibodies and

altered complement turnover
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cells, induces the expansion of IL-17-producing cells and

interferon-γ-producing cells, respectively [79, 80]. In

CD4+ Th17 and CD4+ Th1 cells, PD-1 expression is re-

pressed [43]. Blocking IL-23 or IL-18 cell signals may

therefore offer an approach to reduce inflammation and

increase PD-1 expression in glomerulonephritis, which

could be tested in relevant animal models.

Treatment of glomerulonephritis

Ideally, treatment of glomerulonephritis involves the dir-

ect targeting of the mechanisms underlying the disease

process. Idiopathic glomerulonephritis and syndromes

involving autoantibodies or complement commonly re-

quire immunosuppressive therapies and when these syn-

dromes arise in the context of PD-1 therapies,

withdrawal of immune-activating medications [34]

(Table 2). Therapeutic algorithms support the use of

glucocorticoids, calcineurin inhibitors, mycophenolate

mofetil, azathioprine, anti-CD20 antibodies and most re-

cently, belimumab, which targets the cytokine B-cell ac-

tivating factor (BAFF) [86]. Anti-CD20 antibodies bind

CD20 on B cells and plasma cells and initiate cell death

through several mechanisms, including apoptosis,

antibody-dependent cell-mediated cytotoxicity and

complement-dependent cell lysis [87]. Indirectly, anti-

CD20 antibodies may also protect the functions of

podocytes through binding interactions with the cell sur-

face receptor, sphingomyelin phosphodiesterase, acid-

like 3b [88]. Anifrolumab, targeting the type I interferon

receptor, has shown promise and may be soon approved

for systemic lupus. Type I interferon cell signals also in-

duce the expression of PD-L1 [89]. Additional research

into the PD-1 response to pathogens and to autoimmun-

ity may offer insight into the pathogenesis of glomerulo-

nephritis and the adverse events that occur with PD-1

therapies.

Glomerulonephritis summary

The expression of PD-1 ligands on cells in the glomeruli

or tubular epithelium during glomerulopathies has not

been sufficiently explored. Macrophages and neutrophils

are recruited during glomerulonephritis but only macro-

phages are identified to express PD-L1 in tissue. The ex-

pression and function of PD-1 on lymphocytes requires

further investigation, particularly with respect to the

double-negative T cells prominent in the kidney. Block-

ing CXCL10, IL-23 or IL-18 cell signals may induce

lymphocyte PD-1 expression. Additional study of the

PD-1 axis in glomerulonephritis may offer insight into

the formation of germinal centers, fibrosis, and changes

in erythropoietin production in the disease. Each of

these concepts is important to understanding

Table 2 Identification PD-1, PD-L1 and PD-L2 expressing cells in the kidney

Cell Marker Human Mouse

Dendritic cells in the interstitium
and renal draining lymph [15]

PD-L1,
PD-L2

Fluorescently labeled dextrans or OT-I cells
injected into intravenously injected into C57BL/6,
OT-I.RAG−/−, Thy1.1, and/or Rag−/− mice

Human primary renal proximal
tubular epithelial cells (TECs) [6]

PD-L1,
PD-L2

Primary cultures of human TECs generated
from healthy parts of tumor nephrectomies.

Immunotherapy patient TECs [9] PD-L1 Kidney biopsies from anti-PD-1 immunotherapy
patients that developed acute interstitial nephritis
exhibit elevated TEC PD-L1 staining compared to
those with acute tubular necrosis

Glomerulonephritis
macrophages [55]

PD-L1 The lupus-prone NZM mouse strain +/- anti-
glomerular basement membrane (GBM)
antibodies

Clear cell RCC macrophages [81] PD-L1,
PD-L2

A mass cytometry-based atlas of 73 RCC tumor
samples compared to five normal kidney controls

Unknown cell source in clear
cell RCC patients [82]

Soluble
PD-L1

Sera soluble PD-L1 levels from 172 RCC patients
correlates with pathologic features and patient
outcome

Clear cell RCC and non-clear
cell RCC tumors [83]

PD-L1,
PD-L2

In 425 resected RCCs, PD-L1 and PD-L2 expression
is variable among histologic subtypes and associated
with adverse outcomes in ccRCC

CD4+CD25hiFOXP3+

(Tregs) in RCC patients [84]
PD-1 Primary tumor Tregs in 42 RCC patients displayed

elevated PD-1 compared to cells in the peripheral
blood of RCC patients and 15 healthy donors

CD8+ T cells in RCC [85] PD-1 In situ immunofluorescence spectral imaging of
RCC tissue from nephrectomy
revealed co-expression of PD-1 and TIM-3 on CD8+

associates with a more aggressive phenotype

Shown are details of PD1, PD-L1 and PD-L1 identification in renal tumors and kidney cells from humans and mice, as described in nine published reports
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glomerulopathies that occur as an adverse event follow-

ing to PD-1 immunotherapy.

