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Abstract 

The COVID-19 pandemic continues to severely undermine the prosperity of the global health system. To combat this 

pandemic, effective screening techniques for infected patients are indispensable. There is no doubt that the use of 

chest X-ray images for radiological assessment is one of the essential screening techniques. Some of the early stud-

ies revealed that the patient’s chest X-ray images showed abnormalities, which is natural for patients infected with 

COVID-19. In this paper, we proposed a parallel-dilated convolutional neural network (CNN) based COVID-19 detec-

tion system from chest X-ray images, named as Parallel-Dilated COVIDNet (PDCOVIDNet). First, the publicly available 

chest X-ray collection fully preloaded and enhanced, and then classified by the proposed method. Differing convolu-

tion dilation rate in a parallel form demonstrates the proof-of-principle for using PDCOVIDNet to extract radiological 

features for COVID-19 detection. Accordingly, we have assisted our method with two visualization methods, which 

are specifically designed to increase understanding of the key components associated with COVID-19 infection. Both 

visualization methods compute gradients for a given image category related to feature maps of the last convolutional 

layer to create a class-discriminative region. In our experiment, we used a total of 2905 chest X-ray images, comprising 

three cases (such as COVID-19, normal, and viral pneumonia), and empirical evaluations revealed that the proposed 

method extracted more significant features expeditiously related to suspected disease. The experimental results dem-

onstrate that our proposed method significantly improves performance metrics: the accuracy, precision, recall and 

F1 scores reach 96.58% , 96.58% , 96.59% and 96.58% , respectively, which is comparable or enhanced compared with 

the state-of-the-art methods. We believe that our contribution can support resistance to COVID-19, and will adopt for 

COVID-19 screening in AI-based systems.
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Introduction
Coronavirus disease or COVID-19 is a contagious dis-

ease that was caused by the Severe Acute Respiratory 

Syndrome Coronavirus 2 (SARS-CoV-2). �e disease 

was first discovered and became prevalent in Wuhan, 

Hubei Province, China, and has since spread around the 

world. As we know, on March 11, 2020, the World Health 

Organization (WHO) proclaimed the flare-up of coro-

navirus pandemic [34]. As of July 12, 2020, more than 

12,401,262 confirmed cases of COVID-19 and 559,047 

confirmed deaths due to the disease [33]. Currently, it 

is indispensable to expand effective screening strate-

gies to distinguish COVID-19 cases and segregate the 

infected from others, so all infected countries are trying 

to enhance the capacity of the entire health care system 

through multifunctional testing and mass vaccination to 

reduce the pandemic ahead of time that is an ultimate 

goal in the fight against COVID-19. Although the reverse 

transcriptase-polymerase chain reaction (RT-PCR) is 

a touchstone diagnosis method, it has certain deficien-

cies, such as the accurate detection of suspect patients 

causes delay due to the strict necessity of conditions at 
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the clinical laboratory [37] and low detection rate due to 

the variable characteristics of testing [31].

Meanwhile, the limitations of RT-PCR testing have 

prompted researchers to find a rapid and definitive 

method for diagnosing COVID-19 infection. At the same 

time, the WHO put forward a quick advice guide [35] 

on June 11, 2020, suggesting that in addition to detect-

ing clinical symptoms, chest imaging examinations might 

be a part of the diagnostic examination for patients sus-

pected or likely to have COVID-19 disease as well as 

patients who have already recovered from COVID-19. 

Even though computed tomography (CT) imaging can 

prove to be useful, it also has several limitations, such 

as financial costs, and pregnant women and children are 

at greater risk of exposure to radiation since CT imag-

ing needs high radiation doses during the screening 

process [6]. Certainly, chest X-ray is propitious in emer-

gency diagnosis and treatment considering the way that 

this system is quick and simple to operate, and radiolo-

gists can yet recognize. In one of the prior research, it 

observed that patients exhibit inconsistencies in chest 

X-ray images that are typical for those infected with 

COVID-19 [18].

�e objective of this research is to enhance COVID-

19 detection accuracy from chest X-ray images. In this 

regard, we consider a framework based on CNN, because 

CNN is a powerful feature extraction and classification 

methodology, and therefore manifests excellent recog-

nition performance in image classification. Of course, 

in the case of medical image analysis, significant diag-

nostic accuracy is a prime objective along with critical 

findings, and in recent years, the findings of critical facts 

related to medical imaging are comprehensively led by 

CNN-based framework hence it motivates us to do so. 

In this paper, we propose a modular CNN-based archi-

tecture, PDCOVIDNet, for detecting COVID-19 from 

chest X-rays using a dilated convolution [36] along with 

a traditional convolution. �e advantage of using dilated 

convolution is that it captures more distinctive features 

by shifting the receptive field. �e benchmark data set 

[5] used in the study is publicly available, and the authors 

of the benchmark generated data from three different 

open access data repositories containing chest X-ray 

images [13, 20, 27]. �e pipeline of PDCOVIDNet starts 

with a data augmentation strategy, and then optimizes 

and fine-tunes the settings to train parallel-expanded 

CNN modalities by generating dominant features in the 

receiving fields transferred at different scales. Next, the 

generated features are fused into the neural network 

system to produce the final prediction. Also, we use two 

gradient-weighted class activation maps (such as Grad-

CAM [25] and Grad-CAM++ [4]) to aid our system. 

�ese maps provide predictive explanations, and can 

identify important features related to COVID-19 infec-

tion. From experimental evaluation, it shows that the 

proposed method can identify important features related 

to COVID-19 disease, and the best accuracy achieved is 

96.58% . �e key contributions of this paper are as follows:

– We propose and develop a novel CNN framework 

called PDCOVIDNet to detect COVID-19 from chest 

X-ray images. Our proposed framework uses a dilated 

convolution in the parallel stack of convolutional 

blocks that can capture and propagate important fea-

tures in parallel over the network which enhances 

detection accuracy significantly.

– We visualize the X-ray images to analyze the COVID 

and non-COVID cases, and further investigate the 

incorrect classification.

– Finally, we empirically evaluate our approach with the 

state-of-the-art approaches to highlight the effective-

ness of PDCOVIDNet in detecting COVID-19.

