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Abstract

Introduction: Lymphocyte apoptosis and monocyte dysfunction play a pivotal role in sepsis-induced

immunosuppression. Programmed death-1 (PD1) and its ligand programmed death ligand-1 (PD-L1) exert

inhibitory function by regulating the balance among T cell activation, tolerance, and immunopathology. PD-1

deficiency or blockade has been shown to improve survival in murine sepsis. However, PD-L1 and PD-1 differ in

their expression patterns and the role of PD-L1 in sepsis-induced immunosuppression is still unknown.

Methods: Sepsis was induced in adult C57BL/6 male mice via cecal ligation and puncture (CLP). The expression of

PD-1 and PD-L1 expression on peripheral T cells, B cells and monocytes were measured 24 hours after CLP or

sham surgery. Additionally, the effects of anti-PD-L1 antibody on lymphocyte number, apoptosis of spleen and

thymus, activities of caspase-8 and caspase-9, cytokine production, bacterial clearance, and survival were

determined.

Results: Expression of PD-1 on T cells, B cells and monocytes and PD-L1 on B cells and monocytes were up-

regulated in septic animals compared to sham-operated controls. PD-L1 blockade significantly improved survival of

CLP mice. Anti-PD-L1 antibody administration prevented sepsis-induced depletion of lymphocytes, increased tumor

necrosis factor (TNF)-a and interleukin (IL)-6 production, decreased IL-10 production, and enhanced bacterial

clearance.

Conclusions: PD-L1 blockade exerts a protective effect on sepsis at least partly by inhibiting lymphocyte apoptosis

and reversing monocyte dysfunction. Anti-PD-L1 antibody administration may be a promising therapeutic strategy

for sepsis-induced immunosuppression.

Introduction

Sepsis, a systemic inflammatory response to infection,

results in the death of more than 210,000 people in the

United States annually [1]; it remains the leading cause

of death in critical ill patients [2]. Because critical care

treatment is becoming expensive, understanding the

molecular mechanisms underlying the development of

sepsis is important in identifying new therapeutic

strategies.

Protracted immunosuppression caused by impaired

pathogen clearance after primary infection or suscept-

ibility to secondary infection may contribute to the high

rates of morbidity and mortality associated with sepsis

[3,4]. Accumulating evidence [5-7] suggests the pivotal

role of apoptosis in sepsis-induced immunosuppression.

Numerous studies have shown that the numbers of per-

ipheral and splenic lymphocytes are reduced during sep-

sis in both humans and animals [8,9]. Apoptosis is

known to be mainly responsible for decreased lympho-

cyte numbers, and the extent of lymphocyte apoptosis

correlates with the severity of sepsis [10]. In multiple
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animal models of sepsis, survival rates have been

remarkably improved by inhibiting lymphocyte apoptosis

by using selective caspase inhibitors [11,12]; altering

proapoptotic/antiapoptotic protein expression [13,14];

treatment with survival promoting cytokines such as

interleukin (IL)-7 [15] and/or IL-15 [16]; and modulat-

ing costimulatory receptors [17,18].

Monocytes play an essential role in innate immune

defense against microbial infection. rapidly exhibit an

impaired production of proinflammatory cytokines in

response to additional bacterial challenge [19], and a

reduced antigen presentation capacity likely due to their

decreased expression of human leukocyte antigen(locus)

DR (HLA-DR) [20]. Such monocytic deactivation indi-

cates a state of globally impaired immune functions and

correlates with poor clinical outcome in critically ill

patients.

Programmed death-1 (PD-1) is a newly defined co-inhi-

bitory receptor whose expression can be induced, primar-

ily on the cell surface of activated CD4 and CD8 T cells.