The PD-1 axis in RCC

Renal cell carcinomas are heterogeneous in histology,

cell of origin, and driver mutations [90]. RCC de-

velops from renal tubular epithelial cells in the prox-

imal, distal and collecting tubules [91]. Similar to

glomerulonephritis, RCC tumors typically exhibit a

mix of myeloid and lymphoid cell infiltrates [81], fi-

brosis [92], and in aggressive forms, lymphangiogen-

esis [93]. Unlike glomerulonephritis, erythropoietin

production may be elevated in RCC [94] and B cells

are not commonly detected in RCC [95]. These latter

inverse manifestations between the diseases may be

associated with the differential expression of hypoxic

cell signals that induce the production of erythropoi-

etin [94] and promote B cell apoptosis [96].

RCC myeloid recruitment

In clear cell RCC, mutations in the von Hippel-Lindau

(VHL) E3 ubiquitin protein ligase prevent VHL-induced

ubiquitination of hypoxia-inducible factor (HIF)-1α and

HIF-2α, which targets HIFs to the proteasome for deg-

radation. This decreased degradation of HIF-1α and

HIF-2α promotes hypoxic cell signals, which in turn

promotes the production chemokines [97, 98]. RCC pro-

duction of adrenomedullin [99], IL-8 [97], and CCL2

[100] contribute to the recruitment of mast cells, neutro-

phils and macrophages. The expression of membrane-

bound macrophage colony-stimulating factor (mM-CSF)

on RCC cells also contributes to the differentiation of

monocytes to macrophages [101], which variably express

PD-L1 and PD-L2 in tumor tissue [81]. The presence of

these innate immune cells in RCC tumors enhances the

production of vascular endothelial growth factor

(VEGF), which is an angiogenic factor that has the po-

tential to promote tumor growth and invasiveness [99,

101] (Fig. 3).

RCC myeloid function

In peripheral blood from RCC patients, an elevated

neutrophil-to-lymphocyte ratio is associated with a poor

prognosis. In a retrospective analysis of RCC patients

treated with anti-PD-1 or anti-PD-L1-based regimens, a

higher neutrophil-to-lymphocyte ratio measured six-

weeks after therapy was independently associated with

worse outcomes [102]. Because soluble PD-L1 is also a

biomarker indicating poor prognosis in RCC [82], inves-

tigation of a mechanistic relationship between neutrophil

function and soluble PD-L1 production may be war-

ranted. Circulating neutrophil PD-L1 expression has not

been evaluated in RCC. However, PD-1 is expressed on

subsets of RCC-patient peripheral blood neutrophils,

lymphocytes, and CD14bright myeloid cells and the levels

of PD-1 on these cells correlates positively with RCC

disease stage [103]. This may indicate that PD-L1+ RCC

tumors [104] or PD-L1+PD-L2+ RCC tumors [83] pro-

mote immunosuppression, in part by directly activating

PD-1 on innate myeloid and lymphoid immune cells.

Further studies are needed to test this hypothesis.

RCC T cell recruitment

Expression of the chemokine stromal cell derived factor-

1 (SDF-1, also known as CXCL12) and its receptor,

CXCR4, are induced by VHL inactivation and HIF

stabilization. SDF-1 and CXCR4 are expressed in RCC

tumors and are markers of poor prognosis [105]. Tregs

isolated from primary RCC tumors express PD-1,

CTLA-4 and high levels of CXCR4 [84]. NK cells can

also express CXCR4 and PD-1 but are mostly character-

ized by the expression of immunosuppressive molecules

CD158a, CD158b, and NKG2A/CD94 in RCC [106,

107]. The mechanisms involved in the recruitment of

immunosuppressive NK cells and CD8 T cells in RCC

are not well-understood.