�e rest of the paper is organized as follows. “Related 

work” section reviews the state-of-the-art models used 

in detecting COVID-19 using chest X-ray images. �e 

benchmark dataset and the augmentation strategy 

are described in “Data pre-processing” section. Next, 

“PDCOVIDNet architecture” section explains the main 

details of the proposed model and its adjustment to the 

detection of COVID-19 cases. In “Experimental evalua-

tion” section, we provide the experimental results and 

show the comparison between PDCOVIDNet and other 

models. Observation on visualization techniques and 

incorrect classification results are illustrated in “Visu-

alization using Grad-CAM and Grad-CAM++ and 

“Investigation on the incorrect classification” sections, 

respectively. Finally, “Conclusion and future work” sec-

tion provides the conclusion of this paper with the future 

research direction.

Related work
With the rapid spread of COVID-19 in many coun-

tries around the world, imaging technology can quickly 

detect COVID-19, which helps to control the spread of 

disease. Chest X-ray is a promising imaging technology 

with a historical prospect of an image diagnosis system. 

It can be fully explored through various feature extrac-

tion methods especially CNN based approaches, thereby 

playing an important role in the diagnosis of COVID-19 

disease.

Due to the need for a faster interpretation of chest 

X-ray images, a CNN-based AI system provides [3] 

a comprehensive overview of the latest application 

areas of AI for COVID-19, which mentions medical 

imaging for diagnosis. Maghdid et  al. [17] proposed a 
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customized CNN and pre-trained AlexNet [15] model 

through chest X-ray images, the results showed very 

promising accuracy in detecting patients infected either 

COVID-19 or normal with 98% and 94.1% accuracy 

respectively. By using the pre-trained ResNet50 [10] 

model, Narin et  al. [22] obtained 98% accuracy. �e 

authors also evaluated several CNN architectures for 

COVID-19 detection. �e Inception [28] transfer learn-

ing model modified to extract radiological features for 

accurate COVID-19 diagnosis, and then experienced 

internal and external validation with an accuracy of 

89.5% [32]. Also, the CNN architecture based on trans-

fer learning, named as COVID-Net [31], used to clas-

sify chest X-ray images into three categories: normal, 

non-COVID and COVID-19 infections. It showed that 

COVID-Net achieved the best accuracy by achieving a 

test accuracy of 93.3%. In [1], transfer learning adopted 

in state-of-the-art convolutional neural network archi-

tectures, results demonstrated the proof-of-principle 

for using CNN with transfer learning to extract radio-

logical features from small data sets. Biraja et  al. [9] 

investigated the uncertainty in the CNN solution based 

on Bayesian Convolutional Neural Network (BCNN) 

to improve the diagnostic performance of COVID-19. 

Another CNN based on ResNet50 used by Bukhari 

et  al. [2] to prove the usefulness and diagnostic accu-

racy of patients infected with COVID-19 having accu-

racy of 98.18%. �e authors [19] of proposed a deep 

learning architecture for COVID-19 detection utiliz-

ing their benchmark in which images exhibit COVID-

19 disease verified by radiologists, by fine-tuning four 

renowned pre-trained convolutional models (ResNet18 

[10], ResNet50, SqueezeNet [12], and DenseNet121 

[11]), thereby yielded promising results in terms of 

sensitivity and specificity. A deep learning framework 

based on EfficientNet [30] proposed by Eduardo et  al. 

[16]. Contrasted with some popular baseline mod-

els (such as VGG16 [26] and ResNet50), the learning 

parameters have greatly reduced, and the COVID-19 

case has a 100% positive prediction. Farooq et  al. [8] 

proposed a method called COVID-ResNet that uses a 

three-step technique, which includes gradually adjust-

ing the size, looping the learning rate search and dis-

criminating the learning rate, and then fine-tuning the 

pre-trained ResNet50 architecture to improve model 

performance. A deep learning model called Dark-

CovidNet [23] proposed for the automatic detection 

of COVID-19 using chest X-ray images. �e average 

classification accuracy of binary classification (such as 

COVID-19 and No-Findings) was 98.08%, and the aver-

age classification accuracy of multi-class classification 

(such as COVID-19, No-Findings and Pneumonia) was 

87.02%. Finally, the author provided an intuitive expla-

nation and evaluated by expert radiologists.

One of the limitations that we noticed from existing 

research is that all methods try to extract features from a 

fixed receptive field instead of a changing receptive field. 

As we derive from our proposed architecture, the chang-

ing receptive field can capture the pixel relationship of 

different scales by a dilated convolution, thus making 

the model more robust. As far as we know, no previous 

research focused on dilated convolution in a stack of 

parallel convolution blocks to detect COVID-19 infec-

tion in chest X-rays, but it was on conventional convo-

lution blocks without a parallel framework. Conversely, 

in our proposed method, dilated convolution in a stack 

of parallel convolution blocks turns out to be much utile, 

since it can cover a larger receptive field without a loss 

of resolution. What’s more, the proposed parallel stack 

architecture can ensure that the branches add together 

before the last convolutional layer. �e branch ensemble 

strategy limits the expansion of feature size and reduces 

the variance error, thereby improving the prediction per-

formance of the proposed model. In literature reviews, 

several methods [1, 2, 8, 17] focus only on quantitative 

analysis, while other methods [16, 19, 22, 23, 31], focus 

on quantitative as well as qualitative analysis using visu-

alization and localization techniques to prove that their 

analysis can be used for COVID-19 detection, which aids 

to allow for human-interpretable explanation. Finally, 

due to the inadequate number of COVID-19 cases, creat-

ing ample benchmarks is a major challenge in COVID-19 

detection. Considering the small data set, running a large 

number of iterative CNN architectures may lead to over-

fitting, but the data augmentation strategy may be a par-

tial solution to the shortcomings.

Data pre-processing
First, we will introduce the benchmark data set and the 

expansion strategy in detail to aid the training of the pro-

posed model. Next, we will discuss in detail the proposed 

PDCOVIDNet architecture design method and the train-

ing strategy covering the optimal parameter adjustment. 

Finally, in order to make suspicious disease detection 

more convincing, we will integrate visualization tech-

niques to highlight key issues with visual markers.

