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Immune checkpoint therapy (ICT) with a monoclonal antibody (MAb) against programmed
cell death protein 1 (PD-1) is a powerful clinical treatment for tumors. Cemiplimab is a
human IgG4 antibody approved in 2018 and is the first MAb proven to be effective for
locally advanced basal cell carcinoma. Here, we report the crystal structure of cemiplimab
bound to PD-1 and the effects of PD-1 N-glycosylation on the interactions with
cemiplimab. The structure of the cemiplimab/PD-1 complex shows that cemiplimab
mainly binds to PD-1 with its heavy chain, whereas the light chain serves as the
predominant region to compete with the binding of PD-L1 to PD-1. The interaction
network of cemiplimab to PD-1 resembles that of camrelizumab (another PD-1-binding
MAb), and the N58 glycan on the BC loop of PD-1 may be involved in the interaction with
cemiplimab. The binding affinity of cemiplimab with PD-1 was substantially decreased
with N58-glycan-deficient PD-1, whereas the PD-1/PD-L1 blocking efficiency of
cemiplimab was attenuated upon binding to the N58-glycosylation-deficient PD-1.
These results indicate that both the binding and blocking efficacy of cemiplimab require
the N58 glycosylation of PD-1. Taken together, these findings expand our understanding
of the significance of PD-1 glycosylation in the interaction with cemiplimab.

Keywords: PD-1, antibody, N58 glycosylation, cemiplimab, immune checkpoint therapy (ICT)
INTRODUCTION

Immune checkpoint therapy (ICT), also called immune checkpoint blockade (ICB), has been widely
used in tumor immunotherapy since the approval of the CTLA-4-specific ipilimumab in 2011 (1–3).
Encouragingly, the blocking of the programmed cell death protein-1 (PD-1)/PD-1 ligand 1 (PD-L1)
pathway with monoclonal antibodies (MAbs) has dramatically improved the treatment prospects
for multiple tumors (2, 4). PD-1 belongs to the immunoglobulin gene superfamily, which was
identified in T cells upon programmed cell death (5). PD-1 is mainly expressed in immune cells,
org March 2022 | Volume 13 | Article 8260451
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including activated dendritic cells, natural killer cells, T cells, and
B cells (6). The ligand for PD-1, PD-L1, is upregulated in a broad
range of tumor cells and mediates tumor immune escape
through interaction with PD-1 (7). Inhibition of the PD-1/PD-
L1 interaction with MAbs restores T-cell function to retain
preexisting antitumor activity (4, 8). Currently, there are 10
clinically approved anti-PD-1 MAbs: nivolumab (Bristol-Myers
Squibb, 2014), pembrolizumab (Merck Sharp & Dohme, 2014),
cemiplimab (Sanofi and Regeneron, 2018), toripalimab (Junshi,
2018), sintilimab (Innovent, 2018), camrelizumab (HengRui,
2019), tislelizumab (BeiGene, 2019), dostarlimab (Tesaro,
2021), penpulimab (Chia Tai-Tianqing, 2021), and
zimberelimab (Gloria Biosciences, Arcus Biosciences, and
Taiho, 2021).

Glycosylation is a common protein post-translational
modification, and it plays critical roles in multiple biological
processes (9). For instance, N-glycosylation is important in the
maintenance of the surface expression of PD-1 protein and the
regulation of the interaction with PD-L1 (10). Our previous work
demonstrates that the extracellular domain of PD-1 (PD-1-ECD) is
extensively glycosylated, and N-glycosylation is found in all the four
potential N-glycosylation sites (N49, N58, N74, and N116) (11, 12).

Structural evidence suggests the impact of N-glycans on PD-1
interaction with MAbs. Among the four N-glycosylation sites,
structural evidence suggests that N58 in the BC loop of PD-1 is
located near the interface between PD-1 and PD-L1, whereas
glycosylation at N58 is not involved in the binding of PD-1 to
PD-L1 (11, 13). The reported complex structures of PD-1 with
nivolumab, pembrolizumab, tislelizumab, or toripalimab show
that PD-1 glycosylation does not engage with these MAbs (11,
14–16). In contrast, PD-1 N-glycans are involved in the binding
to some anti-PD1 antibodies (11, 17). We previously reported
that PD-1 glycosylation at N58 promotes the interaction with
camrelizumab, and the blocking efficacy of camrelizumab is
dampened upon binding to N58 glycosylation-deficient PD-1
(17). Furthermore, the binding of other PD-1-specific MAbs
(e.g., MW11-h317, mAb059c, and STM418) also involves the
glycans at the N58 site (12, 18, 19). Structural evidence shows
that these MAbs mainly engage with the conserved core region of
the glycan chains at N58.