RCC T cell function

CXCR4+ T cell lines treated with SDF-1 induce the pro-

duction of VEGF [108]. This growth factor, which is also

abundantly produced by RCC tumor cells, activates the

expression of three CD8+ T cell checkpoint receptor

genes, encoding lymphocyte activation gene-3 (LAG3),

T-cell immunoglobulin mucin-domain containing-3

(TIM-3) and PD-1 [109]. In RCC tumor tissue, CD8+ T

cells express these receptors [85, 110] (Fig. 3). Because

CXCR4+ Tregs treated with a CXCR4 peptide antagonist

effectively blocked Treg function and promoted

interferon-γ production [84], CXCR4 is a potential

therapeutic target in RCC. Interestingly, CXCR4 is also a

target in lupus glomerulonephritis [111] and the levels

of interferon-γ in this disease are elevated without the

use of a CXCR4 antagonist [80]. Therefore, targeting

VEGF receptors, PD-1, and/or additional checkpoints on

T cells may be necessary to promote the development of

tumor-specific T cells or effective T regulatory cells in

glomerulonephritis.

RCC treatment

RCC-induced inflammatory cytokines and VHL muta-

tions induce cell signals that activate the mammalian

target of rapamycin (mTOR) pathway. These signals also

contribute to RCC tumor cell activation of HIF-1α and

HIF-2α, which drive VEGF production and PD-L1 sur-

face expression [112–114]. Treatments for RCC have

primarily targeted VEGF ligands (bevacizumab), VEGF

receptors (sorafenib, sunitinib, pazopanib, axitinib, cabo-

zantinib), the mTOR pathway (temsirolimus, everolimus)
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and more recently PD-1 (pembrolizumab, nivolumab)

and PD-L1 (atezolizumab, avelumab, durvalumab) [115].

The similar and yet distinct activation networks in these

pathways are important in understanding and predicting

therapeutic responses in monotherapies and combina-

torial treatments and in selecting the right therapy for a

particular patient, who may have co-morbidities that im-

pinge on or intersect with these pathways (Fig. 4).

RCC summary

RCC tumor cells may express PD-L1 and/or PD-L2.

Macrophages variably express PD-L1 and PD-L2 in

tumor tissue. Circulating myeloid and lymphoid cells

may express PD-1, which can be regulated by SDF-1 or

VEGF cell signals. These pathways are activated by

hypoxic cell signals that often include the dysregulation

of mTOR. In the kidney, vitamin D3, 5’ AMP-activated

protein kinase (AMPK) and glutathione are important to

the physiological functions of the kidney and the cellular

responses to hypoxia. The activation of PD-1 ligands by

hypoxic cell signals also indicates that vitamin D3,

AMPK and glutathione have a functional role in RCC

and therapies that target mTOR, the PD-1 axis and

VEGF.

Vitamin D3 and the PD-1 axis

Vitamin D3, derived from ultraviolet-B radiation of 7-

dehydrocholesterol in the skin or via dietary absorption,

is 25-hydroxylated in the liver, predominantly by the

P450 enzyme CYP2R1, to form 25(OH)D3. This

Fig. 3 The microenvironment in renal cell carcinoma (RCC). (1) A hypoxic microenvironment is induced by tumor cells and recruited mast cells,

macrophages and neutrophils. (2) Intratumoral fibrotic lesions and lymphangiogenesis can occur in RCC. (3) Erythropoietin (EPO) is produced by

tumor cells in addition to interstitial fibroblasts. (4) Tumor cells and immune cells produce vascular endothelial growth factor (VEGF), which

promotes angiogenesis. (5) Tumor cells and epithelial cells produce stromal cell-derived factor 1 (SDF1) and adrenomedullin (AM) involved in the

recruitment of lymphocytes and mast cells, respectively. (6) Tumor cells produce CCL2, which recruits macrophages and monocytes and

membrane-type M-CSF (mM-CSF), which promotes monocyte to macrophage differentiation. (7) Tumor cells produce IL-8, which recruits

neutrophils. (8) Macrophages produce IL-23 involved in Treg function. (9) RCC Tregs express PD-1 and CTLA-4. (10) RCC CD8+ T cells express

lymphocyte activating-3 (LAG3), which binds RCC MHC class II in promoting tolerance. (11) Tumor cells can express PD-L1 and PD-L2 and either

can bind T cell PD-1 receptors. (12) Tumor cells can also express galectin-9 (G9) that binds to the suppressive CD8 T cell marker T-cell

immunoglobulin and mucin-domain containing-3 (TIM3). (13) Immunosuppressive NK cells are recruited in RCC. (14) RCC peripheral blood

markers can include an elevated neutrophil to lymphocyte ratio and elevated plasma levels of sPD-L1
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molecule is subsequently 1-hydroxylated in the kidney

by the proximal tubule epithelial cell enzyme 25-

hydroxyvitamin D3 1-α-hydroxylase (CYP27B1), forming

the fully active metabolite, 1α-25(OH)2D3 [116, 117].