Chest X-ray image dataset

�e benchmark data set [5] used in our experimen-

tal evaluation consists of three main categories (such 

as COVID-19, Normal, and Viral Pneumonia), yield-

ing 219 COVID-19 positive, 1341 normal and 1345 viral 

pneumonia chest X-ray images. In the case of accumu-

lating COVID-19 positive images, the authors used two 

open-access repositories, such as the Italian Society of 
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Medical and Interventional Radiology (SIRM) COVID-

19 database [27], and the Novel Corona Virus 2019 data-

set developed by Joseph et al. [13]. On the other hand, P. 

Mooney [20] created normal and viral pneumonia images 

from the chest X-ray image (pneumonia) database used 

for this benchmark [5]. Moreover, the benchmark is 

public, and metadata is distributed to provide appropri-

ate document guidance to generate references to each 

image. Since resizing is one of the essential steps in data 

preprocessing, all images resized to 224 × 224 pixels. 

Figure 1 shows sample images from the benchmark data-

set, including COVID-19, normal and viral pneumonia. 

As shown in the Table 1, we have trained, validated and 

tested the images in an appropriate ratio.

Data augmentation

In order to properly train the CNN model, it is often 

useful to manually increase the size of the data set using 

data enhancement that reduces noise and preserves the 

original quality. �is process is executed just-in-time 

during the training process, so the performance of the 

model can be improved by solving the problem of over-

fitting. For image augmentation, we have many options 

to choose values of different scales, including horizontal 

flip, height and width offset, rotation, shearing, zoom, 

and fill modes. Each option has its ability to represent 

images in different ways to provide important features 

during the training phase and thus enhances the model’s 

performance better. Table 2 shows the image augmenta-

tion settings used in our experiment.

PDCOVIDNet architecture
In this section, we will briefly describe our proposed 

PDCOVIDNet architecture. In our proposed model, we 

have three main components, such as feature extraction, 

detection, and visualization. First of all, our proposed 

PDCOVIDNet is a parallel stack of convolutional layers, 

activation layer and max-Pooling layer. �en, we add par-

allel layers at the feature level, and perform a convolution 

again with activation on resulting feature maps. After-

ward, the flattened features provide into two layers of 

Multi-Layer Perceptrons (MLP), but an adjustment needs 

to determine the proportion of neurons at each layer 

that drop, to avoid overfitting. Finally, the last layer with 

softmax activation function performs the classification 

task, and then generates a class activation map, which 

acts as an interpreter of classification, merged with the 

last convolution layer. Figure 2 shows the overall system 

architecture of the proposed PDCOVIDNet. We split the 

workflow into two parts: the feature extraction phase and 

the classification and visualization phase. In the next sec-

tion, we will briefly explain the feature extraction process.

Fig. 1 Some image labels available in the benchmark dataset [5]

Table 1 Images partition in  training, validation and  test-

ing

Category COVID-19 Normal Viral pneumonia Total

Training 175 1072 1076 2323

Validation 21 134 134 289

Testing 23 135 135 293

Table 2 Images augmentation settings

Option Value

Rotation range 30

Height shift 0.15

Width shift 0.15

Shear range 0.10

Zoom range 0.10

Fill mode Nearest
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Feature extraction

To obtain a suitable network architecture, different num-

bers of filters in each convolution layer, filter sizes, dif-

ferent layers in MLP and different hyper-parameters 

have experimented. In the first stage, PDCOVIDNet 

consists of five dilated convolutional blocks in parallel-

stack form, expressed semantically as PDr=iconv(n = X) , 

that are alternately max-pooled. More specifically, in 

PDr=iconv(n = X) , i represents the dilation rate and X 

represents the total number of filters. In addition, each 

PDr=iconv(n = X) block performs the following opera-

tion: convolution and then activation twice in a sequen-

tial manner. In our architecture, the size of all filters 

is 3 × 3 . Let’s start with the input in Fig.  2. �e input 

image feed in the parallel branch only changes the dila-

tion rate, namely dilation rates 1 and 2. If we consider the 

first block in the upper branch  (PDr=iconv(n=64)), the 

dilation rate is 1, the total number of filters is 64, and the 

operations in the semantic block are performed. Not only 

the first block, but also the rest of the blocks in the upper 

branch and the lower branch is the same except for the 

dilation rate. �e dilation rates of the upper and lower 

branches are 1 and 2, respectively. Moreover, different 

filter sizes can be used, for example, the upper branch is 

3 × 3 and the lower branch is 5 × 5 , but in that case, the 

parameter size will be increased as it will require more 

multiplications. We have also experimented with this 

configuration of filter size which results in lower accu-

racy compared to the proposed 3 × 3 filter size for both 

the upper and lower branches. Figure  3 illustrates how 

dilated convolution is incorporated into our proposed 

model. As shown in Fig.  3, the input image provides in 

two PDr=iconv(n = X) blocks in parallel, only changing 

Fig. 2 An overall system architecture of PDCOVIDNet
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the dilation rate, such as d = 1,..., N. A convolution with 

a dilation rate of 1 is equivalent to a standard convolu-

tion, while a convolution with a dilation rate of greater 

than 1 expands the receptive field when processing input 

at a higher resolution, thereby achieving fine details of 

the image. �e receptive field refers to the portion of the 

image where a filter extracts feature without change filter 

size, and is simply an input with a fixed gap, i.e., if there 

is dilation of d, then each input skips of d − 1 pixels. 

According to this definition, considering that our input is 

a 2D image, the dilation rate of 1 is a standard convolu-

tion, and dilation rate of 2 means that each input skips 

a pixel. To understand the relation between the dilation 

rate of d and the receptive field size of rf, it is often use-

ful to understand the effect of d on rf when the kernel is 

fixed in size. Equation 1 [7] depicts the form of a recep-

tive field size where the kernel of size k is dilated by the 

factor d.

Equation (1) refers to form the following equation that 

renders the size of the output o, where m × m input 

with a dilation factor, padding and stride of d, p and s 

respectively.

After using two receptive fields of different sizes, it cap-

tures important features in the observation area at dif-

ferent scales. We define a convolution layer with filters 

F ∈ R
1×n given as

(1)rf = d(k − 1) + 1.

(2)o =

⌊

m + 2p − rf

s

⌋

+ 1.

