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Abstract
We present a PDE-based framework that generalizes Group equivariant Convolutional Neural Networks (G-CNNs). In this
framework, a network layer is seen as a set of PDE-solvers where geometrically meaningful PDE-coefficients become the
layer’s trainable weights. Formulating our PDEs on homogeneous spaces allows these networks to be designed with built-in
symmetries such as rotation in addition to the standard translation equivariance of CNNs. Having all the desired symmetries
included in the design obviates the need to include them by means of costly techniques such as data augmentation. We will
discuss our PDE-based G-CNNs (PDE-G-CNNs) in a general homogeneous space setting while also going into the specifics
of our primary case of interest: roto-translation equivariance. We solve the PDE of interest by a combination of linear
group convolutions and nonlinear morphological group convolutions with analytic kernel approximations that we underpin
with formal theorems. Our kernel approximations allow for fast GPU-implementation of the PDE-solvers; we release our
implementation with this article in the form of the LieTorch extension to PyTorch, available at https://gitlab.com/bsmetsjr/
lietorch. Just like for linear convolution, a morphological convolution is specified by a kernel that we train in our PDE-G-
CNNs. In PDE-G-CNNs, we do not use non-linearities such as max/min-pooling and ReLUs as they are already subsumed
by morphological convolutions. We present a set of experiments to demonstrate the strength of the proposed PDE-G-CNNs
in increasing the performance of deep learning-based imaging applications with far fewer parameters than traditional CNNs.

Keywords PDE · Group equivariance · Deep learning · Morphological scale-space

1 Introduction

In this work, we introducePDE-basedGroup CNNs. The key
idea is to replace the typical trifecta of convolution, pooling
and ReLUs found in CNNs with a Hamilton–Jacobi type
evolution PDE, or more accurately a solver for a Hamilton–
Jacobi type PDE. This substitution is illustrated in Fig. 1
where we retain (channel-wise) affine combinations as the
means of composing feature maps.
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The PDE we propose to use in this setting comes from
the geometric image analysis world [1–12]. It was chosen
based on the fact that it exhibits similar behavior on images
as traditional CNNs do through convolution, pooling and
ReLUs. Additionally it can be formulated on Lie groups to
yield equivariant processing,whichmakes our PDEapproach
compatible with Group CNNs [13–25]. Finally, an approxi-
mate solver for our PDE can be efficiently implemented on
modern highly parallel hardware, making the choice a prac-
tical one as well.

Our solver uses the operator splitting method to solve the
PDE in a sequence of steps, each step corresponding to a
term of the PDE. The sequence of steps for our PDE is
illustrated in Fig. 2. The morphological convolutions that
are used to solve for the nonlinear terms of the PDE are
a key aspect of our design. Normally, morphological con-
volutions are considered on R

d [26,27], but when extended
to Lie groups such as SE(d) they have many benefits in
applications (e.g., crossing-preserving flow [28] or tracking
[29,30]). Using morphological convolutions allows our net-
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Fig. 1 In a PDE-based CNN, we replace the traditional convolution,
pooling and ReLU operations by a PDE solver. The inputs of a given
layer serve as initial conditions for a set of evolution PDEs; the outputs
consist of affine combinations of the solutions of those PDEs at a fixed
point in time. The parameters of the PDE become the trainable weights
(alongside the affine parameters) over which we optimize

Fig. 2 Our Hamilton–Jacobi type PDE of choice contains a convection,
diffusion, dilation and erosion term (CDDE for short). Through oper-
ator splitting, we solve for these terms separately by using resampling
(for convection), linear convolution (for diffusion) and morphological
convolution (for dilation and erosion)

work to have trainable non-linearities instead of the fixed
non-linearities in (G-)CNNs.

The theoretical contribution of this paper consists of pro-
viding good analytical approximations to the kernels that go
in the linear and morphological convolutions that solve our
PDE. On R

n , the formulation of these kernels is reasonably
straightforward, but in order to achieve group equivariance
we need to generalize them on homogeneous spaces.

Instead of training kernel weights, our goal is training the
coefficients of the PDE. The coefficients of our PDE have
the benefit of yielding geometrically meaningful parameters
from a image analysis point of view. Additionally, we will
need (much) less PDE parameters than kernel weights to
achieve a given level of performance in image segmentation
and classification tasks, arguably the greatest benefit of our
approach.

This paper is a substantially extended journal version of
[31] presented at the SSVM 2021 conference.

1.1 Structure of the Article

The structure of the article is as follows. We first place our
work in its mathematical and deep learning context in Sect. 2.
Then, we introduce the needed theoretical preliminaries from
Lie group theory in Sect. 3 where we also define the space of
positions and orientationsMd that will allow us to construct
roto-translation equivariant networks.

In Sect. 4, we give the overall architecture of a PDE-G-
CNN and the ancillary tools that are needed to support a
PDE-G-CNN. We propose an equivariant PDE that models
commonly used operations in CNNs.

In Sect. 5, we detail how our PDE of interest can be solved
using a process called operator splitting. Additionally, we
give tangible approximations to the fundamental solutions
(kernels) of the PDEs that are both easy to compute and
sufficiently accurate for practical applications. We use them
extensively in the PDE-G-CNNs GPU-implementations in
PyTorch that can be downloaded from the GIT-repository:
https://gitlab.com/bsmetsjr/lietorch.

Section 6 is dedicated to showing how common CNN
operations such as convolution, max-pooling, ReLUs and
skip connections can be interpreted in terms of PDEs.

We end our paper with some experiments showing the
strength of PDE-G-CNNs in Sect. 7 and concluding remarks
in Sect. 8.

The framework we propose covers transformations and
CNNs on homogeneous spaces in general and as such we
develop the theory in an abstract fashion. Tomaintain a bridge
with practical applications, we give details throughout the
article on what form the abstractions take explicitly in the
case of roto-translation equivariant networks acting on Md ,
specifically in 2D (i.e., d = 2).

2 Context

As this article touches on disparate fields of study, we use this
section to discuss context and highlight some closely related
work.

2.1 Drawing Inspiration from PDE-Based Image
Analysis

Since the Partial Differential Equations that we use are well
known in the context of geometric image analysis [1–11], the
layers also get an interpretation in terms of classical image-
processing operators. This allows intuition and techniques
from geometric PDE-based image analysis to be carried over
to neural networks.

In geometric PDE-based image processing, it can be ben-
eficial to include mean curvature or other geometric flows
[32–35] as regularization and our framework provides a nat-
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ural way for such flows to be included into neural networks.
In the PDE layer from Fig. 2, we only mention diffusion as a
means of regularization, but mean curvature flow could eas-
ily be integrated by replacing the diffusion sub-layer with a
mean curvature flow sub-layer. This would require replac-
ing the linear convolution for diffusion by a median filtering
approximation of mean curvature flow [1].

2.2 The Need for Lifting Images

In geometric image analysis, it is often useful to lift images
from a 2D picture to a 3D orientation score as in Fig. 3 and
do further processing on the orientation scores [36]. A typi-
cal image processing task in which such a lift is beneficial is
that of the segmentation of blood vessels in a medical image.
Algorithms based on processing the 2D picture directly usu-
ally fail around points where two blood vessels cross, but
algorithms that lift the image to an orientation score manage
to decouple the blood vessels with different orientations as
is illustrated in the bottom row of Fig. 3.

To be able to endow image processing neural networks
with the added capabilities (such as decoupling orientations
and guaranteeing equivariance) that result from lifting data
to an extended domain, we develop our theory for the more
general CNNs defined on homogeneous spaces, rather than
just the prevalent CNNs defined on Euclidean space. One
can then choose which homogeneous space to use based on
the needs of one’s application (such as needing to decouple
orientations). A homogeneous space is, given subgroup H of
a group G, the manifold of left cosets, denoted by G/H . In
the above image analysis example, the group G would be the
special Euclidean groupG = SE(d), the subgroup H would
be the stabilizer subgroup of a fixed reference axis, and the
corresponding homogeneous spaceG/H would be the space
of positions and orientations Md ≡ R

d × Sd−1, which is
the lowest dimensional homogeneous space able to decouple
orientations. By considering convolutional neural networks
on homogeneous spaces such as Md , these networks have
access to the same benefits of decoupling structures with
different orientations as was highly beneficial for geometric
image processing [37–51].

Remark 1 (Generality of the architecture) Although not con-
sidered here, for other Lie groups applications (e.g., fre-
quency scores [52,53], velocity scores, scale orientation
scores [54]) the same structure applies; therefore, we keep
our theory in the general setting of homogeneous spaces
G/H . This generality was also important in non-PDE-based
learning [22], but also for PDE-based learning it is again
beneficial.

Fig. 3 Illustrating the process of lifting and projecting; in this case the
advantage of lifting an image from R

2 to the 2D space of positions and
orientations M2 derives from the disentanglement of the lines at the
crossings

Fig. 4 Spatial CNNs, as used for image classification for example, are
translation equivariant but not necessarily equivariant with respect to
rotation, scaling and other transformations as the illustrative tags of
the differently transformed apples images suggest. Building a G-CNN
with the appropriately chosen group confers the network with all the
equivariances appropriate for the chosen application. Our PDE-based
approach is compatible with the group CNN approach [22] and so can
confer the same symmetries

2.3 The Need for Equivariance

We require the layers of our network to be equivariant: a
transformation of the input should lead to a corresponding
transformation of the output, in other words: first transform-
ing the input and then applying the network or first applying
the network and then transforming the output should yield the
same result. A particular example, in which the output trans-
formation is trivial (i.e., the identity transformation), is that of
invariance: in many classification tasks, such as the recogni-
tion of objects in pictures, an apple should still be recognized
as an apple even if it is shifted or otherwise transformed in the
picture as illustrated in Fig. 4. By guaranteeing equivariance
of the network, the amount of data necessary or the need for
data augmentation is reduced as the required symmetries are
intrinsic to the network and need not be trained.
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2.4 RelatedWork

G-CNNs After the introduction of G-CNNs by Cohen and
Welling [13] in the field of machine and deep learning, G-
CNNs became popular. This resulted in many articles on
showing the benefits ofG-CNNs over classical spatial CNNs.
These works can be roughly categorized as

– discrete G-CNNs [13–17],
– regular continuous G-CNNs [19–21,29,55,56],
– and steerable continuous G-CNNs [22–25,57] that rely
on Fourier transforms on homogeneous spaces [50,58].

Both regular and steerable G-CNNs naturally arise from lin-
ear mappings between functions on homogeneous spaces
that are placed under equivariance constraints [22,24,55,57].
Regular G-CNNs explicitly extend the domain and lift fea-
ture maps to a larger homogeneous space of a group, whereas
steerable CNNs extend the co-domain by generating fiber
bundles in which a steerable feature vector is assigned to
each position in the base domain. Although steerable opera-
tors have clear benefits in terms of computational efficiency
and accuracy [59,60], workingwith steerable representations
puts constraints on nonlinear activations within the networks
which limits the representation power of G-CNNs [57]. Like
regular G-CNNs, the proposed PDE-G-CNNs do not suf-
fer from this. In our proposed PDE-G-CNN framework, it
is essential that we adopt the domain-extension viewpoint,
as this allows to naturally and transparently construct scale
space PDEs via left-invariant vector fields [12]. In general,
this viewpoint entails that the domain of images is extended
from the space of positions only, to a higher-dimensional
homogeneous space, and originates from coherent state the-
ory [61], orientation score theory [36], cortical perception
models [39], G-CNNs [13,20] and rigid-body motion scat-
tering [62].

The proposed PDE-G-CNNs form a new, unique class of
equivariant neural networks, and we show in Sect. 6 how
regular continuous G-CNNs arise as a special case of our
PDE-G-CNNs.

Probabilistic-CNNs Our geometric PDEs relate to α-stable
Lévy processes [50] and cost-processes akin to [26], but then
on Md rather than R

d . This relates to probabilistic equiv-
ariant numerical neural networks [63] that use anisotropic
convection-diffusions on R

d .
In contrast with these networks, the PDE-G-CNNs that

we propose allow for simultaneous spatial and angular dif-
fusion on Md . Furthermore, we include nonlinear Bellman
processes [26] for max pooling over Riemannian balls.

KerCNNs An approach to introducing horizontal connec-
tivity in CNNs that does not require a Lie group structure

was proposed by Montobbio et al. [64,65] in the form of
KerCNNs. In this biologically inspired metric model, a dif-
fusion process is used to achieve intra-layer connectivity.

While our approach does require a Lie group structure,
it is not restricted to diffusion and also includes dilation/
erosion.