CYP27B1 activity is inhibited by fibroblast growth

factor-23 (FGF-23), which in turn is induced by elevated

levels of phosphate and 1α-25(OH)2D3. CYP27B1 activity

is stimulated by parathyroid hormone (PTH). The syn-

thesis and secretion of PTH is promoted by low plasma

calcium and elevated plasma phosphate and is sup-

pressed by physiologic plasma levels of 1α-25(OH)2D3

and fibroblast growth factor-23 [118]. With regard to ca-

tabolism, the mitochondrial 25-hydroxyvitamin D3 -24-

hydroxylase enzyme CYP24A1 catalyzes the conversion

of both 25(OH)D3 and 1α-25(OH)2D3 into 24-

hydroxylated products targeted for excretion [119].

Through these cell signals, the tubular cell regulates the

levels of the most potent form of vitamin D, 1α-

25(OH)2D3, and thereby maintains bone mineral homeo-

stasis. Whereas calcium filtered at the glomerulus is

reabsorbed along the nephron, phosphate is primarily

reabsorbed in the proximal tubule.

The CYP27B1 and CYP24A1 enzymes are also

expressed by nearly all immune cell subsets [120]. In

chronic kidney disease patients, levels of serum phos-

phate and FGF-23 are elevated, possibly in response to

CYP27B1 loss of function, resulting in increased

CYP24A1 activity and vitamin D3 deficiency [121]

Fig. 4 Possible proximal tubule epithelial cell signals in glomerulonephritis and renal cell carcinoma. (1) Low levels of calcium induce the release

of parathyroid hormone (PTH) from parathyroid glands and this stimulates renal CYP27B1 expression. (2) 25(OH)D3, formed in the liver, is

hydroxylated by CYP27B1 to form the active metabolite, 1α-25(OH)2D3. (3) CYP24A1 catalyzes the conversion of 25(OH)D3 and 1α-25(OH)2D3 into

24-hydroxylated products targeted for excretion. (4) Elevated levels of 1α-25(OH)2D3 induce the production of fibroblast growth factor-23 (FGF-

23), which suppresses CYP27B1 transcription. (5) 1α-25(OH)2D3 may antagonize PAMP/DAMP-induced inflammasome activation. (6) Vitamin D

response elements (VDRE) in the PD-L1 gene may be functionally active in the renal epithelium. (7) PAMPs/DAMPs, ROS, and IL-1β activate PD-L1

transcription factors, HIF-1α and NF-kB. PD-L1 expression can be blocked with monoclonal antibodies. (8) 1α-25(OH)2D3 antagonizes Akt and the

transcription factor STAT3 that may be induced by IL-6 and mTORC2. IL-6 receptor monoclonal antibodies block IL-6 signals. (9) Hypoxia

promotes the stability and activation of HIF-1α and HIF-2α. Both mTORC1 and mTORC2 are involved in HIF-1α regulation. mTORC2 regulates the

expression of HIF-2α and is activated by VEGF cell signals. Tyrosine kinase inhibitors block VEGF receptor signals. (10) HIF-1α and HIF-2α induce

the production of SDF-1 and VEGF. Antibodies that bind circulating VEGF block VEGF binding to its receptor. (11) Metformin-induced AMPK

promotes PD-L1 phosphorylation and degradation. AMPK is also involved the phosphorylation of PGC-1α, which is additionally de-acetylated by

sirtuins (SIRT1) during mitochondrial biogenesis and under conditions of normoxia. (12) Uric acid is a DAMP involved in the activation of the

inflammasome and proximal tubule epithelial cell production of adiponectin. (13) Metformin and AICAR activate AMPK. Metformin therapy may

induce the production of adiponectin. (14) γ-glutamyltransferase activity degrades glutathione (GSH) into its individual amino acids. (15) Reduced

GSH scavenges free radicals and generates an oxidized form of GSH (GSSG). (16) GSH metabolism is associated with the activation of the pentose

phosphate pathway. (17) NF-kB is antagonized by glucocorticoids and promotes the production of chemokines and ROS. (18) The cell signals that

occur in response to PD-L1 ligation or blockade are not well characterized
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(Fig. 4). Altered expression of the vitamin D receptor

(VDR) is also a prognostic indicator in chronic kidney

disease [3]. The downstream signals of 1α-25(OH)2D3

also promote and inhibit PD-1 ligand expression.

