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A Proportional Integral Derivative (PID) controller is commonly used to carry out tasks like

position tracking in the industrial robot manipulator controller; however, over time, the PID

integral gain generates degradation within the controller, which then produces reduced

stability and bandwidth. A proportional derivative (PD) controller has been proposed to

deal with the increase in integral gain but is limited if gravity is not compensated for. In

practice, the dynamic system non-linearities frequently are unknown or hard to obtain.

Adaptive controllers are online schemes that are used to deal with systems that present

non-linear and uncertainties dynamics. Adaptive controller use measured data of system

trajectory in order to learn and compensate the uncertainties and external disturbances.

However, these techniques can adopt more efficient learningmethods in order to improve

their performance. In this work, a nominal control law is used to achieve a sub-optimal

performance, and a scheme based on a cascade neural network is implemented to

act as a non-linear compensation whose task is to improve upon the performance of

the nominal controller. The main contributions of this work are neural compensation

based on a cascade neural networks and the function to update the weights of neural

network used. The algorithm is implemented using radial basis function neural networks

and a recompense function that leads longer traces for an identification problem. A

two-degree-of-freedom robot manipulator is proposed to validate the proposed scheme

and compare it with conventional PD control compensation.

Keywords: cascade neural networks, robot manipulator, PD control, radial basis function, control compensation

1. INTRODUCTION

An industrial robot manipulator frequently works at high velocities to reach its desired position.
Common tasks performed by robot manipulators include trajectory tracking, reaching positions,
and picking and dropping objects. These tasks need the robot controllers to maintain satisfactory
dynamic behavior in spite of possible external perturbations, unknown dynamic parameters, and
sensor information loss (Armendariz et al., 2014). Several controllers that are often implemented
to manage these features are also mentioned (Luo and Kuo, 2016; Makarov et al., 2016; Nicolis
et al., 2016; Pan et al., 2018; Hwang and Yu, 2020). Over time, the Proportional Integral Derivative
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(PID) control has been used to design industrial robots due
to their simple structure and simple hardware implementation.
However, during operation, the PID integral gain provokes the
controller to reduce its bandwidth and stability (Rahimi Nohooji,
2020). PD control with uncertainty compensation has been
proposed to manage the increase of integral gain due to the
steady-state error. The PD controllers are also limited without
gravity compensation, which requires a dynamic model (Wen Yu
and Rosen, 2013). In practice, the non-linearities of a dynamic
robot system are generally unknown.

To solve this issue, different approaches have been developed
in order to compensate for unmodeled uncertainties (i.e., noise,
gravity, and friction). Intelligent compensation is a model free
and it has been applied to well-known algorithms such as the
neural networks (NNs) and fuzzy logic (FL) (Krishna and Vasu,
2018;Wang et al., 2019b). In Liu et al. (2020), the authors propose
an adaptive NN backstepping control design for fractional-
order non-linear systems with actuator faults whose parameters
and patterns are fully unknown. Baek et al. (2016) present an
adaptive sliding mode control scheme that implements the time-
delay estimation. In Xu et al. (2018), a fuzzy NN sliding mode
control is designed to improve controller performance against
system uncertainty and external disturbances. Kumar et al. (2012)
proposed a hybrid trajectory tracking controller for redundant
robot manipulators. The adaptive controller is implemented to
estimate unstructured uncertainties and error reconstruction. In
He et al. (2018), one Radial Basis Function Neural Network
(RBFNN) is used to estimate the unknown dynamics robotic
manipulator. Jung and Hsia (2000) proposed two NN control
schemes for a non-model-based robot manipulator, which show
advantages over feedback error learning. In Zhang et al. (2018),
the authors proposed a gravity compensation based on an
RBFNN and robustness analysis, and the results were compared
with a classic PID and PD with fixed gravity compensation.
Gandolfo et al. (2019) propose a control scheme that combines
a classical PD and a robust adaptive compensator based on NNs.