Cemiplimab (REGN2810, Libtayo®), co-developed by Sanofi
and Regeneron, is a fully human IgG4 MAb specific to the PD-1
receptor (18). It was approved by the US Food and Drug
Administration (FDA) for clinical treatment of metastatic
cutaneous squamous cell carcinoma (CSCC) in 2018 (19, 20).
Cemiplimab is the first MAb proven to be effective for locally
advanced basal cell carcinoma, a tumor with no standard treatment
regimen after first-line hedgehog inhibitor therapy (21). Here, we
report the molecular basis of cemiplimab binding to PD-1 through
the determination of the cemiplimab/PD-1 complex structure, and
we investigated the roles of PD-1 N-glycosylation in the
cemiplimab interaction. We found that both the binding and
inhibition efficacies of cemiplimab to PD-1 were promoted by
PD-1N58 glycosylation. The findings observed in the present study
expand our knowledge of the interaction mechanisms of
glycosylation for antibodies to PD-1 in the context of tumor ICT.
Frontiers in Immunology | www.frontiersin.org 2
RESULTS

Overall Structure of Cemiplimab/
PD-1 Complex
To investigate the binding mechanisms of cemiplimab to PD-1,
the PD-1-ECD (PD-1-E. coli) protein and single-chain variable
fragment (scFv) of cemiplimab were expressed in Escherichia coli
cells as inclusion bodies and renatured by in vitro refolding (11,
17). The cemiplimab-scFv/PD-1 complex was prepared after in
vitro co-refolding and used for crystal screening (Supplementary
Figure 1). Diffractable crystals were obtained, and the structure of
the cemiplimab-scFv/PD-1 complex was solved at a resolution of
3.4 Å, with Rwork and Rfree values of 0.245 and 0.285, respectively
(Table 1). The overall structure reveals that PD-1-ECD and
cemiplimab-scFv form a 1:1 complex, and the interaction of
cemiplimab with PD-1 buries a total surface area of 1,614 Å.
Cemiplimab binds to PD-1 with all three complementarity-
determining regions (CDRs) from its heavy chain and the
LCDR3 from the light chain variable domain (VL) (Figure 1A
and Table 2). Specifically, there are multiple hydrogen bond
interactions between residues from LCDR3 (S92) of cemiplimab
and the FG loop of PD-1 (K131 and A132) and between residues
fromHCDR2 (S52, R56, D57, and Y59) of cemiplimab and the BC
loop (E61 and S62) and FG loop (A129) of PD-1 (Figure 1B and
Table 2; Supplementary Figure 2).

Cemiplimab mainly binds to the BC and FG loops of PD-1
through its HCDR2, HCDR3, and LCDR3 loops (Figure 2A). Of
note, the HCDR2 (G53 and G54) of cemiplimab is close to N58
of PD-1. The structure of PD-1 molecules with PD-L1,
nivolumab, pembrolizumab, toripalimab, camrelizumab, and
MW11-h317 were then superimposed with that from the
cemiplimab/PD-1 complex to investigate the conformational
changes upon binding to different MAbs (Figure 2B).
Pembrolizumab predominantly binds to the C’D loop of PD-1,
toripalimab mainly binds to the FG loop, and the binding of
nivolumab is mainly located on the N-terminal loop of PD-1. In
contrast, camrelizumab, MW11-h317, and cemiplimab mainly
bind to the BC and FG loops, while camrelizumab and MW11-
h317 contact the N58 glycan chains at the BC loop of PD-1. The
FG loop exhibits substantial conformational variation when
bound to different MAbs, while the BC loop shows limited
conformational changes (Figure 2B). Of note, the FG loop of
PD-1 in the cemiplimab/PD-1 complex exhibits a similar
conformation to that in the PD-1/PD-L1 complex, while varied
conformational changes were induced upon binding to the other
MAbs (Figure 2C).