Vitamin D3 myeloid and epithelial cell signals

In human myeloid and skin epithelial cell lines, 1α-

25(OH)2D3 enhances the expression of both PD-L1 and

PD-L2 by binding to vitamin D response elements

(VDRE) located near the gene [4]. Despite this similarity,

additional cell signals in myeloid cells and epithelial cells

manifest different responses to vitamin D. In myeloid

cells, 1α-25(OH)2D3 interacts synergistically with patho-

gen- or damage-associated molecular patterns (PAMPs

or DAMPs) in the activation of the NLRP3 inflamma-

some and subsequent production of IL-1β [122], which

is a cytokine that induces PD-L1 expression [123]. 1α-

25(OH)2D3 activation of the AKT/mTOR pathway also

contributes to the formation of tolerogenic dendritic

cells [124]. Regulation of the inflammasome by 1α-

25(OH)2D3 in kidney epithelial cells has not been deeply

explored. However, in human corneal epithelial cells,

1α-25(OH)2D3 antagonizes NLRP3 inflammasome acti-

vation and reduces the production of reactive oxygen

species (ROS) and IL-1β [125]. 1α-25(OH)2D3 also an-

tagonizes the activity of STAT3, AKT and mTOR in a

human renal proximal tubular epithelial cell line (HRPT

EpiC) [126]. Therefore, 1α-25(OH)2D3 may inhibit epi-

thelial cell activation of the mTOR complexes, mTOR

complex 1 (mTORC1) and mTORC2 [127], and also in-

hibit their downstream signals, HIF-1α and HIF-2α,

which contribute to PD-L1 expression [114, 127]. Thus,

the distinct cell signals that induce expression of PD-L1

on myeloid and epithelial cells may be regulated by 1α-

25(OH)2D3 through the disparate expression of the VDR

and/or additional cell signals from PAMPs/DAMPs and

cytokines that modulate signaling downstream of the

VDR.

Vitamin D3 T cell signals

VDR activation in T cells induces transcriptional repres-

sion of IL-17A but induction of FOXP3 [128], which also

contain VDREs [129]. These responses may offer a

mechanism to explain the inverse correlation between

low serum 25(OH)D3 levels and the elevated IL-17 levels

in SLE patients with 25(OH)D3 deficiency [130]. Treg

and Th17 cells rely upon mTORC1 activity during dif-

ferentiation [131, 132]. This suggests that rapamycin an-

alogs may antagonize the generation of both T cell

subsets, which are differentially generated in response to

1α-25(OH)2D3 and differentially express PD-1 [43]. A

possible mechanism to explain the 1α-25(OH)2D3 re-

sponse in T cells may involve mTORC2 activity, which

promotes the development of Tregs [133], possibly via

VEGF signaling [134]. A downstream signal of mTORC2

is mTORC1, which is a primary target in current clinical

trials of RCC [115] and lupus [135]. Further research

into 1α-25(OH)2D3 regulation in immune and non-

immune cells may yield insight into the functions of

rapamycin analogs and other therapeutics that target

products of mTOR activation (e.g., VEGF and PD-L1).

Vitamin D3 summary

Altered expression of the VDR is associated with chronic

kidney disease and affects mTOR signals and the expres-

sion of PD-1 and its ligands. VDR-induced mTORC1/2

signals differ in immune cells compared to epithelial

cells, which may offer insight into the efficacies of

mTOR inhibitors and PD-1 immunotherapies. The link

between mTOR pathways and hypoxic metabolism also

suggests that vitamin D3 is involved in the regulation of

cellular hypoxia, which is a metabolic pathway highly ac-

tivated in RCC and known to induce the expression of

PD-1 ligands.

AMPK and the PD-1 axis

In immune cells and renal parenchymal cells, 5’ AMP-

activated protein kinase (AMPK) is activated in response

to low intracellular ATP levels, resulting in AMPK-

mediated phosphorylation of multiple substrates in-

volved in stimulating energy production and minimizing

energy consumption [136]. AMPK promotes aerobic me-

tabolism by activating a co-factor in mitochondrial bio-

genesis, specifically peroxisome proliferator -activated

receptor gamma coactivator 1-alpha (PGC-1α). AMPK

also antagonizes mTORC1 and NF-κB cell signals, which

collectively promote hypoxia [137].