Neural Networks and Differential Equations The connec-
tion between neural networks and differential equations
became widely known in 2017, when Weinan [66] explic-
itly explained the connection between neural networks and
dynamical systems, especially in the context of the ultradeep
ResNet [67]. This point of view was further expanded by Lu
et al. [68], showing howmany ultradeep neural networks can
be viewed as discretizations of ordinary differential equa-
tions. The somewhat opposite point of view was taken by
Chen et al. [69], who introduced a new type of neural network
which no longer has discrete layers, them being replaced by a
field parameterized by a continuous time variable. Weinan E
also indicated a relationship between CNNs and PDEs, or
rather with evolution equations involving a nonlocal opera-
tor. Implicitly, the connection between neural networks and
differential equations was also explored by the early works
of Chen et al. [70] who learn parameters in a reaction–
diffusion equation. This connection between neural networks
and PDEs was then made explicit and more extensive by
Long et al. who made it possible to learn a much wider class
of PDEs [71] with their PDE-Net. More recent work in PDE
inspired neural networks includes [72,73].

Basing neural network computations on PDEs formulated
on manifolds also makes the processing independent with
respect to the choice of coordinates on the manifold in the
fashion of Weiler et al. [74].

More recent work in this direction includes integrating
equivariant partial differential operators in steerable CNNs
[75], drawing a strong analogy between deep learning and
physics.

A useful aspect of the connection between neural net-
works and differential equations is the observation that
the stability of the differential equation can give into the
stability and generalization ability of the neural network
[76]. Moreover, there are intriguing analogies with numeri-
cal PDE-approximations and specific network architectures
(e.g. ResNets), as can be seen in the comprehensive overview
article by Alt et al. [77].

The main contribution of our work in the field of PDE-
related neural networks is that we implement and analyze
geometric PDEs on homogeneous spaces, to obtain general
group equivariantPDE-basedCNNswhose implementations
just require linear and morphological convolutions with new
analytic approximations of scale space kernels.
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3 Equivariance: Groups and Homogeneous
Spaces

We want to design the PDE-G-CNN, and its layers, in such
a way that they are equivariant. Equivariance essentially
means that one can either transform the input and then feed
it through the network, or first feed it through the network
and then transform the output, and both give the same result.
We will give a precise definition after introducing general
notation.

3.1 The General Case

A layer in a neural network (or indeed the whole network)
can be viewed as an operator from a space of real-valued
functions defined on a space X to a space of real-valued
functions defined on a space Y . It may be helpful to think of
these function spaces as spaces of images.

We assume that the possible transformations form a con-
nected Lie group G. Think for instance of a group of
translations which shift the domain into different directions.
The Lie group being connected excludes transformations
such as reflections, which we want to avoid for the sake
of simplicity. We further assume that the Lie group G acts
smoothly on both spaces X and Y , which means that there
are smooth maps ρX : G × X → X and ρY : G × Y → Y
such that for all g, h ∈ G,

ρX (gh, x) = ρX (g, ρX (h, x))

and

ρY (gh, x) = ρY (g, ρY (h, x)),

making ρX and ρY group actions on their respective spaces.
Additionally we will assume that the group G acts tran-

sitively on the spaces, meaning that for any two elements of
these spaces there exists a transformation in G that maps one
to the other. This has as the consequence that X and Y can be
seen as homogeneous spaces [78]. In particular, this means
that after selecting a reference element x0 ∈ X we can make
the following isomorphism:

X ≡ G/StabG(x0) (1)

using the mapping

x �→ {g ∈ G | ρX (g, x0) = x} , (2)

which is a bijection due to transitivity and the fact that

StabG(x0) := {g ∈ G | ρX (g, x0) = x0}

is a closed subgroup of G. Because of this, we will represent
a homogeneous space as the quotient G/H for some choice
of closed subgroup H = StabG(x0) since all homogeneous
spaces are isomorphic to such a quotient by the above con-
struction.

In this article, we will restrict ourselves to those homoge-
neous spaces that correspond to those quotients G/H where
the subgroup H is compact and connected. Restricting our-
selves to compact and connected subgroups simplifies many
constructions and still covers several interesting cases such
as the rigid body motion groups SE(d).

The elements of the quotient G/H consist of subsets of G
which we will denote by the letter p, these subsets are know
as left cosets of H since every one of them consists of the set
p = gH for some g ∈ G, the left cosets are a partition of G
under the equivalence relation

g1 ∼ g2 ⇐⇒ g−1
1 g2 ∈ H . ⇐⇒ g1H = g2H .

Under this notation, the group G consists of the disjoint
union

G =
∐

p∈G/H

p. (3)

The left coset that is associated with the reference element
x0 ∈ X is H , and for that reason we also alias it by p0 := H
when we want to think of it as an atomic entity rather than a
set in its own right.

We will denote quotient map from G to G/H with π :

π(g) := gp0 := gH . (4)

Remark 2 (Principal homogeneous space) Observe that by
choosing H = {e} we get G/H ≡ G, i.e., the Lie group is
a homogeneous space of itself. This is called the principal
homogeneous space. In that case, the group action is equiv-
alent to the group composition. The numerical experiments
we perform in this paper are on the principal homogeneous
space R2 × S1 of SE(2).

We will denote the group action/left-multiplication by an
element g ∈ G by the operator Lg : G/H → G/H given by

Lg p := gp for all p ∈ G/H . (5)

In addition, we denote the left-regular representation of G
on functions f defined on G/H by Lg defined by

(
Lg f

)
(p) := f

(
g−1 p

)
. (6)

Aneural network layer is itself an operator (from functions
onG/HX to functions onG/HY ), andwe require the operator
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to be equivariant with respect to the actions on these function
spaces.

Definition 1 (Equivariance) Let G be a Lie group with
homogeneous spaces G/HX and G/HY . Let � be an oper-
ator from functions (of some function class) on G/HX to
functions on G/HY , then we say that � is equivariant with
respect toG if for all functions f (of that class) we have that:

∀g ∈ G : (
� ◦ Lg

)
f = (

Lg ◦ �
)
f , (7)

or in words: the neural network commutes with transforma-
tions.

Most of the time we will have HX = HY in our proposed
neural networks; only the initial lifting layer and the final pro-
jection layer will be between different homogeneous spaces,
as we will see later on.

3.2 Vector andMetric Tensor Fields

The particular operators that we will base our framework on
are vector and tensor fields, if these basic building blocks
are equivariant then our processing will be equivariant. We
explain what left invariance means for these objects next.

For g ∈ G and p ∈ G/H , let Tp(G/H) be the tangent
space at point p, then the pushforward

(
Lg

)
∗ : Tp (G/H) → Tgp (G/H)

of the group action Lg is defined by the condition that for all
smooth functions f on G/H and all v ∈ Tp(G/H) we have
that

((
Lg

)
∗ v

)
f := v

(
f ◦ Lg

)
. (8)

Remark 3 (Tangent vectors as differential operators) Other
than the usual geometric interpretation of tangent vectors as
being the velocity vectors γ̇ (t) tangent to some differentiable
curve γ : R → G/H , we will simultaneously use them as
differential operators acting on functions as we did in (8).
This algebraic viewpoint defines the action of the tangent
vector γ̇ (t) on a differentiable function f as

γ̇ (t) f := ∂

∂s
f (γ (s))

∣∣
s=t .

In the flat setting of G = (
R
d ,+)

, where the tangent spaces
are isomorphic to the base manifold R

d , when we have a
tangent vector c ∈ R

d its application to a function is the
familiar directional derivative:

c f = c · ∇ f = d f (c).

See [79, §2.1.1] for details on this double interpretation.

Vector fields that have the special property that the push
forward (Lg)∗ maps them to themselves in the sense that

∀g ∈ G,∀p ∈ G/H : v (p) f = v (gp)
[
Lg f

]
, (9)

for all differentiable functions f and where v : p �→
Tp (G/H) is a vector field are referred to as G-invariant.

Definition 2 (G-invariant vector field on a homogeneous
space) A vector field v on G/H is invariant with respect
to G if it satisfies

∀g ∈ G, ∀p ∈ G/H : v (gp) = (
Lg

)
∗ v (p) . (10)

It is straightforward to check that (9) and (10) are equivalent
and that these imply the following.

Corollary 3 (Properties of G-invariant vector fields) On a
homogeneous space G/H, a G-invariant vector field v has
the following properties:

1. it is fully determined by its value v|H ∈ TH (G/H) in H,
2. ∀h ∈ H : (Lh)∗ v|H = v|H .

We also introduce G-invariant metric tensor fields.

Definition 4 (G-invariant metric tensor field on G/H ) A
(0, 2)-tensor field G on G/H is G-invariant if and only if

∀g ∈ G, ∀p ∈ G/H , ∀v,w ∈ Tp (G/H) :
G
∣∣
p (v,w) = G

∣∣
gp

((
Lg

)
∗ v,

(
Lg

)
∗ w

)
. (11)

Recall that Lg p := gp and so the push-forward
(
Lg

)
∗ maps

tangent vector from Tp(G/H) toTgp(G/H).Again it follows
immediately from this definition that a G-invariant metric
tensor field has similar properties as a G-invariant vector
field.

Corollary 5 (Properties of G-invariant metric tensor fields)
On a homogeneous space G/H, a G-invariant metric tensor
field G has the following properties:

1. it is fully determined by its metric tensor G|p0 at p0 = H,
2. ∀h ∈ H , ∀v,w ∈ Tp0 (G/H) : G

∣∣
p0

(v,w) =
G
∣∣
p0

((Lh)∗ v, (Lh)∗ w).

Or in words, the metric (tensor) has to be symmetric with
respect to the subgroup H .

A (positive definite) metric tensor field yields a Rieman-
nian metric in the usual manner, as we recall next.

123



Journal of Mathematical Imaging and Vision (2023) 65:209–239 215

Definition 6 (Metric on G/H ) Let p1, p2 ∈ G/H then:

dG(p1, p2) := dG/H ,G(p1, p2) :=

inf
β∈Lip([0,1], G/H)
β(0)=p1, β(1)=p2

∫ 1

0

√
G|β(t)

(
β̇(t), β̇(t)

)
dt .

As metrics and their smoothness play a role in our con-
struction,we need to take into accountwhere that smoothness
fails.

Definition 7 The cut locus cut(p) ⊂ G/H or cut(g) ⊂ G
is the set of points, respectively, group elements where the
distance map from p resp. g is not smooth (excluding the
point p and group element g themselves).

As long as we stay away from the cut locus, the infimum
from Definition 6 gives a unique geodesic.

Being derived from a G-invariant tensor field gives the
metric dG the same symmetries.

Proposition 8 (G-invariance of the metric on G/H ) Let
p1, p2 ∈ G/H away from each other’s cut locus, then we
have:

∀g ∈ G : dG(p1, p2) = dG(gp1, gp2).

Proof We observe that we can make a bijection from the set
of Lipschitz curves between p1 and p2 and between gp1 and
gp2 simply by left multiplication by g one way and g−1 the
other way. Due to (11), multiplying a curve with a group
element preserves its length; hence, if γ : [0, 1] → G/H
is the geodesic from p1 to p2, then gγ is the geodesic from
gp1 to gp2, both having the same length. ��

A metric tensor field on the homogeneous space has a
natural counterpart on the group.

Definition 9 (Pseudometric tensor field on G) AG-invariant
metric tensor field G on G/H induces a (pullback) pseudo-
metric tensor field G̃ on G that is left invariant:

G̃ := π∗G, (12)

where π∗ is the pullback of the quotient map π from (4).
This is equivalent to saying that for all v,w ∈ TgG:

G̃
∣∣
g (v,w) := G

∣∣
π(g) (π∗v, π∗w) ,

where π∗ is the pushforward of π .

This tensor field G̃ is left invariant by virtue of G being G-
invariant. It is also degenerate in the direction of H and so
yields a seminorm on TG.

Definition 10 (Seminorm on TG) Let v ∈ TgG. Then, the
metric tensor field G on G/H induces the following semi-
norm:

‖v‖G̃ :=
√
G̃|g (v, v) := √

G|gp0 (π∗v, π∗v). (13)

In the same fashion, we have an induced pseudometric on
G from the pseudometric tensor field on G.