Although adaptive controllers are addressed for systems
with non-linear and uncertainties dynamics, thus their slow
convergence can lead to performance degradation or even
affect operational safety. In Liu et al. (2019), an adaptive
NN control with optimal number of hidden nodes and less
computation is formulated for approximating the trajectory of
robot manipulator. Similarly, Yang et al. (2018) develop a control
and identification scheme in order to identify the unknown
robot parameters with an enhanced convergence rate. Another
approach is to relax the linear parameterized assumption and the
requirements of system knowledge, thus, NNs have been used
as function approximators. In time series modeling, RBFNN is
commonly used for function approximation, since its value is
different from zero in infinite space, and its approximation can
avoid the local minimum (Wang et al., 2019a). An RBFNN uses
a Gauss function as its activation function. In general, RBFNN
controllers waste less computational resources in comparison
to other NN controllers (He et al., 2018). In Wang et al.
(2012), the authors proposed an RBFNN to compensate for non-
linear dynamics of the robotic manipulator and a robust control
designed to suppress the modeling error of NN.

However, update laws commonly increase the weight
magnitudes until the output error has been mitigated, without
a robust design continued training can lead to excessive control
effort. In order to avoid this, adaptive controls frequently update
the neural weights according to robust adaptive laws, which are
computed with Lyapunov methods (Razmi and Macnab, 2020).
In this work, a robust adaptive control design to compensate
a nominal controller for robot manipulator with uncertainties
and external perturbations is formulated. Moreover, a scheme
based on two RBFNN in cascade is proposed in order to
improve the response of the nominal controller. In the scheme
aforementioned, the first NN is used to estimate the error and
the second uses the estimation error value to improve the output
of the nominal controller. NN weights are online updated by
developing new adaptive laws. The adaptive law based on the
gradient is modified by introducing a recompense function of
the online error in order to improve the convergence of the
NN weights.

In this work, a PD control with a scheme based on NNs in
cascade is designed to manage the compensation of uncertainties
in a robot manipulator. The main contributions of this paper are
summarized as follows:

• In order to improve the robustness of the system against
external disturbance, and unknown system parameters, a
scheme of cascade NNs is proposed.

• A recompense function for neural weights updates is proposed
in order to improve the NNs’ weights convergence.

• The response of the nominal controller is improved.

To validate the proposed scheme and compare it with
conventional neural compensation, a two-degree-of-freedom
robot manipulator (TDOFRM) is proposed. This paper is
organized as follows: Section 2 presents the preliminary
mathematical model of the TDOFRM, the conventional PD
compensation with RBFNN. Section 3 describes the controller
design based on NNs in cascade. Section 4 presents simulation
experiments and compared with the conventional compensation,
and finally, section 5 presents the conclusions.

2. ADAPTIVE CONTROL TO ROBOTIC
MANIPULATOR

2.1. Dynamic Model of Robotic Manipulator
The dynamic model of an n degree of freedom robot manipulator
can be described as follows (Spong and Vidyasagar, 1989):

M(q)q̈+ C(q, q̇)q̇+ g(q) = τ + d (1)

M(q) is a n × n inertia matrix, C(q, q̇) is a n × n is a centrifugal
and Coriolis matrix, and g(q) is a n×1 vector of gravity. q, q̇, q̈ are
the position, velocity, and acceleration of each link, respectively.
τ ∈ Rn is the control input and d denotes disturbances.

2.2. Proportional Derivative Control
Scheme
In industrial application, the exact model is difficult to obtain and
external disturbances are always present in practice. According
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to Liu (2013), a nominal model of robot manipulator can be
computed as M0(q), C0(q, q̇), and g0(q). Considering 1M =

M0 − M, 1C = C0 − C, and 1g = g0 − g, Equation (1) is
reordered as follows:

(M0(q)−1M)q̈+ (C0(q, q̇)−1C)q̇+ (g0(q)−1g) = τ +d (2)

Thus,

M0(q)q̈+ C0(q, q̇)q̇+ g0(q) = τ + 1Mq̈+ 1Cq̇+ 1g + d (3)

Defining f (·) = 1Mq̈+ 1Cq̇+ 1g + d and if f (·) is known, the
control law is designed as

M0(q)(q̈d − κvė− κpe)+ C0(q, q̇)q̇+ g0(q)− f (·) = τ (4)

Submitting Equation (4) into Equation (3), the close loop system
can be expressed as follows:

ë+ κvė+ κpe = 0 (5)

where e = q − qd, ė = q̇ − q̇d, and ë = q̈ − q̈d. Frequently, f (·)
in industrial applications is unknown, hence, f (·) requires to be
estimated and compensated.