PD-1 has two main ligands: PD-L1 (B7-H1) and PD-L2

(B7-DC). PD-L1 is broadly expressed on hematopoietic

and non-hematopoietic cells, including T cells, B cells,

dendritic cells (DCs), macrophages, endothelial cells,

epithelial cells, pancreatic islet cells, and fibroblastic reti-

cular cells [21]. PD-1 and its ligand exert inhibitory effects

in the setting of persistent antigenic stimulation by regu-

lating the balance among T cell activation, tolerance, and

immunopathology. The PD-1/PD-L1 pathway plays a criti-

cal role in the regulation of autoimmunity, tumor immu-

nity, transplantation immunity, allergy, immune privilege,

and ischemia/reperfusion injury [22]. Recent findings sug-

gest that the PD-1/PD-L1 pathway plays an important role

in the interaction between host and pathogenic microbes

that evolved to resist immune responses. Those pathogens

include viruses [23], certain bacteria [24], fungi [25], and

some worms [26]. Studies using PD-L1-knockout mice

support the finding that PD-L1 is the primary regulatory

counter receptor for the inhibitory function of PD-1 [27].

Many studies showed that PD-L1 antagonism can block

the interaction of PD-1 and PD-L1 [28-31]. Hence, we

hypothesized that the blockade of PD-L1 using anti-PD-L1

antibody would improve survival in sepsis. The purpose of

this study was to elucidate the effect of PD-L1 blockade

caused by an antagonistic antibody to PD-L1 on survival

in a murine cecal ligation and puncture (CLP) model of

sepsis. In addition, this study attempted to determine the

potential mechanism underlying the putative beneficial

effect of PD-L1 antagonism in sepsis.

Materials and methods

CLP model of sepsis

All experiments were approved by the Institutional Ani-

mal Care and Use Committee. Adult 8- to 10-week-old

(22 to 30 g) C57BL/6 male mice were purchased from

the Animals Experimentation Center of Second Military

Medical University. CLP-induced polymicrobial sepsis

was performed as described previously [15]. Briefly,

mice were anesthetized with isofluorane and a midline

abdominal incision was made. The cecum was mobi-

lized, ligated below the ileocecal valve, and punctured

twice with a 22 gauge needle to induce polymicrobial

peritonitis. The abdominal wall was closed in two layers.

Sham-operated mice underwent the same procedure,

including opening the peritoneum and exposing the

bowel, but without ligation and needle perforation of

the cecum. After surgery, the mice were injected with 1

mL physiologic saline solution for fluid resuscitation. All

mice had unlimited access to food and water both pre-

and postoperatively.

PD-1 and PD-L1 expression on peripheral T cells, B cells

and monocytes

Mice were euthanized 24 h after CLP or sham-operated

surgery, and blood was obtained to analyze expression

of PD-1 and PD-L1. After erythrocytes were lysed with

lysing solution (BD Bioscience San Jose, CA, USA), cells

were stained with fluorochrome-conjugated anti-CD3,

anti-CD19, anti-CD11b, anti-PD-1 or anti-PD-L1 antibo-

dies. Flow cytometric analysis was performed on a

MACS Quant (Miltenyi Biotech, Bergisch Gladbach,

Germany) using Flowjo software version 7.6 (Tree Star,

Ashland, OR, USA). For flow cytometric analysis, we

first gated on a lymphocyte/monocyte population in

FSC/SSC, then T cells, B cells or monocytes were gated

on CD3, CD19 or CD11b-positive cells, respectively.

Abs were purchased from eBioscience (San Jose, CA,

USA): CD3-PerCP-Cy5.5 (Clone: 145-2C11), CD19-PE-

Cy7 (Clone: 1D3), CD11b-APC (Clone: M1/70), PD-1-

PE (Clone: J43), PD-L1-PE (Clone: MIH5).

Effect of PD-L1 blockade on the survival of septic mice

In order to compare the effect of anti-PD-L1 antibody

administration at different time-points on survival, treat-

ment with the antibody before or after CLP was used. To

confirm the in vivo protective effect of PD-L1 blockade

on sepsis, C57BL/6 male mice were intraperitoneally

injected with anti-PD-L1 antibody (50 μg/mouse), isotype

antibody (50 μg/mouse), or saline 24 h before CLP, and

survival rates were assessed over the subsequent eight

days. To assess the potential therapeutic effect of PD-L1

blockade, mice that underwent CLP were subsequently

randomized to receive intraperitoneal anti-PD-L1 anti-

body (50 μg/mouse), isotype control antibody (50 μg/

mouse) or saline 3 h after CLP surgery. Survival was over

the subsequent eight days. All mice were subcutaneously

administered 1 mL normal saline within 30 minutes after

CLP and allowed free access to food and water.