PD-1/PD-L1 Blocking Mechanisms
by Cemiplimab
The structure of the cemiplimab/PD-1 complex was next
superimposed with that of the PD-1/PD-L1 complex (PDB:
4ZQK) to analyze the PD-1/PD-L1 inhibition mechanism of
cemiplimab. The analysis revealed that the major domain of
cemiplimab responsible for inducing stereospecific hindrance to
the binding of PD-L1 is the VL domain (Figure 3A).
Additionally, the binding area of cemiplimab on PD-1
March 2022 | Volume 13 | Article 826045
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substantially overlaps with that of PD-L1 (Figure 3B). Together
with the superior binding affinity of cemiplimab over PD-L1 to
PD-1, the binding of cemiplimab would abrogate PD-L1 binding
to PD-1 and inhibit PD-L1-mediated signaling. Among the
clinically approved MAbs, the binding area of cemiplimab is
similar to that of toripalimab, camrelizumab, nivolumab, and
MAbs engaging mainly with the FG loop of PD-1 (e.g., MW11-
h317, mAb059c, and GY5), whereas it is distinct from that of
pembrol i zumab and t i s l e l i zumab (Figure 3C and
Supplementary Figure S2). Taken together, our structural
analyses indicate that cemiplimab blocks the PD-1/PD-L1
interaction mainly through its VL domain.

Structural Indications for N58
Glycosylation of PD-1 to Interact
With Cemiplimab
To compare the binding mode of PD-1-targeting MAbs, the
structure of the cemiplimab/PD-1 complex was then
superimposed with the nivolumab/PD-1 and pembrolizumab/
PD-1 complexes, with the structure of PD-1 fixed. These
comparative analyses show that nivolumab and pembrolizumab
adopt distinct binding orientations compared to cemiplimab,
although the binding surface with nivolumab highly overlaps
(Figure 4A). Comparative analysis with other N58 glycan-
engaged MAbs revealed that the orientation of cemiplimab
upon binding to PD-1 resembles that of camrelizumab and
MW11-h317, while the binding of mAb059c is substantially
biased toward the FG-loop (Figure 4B). Alignment of these
Frontiers in Immunology | www.frontiersin.org 3
MAbs’ sequences reveals that the heavy chains of the
glycosylation-engaged MAbs camrelizumab, MW11-h317, and
cemiplimab share similar HCDR2s compared to those from
other glycosylation-independent MAbs, except for mAb059c
that also contacts the N-glycan at N58 (Figure 4C). In the
MW11-h317/PD-1 and camrelizumab/PD-1 complex structures,
the N-acetylglucosamine (NAG) and mannose (MAN) form
multiple hydrogen bond interactions with residues from
HCDR1 (S31) and HCDR2 (G53 and G54) (Figures 4D, E).
Although the E. coli-expressed PD-1-ECD proteins used in this
study for crystal growing did not contain any glycan modification,
the conserved conformation of the HCDR1 and HCDR2 of
cemiplimab with that of camrelizumab indicates that the glycan
chains of PD-1 N58 would form a similar interaction network
through amino acids from HCDR1 and HCDR2 of
cemiplimab (Figure 4F).

The N58 Glycan of PD-1 Promotes
the Binding and Blocking Efficacy
of Cemiplimab
Based on this structural information, we speculated that the N58
glycan of PD-1 potentially plays a role in binding to cemiplimab,
although the N58 glycan chains were not observed with the PD-
1-E. coli proteins used in the structural study. Therefore, we
further evaluated the binding profiles of cemiplimab with wild
type (WT) PD-1 protein (PD-1-WT) expressed in 293F cells,
which enabled full glycosylation on proteins similarly to host
cells using surface plasmon resonance (SPR). Additionally,
A B

FIGURE 1 | The binding mechanism of cemiplimab to PD-1. (A) Overall structure of cemiplimab bound to PD-1. PD-1 colored in gray is shown as surface
representation, while the heavy chain (VH) and light chain (VL) of cemiplimab-scFv are shown as cartoon colored in light blue and light pink. The CDR1, CDR2, and
CDR3 loops of the heavy chain are colored in green (HCDR1), blue (HCDR2), and cyan (HCDR3), respectively. The CDR1, CDR2, and CDR3 loops of the light chain
are colored in limon (LCDR1), orange (LCDR2), and red (LCDR3), respectively. The BC and FG loops are colored in green. (B) The detailed binding of cemiplimab to
the FG and BC loops of PD-1. The residues taking part in forming hydrogen bonds are shown as sticks. The hydrogen bonds between residues are shown as a
dashed line in black.
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N58A-mutated PD-1 protein (PD-1-N58A) expressed in 293F
cells, which is specifically deficient in N58 glycosylation, was also
investigated. The binding affinity (evaluated as KD) of
cemiplimab to N58-mutated PD-1 protein substantially
decreased to 106 nM, a 60-fold reduction compared to PD-1-
WT (KD = 1.68 nM) (Figure 5A). Moreover, we analyzed the
binding profiles of cemiplimab to PD-1-ECD proteins obtained
from E. coli cells, which carried no post-translational
modifications. The SPR analysis revealed a similar reduction in
binding affinity to PD-1 protein from E. coli (KD = 691.38 nM)
compared to that from 293F cells (KD = 1.68 nM) (Figure 5A
and Supplementary Table S1). The binding of camrelizumab,
which is promoted by glycosylation of PD-1 N58, was tested in
parallel as a control (Figure 5B). The decreased binding affinities
of camrelizumab with N58A-mutated PD-1 proteins from 293F
cells (KD = 492.85 nM) was similar to that of cemiplimab, and
the binding affinity of camrelizumab with non-glycosylated PD-1
proteins from E. coli (KD = 2.63 mM) is substantially decreased
compared with glycosylated PD-1 (KD = 4.8 nM) like
cemiplimab (Figure 5B). Based on these findings, we
concluded that N-glycosylation at N58 promotes the binding
of cemiplimab to PD-1.