Definition 11 (Pseudometric on G) Let g1, g2 ∈ G. Then,
we define:

dG̃(g1, g2) := dG,G̃(g1, g2) :=

inf
γ∈Lip([0,1], G)

γ (0)=g1, γ (1)=g2

∫ 1

0

√
G̃|γ (t) (γ̇ (t), γ̇ (t)) dt . (14)

This pseudometric has the property that dG̃(h1, h2) = 0
for all h1, h1 ∈ H ; in fact for all p ∈ G/H we have that
dG̃(g1, g2) = 0 for all g1, g2 ∈ p.

By requiring G and H to be connected, we get the follow-
ing strong correspondence between the metric structure on
the homogeneous space and the pseudometric structure on
the group.

Lemma 12 Let g1, g2 ∈ G so that π(g2) is away from the
cut locus of π(g1), then:

dG̃(g1, g2) = dG(π(g1), π(g2)).

Moreover, if γ is a minimizing geodesic in the group G
connecting g1 with g2, then π ◦ γ is the unique minimiz-
ing geodesic in the homogeneous space G/H that connects
π(g1) with π(g2).

Proof Assuming it exists, let γ ∈ Lip([0, 1],G) be a mini-
mizing geodesic connecting γ (0) = g1 with γ (1) = g2 and
letβ ∈ Lip([0, 1],G/H)be the uniqueminimizing geodesic
connecting β(0) = π(g1) with β(1) = π(g2). Because of
the pseudometric onG, minimizing geodesics are not unique,
i.e. γ is not unique. On G/H , we have a full metric and so
staying away from the cut locus means β is both unique and
minimizing.

Denote the length functionals with:

LenG(γ ) :=
∫ 1

0

√
G̃|γ (t) (γ̇ (t), γ̇ (t))dt,

LenG/H (β) :=
∫ 1

0

√
G|β(t)

(
β̇(t), β̇(t)

)
dt .

Observe that by construction of the pseudometric tensor field
G̃ on G, we have: LenG(γ ) = LenG/H (π ◦ γ ).
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Now we assume π ◦ γ �= β. Then, since β is the unique
geodesic, we have

LenG/H (β) < LenG/H (π ◦ γ ) = LenG(γ ).

But then we can find some γlift ∈ Lip([0, 1],G) that is
a preimage of β, i.e., π ◦ γlift = β. The potential prob-
lem is that while γlift(0) ∈ π(g1) and γlift(1) ∈ π(g2),
γlift does not necessarily connect g1 to g2. But since the
coset π(g1) is connected, we can find a curve wholly con-
tained in it that connects g1 with γlift(0), call this curve
γhead ∈ Lip([0, 1], π(g1)). Similarly we can find a γtail ∈
Lip([0, 1], π(g2)) that connects γlift(1) to g2. Both these
curves have zero length since π maps them to a single point
on G/H , i.e., LenG(γhead) = LenG(γtail) = 0.

Now we can compose these three curves:

γnew(t) :=

⎧
⎪⎨

⎪⎩

γhead(3t) if t ∈ [0, 1/3],
γlift(3t − 1) if t ∈ [1/3, 2/3],
γtail(3t − 2) if t ∈ [2/3, 1].

This new curve is again in Lip([0, 1],G) and connects g1
with g2, but also:

LenG(γnew) = LenG(γlift) = LenG/H (β) < LenG(γ ),

which is a contradiction since γ is a minimizing geodesic
between g1 and g2. We conclude π ◦ γ = β and thereby:

dG̃(g1, g2) = LenG(γ ) = LenG/H (β) = dG(π(g1), π(g2)).

��
This result allows us to more easily translate results from

Lie groups to homogeneous spaces.
We end our theoretical preliminaries by introducing the

space of positions and orientations Md .

3.3 Example: The Group SE(d) and the
Homogeneous SpaceMd

Our main example and Lie group of interest are the Special
Euclidean group SE(d) of the rotations and translations of
R
d , in particular for d ∈ {2, 3}. When we take H = {0} ×

SO(d−1), we obtain the space of positions and orientations

Md = SE(d)/ ({0} × SO(d − 1)) . (15)

This homogeneous space and group will enable the con-
struction of roto-translation equivariant networks. For the
experiments in this paper, we restrict ourselves to d = 2,
but we include the case d = 3 in some of our theoretical
preliminaries.

As a set we identifyMd withRd × Sd−1 and choose some
reference direction a ∈ Sd−1 ⊂ R

d as the forward direction,
we can set the reference point of the space as p0 = (0, a).
We can then see that elements of H are those rotations that
map a to itself, i.e., rotations with the forward direction as
their axis.

If we denote elements of SE(d) as translation/rotation
pairs ( y, R) ∈ R

d × SO(d), then group multiplication is
given by

g1 = (
y1, R1

)
, g2 = (

y2, R2
) ∈ G :

g1g2 = (
y1, R1

) (
y2, R2

) = (
y1 + R1 y2, R1R2

)
,

and the group action on elements p = (x, n) ∈ R
d ×Sd−1 ≡

Md is given as

gp = (y, R) (x, n) = (y + Rx, Rn) . (16)

What the G-invariant vector field and metric tensor fields
look like on Md is different for d = 2 than for d > 2. We
first look at d > 2.

Proposition 13 Let d > 2 and let ∂a ∈ Tp0 (Md) be the
tangent vector in the reference point in the main direction
a ∈ Sd−1, specifically:

∂a f := lim
t→0

f ((ta, a)) − f ((0, a))
t

,

where f : Md → R is smooth in an open neighborhood
of p0 = (0, a); then, all SE(d)-invariant vector fields are
spanned by the vector field:

p �→ A1
∣∣
p := (

Lgp

)
∗ ∂a, (17)

with gp ∈ p ∈ Md .

Proof For d > 3, we can see that (17) are the only
left-invariant vector fields since for all h ∈ H we have(
gph

)
p0 = p, and so in order to be well defined we must

require (Lh)∗ v = v on Tp0 (Md), and this is true for ∂a (and
its scalar multiples) but not true for any other tangent vectors
at Tp0 (Md). ��
Proposition 14 For d > 2, the only Riemannian metric ten-
sor fields onMd that are SE(d)-invariant are of the form:

G
∣∣
(x,n)

((ẋ, ṅ) , (ẋ, ṅ))

= wM |ẋ •n|2 + wL ‖ẋ ∧ n‖2 + wA ‖ṅ‖2 , (18)

with wM , wL , wA > 0 weighing the main, lateral and angu-
lar motion, respectively, and where the inner product, outer
product and norm are the standard Euclidean constructs.
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Proof It follows that to satisfy the second condition of Corol-
lary 5 at the tangent space T(x,n) of a particular (x, n) the
metric tensor needs to be symmetric with respect to rotations
about n both spatially and angularly (i.e., we require isotropy
in all angular and lateral directions) which leads to the three
degrees of freedom contained in (18) irrespective of d. ��

For d = 2, we represent the elements of M2 with
(x, y, θ) ∈ R

3 where x, y are the usual Cartesian coordi-
nates and θ the angle with respect to the x-axis, so that
n = (cos θ, sin θ)T . The reference element is then simply
denoted by (0, 0, 0).

It may be counter-intuitive but decreasing the number of
dimensions to 2 givesmore freedom to theG-invariant vector
and metric tensor fields compared to d > 2. This is a conse-
quence of the subgroup H being trivial, and so the symmetry
conditions from Corollaries 3 and 5 also become trivial. The
SE(2)-invariant vector fields are given as follows.

Proposition 15 OnM2, the SE(2)-invariant vector fields are
spanned by the following basis:

⎧
⎪⎪⎨

⎪⎪⎩

A1
∣∣
(x,y,θ)

= cos θ ∂x
∣∣
(x,y,θ)

+ sin θ ∂y
∣∣
(x,y,θ)

,

A2
∣∣
(x,y,θ)

= − sin θ ∂x
∣∣
(x,y,θ)

+ cos θ ∂y
∣∣
(x,y,θ)

,

A3
∣∣
(x,y,θ)

= ∂θ

∣∣
(x,y,θ)

.

(19)

Proof For d = 2, we have M2 ≡ SE(d) and the group
invariant vector fields on M2 are exactly the left-invariant
vector fields on SE(2) given by (19). ��

In a similar manner, SE(2)-invariant metric tensors are
then given as follows.

Proposition 16 On M2, the SE(2)-invariant metric tensor
fields are given by:

G
∣∣
(x,y,θ)

(v,w) = G
∣∣
(0,0,0)

((
L−1

(x,y,θ)

)

∗ v,
(
L−1

(x,y,θ)

)

∗ w
)

,

for any choice of inner product G
∣∣
(0,0,0) at e.

Proof Since SE(2) ≡ M2, the G-invariant metric ten-
sor fields are again exactly the left-invariant metric tensor
fields. ��

This gives SE(2)-invariant metric tensor fields 6 degrees
of freedomand hence 6 trainable parameters onM2. Remark-
ably, the case d = 2 allows for more degrees of freedom
than the case d = 3 where Proposition 14 applies. In our
experiments so far, we have restricted ourselves to thosemet-
ric tensors that are diagonal with respect to the frame from
Proposition 15. A diagonal metric tensor would have just 3
degrees of freedom and have the same general form as (18),
specifically:

G
∣∣
(x,y,θ)

((
ẋ, ẏ, θ̇

)
,
(
ẋ, ẏ, θ̇

))

= wM |ẋ cos θ + ẏ sin θ |2
+ wL |−ẋ sin θ + ẏ cos θ |2
+ wA|θ̇ |2.

(20)

We will expand into non-diagonal metric tensors in future
work.

4 Architecture

4.1 Lifting and Projecting

The key ingredient of what we call a PDE-G-CNN is the PDE
layer that we detail in the next section; however, to make
a complete network we need more. Specifically we need a
layer that transforms the network’s input into a format that is
suitable for the PDE layers and a layer that takes the output
of the PDE layers and transforms it to the desired output
format. We call this input and output transformation lifting,
respectively, projection; this yields the overall architecture
of a PDE-G-CNN as illustrated in Fig. 5.

As our theoretical preliminaries suggest, we aim to do
processing on homogeneous spaces, but the input and output
of the network do not necessarily live on that homogeneous
space. Indeed, in the case of images the data live on R

2 and
not on M2 where we propose to do processing.

This necessitates the addition of lifting and projection lay-
ers to first transform the input to the desired homogeneous
space and end with transforming it back to the required out-
put space. Of course, for the entire network to be equivariant
we require these transformation layers to be equivariant as
well. In this paper, we focus on the design of the PDE lay-
ers, details on appropriate equivariant lifting and projection
layers in the case of SE(2) is found in [20,80].

Remark 4 (General equivariant linear transformations
between homogeneous spaces) A general way to lift and
project fromone homogeneous space to another in a trainable
fashion is the following. Consider two homogeneous spaces
G/H1 and G/H2 of a Lie group G; let f : G/H1 → R and
k : G/H2 → R with the following property:

∀h ∈ H1, q ∈ G/H2 : k (hq) = k(q),

where H1 is compact. Then, the operator T defined by

∀q ∈ G/H2 : (T f ) (q) :=
∫

G
k
(
g−1q

)
f (gH1) dμG(g) (21)

transforms f froma function onG/H1 to a function onG/H2

in an equivariant manner (assuming f and k are such that the

123



218 Journal of Mathematical Imaging and Vision (2023) 65:209–239

Fig. 5 Illustrating the overall architecture of a PDE-G-CNN (example:
retinal vessel segmentation). An input image is lifted to a homogeneous
space from which point on it can be fed through subsequent PDE layers

(each PDE layer follow the structure of Fig. 2) that replace the convo-
lution layers in conventional CNNs. Finally, the result is projected back
to the desired output space

integral exists). Here the kernel k is the trainable part andμG

is the left-invariant Haar measure on the group.
Moreover, it can be shown via the Dunford–Pettis [81]

theorem that (under mild restrictions) all linear transforms
between homogeneous spaces are of this form.

Remark 5 (Lifting and projecting on M2) Lifting an image
(function) on R

2 to M2 can either be performed by a non-
trainable Invertible Orientation Score Transform [36] or a
trainable lift [20] in the style of Remark 4.

Projecting from M2 back down to R
2 can be performed

by a simple maximum projection: let f : M2 → R, then

(x, y) �→ max
θ∈[0,2π)

f (x, y, θ) (22)

is a roto-translation equivariant projection as used in [20].
A variation on the above projection is detailed in [80, Ch.
3.3.3].

4.2 PDE Layer

A PDE layer operates by taking its inputs as the initial con-
ditions for a set of evolution equations; hence, there will be
a PDE associated with each input feature. The idea is that
we let each of these evolution equations work on the inputs
up to a fixed time T > 0. Afterward, we take these solutions
at time T and take affine combinations (really batch normal-
ized linear combinations in practice) of them to produce the
outputs of the layer and as such the initial conditions for the
next set of PDEs.