2.3. Radial Basis Function Neural Network
Approximation
The NNs approximates M(q), C(q), and g(q) when they are
unknown. The Radial Basis Function (RBF) algorithm can
approximate a continuous function and it is defined as

φi = exp

(

−
‖x−ci‖

2

b2i

)

, i = 1, 2, . . . , n (6)

y = Wφ (7)

where x is the input vector, φ = [φ1,φ2, . . . ,φn] is the output
of the Gaussian function, y is the output of the NN, W is the
weight values matrix, and ci is the center and bi is the width of
the Gaussian function. In Gandolfo et al. (2019), Liu et al. (2019),
it has been shown that an RBFNN can approximate a non-linear
function f (·) under the following assumptions

1. The output f̂ (x,W∗) is a continuous function.
2. Given a small positive constant ǫ0 and a continuous function

f (·), a weight vectorW∗ exists so that f̂ (·) satisfies.

max‖f (·)− f̂ ∗(·)‖ ≤ ε0 (8)

and W∗ = argmin
W∈β(MW )

{

sup
W∈β(MW )

‖f (·)− f̂ ∗(·)‖

}

, where W∗

is n × n matrix that denotes the optimal weigh values for
f (·) approximation.

2.4. Adaptive Law to Compensation Control
In the controller scheme proposed (Feng, 1995), the close loop
system is given by the following equation:

τ = M0(q)(q̈d − κvė− κpe)+ C0(q, q̇)q̇+ g0(q)− f̂ (·) (9)

where f̂ (·) = Ŵφ(x) and Ŵ is an estimation ofW∗. Equations (1)
and (9) have the same term, and the substitution result is shown
in the following equation:

M(q)q̈+ C(q, q̇)q̇+ g(q)− d

= M0(q)(q̈d − κv ė− κpe)+ C0(q, q̇)q̇+ g0(q)− f̂ (·) (10)

Then, the equationM0(q)q̈+C0(q, q̇)q̇+ g0(q) is subtracted with
Equation (10) in both sides as follows:

M0(q)q̈+ C0(q, q̇)q̇+ g0(q)−
[

M(q)q̈+ C(q, q̇)q̇+ g(q)− d
]

= M0(q)q̈+ C0(q, q̇)q̇+ g0(q)−
[

M0(q)(q̈d − κvė− κpe)

+C0(q, q̇)q̇+ g0(q)− f̂ (·)
]

(11)

The result is given as follows:

M−1
0 (q)

[

1Mq̈+ 1Cq̇+ 1g(q)+ d
]

= ë+ κvė+ κpe+M−1
0 (q)

[

f̂ (·)
]

(12)

Equation (12) can be rewritten as follows:

ë+ κvė+ κpe = M−1
0 (q)

[

f (·)− f̂ (·)
]

(13)

Select to x = ( e ė )T . Equation (13) turns into

ẋ = Ax+ B(f (·)− f̂ (·)) (14)

where

A =

(

0 I
−κp −κv

)

;B =

(

0

M−1
0 (q)

)

(15)

Setting f (·) − f̂ (·) = f (·) − f̂ ∗(·) + f̂ ∗(·) − f̂ (·) = ζ + W∗Tφ −

ŴTφ = ζ − W̃Tφ and W̃ = Ŵ − W∗, ζ = f (·) − f̂ ∗(·),
where ζ denotes the modeling error due to the use of the NN.
The modeling error ζ is bounded by a finite constant ζ0, where

ζ0 = sup
t≥0

‖f (·)− f̂ ∗(·)‖. Finally,

ẋ = Ax+ B(ζ − W̃Tφ) (16)

The Lyapunov function is given by the following equation:

L =
1

2
xTPx+

1

2ϕ
‖W̃‖2;ϕ > 0 (17)

where W̃ = Ŵ −W∗ is a definition that describes the estimation
error. In Equation (17), P is a positive definite matrix that satisfies
the Lyapunov equation

PA+ ATP = −Q;Q ≥ 0 (18)
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Equation (17) can be rewritten in terms of the next definition

‖W̃‖2 =
∑

i,j

|wij|
2 = tr(W̃W̃T) = tr(W̃TW̃) (19)

Thus, the derivative of V is given as follows:

L̇ =
1

2
[xTPẋ+ ẋTPx]+

1

ϕ
tr( ˙̃WTW̃) (20)

