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Abstract

Pd(II)-catalyzed enantioselective C-H olefination of diphenylacetic acid substrates has been achieved
through the use of mono-protected chiral amino acid ligands. The absolute configuration of the
resulting olefinated products is consistent with that of a proposed C-H insertion intermediate.

Despite substantial progress in developing various Pd-catalyzed C–heteroatom and C-C bond
forming reactions via C-H activation,1 achieving enantioselectivity in these reactions through
a stereoselective Pd insertion step remains a significant challenge.2–9 In our ongoing studies
to design and evaluate new ligands to effect asymmetric C-H cleavage, two major problems
have become apparent. First, the simultaneous binding of both the substrate and the chiral
ligand to the Pd(II) center is often difficult to achieve. Second, even if such complexes are
assembled, the ligand often strongly inhibits C-H activation, either because it induces an
unwanted conformational change or adversely affects the electronic properties of the Pd(II)
center.
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We have recently found that mono-protected amino acid ligands and 2-benzylpyridine
substrates coordinate with Pd(II) in a one-to-one ratio with high fidelity.3 Importantly, the
resulting chiral Pd(II) complexes were found to induce asymmetric C-H cleavage with high
enantioselectivity (up to 95% ee). Of critical importance for the viability of this process is the
precise match between the binding ability of the pyridine substrate and the chiral ligand. This
observation, however, calls into question whether this chiral ligand scaffold is broadly
applicable to synthetically useful substrates, including those that contain weakly coordinating
functional groups. Herein, we report an enantioselective C-H olefination reaction of α,α-
diphenylacetic acids using mono-protected amino acids as chiral ligands. This new
development represents an encouraging step towards the realization of synthetically useful Pd-
catalyzed enantioselective C-H activation reactions.

We previously reported that both inorganic and organic cations dramatically accelerate
carboxyl-directed C-H activation reactions.10 Our current hypothesis, based on the structure
of a C-H insertion intermediate,10b is that the σ-chelation of the carbonyl oxygen of the
carboxylate salt with Pd(II) is responsible for the facile C-H cleavage promoted by the complex-
induced proximity effect. Following this hypothesis, we anticipated that a chiral carbon–Pd
intermediate B could be formed in analogy to intermediate A, which is formed following
enantioselective C-H activation using a pyridyl directing group. Subsequently, we envisioned
this intermediate undergoing olefination to give the corresponding chiral product (Figure 1).
The proposed boat conformations of A and B are based on a crystal structure of a similar 1,4-
cyclohexadiene-like cyclopalladated compound.3

To test this hypothesis, we began by establishing reaction conditions for a Pd(II)-catalyzed
olefination reaction of α,α-diphenylacetic acid 1a using Boc-L-isoleucine (Boc-Ile-OH) L1 as
a chiral ligand. Following a procedure developed for the racemic olefination of phenylacetic
acid substrates,11 the olefination reaction of 1a in the presence of L1 gave the desired product
in 46% yield, accompanied by substantial amounts of the decarboxylation byproduct.
Nonetheless, the high enantioselectivity (95% ee) observed was encouraging (Table 1, entry
1). Through extensive screening, we found that by using the preformed sodium salt of 1a as
the starting material and KHCO3 as the base, the yield could be improved to 73%, with 97%
ee (entry 3). Surprisingly, the unique combination of the sodium salt of 1a and KHCO3 was
crucial for the success of the reaction. Other alternatives decreased both the enantioselectivity
and yield (entries 4–14). We then screened an array of mono-protected α-amino acids (Table
2). Boc-Ile-OH was the optimal chiral ligand, with Boc-Tyr(t-Bu)-OH giving similar
enantioselectivity (96% ee) but significantly lower yield (45%).

We next proceeded to establish the scope of the styrene coupling partner. para- and meta-Alkyl
substituted styrenes gave high enantioselectivity (92–97% ee, Table 3, entries 2, 3 and 7) while
ortho-methyl substituted styrene gave only 81% ee (entry 4). para-Chlorostyrene afforded both
high enantioselectivity (96% ee) and reactivity (74% yield); however, para-fluorostyrene gave
both decreased yield and enantioselectivity (entry 6).

