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PDE Methods for Nonlocal Models∗

Carlo R. Laing† and William C. Troy‡

Abstract. We develop partial differential equation (PDE) methods to study the dynamics of pattern forma-
tion in partial integro-differential equations (PIDEs) defined on a spatially extended domain. Our
primary focus is on scalar equations in two spatial dimensions. These models arise in a variety
of neuronal modeling problems and also occur in material science. We first derive a PDE which
is equivalent to the PIDE. We then find circularly symmetric solutions of the resultant PDE; the
linearization of the PDE around these solutions provides a criterion for their stability. When a solu-
tion is unstable, our analysis predicts the exact number of peaks that form to comprise a multipeak
solution of the full PDE. We illustrate our results with specific numerical examples and discuss
other systems for which this technique can be used.
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1. Introduction. Pattern formation in neuronal networks is an area of ongoing interest
[10, 11, 12, 13, 19, 26, 31, 35, 37, 40, 42, 43, 53, 54, 59, 60, 65]. In this paper, we investigate
spatially localized regions of high activity, often referred to as “bumps.” These are of interest
in modeling working memory, the ability to remember information over a time-scale of a few
seconds [18, 40, 63, 66]. Experiments on primates show that there exist regions of neurons that
have elevated firing rates during the period that the animal is “remembering” some aspect of
an object or event [17, 29, 45]. These regions are spatially localized in a location determined
by the relevant aspect of the object or event being remembered. Further applications of
pattern formation in neural systems include head-direction systems [58, 67], where a constantly
updated bump of activity represents the current heading of an animal, and feature selectivity
in the visual cortex [12, 13, 37], where bump formation may be related to the “tuning” of a
particular neuron’s response. Similar models to those studied here have been used to model
the “look, plan, reach, remember” dynamics in the perseverative reaching of infants and their
longer term cognitive development [60]. Also, in a recent book, Giese [31] uses systems of
the form (1.1) to study problems related to visual perception of motion, the planning of eye
movements, and robot navigation.

Realistic models for these types of activity involve spatially extended systems of coupled
neural elements and the study of localized areas of high activity in these systems. Previous
studies have focused on nonlocal rate models [1, 2, 3, 10, 11, 12, 13, 31, 37, 42, 53, 54, 66],

∗Received by the editors February 12, 2003; accepted for publication (in revised form) by T. Kaper May 25, 2003;
published electronically September 17, 2003.

http://www.siam.org/journals/siads/2-3/60004.html
†Institute of Information and Mathematical Sciences, Massey University, Private Bag 102-904, North Shore Mail

Centre, Auckland, New Zealand (c.r.laing@massey.ac.nz).
‡Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260 (troy@math.pitt.edu).

487

http://www.siam.org/journals/siads/2-3/60004.html
mailto:c.r.laing@massey.ac.nz
mailto:troy@math.pitt.edu


488 CARLO R. LAING AND WILLIAM C. TROY

in which a neural element is described by a scalar variable (e.g., a firing rate), and more
complicated “spiking neuron” models [18, 35, 40, 63], which take into account the intrinsic
dynamics of single neurons. We concentrate here on rate models exclusively.

In this paper, our goal is to develop PDE methods to analyze the dynamics of localized
pattern formation in rate models of the form

∂u(x, y, t)

∂t
= −u(x, y, t) +

∫∫

Ω
w(x− q, y − s)f(u(q, s, t)− th) dq ds,(1.1)

where Ω ⊂ R2. In the context of the neuronal models discussed above, u(x, y, t) represents
the synaptic input to a neuron at position (x, y) ∈ Ω at time t, w denotes the connectivity,
or coupling, between neural elements, f(u(x, y, t)− th) is the firing rate of the neuron at the
position (x, y), and th is the threshold of excitation. Equations of the form (1.1) and its one-
dimensional analogue have been used extensively in neural modeling [11, 12, 13, 26, 31, 37, 40,
43, 59, 65]. However, most of the previous attention has been focused on the one-dimensional
analogue of (1.1):