To verify the roles of N58 glycosylation in PD-1/PD-L1
blocking by cemiplimab, a mechanism believed to be the key
aspect for the restoration of antitumor efficacy for MAb-based
ICT, we further tested the blocking efficiency of the full-length
cemiplimab to N58 glycosylation-deficient PD-1. His-tagged
PD-1-WT and PD-1-N58A recombinant proteins were
prepared from 293F cells and were used to stain 293T cells
transiently expressing PD-L1. The blocking of the PD-1/PD-L1
interaction was analyzed by staining the PD-L1-expressing 293T
cells with a mixture of serial dilutions of the full-length
cemiplimab or camrelizumab proteins pre-incubated with the
same concentrations of WT or N58A-mutated PD-1-His
proteins (2 mg/ml). As controls, mock-transfected 293T cells
stained with PD-1-WT and PD-L1-transfected 293T cells stained
with isotype antibody were enrolled as controls (Figure 6A). We
found that the frequency of protein-staining-positive cells with
PD-1-WT-His protein substantially decreased from 65.0% to
5.0% in the presence of 20 mg/ml cemiplimab, indicating the
complete blockade of the PD-1/PD-L1 interaction (Figures 6B,
C). However, the blocking efficacy of cemiplimab to PD-1-N58A
mutant protein with PD-L1 was decreased compared to that of
PD-1-WT. No substantial blocking efficacy was observed for
cemiplimab with N58A mutant protein, even at the high
concentration of 80 mg/ml (Figure 6B). The decreased
blocking scenario of camrelizumab to N58A mutant PD-1 is
similar to that of cemiplimab (Figures 6B, D). These results
indicate that N58 glycosylation promotes both the binding and
blocking of cemiplimab.
DISCUSSION

In this study, we report the interaction mechanisms between
cemiplimab and PD-1. Overall, the binding of cemiplimab to
TABLE 1 | Crystallographic data collection and refinement statistics.

Cemiplimab/PD-1

Data collection
Space group P 32 2 1
Wavelength (Å) 0.97853
Unit cell dimensions
a, b, c (Å) 131.54, 131.54, 124.34
a, b, g (°) 90.00, 90.00, 120.00

Resolution (Å) 50.00-3.40 (3.58-3.40)*
Unique. reflections 17,566
Rmerge 0.242 (0.658)
I/s 9.50 (4.0)
Completeness (%) 100.0 (100.0)
Redundancy 8.9 (8.5)
Refinement
Rwork/Rfree 0.247/0.287
No. atoms
Protein 5176
Ligands 0
Water 0

RMS deviations
Bond lengths (Å) 0.003
Bond angles (°) 0.690

Ramachandran plot
Favored (%) 94.95
Allowed (%) 5.05
Outliers (%) 0.00
*Values in parentheses are for highest-resolution shell.
TABLE 2 | Residues contributed interaction between cemiplimab and PD-1.

Cemiplimab PD-1 Contactsa Total

H chain 145
T28 R86 1
N31 F82, P83 2, 5
F32 P83, E84, D85 7, 4, 2
S52 E61, S62 9 (1)b, 2
G54 E61 10
G55 E61 4
R56 E61 20 (2)
D57 S60, E61, S62 7, 7, 6 (1)
Y59 S62, A129, P130 6 (1), 20 (1), 4
K98 D85 1
W99 L128 3
G100 V64, P83, L128 2, 1, 2
N101 V64, K78 6, 1