Different carboxylic acid substrates were also subjected to this reaction protocol. Alkyl-
substituted sodium carboxylates 1h–1k were converted to the corresponding products with
good to high enantioselectivity (entries 8–11). Boc-Tyr(t-Bu)-OH was found to be better chiral
ligand for sodium carboxylates 1h, 1j and 1k. The reaction was also found to tolerate substrates
containing electron-donating groups (p-OPiv, 1l, entry 12) and moderately electron-
withdrawing groups (p-Cl, 1m, entry 13), although olefination of 1m gave 2m in only 35%
yield. 3,4-Disubstituted substrates were also olefinated effectively giving moderate to high
levels of enantioselectivity (entries 14–16). Reactions of sodium 2,2-diphenylbutanoate 1q and
sodium 2,2-diphenylpentanoate 1r with styrene gave lower enantioselectivity (entries 17–18).
Unfortunately, the reaction of α-hydrogen-containing 1s only gave 58% ee, and it was found
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that 2s was partially racemized under the reaction conditions (entry 19). Notably, the absolute
configuration of the olefination product 2e was determined to be R by X-ray crystallographic
analysis (Figure 2), which was consistent with the proposed intermediate B (Figure 1).

Acrylates were also found to be efficient coupling partners under these conditions, affording
99% ee. However, a mixture of the desired olefination product and the corresponding
conjugated addition product was obtained (Scheme 1). The use of sodium carboxylate salt also
improved the yield.

Finally, these olefinated products could be readily converted to aldehydes or lactones by simple
chemical transformations with complete retention of stereochemistry (Scheme 2).

In summary, we have demonstrated that mono-protected α-amino acids are effective chiral
ligands for Pd(II)-catalyzed enantioselective C-H activation reactions of carboxylic acid
substrates. Expansion of this asymmetric technology to enantioselective sp3 C-H
functionalization is underway.
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Figure 1.
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Figure 2.
Absolute Configuration of Olefination Product 2e
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Scheme 1.
Enantioselective C-H Activation/Olefination Using Acrylates as the Coupling Partnersa,b
a The reaction conditions are identical to those described in Table 1; b The ratio of products
and dr were determined by 1H NMR.
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Scheme 2.
Derivatization of the Olefination Products
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Table 1

Effect of Inorganic Cations and Basesa

Entry M Base % Yieldb %eec

1 H KHCO3
d 46 95

2 Na - 51 36

3 Na KHCO3 73e 97

4 NH4 KHCO3 - -

5 K KHCO3 49 84

6 Cs KCH2O3 - -

7 Na K2CO3 25 87

8 Na NaHCO3 56 89

9 Na Na2CO3 61 91

10 Na Cs2CO3 - -

11 Na K2HPO4 37 83

12 Na Li2CO3 44 85

13 Na NaOTsf 57 79

14 K NaHCO3 53 91

a
0.5 mmol 1a, 5 mol% Pd(OAc)2, 10 mol% L1, 5 mol% BQ, 0.5 equiv. Base, 1 atm O2 in 3 mL tert-amyl alcohol at 90 °C for 48 h;

b
The yield was determined by 1H NMR using CH2Br2 as a calibrated internal standard.

c
ee was determined by chiral HPLC;

d
2 equiv. KHCO3;

e
Isolated yield;

f
1 equiv. NaOTs.

J Am Chem Soc. Author manuscript; available in PMC 2011 January 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shi et al. Page 10

Table 2

Evaluation of Amino Acidsa

Entry Ligand % Yield % ee

1 Boc-Ala-OH 46 54

2 Boc-Abu-OH 51 67

3 Boc-Nva-OH 63 61

4 Boc-Nle-OH 59 81

5 Boc-Val-OH 39 93

6 Boc-Ser(Bzl)-OH 61 91

7 Boc-Phe-OH 25 93

8 Boc-Thr(t-Bu)-OH 50 86

9 Boc-Tyr(t-Bu)-OH 45 96

10 Boc-Tle-OH 43 94

11 Boc-lle-OH•0.5H2O 73 97

12 Boc-Leu-OH 60 86

13 Formyl-Leu-OH 44 79

14 PG1-Leu-OH 57 84

15 PG2-Leu-OH 44 69

16 PG3-Leu-OH 37 65

a
The reaction conditions are identical to those described in Table 1.
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