Zhang et al. Critical Care 2010, 14:R220

http://ccforum.com/content/14/6/R220

Page 2 of 9



Determination of lymphocytes counts in blood, spleen

and thymus

Mice that underwent CLP were randomized to intraperi-

toneally receive anti-PD-L1 antibody (50 μg/mouse), iso-

type control antibody (50 μg/mouse), or saline after CLP

surgery. The blood, spleen and thymus of the septic and

sham-operated mice were harvested 24 h after CLP. The

total cell number was counted after lysis of erythrocytes

(for spleen and thymus, single-cell suspension was pre-

pared). Cells were also stained with fluorochrome-conju-

gated antibodies to cell subset-specific surface markers

(CD3 for T cells and CD19 for B cells). Lymphocyte

numbers were calculated by obtaining total cell count

and lymphocyte subgroup percentage by FACS analysis.

Quantification of apoptosis in the spleen and thymus

The spleen and thymus were harvested from septic and

sham-operated mice 24 h after surgery and treatment,

and fixed with 10% buffered formalin. Terminal deoxynu-

cleotidyl transferase-mediated dUTP nick end labeling

(TUNEL) staining was performed using the ApopTag

Plus Peroxidase In Situ Apoptosis Detection Kit (Chemi-

con Billerica, MA, USA) according to the manufacturer’s

instructions. In brief, sections were incubated in equili-

bration buffer for 10 minutes and then terminal deoxynu-

cleotidyl transferase and dUTP-digoxigenin were added

to the sections and incubated in a 37°C humidified cham-

ber for 1 h. The reaction was then stopped and the slices

were washed and incubated with anti-digoxigenin-peroxi-

dase solution, colorized with DAB/H2O2, and counter-

stained with bis-benzamide. From each specimen, two

sections were initially examined under light microscopy

at low magnification (×100). Five fields per section were

randomly examined at a higher magnification (×400).

Two investigators examined the samples microscopically

in a blinded fashion. The percentage of the TUNEL-posi-

tive cells was used to determine the apoptosis rate. For

detection of T cells apoptosis and activities of caspase-8

and caspase-9 in the thymus, thymuses from CLP or

sham-operated mice were harvested 24 h after surgery

and treatment. A single-cell suspension was prepared.

CD3+ T cells were stained with annexin V and propidium

iodide (PI) for apoptosis measurement and stained for

active caspase-8 using IEHD-FMK (BioVision, Mountain

View, CA, USA), and for active caspase-9 using LEHD-

FMK (BioVision, USA) according to the manufacturer’s

instructions.

Cytokine analysis and bacterial clearance

Plasma from CLP or sham-operated mice was harvested

24 h after surgery and treatment. Concentrations of

tumor necrosis factor (TNF)-a, IL-6, and IL-10 were

measured using murine enzyme-linked immunosorbent

assay (ELISA) kit (R&D Systems, Minneapolis, MN,

USA) according to the manufacturer’s instructions. For

bacterial clearance, blood and peritoneal lavage fluid

samples were collected 24 h after surgery and treatment.

Blood was collected by heart puncture after isoflurane

anesthesia. Peritoneal lavage fluid was harvested after

injecting 2 mL PBS into the peritoneum and serial dilu-

tion in samples was serially diluted to 10-, 100-, or

1,000-fold in 500 μL PBS. A 100 μL aliquot of each dilu-

tion was spread on a tryptic soy agar (TSA) blood agar

plate. All plates were incubated at 37°C for 24 h. Colo-

nies were counted and expressed as colony forming

units (CFUs)/mL for all the samples.

Statistical analysis

Data reported are the mean (SEM). All statistical ana-

lyses were performed using Prism 4.0 (GraphPad Soft-

ware, La Jolla, CA, USA). Survival of the two subgroups

was estimated by Kaplan-Meier analysis; comparisons

were performed by the log-rank test. All comparisons

among groups were performed by Mann-Whitney analy-

sis of variance. For multigroup analysis, intergroup com-

parisons were performed by Dunn’s test. Significance

was accepted at P < 0.05.