Substituting Equation (16) for (20), the results is given by

L̇ =
1

2
[xTP(Ax+ B(ζ − W̃Tφ))

+(Ax+ B(ζ − W̃Tφ))TPx]+
1

ϕ
tr( ˙̃WTW̃)

=
1

2
[xTPAx+ xTPB(ζ − W̃Tφ)+ xTATPx)

+(ζ − W̃Tφ)TBTPx]+
1

ϕ
tr( ˙̃WTW̃)

=
1

2
[xTPAx+ xTATPx+ xTPB(ζ − W̃Tφ))

+(ζ − W̃Tφ)TBTPx]+
1

ϕ
tr( ˙̃WTW̃)

=
1

2
[xT(PA+ ATP)x+ xTPBζ − xTPBW̃Tφ)

+ζTBTPx− φTW̃BTPx]+
1

ϕ
tr( ˙̃WTW̃)

= −
1

2
[xTQx]+ ζTBTPx− BTW̃φTPx+

1

ϕ
tr( ˙̃WTW̃)(21)

Considering that xTPBζ = ζTBTPx, xTPBW̃Tφ = φTW̃BTPx
and φTW̃BTPx = tr[BTPxφTW̃] in Equation (21), this results in

L̇ = −
1

2
[xTQx]+ ζTBTPx+

1

ϕ
tr(−ϕBTPxφTW̃+ ˙̃WTW̃) (22)

2.5. Adaptive Control Based on Cascade
Neural Network
The PD control has been widely implemented in robot control
to deal with the drawbacks presented by the integer gain in PID
control. However, the PD control can have similar deficiencies
if the derivative gain has high values (Wen Yu and Rosen,
2013). The PD control with compensation presents positive
results to avoid high derivative gains and identify uncertainties
that occur in the real operation of robot manipulators. In this
work, a compensation of the nominal controller is proposed. The
adaptive control scheme is shown in Figure 1. Two RBFNN in
cascade are proposed to deal with the tracking error and the NN
weight estimation error.

2.5.1. NN Weight Estimation Error
The input of NN is an error vector defined as follows:

x =

[

e
ė

]

=

[

qi − qϑ i

q̇i − q̇ϑ i

]

(23)

FIGURE 1 | Proposed adaptive control scheme.

where i and ϑ denote the real and desired position and velocity
of the n-link of the robot. The NN estimation error anticipates
which action to take in order to improve the output of the
nominal control. Thus, the prediction of estimation error is also
given as the output of RBFNN as follows:

x̂ =

J
∑

j=1

Weφe (24)

where φe is the Gaussian function given by Equation (6).
The criterion for the weight update is proposed in the
following equation:

Ẇe = γerφe(x)
TPB (25)

where r =‖e−x2e ‖ is a function that represents the recompense
signal. The goal of the recompense function is to lead longer
traces for an identification problem.

2.5.2. Adaptive Law to Compensate the Nominal

Controller
A novel adaptive control scheme is proposed to ensure that
the output of the nominal controller for the system defined in
Equation (1) reaches the position desired, and the estimated
NN can converge an ideal weight. An RBFNN is selected to
approximate the system dynamics and deals with uncertainties
and external disturbances, which is given as follows:

f̂ ∗ =

J
∑

j=1

Ŵφc (26)

where φc is a Gaussian function given by the equation form 6.
The NN actor provides compensation to the PD controller to,

that is, f̂ (·) = f̂ ∗. The weigh update of the NN actor is proposed
according to the following equation:

˙̂W = γcφc(x̂+ (x̂− x))TPB (27)

If we select the parameter update law as ˙̃W =
˙̂W, we assume

that the value x ≈ x̂ + (x̂ − x). Substituting Equation (27) into
Equation (22), the result is given as

L̇ = −
1

2
[xTQx]+ ζTBTPx (28)
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As it is well-known, ‖ζT‖ ≤ ‖ζ0‖ and from Equation (15),
‖B‖ = ‖M−1

0 (q)‖, and Equation (28) can be written as follows:

L̇ ≤ − 1
2λmin(Q)‖x‖

2 + ‖ζ0‖‖M
−1
0 (q)‖λmax(P)‖x‖ (29)

L̇ = − 1
2‖x‖

[

λmin(Q)‖x‖ − 2‖ζ0‖‖M
−1
0 (q)‖λmax(P)