I126, L128 1, 4
I102 I126, L128 3, 2
Y103 K78, D85 1, 1
D105 D85 1
L chain 50
F32 I126, A132, Q133 1, 14, 2
Y49 K78 2
S91 A132 2
S92 P130, K131, A132 1, 5 (1), 7 (1)
N93 K131 7
T94 A129, P130 2, 7
aNumbers represent the number of atom-to-atom contacts between cemiplimab and PD-1
residues, which were analyzed by the Contact program in CCP4 suite (the distance cutoff is
4.5 Å).
bNumbers in the parentheses represent the number of hydrogen bonds between
cemiplimab and PD-1 residues, which were analyzed by the Contact program in CCP4
suite (the distance cutoff is 3.5 Å).
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PD-1 resembles that of camrelizumab, as we reported earlier
(17). Structural analysis indicates that cemiplimab competes with
the binding of PD-L1 to PD-1 with overlapping binding surface
areas of PD-L1 resulting in steric hindrance. Cemiplimab mainly
binds to the BC and FG loops of PD-1, whereas the FG loop of
PD-1 contributes to multiple interactions with PD-L1 and
therefore mediates the competitive interaction with cemiplimab
or PD-L1 (22). Comparative structural analyses with other
solved MAb/PD-1 complex structures suggest that the binding
of cemiplimab resembles that of camrelizumab and may be
promoted by the glycan chains at N58 on the BC loop.
Subsequent analyses indicated that the deficiency of N58
glycosylation substantially decreases both the PD-1 binding
affinity and blocking of cemiplimab, which is similar to that
of camrelizumab.

The previously reported complex structures of clinically
approved MAbs (e .g . , nivolumab, pembrol izumab,
camrelizumab, toripalimab, and tislelizumab) reveal that these
MAbs predominantly bind to the surface or terminal loops of
PD-1, whereas PD-L1 mainly binds to the surface on PD-1
constituted by b sheets. Comparative analysis revealed that the
flexible surface or terminal loops of PD-1 exhibit distinct
conformations upon binding to varied MAbs. The FG loop of
PD-1 engages with PD-L1 (22, 23) and is a hot spot loop for PD-
1 specific therapeutic MAbs, e.g., toripalimab, camrelizumab,
GY-5, and GY-14 (15, 17, 24). Structural analysis revealed that
the binding region of cemiplimab on PD-1 is similar to that of
camrelizumab, which mainly binds to the BC loop, FG loop, and
C′D loop.

Glycosylation is involved in fundamental biological processes
and plays pivotal roles in tumor development and progression,
immune modulation, and metastasis (25). PD-1 protein is not
Frontiers in Immunology | www.frontiersin.org 5
only upregulated in T cells to mediate immune suppression but is
also expressed across a broad range of tumor cells to promote
tumor suppression (26). Dysregulated protein glycosylation
occurs in tumor cells and tumor-associated dysregulated
glycosylation includes fucosylation, sialylation, N− and O
−linked glycan branching, and O−glycan truncation (25, 27).
Furthermore, abnormal glycosylation also occurs in the tumor
microenvironment due to hypoxia, inflammatory events, and
metabolism, and it plays a crucial functional role in tumor
progression and metastasis. Therefore, the glycosylation of PD-
1 may not only affect the immune regulatory roles of the MAbs
targeting PD-1 in T cells but may also interfere with the tumor
regulatory roles of the MAbs when binding to PD-1 in tumor
cells. The PD-1-specific blocking MAbs camrelizumab, MW11-
h317, mAb059c, and STM418 contact the N58 glycan when
binding to PD-1 (10, 17, 28, 29). Although clinical evidence
supports improved overall survival rates across multiple cancer
types with camrelizumab, unexpected binding of camrelizumab
to VEGFR2 has been reported and may correlate with the side
effects of capillary hemangiomas usually observed in clinical
studies with camrelizumab (30). Structural analysis reveals that
camrelizumab binds to the core region of the N-glycan of PD-1,
which is conserved in the N-glycosylation of some proteins.
Therefore, the binding of these MAbs to the conserved N-glycan
on PD-1 may reduce the binding specificity, although further
systemic investigations should be performed to evaluate the
binding specificities of the MAbs that engage with the N58
glycan. Both the binding affinities and PD-1/PD-L1 blocking
efficiencies of cemiplimab to N58 glycan-deficient PD-1 were
similar to that of camrelizumab, as revealed in the present study.
Structural analysis and sequence alignment also indicate that
cemiplimab binds to N58 glycan chains with conserved HCDR2
A B C