If we index network layers (i.e., the depth of the network)
with 
 and denote the width (i.e., the number of features or
channels) at layer 
withM
, thenwe haveM
 PDEs and take
M
+1 linear combinations of their solutions.Wedivide aPDE
layer into the PDE solvers that each apply the PDE evolution
to their respective input channel and the affine combination
unit. This design is illustrated in Fig. 1, but let us formalize
it.

Let
(
U
,c

)M


c=1 be the inputs of the 
-th layer (i.e., some
functions on G/H ); let a
i j and b
i ∈ R be the coefficients
of the affine transforms for i = 1 . . . M
+1 and j = 1 . . . M
.
Let each PDE be parametrized by a set of parameters θ
 j .
Then, the action of a PDE layer is described as:

U
+1,i =
M
∑

j=1

a
i j�T ,θ
 j

(
U
 j

) + b
i , (23)

where �T ,θ is the evolution operator of the PDE at time
T ≥ 0 and parameter set θ . We define the operator �t,θ

so that (p, t) �→ (
�t,θU

)
(p) satisfies the Hamilton–Jacobi

type PDE that we introduce in just a moment. In this layer
formula, the parameters a
i j , b
i and θ
 j are the trainable
weights, but the evolution time T we keep fixed.

It is essential that we require the network layers and
thereby all the PDE units to be equivariant. This has con-
sequences for the class of PDEs that is allowed.

The PDE solver that we will consider in this article, illus-
trated in Fig. 2, computes the approximate solution to the
PDE

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂W

∂t
(p, t) = − cW (p, t) (convection)

− (−�G1

)α
W (p, t) (diffusion)

+
∥∥∥∇G+

2
W (p, t)

∥∥∥
2α

G+
2

(dilation)

−
∥∥∥∇G−

2
W (p, t)

∥∥∥
2α

G−
2

(erosion)

for p ∈ G/H , t ≥ 0,

W (p, 0) = U (p) for p ∈ G/H .

(24)

Here, c is a G-invariant vector field on G/H (recall (17)
and our use of tangent vectors as differential operators per
Remark 3), α ∈ [1/2, 1], G1 and G±

2 are G-invariant metric
tensor fields on G/H , U is the initial condition and �G ,
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and ‖ · ‖G denote the Laplace–Beltrami operator and norm
induced by the metric tensor field G. As the labels indicate,
the four terms have distinct effects:

– convection: moving data around,
– (fractional) diffusion: regularizing data (which relates to
subsampling by destroying data),

– dilation: pooling of data,
– erosion: sharpening of data.

This is also why we refer to a layer using this PDE as a
CDDE layer. Summarized parameters of this PDE are given
by θ = (

c, G1, G+
2 , G−

2

)
. The geometric interpretation of

each of the terms in (24) is illustrated in Fig. 6 for G = R
2

and in Fig. 7 for G = M2.
Since the convection vector field c and the metric tensor

fields G1 and G±
2 are G-invariant, the PDE unit, and so the

network layer, is automatically equivariant.

4.3 Training

Training the PDE layer comes down to adapting the param-
eters in the PDEs in order to minimize a given loss function
(the choice of which depends on the application and we will
not consider in this article). In this sense, the vector field and
the metric tensors are analogous to the weights of this layer.

Since we required the convection vector field and the met-
ric tensor fields to be G invariant, the parameter space is
finite-dimensional as a consequence of Corollaries 3 and 5 if
we restrict ourselves to Riemannian metric tensor fields.

For our main application on M2, each PDE unit would
have the following 12 trainable parameters:

– 3 parameters to specify the convection vector field as a
linear combination of (19),

– 3 parameters to specify the fractional diffusion metric
tensor field G1,

– and 3 parameters each to specify the dilation and erosion
metric tensor fields G±

2 ,

where the metric tensor fields are of the form (20) that are
diagonal with respect to the frame from Proposition 15.

Surprisingly for higher dimensions,Md has less trainable
parameters than for d = 2. This is caused by the SE(d)-
invariant vector fields on Md for d ≥ 3 being spanned by
a single basis element (per Proposition 13) instead of the
three (19) basis elements available for d = 2. Since the
left-invariant metric tensor fields are determined by only 3
parameters irrespective of dimensions, we count a total of
7 parameters for each PDE unit for applications on Md for
d ≥ 3.

In our own experiments, we always use some form of
stochastic gradient descent (usually ADAM) with a small

amount of L2 regularization applied uniformly over all the
parameters. Similarly, we stick to a single learning rate for all
the parameters. Given that in our setting different parameters
have distinct effects, treating all of them the same is likely
far from optimal, however, we leave that topic for future
investigation.

5 PDE Solver

Our PDE solver will consist of an iteration of time step units,
each of which is a composition of convection, diffusion, dila-
tion and erosion substeps. These units all take their input as an
initial condition of a PDE and produce as output the solution
of a PDE at time t = T .

The convection, diffusion and dilation/erosion steps are
implemented with, respectively, a shifted resample, linear
convolution and two morphological convolutions, as illus-
trated in Fig. 8.

The composition of the substeps does not solve (24)
exactly, but for small �t , it approximates the solution by
a principle called operator splitting.

We will now discuss each of these substeps separately.

5.1 Convection

The convection step has as input a function U1 : G/H → R

and takes it as initial condition of the PDE

{
∂W1
∂t (p, t) = −c(p)W1( · , t) for p ∈ G/H , t ≥ 0,

W1(p, 0) = U1(p) for p ∈ G/H .
(25)

The output of the layer is the solution of the PDE evaluated
at time t = T , i.e., the output is the function p �→ W1(p, T ).

Proposition 17 (Convection solution) The solution of the
convection PDE (25) is found by the method of character-
istics and is given by

W 1(p, t) =
(
Lg−1

p
U1

) (
γc(t)

−1 p0
)

= U1

(
gp γc(t)

−1 p0
)

(26)

= U1
(
gp γ−c(t)p0

)
, (27)

where gp ∈ p (i.e., gp p0 = p) and γc : R → G is the
exponential curve that satisfies γc(0) = e and

∂

∂t
(γc(t)p) (t) = c (γc(t)p) , (28)

i.e., γc is the exponential curve in the group G that induces
the integral curves of the G-invariant vector field c on G/H
when acting on elements of the homogeneous space.
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Fig. 6 Geometric interpretation of the terms of the PDE (24) illustrated
for R2. In this setting, the G-invariant vector field c is the constant vec-
tor field given by two translation parameters. For the other terms, we
use Riemannian metric tensors parametrized by a positive definite 2×2

matrix in the standard basis. The kernels used in the diffusion, dilation
and erosion terms are functions of the distance map induced by the
metric tensors

Note that this exponential curve existing is a consequence of
the vector field c being G-invariant, such exponential curves
do not exist for general convection vector fields.

Proof

∂W1

∂t
(p, t)

= lim
h→0

W1(p, t + h) − W1(p, t)

h

= lim
h→0

U1
(
gp γc(t + h)−1 p0

) −U1
(
gp γc(t)−1 p0

)

h

= lim
h→0

U1
(
gp γc(t)−1 γc(h)−1 p0

) −U1
(
gp γc(t)−1 p0

)

h
,

now let Ū := L
γc(t) g

−1
p
U1, then

= lim
h→0

Ū
(
γc(h)−1 p0

) − Ū (p0)

h

= −c(p0) Ū

= − (
Lgp

)
∗ c(p0) LgpŪ

due to the G-invariance of c this yields

= −c(p)Lgp Lγc(t) g
−1
p
U1

= −c(p)
[
p �→ U1

(
gpγc(t)

−1g−1
p p

)]

= −c(p)
[
p �→ U1

(
gpγc(t)

−1 p0
)]

= −c(p)W1(·, t).
��

In our experiments, Eq. (27) is numerically implemented
as a resampling operation with trilinear interpolation to
account for the off-grid coordinates.

5.2 Fractional Diffusion

The (fractional) diffusion step solves the PDE

{
∂W2
∂t = − (−�G1

)α
W2(p, t) for p ∈ G/H , t ≥ 0,

W2(p, 0) = U2(p) for p ∈ G/H .
(29)
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Fig. 7 Geometric interpretation of the terms of the PDE (24) illustrated
for M2. In this setting, the G-invariant vector field c is a left-invariant
vector field given by two translation and one rotation parameter. For the
other terms, we use Riemannian metric tensors parametrized by a posi-
tive definite 3× 3 matrix in the left-invariant basis (the matrix does not

need to be diagonal, but we keep that for future work). The kernels used
in the diffusion, dilation and erosion terms are functions of the distance
map induced by the metric tensors and are visualized by partial plots of
their level sets

Fig. 8 Evolving the PDE through operator splitting, each operation
corresponds to a term of (24)

As with (fractional) diffusion on R
n , there exists a smooth

function

K α· : (0,∞) × (G/H) → [0,∞),

called the fundamental solution of the α-diffusion equation,
such that for every initial condition U2; the solution to the
PDE (29) is given by the convolution of the functionU2 with
the fundamental solution K α

t :

W 2(p, t) = (
K α
t ∗G/H U2

)
(p). (30)

The convolution ∗G/H on a homogeneous space G/H is
specified by the following definition.

Definition 18 (Linear group convolution) Let p0 = H be
compact, let f ∈ L2 (G/H) and k ∈ L1 (G/H) such that:

∀h ∈ H , p ∈ G/H : k (hp) = k (p) ,

(kernel compatibility)

then, we define:

(
k ∗G/H f

)
(p)

:= 1

μH (H)

∫

G
k
(
g−1 p

)
f (gp0) dμG(g), (31)
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whereμH andμG are the left-invariantHaarmeasures (deter-
mined up to scalar multiplication) on H , respectively, G.

Remark 6 In the remainder of this article, we refer the to the
left-invariant Haar measure on G as ‘the Haar measure on
G’ as right-invariant Haar measures on G do not play a role
in our framework.

Remark 7 Compactness of H is crucial as otherwise the inte-
gral in the right-hand side of (31) does not converge. To this
end, we note that one can always decompose (byWeil’s inte-
gral formula [82, Lem. 2.1]) the Haar measure μG on the
group as a product of a measure on the quotient G/H times
the measure on the subgroup H . As Haar measures are deter-
mined up to a constant, we take the following convention: we
normalize the Haar measure μG such that

μG

(
π−1(A)

)
= μH (H) μG (A) , ∀A ⊂ G/H , (32)

where μG is the Riemannian measure induced by G and μH

is a choice of Haar measure on H . Thereby, (32) boils down
to Weil’s integration formula:

μH (H)

∫

G/H
f (p) dμG(p) =

∫

G
f (gH) dμG(g) (33)

whenever f is measurable. Since H is compact, we can
indeed normalize the Haar measure μH so that μH (H) = 1.

In general, an exact analytic expression for the fundamental
solution K α

t requires complicated steerable filter operators
[50, Thm. 1 & 2], and for that reason we contend ourselves
with more easily computable approximations. For now, let us
construct our approximations and address their quality and
the involved asymptotics later.

Remark 8 In the approximations, we will make use of log-
arithmic map as the inverse of the Lie group exponential
map expG . Locally, such inversion can always be done by
the inverse function theorem. Specifically, there is always
a neighborhood V ⊂ TeG of the origin so that expG |V is
a diffeomorphism between V and W = expG(V ) ⊂ G,
where W is a neighborhood of e. Then we define the loga-
rithmic map logG : W → V by expG ◦ logG = idW and
logG ◦ expG

∣∣
V = idV . For the moment, for simplicity, we

assume V = Te(G) in the general setting.1

The idea is that instead of basing our kernels on the metric
dG (which is hard to calculate [83]) we approximate it using
the seminorm fromDefinition 10 (which is easy to calculate).
We can use this seminorm on elements of the homogeneous
spacebyusing the group’s logarithmicmap logG .Wecan take

1 In our primary case of interest G = SE(2), we have V =
{∑3

k=1 c
k Ak | c3 ∈ [−π, π)}.

the group logarithm of all the group elements that constitute a
particular equivalence class of G/H and then pick the group
element with the lowest seminorm:

dG (p0, p) ≈ inf
g∈p

∥∥logG g
∥∥G̃ . (34)

Henceforth, we write this estimate as dG (p0, p) ≈ ρG(p)
relying on the following definition.