]

(30)

where λmin denotes the minimum eigenvalues of matrix Q and
λmax denotes the maximum eigenvalues of matrix P. In order to
satisfy L̇ ≤ 0, the value of ‖x‖ should be satisfied as follows:

‖x‖ ≤
2‖M−1

0 (q)‖λmax(P)

λminQ
‖ζ0‖ (31)

According to Equation (28), L̇ is negative semidefinite, that is
L(x,W, t) ≤ L(x,W, 0). It implies that x, andW are bounded. Let
function � = L̇ and integrate � with respect to time as follows:

∫ t

0
�(s)ds ≤ L(x,W, t) ≤ L(x,W, 0) (32)

Due to L(x,W, 0) is bounded, and L(x,W, t) is non-increasing
and bounded, the following result can be computed:

lim
t→∞

∫ t

0
�(s)ds < ∞ (33)

Since �̇(s) is bounded, by Barbalat’s lemma (Slotine and Li, 1991),
limt→∞ �(s) = 0, that is x → 0 as t → ∞.

3. RESULTS

In order to validate the proposed scheme of control, a set of
simulations was carried out. Two simulations are proposed, the
first considers an adaptive control using an RBFNN, and the
second is based on the proposed scheme using two RBFNNs in
cascade. The controllers were also implemented in a TDOFRM,
which is shown in Figure 2. The main objective of controllers is
the position tracking in the presence of external disturbances.

[

τ 1

τ 2

]

=

[

M11(q) M12(q)
M21(q) M22(q)

] [

q̈1
q̈2

]

+

[

C11(q, q̇) C12(q, q̇)
C21(q, q̇) C22(q, q̇)

] [

q̇1
q̇2

]

+

[

g1(q̇)
g2(q̇)

]

(34)

where:

M11(q) = m1l
2
c1 +m2l

2
1 +m2l

2
c2 + 2m2l1lc2cos(q2)+ I1 + I2

M12(q) = m2l
2
c2 +m2l1lc2cos(q2)+ I2

M21(q) = m2l
2
c2 +m2l1lc2cos(q2)+ I2

M22(q) = m2l
2
c2 + I2

C11(q, q̇) = −m2l1lc2sin(q2)q̇2

C12(q, q̇) = m2l1lc2sin(q2)(q̇1 + q̇2)

C21(q, q̇) = m2l1lc2sin(q2)q̇1

C22(q, q̇) = 0

FIGURE 2 | Model of two degree-of-freedom (DOF) robot manipulator.

TABLE 1 | Robot manipulator parameters.

Parameter Value Units

l1 0.45 m

l2 0.45 m

lc1 0.091 m

lc2 0.048 m

m1 23.902 kg

m2 3.880 kg

I1 1.266 kgm2

I1 0.093 kgm2

g 9.81 m
s2

g1(q) = (m1lc1 +m2l1)gsin(q1)+m2lc2gsin(q1 + q2)

g2(q) = m2lc2gsin(q1 + q2) (35)

The parameters came from Kelly and Santibáñez (2003) and
presented in Table 1.

The desired position vector is defined as follows:

qd =

[

q1d
q2d

]

=

[

π
6 sin(

1
4π t)

π
6 sin(

2
3π t)

]

(36)

The initial positions are given by q0 =
[

π
12

π
12

]T
. The

uncertainties and unknown disturbances are defined as follows:

d =

[

sin(2π t)+ cos( 14π t)

sin(2π t)+ cos( 14π t)

]

(37)
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FIGURE 3 | Real and desired links positions of the robot manipulator.

FIGURE 4 | Tracking error of the robot manipulator joints by scheme proposed and conventional compensation.
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FIGURE 5 | Control inputs of links 1 and 2.

FIGURE 6 | Convergence of neural networks parameters.
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The matrix Q, A, and B are

Q =









50 0 0 0
0 50 0 0
0 0 50 0
0 0 0 50









;

A =









0 0 1 0
0 0 0 1

−0.25 0 −1 0
0 −0.25 0 −1









;B =









0 0
0 0
1 0
0 1









(38)

Two RBFNNs are proposed for critic and actor agents. Here, γe
is the learning rate of the RBFNN estimation error and γc is the
learning rate of the RBFNN tracking error; ci is the center vector
of neural net i and b is the width value of Gaussian function for
neural net i. The next values are proposed due to the optimal
weight for the actor NN and critic NN could take arbitrary large
values, but in order to avoid any numerical problems, this work
considers γe = 0.5, γc = 0.4, ci =

[

−2 −1 0 1 2
]

, bi = 0.5,
and i = 4.