Fig. 3 Dilated convolution and its activation in PDCOVIDNet. At the top, we have a dilated convolution with a dilation rate of 1, and the corre-

sponding receive field size is 3 × 3 , which is equivalent to the standard convolution. It has a 5 × 5 receiving field size at the bottom and a dilation 

rate of 2. All dilated convolutions have a kernel size of 3 × 3 and n filters
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where k × k is filter size and X is total number of fil-

ters. For a dilated convolution with a dilation rate of d 

on m × m input feature maps at layer l , the convolution 

generates feature maps from the input, denoted as Xm×m

l
 , 

and calculated by

where Bl is a bias of the l-layer, and Fl is the l-layer fil-

ter of size k × k . �e features of layer l are generated at 

the dilation rate of d with the feature map in layer (l − 1) . 

In PDr=iconv(n = X) block, after the convolution layer, 

we introduce a nonlinear layer with an activation func-

tion that uses the features generated at an earlier stage to 

create a new feature map as output. In the case of acti-

vation, we prefer the rectified linear unit (ReLU) [21] 

because it can integrate the nonlinear layer and the recti-

fication layer in CNN. ReLU has several advantages, and 

most importantly, it can effectively propagate gradients. 

�erefore, if the initial weight takes into account the 

unique characteristics of CNN, the possibility of gradient 

disappearance can be reduced. Note that, the activation 

function performs element-by-element operations on the 

input feature map, so the output is the same size as the 

input. Assuming that the layer l is the active layer of the 

n-th filter, it obtains the input feature Xm×m

(l−1),n
 with the 

feature map m × m from the previous convolution layer, 

and generates the same number of features defined as:

where Xm×m

l,n
 maps negative values to zero.

After performing the operation of the 

PDr=iconv(n = X) block, we apply the MaxPool block 

called  PDr=i MaxPool, which performs the max-pool-

ing operation to reduce the feature size. Max-Pooling, 

which takes the maximum value in each window, is 

an efficient approach to downscale the filtered image, 

because when using a filter size of 2 × 2 with a stride 

of 2, three-fourths of generated features are ignored in 

each layer substantially it reduces the computational 

complexity for the next layer. �e max-pooling win-

dow used in our experiment was 2 × 2 and the stride 

was 2, because as reported in earlier studies [24], the 

overlapping window did not improve significantly over 

the non-overlapping window. �en, in Fig.  2, we see 

that the features generated from the parallel branches 

are concatenated and provided to the next convolution 

layer. �e inspiration behind this concatenation-convo-

lution operation is that each branch generates features 

from images at different layers of CNN have differ-

ent properties, so we concatenate low-level features 

(3)F =

[

f k×k
1

f k×k
2

· · · f k×k
n=X

]

,

(4)X
o×o

l
= X

m×m

l−1,d=i
∗ Fl + Bl ,

(5)X
m×m

l,n
= max(X

m×m

(l−1),n
, 0)

of parallel branches to explore feature relationship of 

dilated convolution hence final convolution layer might 

detect dominant features for classification. In the last 

convolution layer, a total of 512 filters with a filter size 

of k × k and a dilation rate of 1 are applied to create 

final low-level features followed by ReLU activation. 

After that, we inaugurate a flatten layer, which converts 

the square feature map into a one-dimensional fea-

ture vector and prepares it for the next phase, which is 

finally a classification task. Our final task is the classifi-

cation and visualization phase, which will briefly illus-

trate in the next section.

Classi�cation and visualization

At this stage, a two-layer MLP (often called a fully con-

nected (FC) layer) feeds the results of the flatten layer 

through two neural layers to perform the classification 

task. It attempts to render the activation from the pre-

vious FC layers into class scores (i.e., in classification). 

In addition, we include a Dropout [28] layer after each 

FC layer. �is layer can randomly discard some FC layer 

weights during training to reduce overfitting. �e num-

ber of randomly selected weight drops is defined by the 

dropout limit, which ranges from 0 to 100% . Indeed, the 

best adjustment is to determine the optimal number of 

weights to use in each layer and the dropout ratio to 

avoid overfitting at the same time, making the network 

more robust. In this study, we chose a dropout size of 

0.3, two FC layers of size 1024 and 1024, respectively, 

and used the softmax activation function to determine 

the classes of the input chest X-ray images as COVID-

19, normal and viral pneumonia. Finally, the layer 

details of the proposed model are shown in Table 3.

Although CNN models are powerful in producing 

impressive results, there are still many questions about 

why and how to produce such good results. Owing to its 

black-box nature, it is sometimes challenging to adopt 

it in a real-life application (such as a medical diagnosis 

system) where we need an interpretable model. How-

ever, early studies [4, 25, 38] focused their attention on 

visualizing the behavior of CNN models, and various 

visualization methods emphasized the importance of dis-

tinguishing classes, so they could execute models with 

interpretability. In our proposed model, we use Grad-

CAM [25] and Grad-CAM++ [4] to highlight the impor-

tant regions that are class-discriminative saliency maps, 

where the model emphasizes a gradient-based approach 

that computes the gradients for a target image class on 

the feature maps of the final convolution layer in a CNN 

model. For a given image, let Ak
i,j denotes the activa-

tion map at a spatial location (i, j) for the k-th filter. �e 
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class-discriminative saliency map Lc for the target image 

class c is then computed as [25]:

In Eq. (6), the role of ReLU is to capture features that have 

a positive impact on the target class. �en, in the case of 

Grad-CAM, gradients that are flowing back to the final 

convolutional layer are globally averaged to calculate the 

target class weights of the k-th filter, as described in Eq. 

(7). Here, Z is the total number of pixels in the activation 

map, and Y c is the probability that the target category is 

classified as c.

On the other hand, Grad-CAM++ contributes to the 

weighted average of pixel-level gradients rather than the 

(6)Lci,j = ReLU

(

∑

k

wc
kA

k
i,j

)

(7)wc
k =

1

Z

∑

i

∑

j

∂Y c

∂Ak
i,j

global average of gradients, so the pixel weights in a par-

ticular feature map contribute to the overall decision of 

detection. Grad-CAM++ redevelops Eq. (7) to ensure 

that their contribution to the weighted average of the gra-

dients remains unchanged without losing generality, i.e.,

In Eq. (9), (i, j) and (a, b) are iterators over the same acti-

vation map Ak [4].