∂u(x, t)

∂t
= −u(x, t) +

∫

Ω
w(x− y)f(u(y, t)− th) dy.(1.2)

Because of the lower dimensionality of this system, it is easier to study than (1.1), and for
applications such as the head-direction system and feature selectivity in the visual system this
one-dimensional system may be appropriate, since the independent variable x corresponds to
a one-dimensional quantity, an angle. However, the cortex is an essentially two-dimensional
sheet, and thus (1.1) is a more realistic model for pattern formation in a neuronal system.

Little analytical work has been done on (1.1). Specifically, there are results relating to
circularly symmetric solutions [59, 65], for which the two-dimensional problem is effectively
reduced to a one-dimensional one. There has also been some very recent work on a “two
layer” analogue of (1.1), where the activity of two populations of neurons are modeled [25].
However, these authors primarily studied target patterns, which also have circular symmetry.
Also, Bressloff et al. have studied (1.1) on a sphere [12] and have also considered this equation
when there is a lattice of inhomogeneities in the domain, using the symmetry of this lattice
to determine the types of solution that can occur [11, 13].

Equations similar to (1.1) and (1.2) also occur in material science [5, 6, 7, 8, 16, 27, 28].
An often-studied equation is

∂u(x, t)

∂t
= −ju+ f(u) +

∫ ∞

−∞
w(x− y)u(y, t) dy,(1.3)

where j =
∫∞
−∞w(x) dx, w represents nonlocal interactions, and f typically has three zeros.

Physically important solutions include heteroclinic, homoclinic, and periodic orbits. Solutions
remain continuous when the function g(u) ≡ ju−f(u) is monotonic. In this case, the equation
v = g(u) can be inverted to give u = h(v) ≡ g−1(v), and (1.3) becomes

h′(v)
∂v(x, t)

∂t
= −v(x, t) +

∫ ∞

−∞
w(x− y)h(v(y, t)) dy.(1.4)
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The similarities between (1.4) and its two-dimensional generalization, and (1.2) and (1.1),
suggest that many of the results presented here will also be applicable to those models.

Our main focus will be on the two-dimensional model (1.1). We will develop techniques
which describe how families of multibump solutions form when the coupling function w(x, y)
is a function of distance in R2 only, i.e.,

w(x, y) = w
(√
x2 + y2

)
.(1.5)

Solutions of (1.1) are translationally invariant when (1.5) holds.

Our approach is twofold: first, we develop a method to derive a fourth order PDE which
is equivalent to the integral equation. To our knowledge an equivalent PDE for the two-
dimensional problem has not previously been derived. Second, we will analyze the PDE and
develop techniques which show how families of peaks form when circularly symmetric steady
states of (1.1) are unstable.

We hope that the insights obtained by considering coupling functions satisfying (1.5) will
provide a basis for extensions to more complicated settings. For example, in the cortex it is
important to consider connectivity functions that incorporate the “patchy” nature of neural
connections [9, 34, 44], which break the translational invariance of the system. As mentioned
above, Bressloff et al. have studied this effect [11, 13].

One assumption in studying (1.1) and (1.2) is that the behavior of neurons can be charac-
terized by their firing rate alone and, more importantly, that excitatory and inhibitory neurons
can be represented by a single population with a connectivity function that takes both posi-
tive and negative values. A more realistic approach would involve two variables, representing
the activities of the excitatory and inhibitory populations, and coupling functions between
and within the populations that are nonnegative. Although our models are less realistic in
the sense that we use only one population, lumping the excitatory and inhibitory neurons
together, they have the advantage of involving only one variable.

Note that we are not addressing the processes involved in the formation of the connectiv-
ities represented by w(x) but are instead interested in the possible patterns of neural activity
that can exist in the system once these connectivities are in place.