Definition 19 (Logarithmic metric estimate) Let G be a G-
invariantmetric tensor field on the homogeneous spaceG/H ,
then we define

ρG(p) := inf
g∈p

∥∥logG g
∥∥G̃

:= inf
g∈p

√
G
(
π∗ logG g, π∗ logG g

)
,

(35)

where π∗ is the push-forward of the projection map π given
by (4).

We can interpret this metric estimate as finding all expo-
nential curves inG whose actions on the homogeneous space
connect p0 (at t = 0) to p (at t = 1), and then, from that set
we choose the exponential curve that has the lowest constant
velocity according to the seminorm in Definition 10 and use
that velocity as the distance estimate.

Summarizing, Definition 19 and Eq. (34), can be intu-
itively reformulated as: ‘instead of the length of the geodesic
connecting two points of G/H , we take the length of the
shortest exponential curve connecting those two points.’

The following lemma quantifies how well our estimate
approximates the true metric.

Lemma 20 (Bounding the logarithmic metric estimate) For
all p ∈ G/H sufficiently close to p0, we have

dG(p0, p)
2 ≤ ρG(p)2 ≤ dG(p0, p)

2 + O
(
dG(p0, p)

4
)

,

which has as a weaker corollary that for all compact neigh-
borhoods of p0 there exists a Cmetr > 1 so that

dG(p0, p) ≤ ρG(p) ≤ Cmetr dG(p0, p)

for all p in that neighborhood. Note that the constant Cmetr

depends on both the choice of compact neighborhood and
the metric tensor field.

The proof of this lemma can be found in Appendix A.1.

Remark 9 (Logarithmic metric estimate in principal homo-
geneous spaces) When we take a principal homogeneous
space such asM2 ≡ SE(2)with a left-invariantmetric tensor
field, the metric estimate simplifies to

ρG(g) = ∥∥logG g
∥∥G|e ;
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hence, we see that this construction generalizes the loga-
rithmic estimate, as used in [84,85], to homogeneous spaces
other than the principal.

Remark 10 (Logarithmic metric estimate for M2) Using the
(x, y, θ) coordinates for M2 and a left-invariant metric ten-
sor field of the form (20), we formulate the metric estimate
in terms of the following auxiliary functions called the expo-
nential coordinates of the first kind:

c1(x, y, θ) :=
{

θ
2

(
y + x cot θ

2

)
if θ �= 0,

x if θ = 0,

c2(x, y, θ) :=
{

θ
2

(−x + y cot θ
2

)
if θ �= 0,

y if θ = 0,

c3(x, y, θ) := θ.

The logarithmic metric estimate for SE(2) is then given by

ρG(x, y, θ) =
√

wM c1(x, y, θ)2 + wL c2(x, y, θ)2 + wA c3(x, y, θ)2;

this estimate is illustrated in Fig. 9 where it is contrasted
against the exact metric.

We can see that the metric estimate ρG (and consequently
any function of ρG) has the necessary compatibility property
to be a kernel used in convolutions per Definition 18.

Proposition 21 (Kernel compatibility of ρG) Let G be a G-
invariant metric tensor field on G/H, then we have

∀p ∈ G/H , ∀h ∈ H : ρG(hp) = ρG(p). (36)

Note that, since we use left cosets, ph = p but hp �=
p in general, this requirement is not trivial. Proof of this
proposition is included in Appendix A.2.

Now that we have developed and analyzed the logarithmic
metric estimate; we can use it to construct an approximation
to the diffusion kernel for α = 1.

Definition 22 (Approximate α = 1 kernel)

K 1,appr
t (p) := ηt exp

(
−ρG(p)2

4t

)
(37)

where ηt is a normalization constant for a given t ; this
can either be the L1 normalization constant or in the case
of groups of polynomial growth one typically sets ηt =
μG

(
B(p0,

√
t)
)−1

, see the definition of polynomial growth
below .

On Lie groups of polynomial growth this approximate
kernel bebounded fromabove andbelowby the exact kernels.

Fig. 9 Comparing the ‘exact’ Riemannian distance (top) obtained
through numerically solving the Eikonal equation [29] versus the loga-
rithmicmetric estimate (bottom)on SE(2) endowedwith a left-invariant
Riemannianmetric tensor field (20) withwM = 1,wL = 2,wA = 1/π .
The relative L1 error in the plotted volume is 0.20

Definition 23 (Polynomial growth) A Lie group G with left-
invariant Haar measure μG is of polynomial growth when
the volume of a sphere of radius r around g ∈ G:

B(g, r) =
{
g′ ∈ G

∣∣ dG̃(g, g′) < r
}

,

123



224 Journal of Mathematical Imaging and Vision (2023) 65:209–239

can be polynomialy bounded as follows: there exist constants
δ > 0 and Cgrow > 0 so that

1

Cgrow
r δ ≤ μG (B(g, r)) ≤ Cgrowr

δ, r ≥ 1,

take note that the exponent δ is the same on both the lower
and upper bound. Since μG is left invariant, the choice of g
does not matter.

Lemma 24 Let G be of polynomial growth, and let K 1
t be

the fundamental solution to the α = 1 diffusion equation on
G/H, then there exist constants C ≥ 1 , D1 ∈ (0, 1) and
D2 > D1 so that for all t > 0 the following holds:

1

C
K 1

D1t (p) ≤ K 1,appr
t (p) ≤ CK 1

D2t (p). (38)

for all p ∈ G/H.

Proof On a group of polynomial growth, we have ηt =
μG

(
B(p0,

√
t)
)−1

. If G is of polynomial growth, we can
apply [86, Thm. 2.12] to find that there exist constants
C1,C2 > 0, and for all ε > 0 there exist a constant Cε

so that:

C1ηt exp

(
−dG(p0, p)2

4C2t

)
≤ K 1

t (p)

≤ Cεηt exp

(
−dG(p0, p)2

4(1 + ε)t

)
.

��

Remark 11 (Left vs. right cosets) Note thatMaheux [86] uses
right cosets while we use left cosets. We can translate the
results easily by inversion in view of (gH)−1 = H−1g−1 =
Hg−1. We then apply the result of Maheux to the correct
(invertible) G-invariant metric tensor field on G/H .

Also note the different (but equivalent) way Maheux
relates distance on the group with distance on the homo-
geneous space. While we use a pseudometric on G induced
by a metric onG/H , Maheux uses a metric onG/H induced
by a metric on G by:

dmaheux
G/H (p1, p2) = inf

g1∈p1
inf

g2∈p2
dmaheux
G (g1, g2)

= inf
g2∈p2

dmaheux
G (q1, g2),

(39)

for any choice of q1 ∈ p1. We avoid having to minimize
inside the cosets as in (39) thanks to the inherent symmetries
in our pseudometric.

Now using the inequalities from Lemma 20, we obtain:

C1ηt exp

(
−ρG(p)2

4C2t

)
≤ K 1

t (p)

≤ Cεηt exp

(
− ρG(p)2

4C2
metr(1 + ε)t

)
,

which leads to:

C1
ηt

ηc2t
K 1,appr
C2t

(p) ≤ K 1
t (p)

≤ Cε

ηt

ηC2
metr(1+ε)t

K 1,appr
C2
metr(1+ε)t

(p).

The group G being of polynomial growth also implies
G/H is a doubling space [86, Thm. 2.17]. Using the volume
doubling and reverse volume doubling property of doubling
spaces [87, Prop. 3.2 and 3.3], we find that there exist con-
stants C3,C4, β, β ′ > 0 so that:

ηt

ηc2t
≥ C3

( √
t√

C2t

)β

= C3C
−β/2
2 ,

ηt

ηC2
metr(1+ε)t

≤ C4

⎛

⎝
√
t√

C2
metr(1 + ε)t

⎞

⎠
β ′

= C4

(
C2
metr(1 + ε)

)−β ′/2
.

Applying these inequalities, we get:

C ′
1 := C1C3C

−β/2
2

and

C ′
ε := CεC4

(
C2
metr(1 + ε)

)−β ′/2

; we obtain:

C ′
1K

1,appr
C2t

(p) ≤ K 1
t (p) ≤ C ′

εK
1,appr
C2
metr(1+ε)t

(p).

Reparametrizing t in both inequalities gives:

1

C ′
ε

K 1
t/(C2

metr(1+ε))
(p) ≤ K 1,appr

t (p) ≤ 1

C ′
1
K 1
C−1
2 t

(p).

Finally, we fix ε > 0 and relabel constants:

C := max
{
C ′−1
1 , C ′

ε, 1
}

,

D1 := 1

C2
metr(1 + ε)

,

D2 := 1

C2
;
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Fig. 10 Comparing the numerically computed heat kernel K 1
t (left)

with our approximation K 1,appr
t based on the logarithmic norm estimate

(right) forG/H = SE(2). Shown here at t = 1 with the same metric as
in Fig. 9. Especially in deep learning applications where discretization
is very coarse, our approximation is sufficiently accurate as long as the
spatial anisotropies wM/wL and wL/wM do not become too high. In
this case, with wL/wM = 2 we have a relative L2 error of 0.23 in the
plotted volume

observe that since ε > 0 and Cmetr ≥ 1, we have 0 < D1 <

1. ��
Dependingon the actually achievable constants, Lemma24

provides a very strong or very weak bound on how much our
approximation deviates from the fundamental solution. For-
tunately in the SE(2) case, our approximation is very close
to the exact kernel in the vicinity of the origin, as shown
in Fig. 10. In our experiments, we sample the kernel on a
grid around the origin; hence, this approximation is good for
reasonable values of the metric parameters, which we may
expect from Lemma 20 providing a second-order relative
error.

Now let us develop an approximation for values of α other
than 1. From semi-group theory [88], it follows that semi-
groups generated by taking fractional powers of the generator
(in our case�G → −(−�G)α) amounts to the following key
relation between the α-kernel and the diffusion kernel:

K α
t (p) :=

∫ ∞

0
qt,α(τ ) K 1

τ (p) dτ, (40)

for α ∈ (0, 1) and t > 0 where qt,α is defined as follows.

Definition 25 LetL−1 be the inverse Laplace transform then

qt,α(τ ) := L−1
(
r �→ e−trα

)
(τ ) for τ ≥ 0.

For explicit formulas of this kernel, see [88,Ch. IX:11 eq. 17].
Since e−trα

is positive for all r , it follows that qt,α is also
positive everywhere.

Now instead of integrating K 1
t to obtain the exact funda-

mental solution, we can replace it with our approximation
K 1,appr
t to obtain an approximate α-kernel.

Definition 26 (Approximate α ∈ (0, 1) kernel) Akin to (40),
we set α ∈ (0, 1), t > 0 and define:

K α,appr
t (p) :=

∫ ∞

0
qt,α(τ ) K 1,appr

τ (p) dτ ≥ 0, (41)

for p ∈ G/H .

The bounding of K 1
t we obtained in Lemma 24 transfers

directly to our approximation for other α.

Theorem 27 Let G be of polynomial growth and let K α
t be

the fundamental solution to the α ∈ (0, 1] diffusion equation
on G/H, then there exists constants C ≥ 1 , D1 ∈ (0, 1) and
D2 > D1 so that for all t > 0 and p ∈ G/H the following
holds:

1

C
K α

Dα
1 t

(p) ≤ K α,appr
t (p) ≤ CK α

Dα
2 t

(p). (42)

Proof This is an consequence of Lemma 24 and the fact that
qt,α is positive, applying the integral from (40) yields:

K α,appr
t (p) =

∫ ∞

0
qt,α(τ )K 1,appr

τ (p)dτ

(Lemma 24) ≤ C
∫ ∞

0
qt,α(τ )K 1

D2τ
(p)dτ

(τ ′=D2τ) = C
∫ ∞

0

1

D2
qt,α

(
τ ′

D2

)
K 1

τ ′(p)dτ ′

(
Bromwich
integral

) = C
∫ ∞

0
qDα

2 t,α
(
τ ′) K 1

τ ′(p)dτ ′

= CK α
Dα
2 t

(p).

The other inequality works the same way. ��
Although the approximation (41) is helpful in the proof

above it contains some integration and is not an explicit
expression. Our initial experiments with diffusion for α = 1
showed that (for the applications under consideration at least)
adding diffusion did not improve performance. For that rea-
son, we chose not to focus further on diffusion in this work.
We leave developing amore explicit and computable approx-
imation for diffusion kernels for 0 < α < 1 for future work.