FIGURE 2 | The structure characterization of PD-1 upon binding to MAbs. (A) The key region of PD-1 binding to cemiplimab. The b-strands of PD-1 are represented as
the capital characters C, C′, D, F, and G, respectively. The CC′, C′D, and FG loops of PD-1 are highlighted in the blue cartoon, and the key epitopes of PD-1 binding to
cemiplimab are shown as orange sticks, respectively. (B) Superposition of PD-1 upon binding to the PD-L1 ligand or different MAbs, including the PD-1 extracted from
the complex structures of PD-1/PD-L1 (blue) (PDB code: 4ZQK), PD-1/nivolumab (cyan) (PDB code: 5WT9), PD-1/pembrolizumab (gray) (PDB code: 5JXE), PD-1/
toripalimab (green) (PDB code: 6JBT), PD-1/camrelizumab (yellow) (PDB code: 7CU5), PD-1/cemiplimab (magenta) and PD-1/MW11-h317 (light blue) (PDB code: 6JJP).
FG loop and BC loop of PD-1 which contributed vital binding to the cemiplimab are shown as a dashed line in black. (C) Flexible conformations of the FG loop of PD-1
upon binding to PD-L1 or different MAbs.
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regions similar to camrelizumab and MW11-h317. However,
clinical studies for cemiplimab do not report a high prevalence of
capillary hemangiomas as observed for camrelizumab (58.6%)
(31). This indicates that although the conserved N58 glycan
promotes the binding of these two MAbs to PD-1 in a similar
mode, the binding specificities of the MAbs may vary due to the
variable regions responsible for the binding to residues in PD-1.

Taken together, we report the molecular basis of cemiplimab
binding to PD-1. Cemiplimab mainly utilizes its heavy chain to
bind to the binding “hotspot” for therapeutic MAbs targeting
PD-1, i.e., the FG loop of PD-1. Cemiplimab binds to PD-1 in a
similar mode to camrelizumab, and the N58 glycan on the BC
loop of PD-1 was verified to promote both the binding and
blocking of cemiplimab. All of these findings facilitate our
Frontiers in Immunology | www.frontiersin.org 6
understanding of the interaction between cemiplimab and PD-
1 and will benefit the future design of agents targeting
glycosylated PD-1.
MATERIALS AND METHODS

Plasmid Construction and
Protein Purification
For E. coli cell expression, the extracellular domain of PD-1
(UniProt: Q15116, residues L25-R147) and cemiplimab-scFv
[designed as a format of VL-GGGGS (4)-VH] were cloned into
Novagen’s prokaryotic expression vector pET-21a(+). The two
A

C

B

FIGURE 3 | Structural basis of the blockade binding of cemiplimab with PD-L1. (A) Comparison of cemiplimab/PD-1 with PD-L1 extracted from PD-1/PD-L1
complex structure (PDB code: 4ZQK). PD-L1 is shown as smudge cartoon, while PD-1 is shown as surface diagram in white. VH and VL of cemiplimab-scFv are
shown as cartoons in light blue and light pink, respectively. (B) The competitive binding surfaces of cemiplimab with PD-L1 on PD-1. The residues bound to
cemiplimab alone are colored in deep salmon, while the residues contact with PD-L1 alone are colored in smudge, and the residues contacted by both cemiplimab
and PD-L1 are colored in blue. The epitope residues in PD-1 are pointed out in black characters. (C) The binding surface of PD-L1 and structurally known clinically
approved MAbs on PD-1 is shown in different colors. The binding surface of PD-L1 and other MAbs, e.g., cemiplimab, camrelizumab, pembrolizumab, nivolumab,
toripalimab, and tislelizumab are colored in orange, light pink, limon, purple, yellow, blue, and teal, respectively.
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plasmids above were transformed into E. coli strain BL21 (DE3)
pLysS cells and overexpressed as inclusion bodies under IPTG (1
mM) induction, which were verified by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE). The inclusion
bodies were then dissolved by dissolution buffer [6 M Gua-HCl,
10% v/v glycerol, 50 mM Tris-HCl, 100 mM NaCl, 10 mM
Frontiers in Immunology | www.frontiersin.org 7
ethylenediaminetetraacetic acid (EDTA), pH 8.0] and co-
refolded as previously described (32–34). Briefly, a solution of
PD-1 and cemiplimab-scFv was mixed in 1:1 molar ratio, and
then, 5 ml of the mixture (30 mg/ml) added drop by drop to 2.5 L
refolding buffer (100 mM Tris–HCl, 400 mM L-Arg-HCl, 2 mM
EDTA, 5 mM glutathione (GSH), and 0.5 mM oxidized
A B