Adiponectin-induced AMPK

Adiponectin is an endogenous activator of AMPK and

induces anti-inflammatory responses in innate immune

cell subsets [138]. This protein hormone is predomin-

antly secreted by adipocytes but can also be generated

by proximal tubule epithelial cells in response to a

DAMP, soluble uric acid [139]. Adiponectin exhibits

structural homology with the complement component,

C1q, and both of these molecules activate AMPK in

murine bone marrow-derived macrophages [140]. In

lupus nephritis patients, both urine [141] and serum

[142] levels of adiponectin are elevated compared to

controls. In contrast, lower plasma adiponectin levels are

associated with an increased incidence of RCC [143]

(Fig. 4). Because serum levels of adiponectin tend to de-

crease with obesity [144], obesity may be a factor in the

progression of RCC. Moreover, the adenosine analogue,

5-amino-4-imidazole carboxamide riboside-1-β-D-ribo-

furanoside (AICAR), also activates AMPK and inhibits

both mTORC1 activity and PD-L1 expression in lung
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cancer models [145], suggesting that adiponectin-

induced AMPK activation could have comparable func-

tions in the kidney. Possibly, higher levels of adiponectin

in glomerulonephritis reduce PD-L1 expression whereas

lower adiponectin levels in RCC increase PD-L1 expres-

sion on proximal tubule epithelial cells.

Metformin-induced AMPK

Metformin, a plant-derived biguanide, is commonly used

in the treatment of diabetes mellitus and induces AMPK

activation through mechanisms that have not been fully

elucidated [146]. In cultured breast cancer cells,

metformin-induced AMPK activity promotes PD-L1

phosphorylation and subsequent endoplasmic-

reticulum-associated PD-L1 degradation [147]. In a mur-

ine melanoma model, a combination of metformin and

PD-1 blockade results in improved intratumoral T-cell

function and tumor clearance [148]. The effects of met-

formin on PD-L1-expressing proximal tubular epithelial

cells and RCC tumor cells have not been fully explored.

Metformin is being assessed in reducing disease activity

flares in lupus patients (ClinicalTrials.gov Identifier:

NCT02741960) and a combination of metformin and

PD-1 blockade (nivolumab) is being tested in subjects

with stage III-IV non-small cell lung cancers that cannot

be surgically removed (ClinicalTrials.gov Identifier:

NCT03048500). The outcomes of these trials may yield

insight into the mechanisms of metformin in PD-1 im-

munity and kidney disease.

Moreover, retrospective studies of RCC patients re-

ceiving metformin for diabetes mellitus demonstrated

improved overall survival in these patients compared to

metformin non-users [149], particularly in localized

non-metastatic RCC [150]. A retrospective study of type

2 diabetes patients showed that serum adiponectin levels

increased with metformin therapy [151]. Higher levels of

adiponectin with metformin therapy may therefore sug-

gest a mechanism for improved outcomes in RCC [149]

but possibly not in glomerulonephritis, where adiponec-

tin levels are elevated in the absence of metformin [142].

However, because both metformin [152] and adiponectin

[138] promote anti-inflammatory responses in immune

cell subsets, additional study is warranted.

AMPK summary

AMPK activation in the kidney may inhibit mTORC1

cell signals and the expression of PD-L1. Adiponectin is

an AMPK ligand that may be elevated in the plasma of

lupus nephritis patients but reduced in RCC patients

compared to controls. Obesity may therefore regulate

PD-L1 expression in the kidney through adiponectin

cells signals. The potential regulatory role of metformin

in PD-L1 expression in the kidney requires further

study.

Glutathione and the PD-1 axis

De novo production of the reduced form of glutathione

(GSH) occurs via ligase and synthetase reactions that

form a tripeptide composed of glutamic acid, cysteine,

and glycine [153]. While most cells synthesize GSH, the

liver is the primary source of circulating GSH, and the

kidney is the primary tissue involved in the uptake of

GSH from blood [154]. Renal proximal tubule epithelial

cell γ-glutamyltransferase activity degrades GSH into its

constituent amino acids. The recycling of these amino

acids back into GSH and the conversion of oxidized

glutathione (GSSG) to GSH via a GSH reductase are

components of the GSH salvage synthesis pathway [153].

GSH reductive capacity is primarily driven by the pen-

tose phosphate pathway, which generates GSH. Oxida-

tion of GSH occurs through reactions with hydroxyl

radicals (•OH) or superoxide anion (O2
•−). GSH can also

be as a co-substrate of GSH peroxidases that reduce

lipid peroxides and hydrogen peroxide (H2O2) into alco-

hol or H2O, respectively [153] (Fig. 4). Genetic variants

in GSH enzymes (e.g., GPX1, GPX3) [155] or factors in-

volved in the transcriptional regulation of GSH genes

(e.g., NFE2l2, KEAP1) [156] may promote oxidative

stress in both glomerulonephritis [157] and RCC [158].