5.3 Dilation and Erosion

The dilation/erosion step solves the PDE

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂W3
∂t (p, t) = ±

∥∥∥∇G±
2
W3(p, t)

∥∥∥
2α

G±
2

for p ∈ G/H ,

t ≥ 0,

W3(p, 0) = U3(p) for p ∈ G/H .

(43)
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By a generalization of the Hopf–Lax formula [89, Ch.10.
3], the solution is given by morphological convolution

W3(p, t) = − (
kα
t �G −U3

)
(p) (44)

for the (+) (dilation) variant and

W3(p, t) = (
kα
t �G U3

)
(p) (45)

for the (−) (erosion) variant, where the kernel kα
t (also called

the structuring element in the context ofmorphology) is given
as follows.

Definition 28 (Dilation/erosion kernels) The morphological
convolution kernel kα

t for small times t and α ∈ (1/2, 1] is
given by

kα
t (p) := ναt

− 1
2α−1 dG2(p0, p)

2α
2α−1 , (46)

with να :=
(

2α−1
(2α)2α/(2α−1)

)
and for α = 1/2 by

k
1/2
t (p) =

{
0 if dG2(p0, p) ≤ t,

∞ if dG2(p0, p) > t .
(47)

In the above definition and for the rest of the section, we
write G2 for either G+

2 or G−
2 depending on whether we are

dealing with the dilation or erosion variant. The morpholog-
ical convolution �G (alternatively: the infimal convolution)
is specified as follows.

Definition 29 (Morphological group convolution) Let f ∈
L∞ (G/H), let k : G/H → R ∪ {∞} be proper (not every-
where ∞), then we define:

(k �G f ) (p) := inf
g∈G

{
k
(
g−1 p

) + f (gp0)
}

= inf
g∈G

{
k
(
g−1 p

) + f (gH)
}
.

Remark 12 (Grayscale morphology) Morphological convo-
lution is related to the grayscale morphology operations ⊕
(dilation) and � (erosion) on Rd as follows:

f1 ⊕ f2 = − (− f1 �Rd − f2
)
,

f1 � f2 = f1 �Rd [x �→ − f2 (−x)] ,

where f1 and f2 are proper functions on Rd . Hence, our use
of the terms dilation and erosion, but mathematically we will
only use �G as the actual operation to be performed and avoid
⊕ and �.

Combining morphological convolution with the structur-
ing element kα

t allows us to solve (43).

Theorem 30 Let G be of polynomial growth, let α ∈ (1/2, 1]
and let U3 : G/H → R be Lipschitz. Then, W3 : G/H ×
(0,∞) → R given by

W3(p, t) := (kα
t �G U3)(p)

is Lipschitz and solves the (−)-variant, the erosion variant,
of the system (43) in the sense of Theorem 2.1 in [90], while

W3(p, t) := −(kα
t �G −U3)(p)

is Lipschitz and solves the (+)-variant, the dilation variant,
of system (43) in the sense of Theorem 2.1 in [90]. The kernels
satisfy the semigroup property

kα
t �G kα

s = kα
t+s

for all s, t ≥ 0 and α ∈ (1/2, 1].
Proof The Riemannian manifold (G/H ,G2) is a proper
length space, and therefore, the theory of [90] applies. More-
over, since G is of polynomial growth, we have that G/H is
a doubling space [86, Thm. 2.17] and also admits a Poincaré
constant [86, Thm. 2.18]. So we meet the additional require-
ments of [90, Thm. 2.3 (vii) and (viii)].

The Hamiltonian H : R+ → R+ in [90] is given by
H(x) = x2α . ThisHamiltonian is indeed superlinear, convex,
and satisfies H(0) = 0. The corresponding Lagrangian L :
R+ → R+ becomes

L(x) = να x
2α

2α−1 .

According to [90], the solution (in the sense of their Theorem
2.1) to the (−)-variant of system (43) is given by

W3(p, t) = inf
x∈G/H

{
tL

(
dG2(p, x)

t

)
+U3(x)

}

= inf
g∈G

{
tL

(
dG2(p, gp0)

t

)
+U3(gp0)

}

= inf
g∈G

{
tL

(
dG2(g

−1 p, p0)

t

)
+U3(gp0)

}

= inf
g∈G

{
να

dG2(g
−1 p, p0)

2α
2α−1

t
2α

2α−1−1
+U3(gp0)

}

= inf
g∈G

{
ναt

1− 2α
2α−1 dG2(g

−1 p, p0)
2α

2α−1 +U3(gp0)
}

= inf
g∈G

{
ναt

−1
2α−1 dG2(g

−1 p, p0)
2α

2α−1 +U3(gp0)
}

= (kα
t �G U3)(p).

The (+)-variant is proved analogously.
The semigroup property follows directly from [90, Thm

2.1(ii)]. ��
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Remark 13 (Solution according to Balogh et al.) This theo-
rem builds on the work by Balogh et al. [90] who provide
a solution concept that is (potentially) different from the
strong, weak or viscosity solution. The point of departure
is to replace the norm of the gradient (i.e., the dual norm of
the differential) with a metric subgradient, i.e., we replace∥∥∇G2W (p, t)

∥∥G2
by:

lim sup
p′→p

max
(
W (p, t) − W (p′, t), 0

)

dG2(p, p
′)

,

andweget a solution concept in termsof this slightly different
notion of a gradient.

Remark 14 Unique viscosity solutions For the case α = 1/2,
we lose the superlinearity of the Hamiltonian and can no
longer apply Balogh et al.’s approach [90]. The solution for
α > 1/2 (46) converges pointwise to the solution for α = 1/2

(47) as α ↓ 1/2. However, the solution concept changes from
that of Balogh et al. to that of a viscosity solution [91,92].
In the general Riemannian homogeneous space setting, the
result by Azagra [92, Thm 6.24] applies. It states that vis-
cosity solutions of Eikonal PDEs on complete Riemannian
manifolds are given by the distance map departing from the
boundary of a given open and bounded set. As Eikonal equa-
tions directly relate to geodesically equidistant wavefront
propagation on manifolds ( [93, ch. 3], [29, ch. 4,app. E],
[89]) one expects that the solutions (44),(45) of (43) are
indeed the viscosity solutions (for resp. the + and −-case)
for α = 1/2.

In many matrix Lie group quotients, like the Heisenberg
group H(2d + 1) studied in [94], or in our case of interest:
the homogeneous space Md of positions and orientations)
this is indeed the case. One can describe G-invariant vector
fields via explicit coordinates and transfer HJB systems on
G/H directly toward HJB-systems on R

n or Rd × Sq , with
n = d+q = dim(G/H). Then, one can directly apply results
by Dragoni [91, Thm.4] and deduce that our solutions, the
dilations in (44) resp. erosions in (45), are indeed the unique
viscosity solutions of HJB-PDE system (43) for the+ and −-
case, for all α ∈ [1/2, 1]. Details are left for future research.

To get an idea of how the kernel in (46) operates in
conjunction with morphological convolution, we take G =
G/H = R and see how the operation evolves simple data,
the kernels and results at t = 1 are shown in Fig. 12. Observe
that with α close to 1/2 (kernel and result in red) we obtain
what amounts to an equivariant version of max/min pooling.

The level sets of the kernels kα
t for α > 1/2 are of the same

shape as for the approximate diffusion kernels, see Fig. 11;
for α = 1/2 these are the stencils over which we would per-
form min/max pooling.

Fig. 11 Shapes of the level sets of the kernels on M2 for solving frac-
tional diffusion (K α

t ) and dilation/erosion (k
α
t ) for various values of the

trainable metric tensor field parameters wM , wL and wA. This shape
is essentially what is being optimized during the training process of a
metric tensor field on M2

Remark 15 The level sets in Fig. 11 are balls in G/H = M2

that do not depend on α. It is only the growth of the kernel
values when passing through these level sets that depends
on α. As such, the example G/H = R and Fig. 12 is very
representative to the general G/H case. In the general G/H
case, Fig. 11 still applies when one replaces the horizontal
R-axis with a signed distance along a minimizing geodesic
in G/H passing through the origin. In that sense, α ∈ [1/2, 1]
regulates soft-max pooling over Riemannian balls in G/H .

We can now define a more tangible approximate kernel
by again replacing the exact metric dG2 with the logarithmic
approximation ρG2 .

Definition 31 (Approximate dilation/erosion kernel) The
approximate morphological convolution kernel kα,appr

t for
small times t and α ∈ (1/2, 1] is given by

kα,appr
t (p) := ναt

− 1
2α−1 ρG2(p)

2α
2α−1 , (48)

with να :=
(

2α−1
(2α)2α/(2α−1)

)
and for α = 1/2 by

k
1/2,appr
t (p) =

{
0 if ρG2(p) ≤ t,

∞ if ρG2(p) > t
. (49)

We used this approximation in our parallel GPU-algorithms
(for our PDE-G-CNNs experiments in Sect. 7). It is highly
preferable over the ‘exact’ solution based on the true distance
as this would require Eikonal PDE solvers ( [29,95] which
would not be practical for parallel GPU implementations of
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Fig. 12 In the center, we have kernels of the type (46) inR (or the signed
distance on amanifold of choice) for some α ∈ (1/2, 1] and t = 1, which
solves dilation/erosion. For α → 1/2, this kernel converges to the type
in (47), i.e., the solution is obtained by max/min pooling. On the left,
we morphologically convolve a spike (in gray) with a few of these ker-

nels; we see that if α → 1/2 we get max pooling; conversely, we can
call the case α > 1/2 soft max pooling. On the right, we similarly erode
a plateau, which for α → 1/2 yields min pooling. The effects of these
operations in the image processing context can also be seen in the last
two columns of Fig. 6

PDE-G-CNNs. Again the approximations are reasonable
as long as the spatial anisotropy does not get too high, see
Fig. 9 for an example.

Next we formalize the theoretical underpinning of the
approximations in the upcoming corollary.

An immediate consequence of Definition 31 and Lemma
20 (keeping in mind that the kernel expressions in Defini-
tion 31 are monotonic w.r.t. ρ := ρG2(p)) is that we can
enclose our approximatemorphological kernel with the exact
morphological kernels in the same way as we did for the
(fractional) diffusion kernel in Theorem 27. This proves the
following Corollaries:

Corollary 32 Let α ∈ (1/2, 1], then for all t > 0

kα
t (p) ≤ kα,appr

t (p) ≤ C
2α

2α−1
metr k

α
t (p) for p ∈ G/H .

For the case α = 1/2, the approximation is exact in an inner
and outer region:

k
1/2,appr
t (p) = k

1/2
t (p) = 0 if ρG2(p)

2α ≤ t,

k
1/2,appr
t (p) = k

1/2
t (p) = ∞ if dG2(p0, p)

2α > t,

but in the intermediate region where ρG2(p)
2α > t and

dG2(p0, p)
2α ≤ t we have k

1/2,appr
t = ∞ while k

1/2
t = 0.

Alternatively, instead of bounding by value we can bound
in time, in which case we do not need to distinguish different
cases of α.

Corollary 33 Let α ∈ [1/2, 1] , t > 0 then for all p ∈ G/H
one has

kα
t (p) ≤ kα,appr

t (p) ≤ kα

C−2α
metr t

(p)

With these two bounds on our approximatemorphological
kernels, we end our theoretical results.

6 Generalization of (Group-)CNNs

In this section, we point out the similarities between com-
mon (G-)CNN operations and our PDE-based approach. Our
goal here is not so much claiming that our PDE approach
serves as a useful model for analyzing (G-)CNNs, but that
modern CNNs already bear some resemblance to a network
of PDE solvers. Noticing that similarity, our approach is then
just taking the next logical step by structuring a network to
explicitly solve a set of PDEs.

6.1 Discrete Convolution as Convection and
Diffusion

Now that we have seen how PDE-G-CNNs are designed we
show how they generalize conventional G-CNNs. Starting
with an initial conditionU , we show how group convolution
with a general kernel k can be interpreted as a superposition
of solutions (27) of convection PDEs:

(
k ∗G/H U

)
(p)

= 1

μG(H)

∫

G
k
(
g−1 p

)
U (gp0) dμG(g)

= 1

μG(H)

∫

G
k
(
g−1gp p0

)
U (gp0) dμG(g),

for any gp ∈ p, now change variables to q = g−1
p g and recall

that μG is left invariant:

= 1

μG(H)

∫

G
k
(
q−1 p0

)
U

(
gpqp0

)
dμG(q).

In this last expression, we recognize (27) and see that we can
interpret p �→ U

(
gp qp0

)
as the solution of the convection

PDE (25) at time t = 1 for a convection vector field c that
has flow lines given by γc(t) = expG

(−t logG q
)
p0 so that

(γc(1))−1 p0 = qp0. As a result, the output k ∗G/H U can
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then be seen as a weighted sum of solutions over all possible
left invariant convection vector fields.