Experimental evaluation
In this section, we will present the performance of our 

proposed model to classify chest X-ray images, broadly 

categorized into three classes: COVID-19, Normal and 

Viral Pneumonia. In “Data pre-processing” section, a brief 

description of the benchmark data set and the augmenta-

tion approach are discussed. In our experiment, we set 

the training, validation, and test ratios to 80% , 10% , and 

10% , respectively. We compared our proposed PDCOV-

IDNet with VGG16, ResNet50, InceptionV3 [29] and 

DenseNet121, and did not use any pre-trained weights 

(such as ImageNet) since ImageNet weights come from 

images of general objects, not chest X-ray images. All of 

our experiments are executed in Keras with the Tensor-

Flow backend.

Hyper-parameters tuning

Hyper-parameters become critical because they directly 

control the behavior of the model, so fine-tuned hyper-

parameters have a huge impact on the performance of 

the model. We used the Adam [14] optimizer to train 50 

epochs for each model with a learning rate of 1e − 4 , with 

a batch size of 32. In addition, we applied the categorical 

cross-entropy loss function to the training, which measures 

the loss between the probability of the class predicted from 

the softmax activation function and the true probability of 

the category.

Performance evaluation metrics

For experimental evaluations, we utilized several evalu-

ation metrics such as Accuracy, Precision, Recall, and F1 

score, i.e.,

(8)wc
k =

∑

i

∑

j

α
kc
i,j .ReLU

(

∂Y c

∂Ak
i,j

)

(9)αkc
i,j =

∂2Y c

(∂Ak
i,j)

2

2
∂2Y c

(∂Ak
i,j)

2
+

∑
a

∑
b A

k
a,b

∂3Y c

(∂Ak
i,j)

3

(10)Accuracy =
TP + TN

Total Samples

Table 3 PDCOVIDNet layer details

Layer Filter size/X, 
stride

PDCOVIDNet (output size)

Input – Branch

PDr=1conv(n = X) PDr=2conv(n = X)

Conv2D 3 × 3/64, 1 224 × 224 × 64 224 × 224 × 64

Conv2D 3 × 3/64, 1 224 × 224 × 64 224 × 224 × 64

Max-
Pooling2D

2 × 2/64, 2 112 × 112 × 64 112 × 112 × 64

Conv2D 3 × 3/128, 1 112 × 112 × 128 112 × 112 × 128

Conv2D 3 × 3/128, 1 112 × 112 × 128 112 × 112 × 128

Max-
Pooling2D

2 × 2/128, 2 56 × 56 × 128 56 × 56 × 128

Conv2D 3 × 3/256, 1 56 × 56 × 256 56 × 56 × 256

Conv2D 3 × 3/256, 1 56 × 56 × 256 56 × 56 × 256

Max-
Pooling2D

2 × 2/256, 2 28 × 28 × 256 28 × 28 × 256

Conv2D 3 × 3/512, 1 28 × 28 × 512 28 × 28 × 512

Conv2D 3 × 3/512, 1 28 × 28 × 512 28 × 28 × 512

Max-
Pooling2D

2 × 2/512, 2 14 × 14 × 512 14 × 14 × 512

Conv2D 3 × 3/512, 1 14 × 14 × 512 14 × 14 × 512

Conv2D 3 × 3/512, 1 14 × 14 × 512 14 × 14 × 512

Max-
Pooling2D

2 × 2/512, 2 7 × 7 × 512 7 × 7 × 512

Add – 7 × 7 × 512

Conv2D 3 × 3/512, 1 7 × 7 × 512

Flatten – 25,088

FC – 1024

FC – 1024

Softmax – 3
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where TP stands for true positive, while TN, FP, and FN 

stand for true negative, false positive, and false negative, 

respectively. �e F1 score may be a more reliable meas-

ure because the benchmark dataset is unbalanced, such 

as COVID-19 with 219 images and non-COVID with 

2686 images. Subsequently, we used the Receiver Oper-

ating Characteristics (ROC) curve to display the results 

and measured the area under the ROC curve [(often 

called AUC (Area Under the Curve)] to provide informa-

tion about the effectiveness of the model.

Evaluation of individual model

�e overall results are shown in Tables 4 and 5, where 

Table  4 describes the class-wise classification results 

on different evaluation metrics, and Table 5 shows the 

weighted average results. From the Table 4, we can see 

that almost all models tend to enhance the classifica-

tion of most categories (such as normal and viral pneu-

monia) because they have more training weights than 

the COVID-19 case. For COVID-19, the highest per-

formance belongs to PDCOVIDNet, whose precision, 

(11)Precision =
TP

TP + FP

(12)Recall =
TP

TP + FN

(13)F1 =2 ×
Precision × Recall

Precision + Recall

recall, and F1 scores are 95.45% , 91.30% , and 93.33% , 

respectively. Our model provides consistent results for 

the precision, recall, and F1 under normal cases, with 

each performance index being 97.04% , and the recall for 

ResNet50 is 97.78% , slightly higher than PDCOVIDNet. 

Also, the precision and F1 scores of DenseNet121 are 

95.52% and 95.17% , respectively, which is comparable 

to PDCOVIDNet. Next, in the case of viral pneumonia, 

the precision, recall, and F1 score of PDCOVIDNet are 

96.32% , 97.04% , and 96.68% , respectively. In particular, 

for cases of viral pneumonia, ResNet50 is only 1% bet-

ter precision than PDCOVIDNet. In the Table  4, the 

accuracy of all evaluation models is summarized, and 

it can be seen that PDCOVIDNet is superior to other 

models. At the same time, it is evident that PDCOV-

IDNet has the ability to resist class imbalances since 

COVID-19 cases are smaller than normal or viral 

pneumonia cases. However, the more structured resid-

ual blocks of the model, the worse the classification 

performance (e.g., ResNet50). As shown in Table  5, 

considering the weighted average of all performance 

evaluation indicators, the best results are obtained by 

using PDCOVIDNet. In the weighted average compari-

son, PDCOVIDNet’s results are much better than other 

models, which can be explained by the fact that the 

proposed model can extract feature maps at different 

scales from chest X-ray images. In particular, compared 

with PDCOVIDNet, Densenet121 is missing 2% in each 

evaluation indicator. Although ResNet50 provides the 

best performance for normal and viral pneumonia, 

unexpectedly, it fails to achieve the most successful 

model in the performance measurement.