Overview. In the next section, we summarize previous results for one-dimensional models.
The insights obtained in the study of the one-dimensional case play an important role in
section 3, where we study two-dimensional models. Section 3 begins with numerical results
which show the types of multibump solutions that can arise for specific examples. We then
proceed with our analytical approach in which we (i) derive a PDE which approximates the
integral equation and (ii) show how an appropriate linearization of the PDE will lead to a
prediction of the exact number of peaks that form when a circularly symmetric solution is
unstable. At the end of section 3, we show how families of 3-bump, 7-bump, and 12-bump
solutions form for a specific example. Section 4 gives a summary of our results and some
directions for future study.

2. Background: One-dimensional models. Much of the present research into rate models
stems from the early work of Wilson and Cowan [66] and subsequent studies by Amari [1, 2, 3]
and Kishimoto and Amari [39]. These authors model the dynamics of a single layer of neurons
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Figure 2.1. An example of a coupling function giving “lateral inhibition” (positive for small |x| and negative
for large |x|).

with rate equations of the form

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)f(u(y, t)) dy + s(x, t) + h.(2.1)

Here u(x, t) is the synaptic input to a neural element at time t ≥ 0 and position x ∈ (−∞,∞),
w(x) determines the coupling between elements, and f(u) gives the firing rate of a neuron
with input u. Neurons are said to be “active” if f(u(x, t)) > 0. The function s(x, t) denotes
a variable external stimulus, and h is a constant stimulus applied to the entire field.

In [2], Amari set f(u) = H(u), where H(u) is the Heaviside function, and assumed the
following:
(H1) w > 0 and w′ < 0 on an interval (0, x̄), w(−x̄) = w(x̄) = 0, and w(x) < 0 if |x| > x̄.
(H2) w is a continuous even function, and

∫∞
−∞w(y) dy is finite.

An example of this “lateral inhibition”–type coupling is given in Figure 2.1. He then analyzes
stationary solutions of (2.1) when s(x, t) = 0. Setting ∂u(x, t)/∂t = 0 reduces (2.1) to

u(x) =

∫ ∞

−∞
w(x− y)H(u(y)) dy + h.(2.2)

The “region of excitation” of a stationary solution is the set R(u) = {x|u(x) > 0}. A 1-bump
solution is a solution whose region of excitation is a finite interval. If the region of excitation
consists of N ≥ 1 disjoint finite intervals, then u(x) is an N -bump solution. In [1, 2], Amari
analyzes the existence, multiplicity, and stability of 1-bump solutions of (2.2).

In [43], we extended Amari’s work and chose a specific w(x), which changes sign infinitely
often. For simplicity, we set s(x, t) ≡ 0 and studied

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)f(u(y, t)− th) dy,(2.3)

where

w(x) = e−b|x|(b sin |x|+ cosx) and f(u) = 2e−τ/u2

H(u),(2.4)
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and b, th, and τ are positive constants. The parameter b controls the rate at which oscillations
in w decay with x, th is the threshold (effectively replacing h in (2.1)), and τ controls the
slope of f(u). Note that f(u) is a C∞ extension of (twice) the Heaviside function when τ > 0,
and f(u− th) = 0 if u ≤ th. An example of w and f are shown in Figure 2.2.
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Figure 2.2. Examples of w(x) (left) and f(u) (right) (2.4). Parameters are b = 0.25, th = 1.5, and τ = 0.005.

It is thought that the oscillatory form of coupling, (2.4), better represents the connectivity
known to exist in the prefrontal cortex, where labeling studies have shown that coupled
groups of neurons have “patchy” distributions, with a characteristic distance between patches
[9, 34, 44].