Using this result, we can consider what happens in the
discrete case where we take the kernel k to be a linear com-
bination of displaced diffusion kernels K α

t (for some choice
of α) as follows:

k(p) =
n∑

i=1

ki K
α
ti

(
g−1
i p

)
, (50)

where for all i we fix a weight ki ∈ R, diffusion time ti ≥ 0
and a displacement gi ∈ G. Convolving with this kernel
yields:

(
k ∗G/H U

)
(p)

=
∫

G

n∑

i=1

ki K
α
ti

(
g−1
i g−1 p

)
U (gp0) dμG(g)

=
n∑

i=1

ki

∫

G

K α
ti

(
g−1
i g−1 p

)
U (gp0) dμG(g),

we change variables to h = g gi :

=
n∑

i=1

ki

∫

G

K α
ti

(
h−1 p

)
U

(
h g−1

i p0
)
dμG(h)

=
n∑

i=1

ki
(
K α
ti ∗G/H

[
q �→ U

(
gq g

−1
i p0

)])
(p).

Here again we recognize q �→ U
(
gq g

−1
i p0

)
as the solu-

tion (27) of the convection PDE at t = 1 with flow lines
induced by γc(t) = expG(t logG gi ). Subsequently, we take
these solutions and convolve them with a (fractional) diffu-
sion kernel with scale ti , i.e., after convection we apply the
fractional diffusion PDE with evolution time ti and finally
make a linear combination of the results.

We can conclude thatG-CNNsfit in our PDE-basedmodel
by looking at a single discretized group convolution as a set
of single-step PDE units working on an input, without the
morphological convolution and with specific choices made
for the convection vector fields and diffusion times.

6.2 Max Pooling as Morphological Convolution

The ordinary max pooling operation commonly found in
convolutional neural networks can also be seen as a mor-
phological convolution with a kernel for α = 1/2.

Proposition 34 (Max pooling) Let f ∈ L∞ (G/H); let S ⊂
G/H be nonempty and define kS : G/H → R ∪ {∞} as:

kS(p) :=
{
0 if p ∈ S,

∞ else.
(51)

Then,

− (kS � − f ) (p) = sup
g∈G:g−1 p∈S

f (gp0) . (52)

We can recognize the morphological convolution as a gener-
alized form of max pooling of the function f with stencil S.

Proof Filling in (51) into Definition 29 yields:

− (kS � − f ) (p)

= − inf

{
inf

g∈G:g−1 p∈S
− f (gp0) , inf

g∈G:g−1 p/∈S

× − f (gp0) + ∞
}

= − inf
g∈G:g−1 p∈S

− f (gp0)

= sup
g∈G:g−1 p∈S

f (gp0) .

��
In particular cases, we recover a more familiar form of

max pooling as the following corollary shows.

Corollary 35 (Euclidean Max Pooling) Let G = G/H = R
n

and let f ∈ C0 (Rn) with S ⊂ R
n compact then:

− (kS �Rn − f ) (x) = max
y∈S f (x − y) ,

for all x ∈ R
n.

The observation that max pooling is a particular limiting
case of morphological convolution allows us to think of the
case with α > 1/2 as a soft variant of max pooling, one that
is better behaved under small perturbations in a discretized
context.

6.3 ReLUs as Morphological Convolution

Max pooling is not the only commonCNN operation that can
be generalized by morphological convolution as the follow-
ing proposition shows.

Proposition 36 Let f be a compactly supported continuous
function on G/H. Then, dilation with the kernel

kReLU, f (p) :=
⎧
⎨

⎩
0 if p = p0,

sup
q∈G/H

f (q) else,
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equates to applying a Rectified Linear Unit to the function
f :

− (
kReLU, f � − f

)
(p) = max

{
0, f (p)

}
.

Proof Filling in k into the definition of morphological con-
volution:

− (
kReLU, f �G − f

)
(p)

= − inf
g∈G kReLU(g−1 p) − f (g.p0)

= − inf
g∈G

{
inf

g−1 p=p0
− f (gp0),

× inf
g−1 p �=p0

− f (gp0) + sup
y∈G/H

f (y)

}

= sup

{
f (p), sup

z∈G/H :z �=p
f (z) − sup

y∈G/H
f (y)

}
,

due to the continuity and compact support of f its supre-
mum exists, and moreover, we have supz∈G/H :z �=p0 f (z) =
supy∈G/H f (y), and thereby, we obtain the required result

= max { f (p), 0} .

��
We conclude that morphological convolution allows us to:

– do pooling in an equivariantmannerwith transformations
other then translation,

– do soft pooling that is continuous under domain transfor-
mations (illustrated in Fig. 12),

– learn the pooling region by considering the kernel k as
trainable,

– effectively fold the action of a ReLU into trainable non-
linearities.

6.4 Residual Networks

So-called residual networks [67] were introduced mainly as
a means of dealing with the vanishing gradient problem in
very deep networks, aiding trainability. These networks use
so-called residual blocks, illustrated in Fig. 13, that feature a
skip connection to group a few layers together to produce a
delta-map that gets added to the input.

This identity + delta structure is very reminiscent of a
forward Euler discretization scheme. If we had an evolution
equation of the type

{
∂U
∂t (p, t) = F (U (·, t), p) for p ∈ M, t ≥ 0,

U (p, 0) = U0(p) for p ∈ M,

Fig. 13 A residual block, like in [67], note the resemblance to a forward
Euler discretization scheme

with some operator F : L∞(M) × M → R, we could solve
it approximately by stepping forward with:

U (p, t + �t) = U (p, t) + �t F (U (·, t), p) ,

for some time step �t > 0. We see that this is very similar
to what is implemented in the residual block in Fig. 13 once
we discretize it.

The correspondence is far from exact given that multiple
channels are being combined in residual blocks, so we can
not easily describe a residual block with a PDE. Still, our
takeaway is that residual networks and skip connections have
moved CNNs from networks that change data to networks
that evolve data.

For this reason, we speculate that deep PDE-G-CNNswill
not need (or have the same benefit from) skip connections;we
leave this subject for future investigation. More discussion
on the relation between residual networks and PDEs can be
found in [77].

7 Experiments

To demonstrate the viability of PDE-based CNNs, we per-
form two experiments where we compare the performance of
PDE-G-CNNs against G-CNNs and classic CNNs. We will
be doing a vessel segmentation and digit classification prob-
lem: two straightforward applications of CNNs. Examples of
these two applications are illustrated in Fig. 14.

The goal of the experiments is to compare the basic build-
ing blocks of different types of networks in clearly defined
feed-forward network architectures. So we test networks of
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(a) Example from the DRIVE [96] dataset, showing a retinal
image and its vessel segmentation.

(b) Examples from the RotNIST [97] dataset.

Fig. 14 Weperforma segmentation experiment on retinal vessel images
and a classification experiment on rotation augmented digits

modest size only and do not just aim for the performance that
would be possible with large-scale networks.

7.1 Implementation

We implemented our PDE-based operators in an extension to
the PyTorch deep learning framework [98]. Our package is
called LieTorch and is open source. It is available at https://
gitlab.com/bsmetsjr/lietorch.

The operations we have proposed in the paper have been
implemented in C++ for CPUs and CUDA for Nvidia GPUs
but can be used from Python through PyTorch. Our package
was also designedwithmodularity inmind:we provide a host
of PyTorch modules that can be used together to implement
the PDE-G-CNNs we proposed, but that can also be used
separately to experiment with other architectures.

All the modules we provide are differentiable and so
our PDE-G-CNNs are trainable through stochastic gradient
descent (or its many variants) in the usual manner. In our
experiments, we have had good results with using theADAM
[99] optimizer.

All the network models and training scripts used in the
experiments are also available in the repository.

7.2 Design Choices

Several design choices are common to both experiments, we
will go over these now.

First, we choose G/H = M2 for our G-CNNs and PDE-
G-CNNs and so go for roto-translation equivariant networks.
In all instances, we lift to 8 orientations.

Second, we use the convection, dilation and erosion ver-
sion of (24); hence, we refer to these networks as PDE-CNNs
of the CDE-type. Each PDE-layer is implemented as in
Fig. 1 with the single-pass PDE solver from Fig. 2 with-
out the convolution. So no explicit diffusion is used, and
the layer consists of just resampling and two morphologi-
cal convolutions. Since we do the resampling using trilinear
interpolation, this does introduce a small amount of implicit
diffusion.

Remark 16 (Role of diffusion) In these experiments, we
found no benefit to adding diffusion to the networks. Dif-
fusion likely would be of benefit when the input data is
noisy but neither datasets we used are noisy and we have
not yet performed experiments with adding noise. We leave
this investigation for future work.

Third, we fixα = 0.65.We came to this value empirically;
the networks performed best with α-values in the range 0.6−
0.7. Looking at Fig. 12, we can conjecture that α = 0.65 is
the “sweet spot” between sharpness and smoothness. When
the kernel is too sharp (α close to 1/2), minor perturbations in
the input can have large effects on the output; when the kernel
is too smooth (α close to 1) the output will be smoothed out
too much as well.

Fourth, all our networks are simple feed-forward net-
works.

Finally, we use the ADAM optimizer [99] together with
L2 regularization uniformly over all parameters with a factor
of 0.005.

7.3 DRIVE Retinal Vessel Segmentation

The first experiment uses the DRIVE retinal vessel segmen-
tation dataset [96]. The object is the generate a binary mask
indicating the location of blood vessels from a color image
of a retina as illustrated in Fig. 14a.

We test 6- and 12-layer variants of a CNN, a G-CNN
and a CDE-PDE-CNN. The layout of the 6-layer networks
is shown in Fig. 15; the 12-layer networks simply add more
convolution, group convolution or CDE layers. All the net-
works were trained on the same training data and tested on
the same testing data.

The output of the network is passed through a sigmoid
function to produce a 2D map a of values in the range [0, 1]
which we compare against the known segmentation map b
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Fig. 15 Schematic of the 6-layer models used on our segmentation
experiments. Kernel sizes and number of feature channels in each layer
are indicated, depth indicates that the data lives on M2. Omitted are
activation functions, batch normalization, padding and dropout mod-
ules. The 12-layer models are essentially the same but with double the
number of layers but with reduced number of channels per layer (i.e.,
reduced width) for the CDE-PDE-CNN (hence the reduction in param-
eters going from 6 to 12 layers)

with values in {0, 1}.We use the continuousDICE coefficient
as the loss function:

loss(a, b) = 1 − 2
∑

ab + ε∑
a + ∑

b + ε
,

where the sum
∑

is over all the values in the 2D map. A
relatively small ε = 1 is used to avoid divide-by-zero issues
and the a ≡ b ≡ 0 edge case.

The 6-layer networkswere trained over 60 epochs, starting
with a learning rate of 0.01 that we decay exponentially with
a gamma of 0.95. The 12-layer networks were trained over
80 epochs, starting from the same learning rate but with a
learning rate gamma of 0.96.

We measure the performance of the network by the DICE
coefficient obtained on the 20 images of the testing dataset.
We trained each model 10 times, the results of which are
summarized in Table 1 and Fig. 16a.

We achieve similar or better performance thanCNNsorG-
CNNs but with a vast reduction in parameters. Scaling from
6 to 12 layers even allows us to reduce the total number of
parameters of the PDE-G-CNN while still increasing perfor-
mance; this is achieved by reducing the number of channels
(i.e., the width) of the network, see also Table 2.

7.4 RotNIST Digit Classification

The second experiment we performed is the classic digit
classification experiment. Instead of using the plain MNIST
dataset, we did the experiment on the RotNIST dataset [97].

Table 1 Average DICE coefficient achieved on the 20 images of the
testing dataset and the number of trainable parameters of each model.
The G-CNNs and CDE-PDE-CNNs are roto-translation equivariant by
construction. Note the vast reduction in parameters allowed by using
PDE-based networks

Model Parameters DICE score ± std.dev.

