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ABSTRACT

Continuum solvation models, such as Poisson–
Boltzmann and Generalized Born methods, have
become increasingly popular tools for investigat-
ing the influence of electrostatics on biomolecular
structure, energetics and dynamics. However, the
use of such methods requires accurate and complete
structural data as well as force field parameters
such as atomic charges and radii. Unfortunately,
the limiting step in continuum electrostatics calcula-
tions is often the addition of missing atomic coordi-
nates to molecular structures from the Protein Data
Bank and the assignment of parameters to biomole-
cular structures. To address this problem, we have
developed the PDB2PQR web service (http://agave.
wustl.edu/pdb2pqr/). This server automates many
of the common tasks of preparing structures
for continuum electrostatics calculations, including
adding a limited number of missing heavy atoms to
biomolecular structures, estimating titration states
and protonating biomolecules in amanner consistent
with favorable hydrogen bonding, assigning charge
and radius parameters from a variety of force fields,
and finally generating ‘PQR’ output compatible with
several popular computational biology packages.
This service is intended to facilitate the setup
and execution of electrostatics calculations for
both experts and non-experts and thereby broaden
the accessibility to the biological community of
continuum electrostatics analyses of biomolecular
systems.

INTRODUCTION

Due to the ubiquitous nature of electrostatics in biomolecular
systems, a variety of computational methods have been devel-
oped for calculating these interactions [see refs (1–6) and
references therein]. Popular computational electrostatics
methods for biomolecular systems can be loosely grouped
into two categories: ‘explicit solvent’ methods, which treat
solvent molecules in full molecular detail, and ‘implicit sol-
vent’ methods, which include solvent-solute interactions in
averaged or continuum fashion. Implicit solvent methods
have gained increasing popularity for evaluating the electro-
static properties of biomolecules as they typically require
significantly less computational effort than explicit solvent
models (1,2,4–7).

The basic ingredients of an implicit solvent electrostatics
calculation are environmental parameters such as temperature,
solvent dielectric and ionic strength; biomolecular atomic
coordinates; and parameters for atomic charges and radii.
While the environmental parameters are relatively straightfor-
ward to specify, the remaining two ingredients can often be
difficult to supply. In particular, most biomolecular structures
in the Protein Data Bank (PDB) (8) do not contain hydrogen
atoms, and many are also missing a fraction of the heavy atom
coordinates. The addition of hydrogens and the reconstruction
of these missing coordinates is not a trivial process; electro-
static properties obtained from the ‘repaired’ structures can
often be very sensitive to the manner in which missing atoms
are added and protonation states are assigned (9,10). Further-
more, inconsistent atomic nomenclature and other force field
idiosyncrasies can often make the assignment of atomic
charges and radii a cumbersome task.

This paper describes the development of the freely available
PDB2PQR service (http://agave.wustl.edu/pdb2pqr/), which
was designed to facilitate the setup and execution of
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continuum electrostatics calculations, particularly by non-
experts. As its name implies, this service was designed to
convert PDB-format (11) structural information into ‘PQR’-
format parameterized files. A PQR file is a popular and com-
pact way to include atomic parameters in a PDB-like format by
replacing the occupancy column of a PDB file (‘P’) with the
atomic charge (‘Q’) and the temperature factor column with
the radius (‘R’). The PQR format is therefore able to be parsed
by most visualization programs and contains additional infor-
mation that can be read by continuum electrostatics software,
including APBS (12) and MEAD (13), as well as other com-
putational biology programs, particularly AutoDock (14) and
AMBER (15). Finally, there are a number of tools available
(12,15) for converting from PQR format to other formats
required by continuum electrostatics software such as Delphi
(16) and UHBD (17).

METHODS

The PDB2PQR web service is driven by a modular, Python-
based collection of routines which provides considerable
flexibility to the software and permits non-interactive, high-
throughput usage. The service is available via the web at http://
agave.wustl.edu/pdb2pqr/ (with an NBCR-supported mirror
at http://nbcr.sdsc.edu/pdb2pqr/); the Python software is
available by contacting the authors.