As before, we define a stationary solution of (2.3)–(2.4) to be a solution of

u(x) =

∫ ∞

−∞
w(x− y)f(u(y)− th) dy.(2.5)

To compare the two-dimensional results in the next section with the one-dimensional case,
we give a brief derivation of the PDE and ODE which are equivalent to (2.3) and (2.5). We
use the Fourier transform, defined by F̂(g) =

∫∞
−∞ e

−iαηg(η) dη, where g ∈ L1(R) and α ∈ R.
Assume that u satisfies (2.5) and that u and ut are continuous and integrable for x ∈ R.
Applying the Fourier transform to (2.3) and using its convolution property, we obtain

F̂(u+ ut) = F̂(w)F̂(f(u− th)).(2.6)

Evaluating F̂(w) results in

F̂(u+ ut) =
4b(b2 + 1)

α4 + 2α2(b2 − 1) + (b2 + 1)2
F̂(f(u− th)).(2.7)

Next, multiplying (2.7) by α4 + 2α2(b2 − 1) + (b2 + 1)2 and taking the inverse Fourier trans-
form of both sides, we obtain the PDE

(u+ ut)xxxx − 2(b2 − 1)(u+ ut)xx + (b2 + 1)2(u+ ut) = 4b(b2 + 1)f(u− th).(2.8)

This PDE is exactly equivalent to the partial integro-differential equation (PIDE) (2.3). Using
this equivalence and setting ut = 0 in (2.8), we see that N -bump stationary solutions of (2.3)
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Figure 2.3. Stable 2-bump (left) and 3-bump (right) solutions of (2.3)–(2.4). Parameters are τ = 0.1,
th = 1.5, and b = 0.25.
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Figure 2.4. Bifurcation diagram for N-bump solutions of (2.9) when N is odd. The vertical axis is the L2

norm of the solution. Parameters are τ = 0.1, th = 1.5.

must satisfy the ODE problem

{
u′′′′ − 2(b2 − 1)u′′ + (b2 + 1)2u = 4b(b2 + 1)f(u− th),
limx→±∞(u, u′, u′′, u′′′) = (0, 0, 0, 0).

(2.9)

In summary, by a judicious choice of coupling function w, we have exactly transformed the
PIDE (2.3) into the PDE (2.8), whose stationary solutions satisfy the ODE problem (2.9). The
new work in this paper consists of applying similar ideas to the two-dimensional system (1.1).

Numerical results. In [43], we solved (2.3) with initial conditions of the form

u(x, 0) = cos

(
Lx

12.5π

)
exp

(
−
(
Lx

12.5π

)2
)
, −12.5π < x < 12.5π,(2.10)

for different values of L (dashed curves in Figure 2.3). For appropriately chosen L, the initial
condition evolves into a stationary N -bump solution which satisfies (2.9). To understand the
global structure of solutions, we then used AUTO97 [22] to continue these N -bump solutions
as b varied. This resulted in the bifurcation diagram shown in Figure 2.4, where Γ+

N and Γ−
N

are branches of stable and unstable N -bump solutions. (N is odd in this diagram—a similar
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diagram showing families of N -bump solutions exists when N is even.) For N ≥ 3, solutions
arise at b = 0 through a bifurcation from a periodic orbit. Figure 2.4 suggests that a “snaking”
phenomenon occurs in the branches of the bifurcation curve; solutions gain more bumps as
the L2 norm of the solution increases, with branches of stable solutions separated by branches
of unstable solutions. See [43] for more details. Similar phenomena occur in other higher
order ODE models [19, 38, 52]. For some applications, it is important to find ways to steer
a system from one stable N -bump configuration to another. For example, switching from an
N -bump to a 1-bump solution is of particular interest in the work of Thelen et al. [60], as it is
proposed that this represents the process of decision-making by infants in the face of multiple
choices.

3. The two-dimensional model. In this section, we analyze the formation of N -bump
solutions in the two-dimensional model

∂u(x, y, t)

∂t
= −u(x, y, t) +

∫∫

Ω
w(x− q, y − s)f(u(q, s, t)− th) dq ds,(3.1)

where f(u) is a positive multiple of the firing function defined in (2.4) and w(x, y) satis-
fies (1.5). Stationary solutions of (3.1) satisfy the associated equation

u(x, y) =

∫∫

Ω
w(x− q, y − s)f(u(q, s)− th) dq ds.(3.2)

For a given solution u of (3.2), we define its region of excitation to be

R(u) = {(x, y)| u(x, y) > th}.(3.3)

A solution of (3.2) is an N -bump solution if its region of excitation consists of N finite disjoint
components.