CNN 6 47352 0.8058 ± 0.0017

G-CNN 6 39258 0.8085 ± 0.0022

CDE-PDE-CNN 6 4128 0.8115 ± 0.0018

CNN 12 129432 0.8189 ± 0.0005

G-CNN 12 114378 0.8192 ± 0.0012

CDE-PDE-CNN 12 3678 0.8220 ± 0.0007

Fig. 16 Comparison of PDE-based networks against conventional
CNNs and group CNNs on segmentation and classification tasks
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Table 2 Allocation of
parameters for the 6- and
12-layer CDE-PDE-CNNs used
in the vessel segmentation
experiment. The added depth of
the networks allows us to shrink
the width. With the network
having less channels over all we
can also shrink the number of
channels in the lifting layer,
which drastically reduces the
total number of parameters

Type of parameter CDE-PDE-CNN 6 CDE-PDE-CNN 12

Lifting layer 2352 1470

Convection 192 300

Dilation 192 300

Erosion 192 300

Linear combinations 1040 1076

Batch normalization 160 232

Fig. 17 Schematic of the three models tested with the RotNIST data.
Kernel sizes and number of feature channels in each layer are indicated.
Omitted are activation functions, batch normalization and dropoutmod-
ules

RotNIST contains the same images as MNIST but rotated to
various degrees. Even though classifying rotated digits is a
fairly artificial problem, we include this experiment to show
that PDE-G-CNNs also work in a context very different from
the first segmentation experiment. While our choice of PDEs
derives frommore traditional image processingmethods, this
experiment shows their utility in a basic image classification
context.

We tested three networks: the classic LeNet5 CNN [100]
as a baseline, a 4-layer G-CNN and a 4-layer CDE-PDE-
CNN. The architectures of these three networks are illus-
trated in Fig. 17.

All three networks were trained on the same training data
and tested on the same testing data. We train with a learning
rate of 0.05 and a learning rate gamma of 0.96. We trained
the LeNet5 model for 120 epochs and the G-CNN and CDE-
PDE-CNN models for 60 epochs.

We measure the performance of the network by its accu-
racy on the testing dataset. We trained each model 10 times,
the results of which are summarized in Table 3 and Fig. 16b.

Wemanage to get better performance than classic or group
CNNs with far fewer parameters.

7.5 Computational Performance

Carewas taken in optimizing the implementation to show that
PDE-based networks can still achieve decent running times
despite their higher computational complexity. In Table 4,
we summarized the inferencing performance of each model
we experimented with.

Our approach simultaneously gives us equivariance, a
decrease in parameters and higher performance but at the
cost of an increase in flops and memory footprint. While
our implementation is reasonably optimized, it has had far
less development time dedicated to it than the traditional
CNN implementation provided by PyTorch/cuDNN, so we
are confident more performance gains can be found.

In comparison with G-CNNs, our PDE-based networks
are generally a little bit faster. Our G-CNN implementation
is, however, less optimized compared to out PDE-G-CNN
implementation. Were our G-CNN implementation equally
optimized we expect G-CNNs to be slightly faster than the
PDE-G-CNNs in our experiments.

Table 3 Accuracy of the digit
classification models on the
testing dataset and number of
parameters for each model

Model Parameters Error rate ± std.dev.

CNN (LeNet5) 44426 2.59% ± 0.66%

G-CNN Classifier 4 12700 1.14% ± 0.21%

CDE-PDE-CNN Classifier 4 2542 1.10% ± 0.10%
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Table 4 Time in seconds it took to run eachmodel on the testing dataset
of its respective experiment. The DRIVE testing dataset contains 20
images while the RotNIST testing dataset contains 10000 digits

CNN G-CNN PDE-CNN

DRIVE 6-layer 1.7s 6.5s 6.8s

DRIVE 12-layer 2.2s 14.1s 9.8s

RotNIST 0.1s 0.9s 0.7s

8 Conclusion

In this article, we presented the general mathematical frame-
work of geometric PDEs on homogeneous spaces that
underlies our PDE-G-CNNs. PDE-G-CNNs allow for a geo-
metric and probabilistic interpretation of CNNs opening up
new avenues for the study and development of these types of
networks. We showed that additionally, PDE-G-CNNs have
increased performance with a reduction in parameters.

PDE-G-CNNs ensure equivariance by design. The train-
able parameters are geometrically relevant: they are left-
invariant vector and tensor fields.

PDE-G-CNNs have three types of layers: convection, dif-
fusion and erosion/dilation layers. We have shown that these
layers implicitly include standard nonlinear operations in
CNNs such as max pooling and ReLU activation.

To efficiently evaluate PDE evolution in the layers, we
provided tangible analytical approximations to the relevant
kernel operators on homogeneous spaces. In this article, we
have underpinned the quality of the approximations in The-
orems 27 and 30.

With two experimentswe have verified that PDE-G-CNNs
can improve performance over G-CNNs in the context of
automatic vessel segmentation and digit classification. Most
importantly, the performance increase is achieved with a vast
reduction in the amount of trainable parameters.
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Appendix A

A.1 Proof of Lemma 20

The left inequality follows directly from the observation that
ρG(p) is exactly the Riemannian length of the curve

t �→ expG(t logG(gp))p0

for t ∈ [0, 1] and gp = argming∈p

∥∥logG g
∥∥G̃ . This continu-

ous curve connects p0 with p and as such has a greater length
than the minimal length curve between those two points.

For the right inequality, consider the function F : TeG →
R given by

F(v) := dG(p0, π ◦ expG(v))2,

where we recall that π : G → G/H was given by (4). With
the goal of making a Taylor expansion for this function, we
note that:

– at the origin we have F(0) = 0,
– due to the chain rule applied to the squaring we have
dF |0 = 0.

Moreover, due to the to the G-invariance of dG , the function
F is even and consequently the 3rd order term of the Taylor
expansion of F is zero.

For the second-order term, we are looking for the Hessian
H of F at v = 0. We split F into F1 := π ◦ expG and
F2(p) := dG(p0, p)2 and find the Hessian of the composed
function is

H(F2 ◦ F1)|0(v,w)

= HF2|p0 (dF1|0(v), dF1|0(w))

= 2G|p0
(
dπ |e ◦ d expG |0(v), dπ |e ◦ d expG |0(w)

)

= 2 G̃|e
(
d expG |0(v), d expG |0(w)

)

= 2 G̃|e (v, w) .

Putting these facts together, we find:

F(v) = G̃|e(v, v) + O(‖v‖4), (53)

where ‖ · ‖ denotes some arbitrary norm on TeG.
Now we take a linear subspace V of TeG that is indepen-

dent from TeH but so that the span of TeH and V equals the
entire TeG, so that TeH ⊕ V = TeG. Note that G̃|e is only
degenerated along TeH , and so is a full normwhen restricted
to V , i.e., for all v ∈ V , G̃|e(v, v) = 0 only if v = 0. There-
fore, there exists a c > 0 such that for all v ∈ V ,

G̃|e(v, v) > c‖v‖2,
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and so by (53) we have:

F(v) = dG(p0, π ◦ expG(v))2 > c‖v‖2 + O
(
‖v‖4

)
. (54)

Hence, for all v ∈ V close enough to 0 we have:

dG(p0, π ◦ expG(v))2 >
c

2
‖v‖2. (55)

In a neighborhood of the origin, the Lie group exponential
map expG : TeG → G is a diffeomorphism to a neighbor-
hood of e; at the same time π : G → G/H is a smooth
submersion by the Homogeneous Space Construction Theo-
rem [101, Thm 21.17]. Consequently, d(π ◦ expG)|0 : V →
Tp0(G/H) has full rank since π ◦ expG is a local diffeo-
morphism between two spaces (V and G/H ) with the same
dimension; it follows by the inverse function theorem that
there exists a neighborhood V0 of 0 in V and a neighborhood
P0 of p0 in G/H such that π ◦ expG is a diffeomorphism
from V0 to P0. By possibly choosing V0 smaller, we may
assume by (54) that there exists a C ′ > 0 such that for all
v ∈ V0:

G̃|e(v, v) ≤ F(v) + C ′ ‖v‖4,

which, by using (55) yields

G̃|e(v, v) ≤ dG(p0, π ◦ expG(v))2 + CdG(p0, π ◦ expG(v))4,

for all v ∈ V0 and C = C ′ c
2 > 0.

Now take a p ∈ P0, then there exists a w ∈ V0 so that

π ◦ expG w = p.

Call gp = expG w, then the previous inequality gives

∥∥logG gp
∥∥2G̃ ≤ dG(p, p0)

2 + CdG(p, p0)
4 .

Clearly gp ∈ p. Since ρG(p) is the infinum of ‖ logG g‖ for
all g ∈ p, it follows that ρG(p) must also satisfy:

ρG(p)2 ≤ ∥∥logG gp
∥∥2G̃ ≤ dG(p, p0)

2 + CdG(p, p0)
4,

for all p ∈ P0, i.e., all p sufficiently close to p0.
As a corollary, we get that for any compact neighborhood

K ⊂ G/H of p0

ρG(p) ≤ Cmetr dG(p0, p)

for all p ∈ K . We can see this by choosing C2
1 = 1 +

C supp∈P)
dG(p0, p)2, then for all by choosing p ∈ P0 we

have

ρG(p) ≤ C1dG(p0, p).

Let K ⊂ G/H be compact so that it contains P0. Then, on
K \ P0 we have that both ρG and dG(p0, ·) are strictly posi-
tive, continuous and so bounded functions. Consequently,

ρG(p) ≤ sup
p∈K\P0

ρG(p) =: M < ∞,

and

dG(p0, p) ≥ sup
p∈P0

dG(p0, p) =: m > 0,

for all p ∈ K \ P0, which leads to

ρG(p) ≤ M ≤ M

dG(p0, p)
dG(p0, p) ≤ M

m
dG(p0, p).

for all p ∈ K \ P0. Now choose Cmetr = max{C1,C2}, then
we obtain the corollary. Remark that Cmetr depends on both
the parameters of the metric tensor field and the choice of K
and so may become very large indeed. ��

A.2 Proof of Proposition 21

As a preliminary, we prove the following lemma.
Lemma For all g ∈ G, let Lg : G → G be the left group

multiplication given by Lgh = gh and let Rg : G → G be
the right group multiplication given by Rgh = hg. Let H be
a closed subgroup of G with the projection map π : G →
G/H given by π(g) = gH .

Then, for all h ∈ H we have the following relations for
the push forwards:

1. π∗ ◦ (Rh)∗ = π∗,
2. (Lh)∗ ◦ π∗ = π∗ ◦ (Lh)∗.

Proof 1. π ◦ Rh = π since ghH = gH ,
2. Lh ◦ π = π ◦ Lh since h(gH) = (hg)H .

��

Now for the proof of Proposition 21. Consider the set of
all exponential curves in the group whose action connects
p0 ∈ G/H to p ∈ G/H :

�p0,p =
{
γ ∈ Lip([0, 1],G)

∣∣∣

γ (0) = e, γ (1)p0 = p, γ (t + s) = γ (t)γ (s)
}
.

We can then restate ρG equivalently in terms of these curves
as

ρG(p) := inf
g∈P

‖ logG g‖G̃ = inf
γ∈�p0,p

‖γ̇ (0)‖G̃
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since for each g ∈ p we have an exponential curve t �→
expG(t logG g) in �p0,p, and for each exponential curve γ

in �p0,p we have γ (1) ∈ p.
Let γ ∈ �p0,p and let h ∈ H , then

1. hγ (0)h−1 = heh−1 = e,
2. hγ (1)h−1 p0 = hγ (1)p0 = hp,
3. hγ (a + b)h−1 = hγ (a)γ (b)h−1 = (hγ (a)h−1)

(hγ (b)h−1),

fromwhichwe conclude that hγ (·)h−1 ∈ �p0,hp and so there
is a bijection between �p0,p and �p0,hp given by

�p0,hp = h�p0,ph
−1.

Moreover, the bijection preserves the seminorm due to the
G-invariance of G:
∥∥∥
(
hγ (·)h−1

)
(0)

∥∥∥G̃ = ∥∥(Lh)∗
(
Rh−1

)
∗ γ̇ (0)

∥∥G̃
= ∥∥π∗ (Lh)∗

(
Rh−1

)
∗ γ̇ (0)

∥∥G

(using the previous lemma)

= ∥∥(Lh)∗ π∗
(
Rh−1

)
∗ γ̇ (0)

∥∥G
= ‖(Lh)∗ π∗γ̇ (0)‖G
(using the G-invariance of G)

= ‖π∗γ̇ (0)‖G
= ‖γ̇ (0)‖G̃ .

It follows that

ρG(p) = inf
γ∈�p0,p

‖γ̇ (0)‖G̃
= inf

γ∈�p0,p
‖hγ̇ (0)h−1‖G̃

= inf
γ∈�p0,hp

‖γ̇ (0)‖G̃
= ρG(hp).

��
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