These mutations may also affect plasma 25(OH)D3 levels

since GSH plasma levels are positively correlated with

plasma 25(OH)D3 levels in a study of obese adolescents,

with further support from mouse studies [159]. A lack of

GSH may also increase ROS, which in turn activates the

transcription factors, NF-kB and HIF-1α, that regulate

expression of CD274, encoding PD-L1 [160]. The role of

ROS or GSH in the expression of PD-L1 in kidney im-

mune or parenchymal cells remains to be fully explored.

Glutathione summary

By recycling GSH, kidney epithelial cells are constantly

supplied with the factors required to synthesize this anti-

oxidant. GSH can neutralize ROS involved in the activa-

tion of transcription factors that induce the expression

of the PD-1 ligands. Changes in GSH plasma levels may

be associated with PD-L1 expression and function.

Comparing the immunobiology of RCC and

glomerulonephritis

The expression of PD-1 molecules in the kidney as dis-

cussed and displayed (Table 2) reveals the importance of

these checkpoints and need for the additional study of

PD-1 and the PD-1 ligands in the kidney. The immuno-

biologic similarities and differences between glomerulo-

nephritis and RCC may offer insight into the functions

of these checkpoints. In both glomerulonephritis and

RCC, epithelial cells and/or tumor cells produce CCL2

[53, 100], M-CSF [54, 101], and IL-8 [66, 97], which re-

cruit monocytes and macrophages, promote monocyte-
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to-macrophage differentiation, and recruit neutrophils,

respectively. RCC cells also produce the mast cell che-

mokine adrenomedullin [99], which could also be a fac-

tor in mast cell recruitment in glomerulonephritis [14,

161]. Notably, B cell recruitment and the formation of

germinal centers in the kidney are seen, albeit rarely, in

chronic glomerulonephritis [61] but not in RCC [95]. In

the murine spleen, macrophages act as regulators of ger-

minal center formation and this may indicate that the

activation of macrophages is pivotal to germinal centers

formation in the kidney [162]. Macrophages also pro-

duce IL-23 and IL-18, which contribute to the gener-

ation of Th17 and Th1 T cell subsets, respectively, in

glomerulonephritis [79, 80]. In an orthotopic model of

kidney cancer, IL-23 blockade improved survival and en-

hanced the efficacy of PD-1 blockade, possibly by inhi-

biting IL-23-induced Tregs [163]. In a melanoma model,

IL-18 therapy augments PD-L1 blockade by activating

CD8+ T cells and NK cells but suppressing Tregs [164].

This tends to support in vitro data involving IL-2/IL-18

activated-NK cell cytotoxic killing of RCC cell lines

[165]. The functional responses of IL-23 and IL-18 on

double negative TCRαβ+CD3+CD4-CD8- T cells, which

are highly expressed in the kidney [69] and can also ex-

press PD-1 [70], requires further study. Continued re-

search into the functions of macrophages and the IL-18/

IL-23 balance may offer insight to the PD-1 axis in kid-

ney disease.

The chemokine SDF-1 and its receptor CXCR4 are

expressed both in glomerulonephritis and RCC [105,

111]. Data indicating that SDF-1 ligation to CXCR4 in-

duces IL-6 production [166] may provide a rationale for

the targeting of IL-6 in both diseases [167, 168]. An add-

itional chemokine receptor, CXCR7/ACKR3, recognizes

SDF-1, adrenomedullin and CXCL11 [169, 170]. This

latter chemokine is also a CXCR3 ligand and a member

of the interferon-inducible chemokine family, which also

includes CXCL9, CXCL10 and CXCL11 [169]. Each of

these CXCR3 family chemokines can be dysregulated in

both glomerulonephritis [171] and RCC [172]. To add to

the complexity, variants of the gene encoding CXCR3,

CXCR3A and CXCR3B, are involved in promoting and

inhibiting endothelial cell growth upon ligand binding,

respectively [173]. Because CXCR3 ligation promotes the

anti-tumor effects of PD-1 blockade in mice [174], fur-

ther study of the CXCR3 variants, their ligands, and

competing receptors on immune and parenchymal cells

in the kidney may yield novel insights.