D FE

C

FIGURE 4 | Interaction between MAbs and N58 glycosylation on BC loop. (A) The comparison of the overall binding of cemiplimab, nivolumab, and pembrolizumab
to PD-1. Superimposition of cemiplimab/PD-1 complex with that of pembrolizumab/PD-1 (PDB: 5JXE) and nivolumab/PD-1 (PDB: 5WT9). The cemiplimab,
pembrolizumab, and nivolumab are shown as ribbon and colored in cyan, magenta, and orange, respectively. PD-1 extracted from camrelizumab/PD-1 (PDB code:
7CU5) complex is shown as surface representation colored in white. (B) Superimposition of cemiplimab/PD-1 complex with that of camrelizumab (PDB: 7CU5),
MW11-h317 (PDB: 6JJP) and mAb059c (PDB: 6K0Y). The VH domains of the MAbs are shown as ribbons while the VL domains are not shown. PD-1, cemiplimab,
camrelizumab, MW11-h317, and mAb059c are colored in gray, cyan, magenta, orange and blue, respectively. The CC′, C′D, and FG loops of PD-1, which
participate in binding to Mabs are highlighted in blue. (C) Structure-based sequence alignment of cemiplimab and other anti-PD-1 MAbs. Coils above the sequences
indicate a-helices, and the lines with arrowhead represent the b sheets. Residues highlighted in yellow are highly conserved. The sequence alignment was generated
with ClustalX and ESPript. (D, E) The interaction of N-glycosylation N58 with MW11-h317 (D) or camrelizumab (E). The amino acid residues involved in hydrogen
bond interaction and N58 glycans are shown as sticks, with amino acids in MW11-h317 colored in orange, camrelizumab colored in magenta, and the glycans in
PD-1 colored in green. Hydrogen bonds are labeled by yellow dashed lines. (F) Comparison of cemiplimab/PD-1 complex with that of camrelizumab (PDB: 7CU5),
and the amino acids in cemiplimab are colored in cyan and residues in camrelizumab are colored in magenta.
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glutathione (GSSG), pH 8.0]. After gently stirring for 8 h, the
solution was concentrated and exchanged to protein buffer (20
mM Tris–HCl, 150 mM NaCl, pH 8.0). Subsequentially, the
cemiplimab-scFv/PD-1 complex protein was purified via size
exclusion using an AKTA Pure system with Superdex™ 200
Increase 10/300 GL column.

For mammalian cell expression, the extracellular domains of
PD-1 (residues L25-R147) and PD-1 N58A residue substitution
mutant gene (obtained by site-directed mutagenesis) were cloned
into an expression vector pCAGGS with signal peptide at the N-
terminal and six histidines at the C-terminal, named as PD-1-
WT and PD-1-N58A, respectively. The full-length heavy- and
light-chain genes of cemiplimab and camrelizumab were cloned
into the pCAGGS vector individually with EcoRI and XhoI sites,
named as cemiplimab-Fc and camrelizumab-Fc. Plasmids were
transiently transfected into 293F cells and incubated at 37°C for
72 h. The culture was centrifuged, and supernatant was then
collected and filtered with a 0.22-mm filter. The PD-1-WT or PD-
1-N58A proteins were purified first by His-Trap HP column (GE
Healthcare) followed by Superdex™ 200 10/300 GL (GE
Healthcare). The proteins of full-length cemiplimab and
camrelizumab were purified with protein A column (GE
Healthcare) before loading on a Superdex™ 200 10/300 GL
(GE Healthcare, Chicago, United States). The purified protein
was stored in the protein buffer (20 mM Tris–HCl, 150 mM
NaCl, pH8.0). The protein purity was assessed by SDS-PAGE,
and proteins were stained with Coomassie brilliant blue
(Supplementary Figure S4). The human PD-L1 gene (full
length) was cloned into (Clontech’s, Beijing, China) pEGFP-N1
vector, which was named pEGFP-PD-L1.
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Data Collection and
Structure Determination
For crystal screening, 100 ml of crystallization solution is added to
the reservoir of the crystallization chamber. One microliter of
cemiplimab-scFv/PD-1 complex protein at a concentration of 5
mg/ml and 1 ml of the crystallization solution are pipetted onto the
sitting drop post that is located at the center of beside chamber.
Crystallization plates were sealed and placed at 4 or 18°C to
perform a sitting drop vapor diffusion experiment. Crystals of
cemiplimab-scFv/PD-1 complex were grown in 0.1 M sodium
acetate, pH 5.0, 5% w/v g-PGA (Na+ form, LM), and 20% w/v
PEG 2000 MME. The diffraction data were collected at 100 K on
the beamlines BL19U1 of the Shanghai Synchrotron Radiation
Facility (SSRF). The collected intensities were processed and scaled
using the HKL2000 software package (HKL Research). The
structures were determined using molecular replacement with the
program Phaser MR in CCP4 (35). The search model used in this
complex was from Protein Data Bank (PDB) codes 5GGU and
6KTR with the most similar sequences. Model building was
performed using COOT by hand (36). Structure refinement was
done by using Phenix (37). Structure-related figures in this article
were generated using PyMOL (http://www.pymol.org/). The buried
surface between MAbs and PD-1 was calculated on the web server
(https://www.molnac.unisa.it/BioTools/cocomaps/index.psp).