Results

Upregulation of PD-1 and PD-L1 on T cells, B cells and

monocytes during sepsis

Expression of PD-1 on T cells (CD3+), B cells (CD19+)

and monocytes (CD11b+) increased significantly in CLP

mice compared with sham mice (P < 0.05 and P < 0.01,

respectively) (Figure 1A, C). Expression of PD-L1 on B

cells and monocytes were also upregulated in septic ani-

mals (P < 0.01), whereas PD-L1 expression on T cells

was not altered significantly (Figure 1B, D).

PD-L1 blockade improves survival of murine sepsis

Mice pretreated with anti-PD-L1 antibody for 24 h

before CLP showed an improved eight-day survival

(70.0%) compared with that of mice pretreated with

saline (7.8%; P < 0.05) or those pretreated with isotype

control antibody (16.6%; P < 0.05; Figure 2A). Mice

treated with anti-PD-L1 antibody 3 h after CLP also

showed an improved eight-day survival (50.0%, P < 0.05;

Figure 2B). No statistical difference was shown between

mice treated with isotype controls or with saline.

PD-L1 blockade decreases lymphocyte apoptosis in

spleen and thymus of septic mice in situ

In the spleen of sham-operated mice, physiologic

TUNEL-positive cells, which were morphologically iden-

tical to lymphocytes, were sporadically found, and their

number increased markedly after induction of sepsis by

CLP. However, the CLP mice that were administered

anti-PD-L1 antibody showed decreased numbers of

Zhang et al. Critical Care 2010, 14:R220

http://ccforum.com/content/14/6/R220

Page 3 of 9



TUNEL-positive cells. There was a reduction in the

number of apoptotic lymphocytes in the thymus of mice

treated with anti-PD-L1 antibody compared with those

in the mice treated with CLP-only or in those treated

with the isotype antibody (Figure 3A, B).

PD-L1 blockade increases lymphocyte number in

peripheral blood, spleen and thymus

As expected, the numbers of total white blood cells and

lymphocytes were higher in the blood of the PD-L1

blockade group than those in the CLP-only or isotype

Figure 1 PD-1 and PD-L1 expression on T cells, B cells and monocytes. (A) Percent of PD-1 expression on CD3+ T cells, CD19+ B cells and

CD11b+ monocytes 24 h after CLP (n = 5) or sham control surgery (n = 5). (B) Percent of PD-L1 expression on CD3+ T cells, CD19+B cells and

CD11b+ monocytes 24 h after CLP (n = 5) or sham control surgery (n = 5), (C, D) Representative PD-1 and PD-L1 expression on T, B cells and

monocytes detected by flow cytometry. * P <0.05, ** P <0.01.
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antibody control group. Similar results were noted in

the spleens and thymuses (Figure 4).

Both the extrinsic death receptor pathway and the

intrinsic mitochondrial-mediated pathway contribute to

decreased lymphocyte apoptosis in vivo

Data showed that PD-L1 blockade decreased the apoptosis

of CD3+ T cells in the thymus (Figure 5A, D). PD-L1

blockade also decreased the activity of caspase-8 to

approximately 30% of CLP level (Figure 5B, E). Similar

results were also observed for active caspase-9 (Figure 5C,

F). These data indicate that both the extrinsic death recep-

tor pathway and the intrinsic pathway contributed to the

decreased lymphocyte apoptosis in vivo. This is consistent

with the widely accepted idea that the extrinsic and the

intrinsic apoptotic pathways are intimately connected.

Cytokines levels and bacterial clearance

PD-L1 blockade significantly increased the expression of

TNF-a, IL-6 and decreased the level of IL-10 in CLP

murine plasma (Figure 6A, B, C). Mice that received

anti-PD-L1 antibody showed a deceased bacterial bur-

den in both blood and peritoneal lavage fluid compared

with that in the mice treated with the isotype antibody

or those treated with saline (Figure 6D, E).