In RCC, hypoxia promotes the production of VEGF

[113] and erythropoietin [94]. The paracrine signals be-

tween VEGF and HIF pathways may promote PD-L1 ex-

pression in RCC (Fig. 3) and lend support to clinical

trials involving VEGF inhibitors and PD-1 targeted ther-

apies [175]. Because VEGF is not only an important

factor in angiogenesis, but also enhances the function of

Tregs [134], T cell VEGF receptors may be a therapeutic

target in glomerulonephritis and RCC. Targeting

erythropoietin receptors on T cells may also be war-

ranted, as erythropoietin is an additional factor that pro-

motes the formation of immunosuppressive T cell

subsets [64]. Consequently, erythropoietin and VEGF are

candidate factors in regulating the expression and func-

tion of PD-1 in T cells but this remains to be

demonstrated.

Finally, PD-L1 gene transcriptional activators include

STAT1/3, NF-κB, HIF-1α, and HIF-2α [176]. These

transcription factors are induced by cytokine (e.g., IL-6,

interferons, IL-1β) and/or hypoxic cell signals (Fig. 3).

These cell signals are differentially modulated by 1α-

25(OH)2D3 in immune cells [122, 124] and epithelial

cells [125, 126]. A mechanism underlying these diverse

responses may involve GSH, particularly since renal

proximal tubule epithelial cells are the primary cells re-

sponsible for GSH uptake from plasma [154]. GSH con-

tributes to regulating the production of degradative

enzymes (CYP24A1) and anabolic enzymes (CYP27B1),

both of which determine 1α-25(OH)2D3 plasma and tis-

sue levels [177]. In cultured proximal tubule epithelial

cells, 1α-25(OH)2D3 also antagonizes mTOR [126],

which is a direct target of rapamycin analogs and an in-

direct target of metformin and adiponectin (Fig. 3). Fu-

ture research into the crosstalk among these pathways

may identify markers for resistance to PD-1 therapy and

additional therapeutic targets in glomerular disease.

Conclusion

Blocking PD-1 ligation with anti-PD-1 immunotherapy

agents can induce various forms of glomerulonephritis.

To understand the etiology of the effect, we have

reviewed the possible expression and function of PD-1

receptors in a healthy kidney, glomerulonephritis and

RCC. The PD-1 ligands, PD-L1 and PD-L2, are present

on healthy proximal tubule epithelial cells in vivo and

their expression is increased in some forms of RCC. In-

creased expression of PD-L1 also occurs in anti-PD-1

immunotherapy-induced acute interstitial nephritis, sug-

gesting that the response may also occur in glomerulo-

nephritis. In RCC, an elevated plasma level of soluble

PD-L1 is a poor prognostic indicator. The cellular

source and function of soluble PD-L1 in RCC has yet to

be fully evaluated. In glomerulonephritis, serum levels of

soluble PD-L1 could also be examined as a possible bio-

marker, particularly since 1, 25 dihydroxy-vitamin D3 is

a factor in PD-L1 expression and levels of this vitamin

are often low in chronic kidney disease in the absence of

adequate supplementation. Mast cells, macrophages,

neutrophils and T cells are similarly recruited to the kid-

ney in both diseases, in which immunological processes
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manifest very differently. Because CXCR3 activation has

a role in promoting the anti-tumor response in PD-1 im-

munotherapy, a better understanding of the ligands that

bind CXCR3 variants (CXCR3A, CXCR3B) and compet-

ing receptors (CXCR4, CXCR7) is needed. Myeloid cells

tend to express PD-L1 in glomerulonephritis but may

express PD-1 in RCC. The cell signals from these recep-

tors on innate immune cells in the context of disease

and immunotherapy requires further study. Erythropoi-

etin, vitamin D3 and VEGF promote the formation of

Tregs, suggesting that receptors for these molecules on

T cells might be therapeutic targets in kidney disease

and might also contribute to a possible PD-1 immuno-

therapeutic response. Because hypoxic cell signals induce

the expression of PD-L1 molecules and promote B cell

apoptosis, endogenous molecules that regulate hypoxic

cell signals (e.g., AMPK, vitamin D3, GSH) and drugs

that block hypoxic responses (e.g., rapamycin analogs,

glucocorticoids, VEGF inhibitors) may increase the effi-

cacy of PD-1 immunotherapies and the functions of B

cells, including germinal center formation. Understand-

ing these interconnected networks that regulate the PD-

1 response will be particularly important to identifying

patients at increased risk for the development of glomer-

ulonephritis as a complication of PD-1 immunotherapy.
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