It is often hard to measure the performance of the 

model using precision, recall and accuracy, so we need 

to look at the ROC curve which allows a false positive 

rate since it plots the true positive rate against a false 

positive rate. In Fig. 4, ROC curves show the micro and 

macro average and class-wise AUC scores achieved with 

the PDCOVIDNet, and show consistent AUC scores 

across all classes, indicating stable predictions of the pro-

posed model. In ROC curves, we obtained AUC scores 

Table 4 Class-wise classi�cation results of  individual 

model

Bold values indicate the method with a statistically better performance than the 

other methods

Method Class Precision Recall F1 Accuracy

PDCOVIDNet COVID-19 95.45 91.30 93.33 96.58

Normal 97.04 97.04 97.04

Viral pnemunia 96.32 97.04 96.68

VGG16 COVID-19 90.48 82.61 86.36 93.86

Normal 93.43 94.81 94.12

Viral pnemunia 94.81 94.81 94.81

ResNet50 COVID-19 94.74 78.26 85.71 92.15

Normal 87.42 97.78 92.31

Viral pnemunia 97.56 88.89 93.02

InceptionV3 COVID-19 83.83 86.96 85.11 93.51

Normal 96.15 92.59 94.34

Viral pnemunia 92.81 95.56 94.16

DenseNet121 COVID-19 95.24 86.96 90.91 94.54

Normal 95.52 94.81 95.17

Viral pnemunia 93.48 95.56 94.51

Table 5 Weighted average results of each model

Bold values indicate the method with a statistically better performance than the 

other methods

Method Precision Recall F1

PDCOVIDNet 96.58 96.59 96.58

VGG16 93.84 93.86 93.83

ResNet50 92.67 92.15 92.12

InceptionV3 93.60 93.52 93.53

DenseNet121 94.54 94.54 94.53



Page 10 of 14Chowdhury et al. Health Inf Sci Syst (2020) 8:27

of 0.9918, 0.9927, and 0.9897 for COVID-19, normal and 

viral pneumonia, respectively. We can see that the area 

under the curve of all classes is relatively similar, but nor-

mal’s AUC is slightly higher than other classes.

Figure  5 shows the confusion matrices for all evalu-

ated models. In Fig. 5, it is clear that of the 23 test images, 

two of the COVID-19 images are classified as normal 

and viral pneumonia, and of the 135 images, only one 

image of viral pneumonia is related to COVID-19, but 

none of the normal images belong to COVID-19. One 

of the reasons may be that COVID-19 is an especial case 

of viral pneumonia, so they have common features that 

mislead the PDCOVIDNet model. It becomes clear that 

the VGG16 model has the same recall for the classifica-

tion of normal and viral pneumonia, although it shows a 

significant decline in the positive prediction of COVID-

19 cases. However, ResNet50 shows the ability to detect 

normal images, but in the case of COVID-19 detection, 

it shows almost the same performance as the VGG16 

model, although it shows inadequate performance when 

predicting viral pneumonia images. As shown in the 

confusion matrix (Fig.  5d), we can say that InceptionV3 

can correctly classify more cases of viral pneumonia 

than COVID-19 and normal cases. Next, DenseNet121 

demonstrates the same performance as InceptionV3 in 

detecting COVID-19, and shows nearly the same per-

formance with VGG16 in detecting viral pneumonia and 

normal cases. Finally, we can claim that PDCOVIDNet is 

Fig. 4 Comparison of the ROC curve for COVID-19, Normal and Viral 

Pneumonia using PDCOVIDNet

a b c

d e

Fig. 5 Confusion matrix of all evaluated models with test set. Classes 0, 1, and 2 represent COVID-19, Normal, and Viral Pneumonia
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powerful in detecting COVID-19 cases from chest X-ray 

images. For this reason, we believe that the proposed 

model focuses on discriminating features that can help 

distinguish between other types (e.g., normal and viral 

pneumonia).

Visualization using Grad-CAM and Grad-CAM++

In our evaluation, we used Grad-CAM and Grad-

CAM++ visualization methods to visually represent the 

salient regions where PDCOVIDNet insisted on making 

the final classification decision on chest X-ray images. 

Accurate and decisive salient region detection is impor-

tant for the interpretation of classification, while also 

ensuring the reliability of the results. In this regard, a 

two-dimensional heat map is generated from feature 

weights with different brightness, which corresponds 

to the importance of the feature. �e heat map is over-

laid on the input image to locate the salient region. Fig-

ure  6 shows the visualization results of Grad-CAM and 

Grad-CAM++ using PDCOVIDNet to locate salient 

regions when the input image is classified as COVID-19 

or normal or viral pneumonia, where the regions distin-

guishing the classes in the lung have been localized. For 

COVID 19, both Grad-CAM and Grad-CAM++ gen-

erate seemingly the same results, so for the detection of 

critical areas, the overlapping positions of the heat maps 

can be considered. In the case of viral pneumonia, the 

salient regions detected using Grad-CAM and Grad-

CAM++ are undifferentiated, while under normal class 

there are differences, and seems to fail to detect the sali-

ent regions as the heat map highlights outside X-ray than 

inside the lung. To help AI-based systems, it is certainly 

effective to provide the system with some human-under-

standable numerical measures (such as probability) as 

shown in Fig. 6.

Investigation on the incorrect classi�cation
In this section, we will further investigate the incor-

rect classification caused by the use of PDCOVIDNet. 

�e total number of incorrectly classified images is 10, 

as shown in Fig.  7. Two COVID-19 images are classi-

fied as normal and viral pneumonia, and in both cases, 

Fig. 6 Input images and their Grad-CAM, Grad-CAM++, and human-understandable prediction with probability score according to the PDCOVID-

Net. The first row provides input with COVID-19, as well as two types of visualization effects, and finally the prediction results.The second and third 

rows show the investigation of normal and viral pneumonia, respectively. Here, True means the actual class of the image, and Prediction means the 

predicted class
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Fig. 7 Investigation on the incorrectly classified images along with the probability of predicted class. Note that, V.Pneumonia refers to Viral Pneu-

monia
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COVID-19 is far behind the prediction as the probability 

of COVID-19 prediction is very low compared with oth-

ers. Normal images are not classified as COVID-19, but 

among the four images with normal classification errors, 

one prediction is on the edge of viral pneumonia, while 

the other predictions are very different. Correspond-

ingly, among the four incorrectly classified images of viral 

pneumonia, one image belongs to COVID-19 and the 

other images are normal, and one of the predictions is 

very close.