Discussion

Lymphocytes and monocytes are thought to be critical

in mediating both apoptosis and cytokine release during

sepsis and the PD-1/PD-L1 pathway is critical in T cell

co-stimulatory signal regulation [21,22]. To explore the

role of PD-L1 in sepsis, we initially investigated PD-L1

and PD-1 expression on T cells, B cells, and monocytes

in response to sepsis. We found a significant up-regula-

tion of PD-L1 expression on monocytes and B cell at

24 h post-CLP. Our finding of increased PD-1 expression

is consistent with that of the study by Huang et al. [32].

Our study indicated that besides PD-1, PD-L1 expression

was also up-regulated on monocyte during sepsis, sug-

gesting that PD-L1 may play a role in the process.

PD-1 deficiency or anti-PD-1 antibody has been shown

to improve survival in murine sepsis models [32,33]. Our

findings suggest that besides PD-1 blockade, anti-PD-L1

antibody administration significantly improved survival

of CLP mice, and decreased T cell apoptosis and

improved monocyte dysfunction, which may contribute

to the beneficial effect of PD-L1 blockade.

Several studies have shown that PD-L1 blockade aug-

mented T cell functions in chronic virus infection

[27,34]. However, our study did not suggest that PD-L1

blockade had significant effects on CD4+ and CD8+ T

cell functions, including proliferation and interferon-g or

IL-2 production (data not shown). Our data show that

PD-L1 blockade decreased lymphocyte apoptosis in the

spleens and thymuses of septic mice in situ, increased

lymphocyte number in peripheral blood, spleens and

thymuses, indicating that like PD-1 blockade, anti-PD-

L1 antibody administration could indeed inhibit T cell

apoptosis. We further show that both the extrinsic

death receptor pathway and the intrinsic mitochondrial-

mediated pathway contributed to decreased lymphocyte

apoptosis in vivo. Of note, we found that PD-L1 block-

ade also decreased apoptosis of bronchial epithelial cells

and alveolar epithelial cell in lungs (data not shown),

suggesting perhaps other cell targets involved in the

beneficial effect of PD-L1 blockade.

Figure 2 Anti-PD-L1 antibody administration protects mice from sepsis-induced lethality. (A) Anti-PD-L1 antibody pretreatment protected

mice from CLP. CLP mice were given 50 μg anti-PD-L1 antibody (n = 18), 50 μg isotype control antibody (n = 12) or 0.2 mL saline

intraperitoneally 24 h before CLP surgery. (B) Effect of intraperitoneal anti-PD-L1 antibody treatment given 3 h after CLP. CLP mice were given

50 μg anti-PD-L1 antibody (n = 18), 50 μg isotype control antibody (n = 12) or 0.2 mL saline (n = 12) intraperitoneally 3 h after CLP. Survival was

monitored for eight days. Data are shown as the survival percent of animals. *P <0.05.
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However, inhibition of apoptosis by PD-L1 blockade is

incomplete, and T cell apoptosis remains to some

degree after PD-L1 pathway blockade, implicating the

involvement of other regulatory pathways in sepsis-

induced T cell apoptosis.

During the inflammatory response, monocytes present

antigens by means of expression of human leukocyte

antigen (HLA) receptors and secrete proinflammatory

cytokines to amplify the immune response. Multiple stu-

dies have demonstrated that during sepsis-induced

Figure 3 PD-L1 blockade inhibits cell apoptosis in spleen and thymus. Mice underwent a sham procedure, CLP, CLP plus anti-PD-L1 or

isotype administration (n = 5 for each group). Spleen and thymus were harvested 24 h after surgery. (A) Representative sections analyzed by an

in situ TUNEL assay. (B) Percent of the TUNEL-positive cells is used to show the cell apoptosis in spleen and thymus of the 4 groups. * P <0.05.