SPR Analysis
The SPR measurements between different forms of PD-1 and
MAbs were performed on the BIAcore8000 system (GE
Healthcare) with Sensor Chip CM5 (GE Healthcare) at room
temperature. To measure the binding characteristics between
A

B

FIGURE 5 | N-glycosylation of N58 remotes the binding to cemiplimab. (A) SPR assay characterization of the binding profiles of cemiplimab with PD-1-WT (left),
PD-1-N58A (middle) proteins expressed in 293F cells, and PD-1-E. coli (right) expressed in E. coli cells. (B) SPR assay characterization of the binding of
camrelizumab with PD-1-WT (left), PD-1-N58A (middle) expressed in 293F cells, and PD-1-E. coli (right) expressed in E. coli cells. The mean value of the KD was
recorded after repeating each experiment three times.
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PD-1 antibodies (cemiplimab or camrelizumab) and different
forms of PD-1 proteins (PD-1-WT, PD-1-N58A, and PD-1-E.
coli), cemiplimab-scFv and camrelizumab-scFv were individually
immobilized on the CM5 chip to 695 and 569 response units,
respectively. Then, serially diluted PD-1-WT samples and blank
control, prepared as 0 , 6.26 , 12.5, 25, 50, and 100 nM, were
flowed over Sensor Chip CM5. After regeneration, PD-1-N58A
Frontiers in Immunology | www.frontiersin.org 9
protein, expressed by 293F cells, was flowed over the CM5 sensor
chip with various concentrations (50–800 nM, five gradients,
twofold dilution). Similarly, different concentrations of PD-1-E.
coli (0, 0.5, 1, 2, 4, and 8 mM) were flowed over the CM5 chip.
The binding kinetics were all analyzed with the Biacore™ insight
evaluation software (GE Healthcare) using a 1:1 Langmuir
binding model.
A

B

C

D

FIGURE 6 | Reduced blocking efficiency of cemiplimab to N58 glycosylation-deficient PD-1. (A) Untransfected 293T cells and transfected 293T cells incubated with
isotype antibody as negative control. (B) The blocking of the binding of His-tagged PD-1-WT (blank) or PD-1-N58A (blue) proteins to PD-L1 expressing 293T cells is
analyzed with varying concentrations (0, 2, 4, 10, 20, 40, and 80 mg/ml) of full-length cemiplimab (left) or camrelizumab (right). The PD-L1 expressing 293T cells
staining with His-tagged PD-1-WT or PD-1-N58A are prepared as a positive control. (C, D) The frequencies of the His-tagged PD-1-WT or PD-1-N58A protein
staining positive subpopulations in the absence (0 mg/ml) or presence (20 mg/ml) of cemiplimab (C) or camrelizumab (D). At the same concentration (20 mg/ml) of
cemiplimab or camrelizumab, the frequency of His-tagged PD-1-WT or PD-1-N58A staining positive cells was calculated based on PD-L1-GFP-positive cells. The
experiment was repeated twice in the results averaged.
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FACS Analysis of PD-1/PD-L1
Blockade Assay
The pEGFP-PD-L1 plasmid was transfected into human embryonic
kidney 293 cells (293T) with polyethyleneimine transfection
reagent. After 24 h, cell density was adjusted to 1 × 107 cells/ml
with phosphate-buffered saline (PBS). PD-1-WT or PD-1-N58A
protein (2 ug/ml) was respectively preincubated with different
concentrations (0, 2, 4, 10, 20, 40, and 80 mg/ml) of full-length
cemiplimab or camrelizumab at room temperature for 30 min.
Subsequently, the 293T cells expressing PD-L1 fused enhanced
green fluorescent protein (EGFP) were incubated with these mixed
samples for a further 30 min at room temperature. The 293T cells
were washed three times with PBS and stained with secondary APC
mouse anti-His antibody (Cat: 130-119-782; clone: GG11-8F3.5.1;
Miltenyi Biotec, Beijing, China) for 30 min, then washed twice with
PBS, and resuspended with 300 ml of PBS for flow cytometry (BD
FACS Canto Flow Cytometer, Franklin Lakes, USA). The FACS
files were analyzed by FlowJo 7.6.
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