For an incorrectly classified COVID-19 case, we 

observed that the X-ray quality was not good, and in 

another case, the posteroanterior (PA) field of vision 

hardly moved, so a lot of dark areas were generated hence 

it misleads the system. An image of viral pneumonia is 

classified as COVID-19. One reason may be due to their 

overlapping infection characteristics, for example, both 

infections cause severe damage to the lungs. Indeed, this 

distinction is often confusing, so precise clinical findings 

should be reviewed. In a few cases, our system is equally 

confused when detecting normal and viral pneumonia. 

One cause may be the progressive change in radiologi-

cal manifestations. For example, the true image of viral 

pneumonia is classified as normal because it is arduous 

to predict that this may be an early stage of viral infec-

tion. �is statement also applies to normal cases where 

viral infections may be at the stage of preterm, so some 

normal images belong to viral pneumonia.

Conclusion and future work
In this paper, we proposed a CNN-based method, called 

PDCOVIDNet, for detecting COVID-19 from chest 

X-ray images. As we have seen, PDCOVIDNet can effec-

tively capture COVID-19 features by dilated convolution 

in the parallel stack of convolution blocks, so it has an 

excellent classification performance compared to some 

well-known CNN architectures. �e dataset used in the 

experiment has a limited number of COVID-19 images, 

and at once, it is still developing, but data augmentation 

techniques have able to surmount the challenge as CNN 

based architecture needs more data for effective training. 

Our experimental evaluation shows that PDCOVIDNet 

outperforms the state-of-the-art models, with its preci-

sion and recall are 95.45% and 91.3% , respectively. As 

well, PDCOVIDNet demonstrates its potential through 

other performance metrics such as the weighted average 

of precision, recall and F1 scores, and finally the overall 

model accuracy. We apply the proposed model as well 

as two visualization techniques to identify the class-dis-

criminative regions because they have a greater influence 

in classifying the input chest X-ray image into its antici-

pated classes.

As future work, we will explore and integrate diverse 

data sets with more COVID-19 cases to make our pro-

posed model more robust. Besides, we will develop 

mobile applications with human-explainable function 

for screening COVID-19 cases so that an infected per-

son can be diagnosed early; therefore, it can help stop 

the spread of this pandemic while providing a new way to 

prevent future pandemics. Furthermore, we will extend 

the model to be able to analyze a patient’s short term 

historical chest X-ray pattern that will predict whether 

the infection will become a life-threatening or not. Since 

studying the radiological markers of COVID-19 is an 

active research area, there is still much to uncover. �us, 

we will further ameliorate the visualization technique 

for interpreting the unique features of COVID-19 more 

critically.

Author details
1 Department of Computer Science and Engineering, University of Chittagong, 

Chittagong, Bangladesh. 2 School of Computing and Mathematics, Charles 

Sturt University, Bathurst, NSW, Australia. 

Received: 15 July 2020   Accepted: 8 September 2020

Published online: 21 September 2020

References

 1. Apostolopoulos ID, Mpesiana TA. Covid-19: automatic detection from 

X-ray images utilizing transfer learning with convolutional neural 

networks. Phys Eng Sci Med. 2020;. https ://doi.org/10.1007/s1324 6-020-

00865 -4.

 2. Bukhari SUK, Bukhari SSK, Syed A, Shah SSH. The diagnostic evaluation of 

convolutional neural network (CNN) for the assessment of chest X-ray of 

patients infected with covid-19. 2020; medRxiv 2020.03.26.20044610.

 3. Bullock J, Luccioni A, Pham KH, Lam CSN, Luengo-Oroz M. Mapping the 

landscape of artificial intelligence applications against covid-19. 2020.

arXiv:2003.11336.

 4. Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN. Grad-

CAM++: generalized gradient-based visual explanations for deep convo-

lutional networks. In: IEEE winter conference on applications of computer 

vision (WACV); 2018. p. 839–847.

 5. Chowdhury MEH, Rahman T, Khandakar A, Mazhar R, Kadir MA, Mahbub 

ZB, Islam KR, Khan MS, Iqbal A, Al-Emadi N, Reaz MBI. Can ai help in 

screening viral and covid-19 pneumonia? arXiv :2003.13145 ; 2020.

 6. Davies HE, Wathen CG, Gleeson FV. The risks of radiation exposure related 

to diagnostic imaging and how to minimise them. Bmj. 2011;342:d947. 

https ://doi.org/10.1136/bmj.d947.

 7. Dumoulin V, Visin F. A guide to convolution arithmetic for deep learning. 

arXiv :1603.07285 ; 2016.

 8. Farooq M, Hafeez A. Covid-resnet: a deep learning framework for screen-

ing of covid19 from radiographs. arXiv :2003.14395 ; 2020.

 9. Ghoshal B, Tucker A. Estimating uncertainty and interpretability in deep 

learning for coronavirus (covid-19) detection. arXiv :2003.10769 ; 2020.

 10. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 

In: IEEE conference on computer vision and pattern recognition (CVPR); 

2016. p. 770–778. https ://doi.org/10.1109/CVPR.2016.90.

 11. Huang G, Liu Z, Weinberger KQ. Densely connected convolutional net-

works. In: IEEE conference on computer vision and pattern recognition 

(CVPR); 2017. p. 4700–4708.

 12. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. 

Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 

< 0.5mb model size. arXiv :1602.07360 ; 2016.

https://doi.org/10.1007/s13246-020-00865-4
https://doi.org/10.1007/s13246-020-00865-4
http://arxiv.org/abs/2003.13145
https://doi.org/10.1136/bmj.d947
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/2003.14395
http://arxiv.org/abs/2003.10769
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1602.07360


Page 14 of 14Chowdhury et al. Health Inf Sci Syst (2020) 8:27

 13. Joseph P C, Paul M, Lan D. Covid-19 image data collection. arXiv 

:2003.11597 ; 2020.