Rebuilding missing heavy atoms

The first step in the PDB2PQR pipeline involves identification
of potential problems with the initial biomolecular structure
file. Specifically, the initial structure file is processed and
missing heavy (non-hydrogen) atoms are identified. Next,
the PDB2PQR service will determine if it is possible to rebuild
the missing atoms and will exit if the structure appears too,
incomplete to reconstruct (e.g. >10% of heavy atoms missing
from the entire structure too few atoms in the sidechain to
reconstruct from topology). If PDB2PQR ascertains that heavy
atom reconstruction is feasible, atoms are rebuilt using stand-
ard amino acid topologies in conjunction with existing atomic
coordinates to determine new positions for the missing heavy
atoms.

Additionally, users are presented with an option to ‘debump’
the reconstructed atoms and thereby ensure that they are not
being placed within the Van der Waals radii of other nearby
atoms. This procedure is carried out by varying the sidechain c
angles until the steric conflict is resolved. Since debumping of
newly added atoms can be somewhat time-consuming, users
are presented with an option to disable this feature.

Addition of hydrogens

Hydrogen atoms are added to the biomolecular structure after
reconstruction of all heavy atoms. Hydrogens are positioned to
optimize the global hydrogen-bonding network in the struc-
ture. The procedure is similar in purpose to the work of Hooft
et al. (18) and Nielsen et al. (10) but uses a newer algorithm
and implementation. First, the phases of HIS, ASN and GLN
sidechain c angles are sampled via Monte Carlo for optimum
hydrogen-bonding conformation. Second, water hydrogens are
placed and undergo rigid body Monte Carlo optimization for
maximum water–water and water–protein hydrogen bonding.

In addition to optimizing proton placement, these routines
also assign protonation states to HIS, ASP and GLU based
on optimum hydrogen bonding, local energetics, and model
pKa values. By default, newly added hydrogen atoms are
checked for steric conflicts via the debumping procedure out-
lined above. To facilitate faster preparation of PQR structures,
both the hydrogen bond optimization and the debumping
routines can be disabled at the option of the user.

Parameter assignment

After addition of hydrogen atoms, the PDB2PQR suite assigns
atomic charges and radii based on the chosen force field.
Currently, PDB2PQR provides parameters from CHARMM22
(19), AMBER99 (20) or PARSE (21) force fields. This step
involves translating the atom and residue names found in the
force field to those of the input structure file and assigning the
appropriate parameters. Several popular variations on naming
schemes are attempted for the translation; the service exits
with an error message if none of the translation attempts is
successful. Currently, parameters are not assigned to non-
water HETATM entries as these groups are not consistently
present in the available force field files. A list of all unpar-
ameterized atoms is both displayed in the PDB2PQR web
output and saved as comments in the final PQR file. Addition-
ally, any residues with non-integral charges after parameter-
ization are identified and listed both in the web output and as
remarks in the PQR file.

APBS input file generation

Users are also presented with the option to automatically gen-
erate an input file to the APBS Poisson–Boltzmann solver soft-
ware (12). This input file is constructed to perform a solvation
energy calculation on the newly generated PQR file with grid
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Figure 1. Flowchart demonstrating the sequence of operations performed by
the pipeline. The process begins with an input PDB file and ends with a
parameterized PQR file and, optionally, an APBS input file.
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spacings, lengths, and so on pre-calculated to give accurate
energetic results using typical parameter values (2,22).

CONCLUSIONS

We have described the free PDB2PQR web server, a service
which helps users prepare molecular structures for continuum
electrostatics calculations by adding missing atoms, optimiz-
ing hydrogen bonding and assigning atomic charge and radius
parameters. Many of these operations are not unique to con-
tinuum electrostatics and should be of use for a wider range
of computational biology work, including drug design and
docking as well as molecular dynamics simulations. There-
fore, we anticipate that the PDB2PQR service will be a helpful
addition to the portfolio of tools available to the structural and
computational biology communities.
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