Figure 4 Cell numbers in blood (A), spleen (B) and thymus (C). Mice underwent a sham procedure, CLP, CLP plus anti-PD-L1 administration,

or CLP plus isotype administration (n = 5 for each group). Blood, thymus and spleen were harvested 24 h after surgery. The total cell number

was counted after lysis of erythrocytes (for spleen and thymus, preparation of a single-cell suspension was required). Lymphocyte numbers (CD3

+ T cells, CD3- T cells, CD19+ B cells) were calculated by the total number and percent of lymphocyte subgroups resulting from FACS analysis,

respectively. * P <0.05.
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Figure 5 Both extrinsic and intrinsic pathways contribute to decreased lymphocyte apoptosis in vivo. Mice underwent sham procedure,

CLP, CLP plus anti-PD-L1 antibody administration, or CLP plus isotype administration. Thymus was harvested 24 h after surgery and stained for

annexin V and propidium iodide (PI) (A, D) or FITC-labeled IEHD-FMK (B, E) or LEHD-FMK (C, F) which can irreversibly binds to activated

caspase-8 or activated caspase-9. (D), (E), and (F) are the representative flow cytometry dot plots. Values in the upper right quadrant indicate

the percent of apoptotic cells, caspase-8 or caspase-9 positive cells, respectively. * P <0.05.

Figure 6 Levels of plasma cytokines and bacterial clearance. Mice underwent a sham procedure, CLP, CLP plus anti-PD-L1 administration, or

CLP plus isotype control administration (n = 5 for each group). Levels of TNF-a (A), IL-6 (B) and IL-10 (C) were measured 24 h after surgery. Treatment

with anti-PDL1 antibody improves bacterial clearance in septic mice. Mice that received anti-PD-L1 antibody exhibited a deceased bacterial burden in

peritoneal lavage fluid in comparison with mice that received isotype antibody or saline (D), Mice that received anti-PD-L1 antibody exhibited a

deceased bacterial burden in blood in comparison with mice that received isotype antibody or saline (E), * P < 0.05, ** P < 0.01.
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immunosuppression, monocytes secrete fewer cytokines

and down-regulate expression of HLA receptors. This

impaired function of monocytes generally predicts

increased risk of secondary infection and poor prognosis

[35,36]. In our study, we found dramatic up-regulation

of PD-L1 on monocytes in CLP mice, and this up-regu-

lation was likely associated with monocyte dysfunction.

PD-L1 blockade exhibited a markedly decreased IL-10,

elevated TNF-a and IL-6 levels in plasma as well as a

decreased bacterial burden both in blood and peritoneal

lavage fluid. However, PD-1 blockade did not alter

plasma cytokine levels [33].

There is a balance between pro-inflammatory and

anti-inflammatory responses during sepsis. Both

responses occur simultaneously during the early phase

of the disease. During the stage of sepsis-induced immu-

nosuppression, there is an excessive anti-inflammatory

response named compensatory anti-inflammatory

response syndrome (CARS). CARS has a distinct set of

cytokines and cellular responses characterized by the

reduction of lymphocytes, decreased cytokine response

of monocytes to stimulation, decreased numbers of

human leukocyte antigen (HLA) antigen-presenting

receptors on monocytes, and expression of anti-inflam-

matory cytokines such as IL-10 [35]. Our study demon-

strated that PD-L1 may play a vital role in the balance

of pro-inflammatory and anti-inflammatory responses

during sepsis. In addition to a decrease of apoptosis in

T cells, PD-L1 blockade could reverse monocyte dys-

function by modulating cytokine production.

Conclusions

PD-L1 blockade exerts a protective effect on sepsis, at

least partly by inhibiting lymphocyte apoptosis and

reversing monocyte dysfunction by modulating cytokine

production. Anti-PD-L1 antibody administration may be

a promising therapeutic strategy for sepsis-induced

immunosuppression.

Key messages

• Expression of PD-1 on T cells, B cells and mono-

cytes and PD-L1 on B cells and monocytes were up-

regulated in septic animals.

• PD-L1 blockade significantly improved survival of

CLP mice.

• Anti-PD-L1 antibody administration prevented sep-

sis-induced depletion of lymphocytes, increased TNF-a

and IL-6 production, decreased IL-10 production, and

enhanced bacterial clearance.

• Anti-PD-L1 antibody administration may be a pro-

mising therapeutic strategy for sepsis-induced immuno-

suppression.
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