 14. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv 

:1412.6980; 2014.

 15. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep 

convolutional neural networks. In: Proceedings of the 25th interna-

tional conference on neural information processing systems. 2012; 1. p. 

1097–1105.

 16. Luz E, Silva PL, Silva R, Silva L, Moreira G, Menotti D. Towards an effective 

and efficient deep learning model for covid-19 patterns detection in 

X-ray images. arXiv :2004.05717 ; 2020.

 17. Maghdid HS, Asaad AT, Ghafoor KZ, Sadiq AS, Khan MK. Diagnosing 

covid-19 pneumonia from X-ray and CT images using deep learning and 

transfer learning algorithms. arXiv :2004.00038 ; 2020.

 18. Mg M, Lee E, Yang J, Yang F, Li X, Wang H, Lui M, Lo C, Leung BST, Khong P, 

Hui C, Yuen K, Kuo M. Imaging profile of the covid-19 infection: radiologic 

findings and literature review. Radiology. 2020;. https ://doi.org/10.1148/

ryct.20202 00034 .

 19. Minaee S, Kafieh R, Sonka M, Yazdani S, Soufi GJ. Deep-covid: predicting 

covid-19 from chest X-ray images using deep transfer learning. arXiv 

:2004.09363 ; 2020.

 20. Mooney P. Chest X-ray images (pneumonia). https ://www.kaggl e.com/

pault imoth ymoon ey/chest -xray-pneum onia.

 21. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann 

machines. In: Proceedings of the 27th international conference on inter-

national conference on machine learning; 2010. p. 807–814.

 22. Narin A, Ceren K, Ziynet P. Automatic detection of coronavirus disease 

(covid-19) using X-ray images and deep convolutional neural networks. 

arXiv :2003.10849 ; 2020.

 23. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharyaf UR. Auto-

mated detection of covid-19 cases using deep neural networks with 

X-ray images. Comput Biol Med. 2020;121(2020):103792. https ://doi.

org/10.1016/j.compb iomed .2020.10379 2.

 24. Scherer D, Müller A, Behnke S. Evaluation of pooling operations in 

convolutional architectures for object recognition. In: 20th international 

conference on artificial neural networks (ICANN); 2010. p. 92–101.

 25. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-

CAM: visual explanations from deep networks via gradient-based locali-

zation. In: IEEE international conference on computer vision (ICCV); 2017. 

p. 618–626.

 26. Simonyan K, Zisserman A. Very deep convolutional networks for large-

scale image recognition. arXiv :1409.1556; 2014.

 27. SIRM: Covid-19 database. https ://www.sirm.org/categ ory/senza -categ 

oria/covid -19/.

 28. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the incep-

tion architecture for computer vision. In: IEEE conference on computer 

vision and pattern recognition (CVPR). 2016; https ://doi.org/10.1109/

CVPR.2016.308.

 29. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the incep-

tion architecture for computer vision. In: Proceedings of IEEE conference 

on computer vision and pattern recognition; 2016.

 30. Tan M, Le QV. Efficientnet: rethinking model scaling for convolutional 

neural networks. arXiv :1905.11946 ; 2019.

 31. Wang L, Wong A. Covid-net: A tailored deep convolutional neural 

network design for detection of covid-19 cases from chest X-ray images. 

arXiv :2003.09871 ; 2020.

 32. Wang S, Kang B, Ma J, Zeng X, Xiao M, Guo J, Cai M, Yang J, Li Y, Meng X, 

Xu B. A deep learning algorithm using CT images to screen for corona 

virus disease (covid-19). medRxiv 2020.02.14.20023028 (2020). https ://doi.

org/10.1101/2020.02.14.20023 028.

 33. World Health Organization: Covid-19 pandemic. https ://www.who.int/

emerg encie s/disea ses/novel -coron aviru s-2019.

 34. World Health Organization: Covid-2019 situation reports. https ://www.

who.int/emerg encie s/disea ses/novel -coron aviru s-2019/situa tion-repor 

ts/.

 35. World Health Organization: Use of chest imaging in covid-19 (2020). https 

://www.who.int/publi catio ns/i/item/use-of-chest -imagi ng-in-covid -19.

 36. Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. 

In: International conference on learning representations (ICLR); 2016.

 37. Zheng C, Deng X, Fu Q, Zhou Q, Feng J, Ma H, Liu W, Wang X. Deep 

learning-based detection for covid-19 from chest CT using weak label. 

medRXiv: https ://doi.org/10.1101/2020.03.12.20027 185; 2020.

 38. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features 

for discriminative localization. In: IEEE conference on computer vision and 

pattern recognition (CVPR); 2016.

Publisher’s Note Springer Nature remains neutral with regard to 

jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2003.11597
http://arxiv.org/abs/2003.11597
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2004.05717
http://arxiv.org/abs/2004.00038
https://doi.org/10.1148/ryct.2020200034
https://doi.org/10.1148/ryct.2020200034
http://arxiv.org/abs/2004.09363
http://arxiv.org/abs/2004.09363
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
http://arxiv.org/abs/2003.10849
https://doi.org/10.1016/j.compbiomed.2020.103792
https://doi.org/10.1016/j.compbiomed.2020.103792
http://arxiv.org/abs/1409.1556
https://www.sirm.org/category/senza-categoria/covid-19/
https://www.sirm.org/category/senza-categoria/covid-19/
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/2003.09871
https://doi.org/10.1101/2020.02.14.20023028
https://doi.org/10.1101/2020.02.14.20023028
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
https://www.who.int/publications/i/item/use-of-chest-imaging-in-covid-19
https://www.who.int/publications/i/item/use-of-chest-imaging-in-covid-19
https://doi.org/10.1101/2020.03.12.20027185

	PDCOVIDNet: a parallel-dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images
	Abstract 
	Introduction
	Related work
	Data pre-processing
	Chest X-ray image dataset
	Data augmentation

	PDCOVIDNet architecture
	Feature extraction
	Classification and visualization

	Experimental evaluation
	Hyper-parameters tuning
	Performance evaluation metrics
	Evaluation of individual model

	Visualization using Grad-CAM and Grad-CAM++
	Investigation on the incorrect classification
	Conclusion and future work
	References