Figure 3 shows the tracking position of links 1 and 2,
where NN and NNc indicate an RBFNN compensation and a
compensation based on two RBFNN in cascade, respectively.
The green lines show the desired tracking position. The red
lines indicate the tracking position of NN compensation. The
blue lines show the tracking position of the proposed controller.
The uncertainties and disturbances were added to the controller.
According to the RBFNN in cascade, an RBFNN predicts the
NN estimation error, and this value is included in adaptive laws
to update the RBFNN compensation in order to take adequate
action for the disturbances and guarantee the convergence of
tracking error. The proposed recompense function helps to
maintain longer traces for the identification task over time.

The compensation of proposed algorithm is compared with
an RBFNN compensation. Figure 4 shows tracking errors for
links 1 and 2. The red line represents the tracking error of an
RBFNN for compensation, which presents overshoot to reach
the desired positions and oscillations in steady state. The blue
line indicates the tracking error of the proposed algorithm,
which present robustness against uncertainties and disturbances.
The green line indicates the desired tracking positions for
links 1 and 2.

The simulations were proposed in order to show the difference
between adaptive conventional control and the proposed scheme.
In this sense, two desired tracking signal was proposed that
goes at different velocities, and link 1 follows a slow signal and
link 2 follows a fast signal. Figure 5 shows the control inputs
to links 1 and 2, and it also exhibits the improvement of the
nominal controller under our scheme proposed in comparison
with adaptive conventional control.

In Figure 6, the NN weights convergence process of the two
RBFNN in cascade are shown. Figure 6 also denoted as the
identification process in order to deal with the uncertainties and
external disturbances is reached.

The important factors that usually must be considered
together are time and error. A performance index is a measure
that indicates those features of the response that are regarded

TABLE 2 | Comparison of different errors, ITAE, ITSE, IAE, and ISE as

performance indices.

Controller Indices Link 1 Link 2

PD+NN

IAE 0.3758 0.4992

ISE 0.0554 0.0869

ITAE 0.5162 1.0030

ITSE 0.0340 0.0578

PD+NNC

IAE 0.3057 0.3077

ISE 0.0373 0.0370

ITAE 0.3898 0.4148

ITSE 0.0232 0.0231

to be important. In order to evaluate the performance of the
proposed controller, a comparison of different performance
indices is shown in Table 2. Hence, Table 2 is based on the
next four equations, integral absolute error (IAE), integral square
error (ISE), integral time absolute error (ITAE), and integral time
square error (ITSE).

ISE =

∫

e(t)2dt (39)

IAE =

∫

| e(t) | dt (40)

ITSE =

∫

t e(t)2dt (41)

ITAE =

∫

t | e(t) | dt (42)

Table 2 shows that the proposed controller presents a better
response than the conventional PD control compensation based
on an RBFNN. According to the performance indices of links
1 and 2, the proposed scheme presents an adequate response
against external disturbance. Moreover, it presents less oscillation
in steady state and less time in the transient response than the
conventional compensation based on an RBFNN.

4. CONCLUSIONS

The algorithm proposed has been implemented to compensate
for the PD control of a TDOFRM. A PD control was selected
because the common knowledge that if designed with gravity
compensation, it can reach asymptotic stability. The cascade
scheme was implemented by two RBFNN in cascade, which
compensates for the control input in order to deal with the
estimation error, uncertainties, and external disturbances. The
proposed algorithm was validated using a simulation of a
TDOFRM. Two adaptive algorithms for compensating for the
controller of robot manipulators were implemented. The first was
based on a conventional RBFNN, and the second is the proposed
algorithm that uses two RBFNN. An adaptive law is proposed
to deal with the simultaneous convergence of both NNs, which
are used to estimate for tracking error and estimation error. The
results showed that the proposed compensation scheme based
on RBFNN presents robustness against external uncertainties
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and disturbances, also an adequate convergence for the NN
weights. Position tracking has been reached without overshoots
and oscillations in steady state in comparison to compensations
with a conventional RBFNN scheme.
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