We will address the following basic questions:
(i) Is there a correspondence between families of N -bump solutions in one dimension

and those in two dimensions? Do solutions exist in two dimensions that do not have
one-dimensional counterparts?

(ii) What are the dynamics responsible for the formation of N -bump solutions? How can
we derive a PDE that is equivalent to (3.1)?

3.1. Numerical examples. Thus far we have numerical results for three specific systems
[42, 43]. The first is (3.1) with f(u) = H(u) and

w(x, y) = Ke−k
√

x2+y2 −Me−m
√

x2+y2

.(3.4)

In polar coordinates, (3.4) becomes w(r) = Ke−kr −Me−mr. If K > M and k > m, then
w(r) has one positive zero. Figure 3.1 (upper left panel) shows a numerically stable 2-bump
solution on a 10× 10 square domain. Here K = 3.5, k = 1.8, M = 2.8, m = 1.52, and th = 0.
In our study of the one-dimensional case, we found that stable 2-bump solutions could not
exist for these parameter values, yet this computation suggests that stable 2-bump solutions
do exist in two dimensions. We conjecture that this property can be explained using the
analytical approach described in section 3.3.
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Figure 3.1. Examples of multibump solutions for couplings (3.4), (3.5), and (3.6). See text.

In our second example, we solve the two-dimensional analogue of (2.1) on a 40× 40 grid
with f(u) = H(u), s(x, t) ≡ 0, and h = −1, and with the following coupling (studied in [42]):

w(x, y) = 2e−k
√

x2+y2 [
1− d1(x2 + y2) + d2(x

2 + y2)2 − d3(x2 + y2)3
]
.(3.5)

In polar coordinates, (3.5) becomes w(r) = 2e−kr(1−d1r2+d2r4−d3r6). For the choice of pa-
rameters (k, d1, d2, d3) = (1, 23 ,

1
18 ,

1
1200) the function w(r) has three positive zeros. Figure 3.1

(upper right) shows a numerically stable 2-bump solution for this case.

The third problem we have studied consists of (3.1), with the firing rate coupling (2.4)
and with the coupling function

w(x, y) = e−b
√

x2+y2

(
b sin

(√
x2 + y2

)
+ cos

(√
x2 + y2

))
,(3.6)
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where b > 0. The coupling in (3.6) is the two-dimensional analogue of (2.4). In polar coordi-
nates, (3.6) becomes w(r) = e−br(b sin r+cos r), and w(r) has infinitely many zeros. Figure 3.1
(lower panels) shows two numerically stable solutions computed on a square domain of size
40×40. For b = 0.3, the solution fills the entire domain with bumps (lower right panel). A sim-
ilar “progressive recruitment” phenomenon is found by Gutkin, Ermentrout, and O’Sullivan
in a one-dimensional model [34]. Usher, Stemmler, and Olami [62] found similar patterns in a
stochastic model of spiking neurons that had short-range excitation and long-range inhibition.
Raising b to b = 0.4, we find a 3-bump solution (lower left panel). As in the one-dimensional
case, other N -bump solutions coexist.

3.2. Circularly symmetric solutions. Our numerical study shows that (3.1) has a rich
structure of stable N -bump solutions for a wide range of coupling functions. In section 3.3,
we will describe the fundamental role of circularly symmetric solutions in the formation of
these solutions. To set the stage for section 3.3, our goal here is to summarize the important
properties of the circularly symmetric solutions.

In polar coordinates, writing x = r cos θ, y = r sin θ, q = η cosα, s = η sinα, (3.1) becomes

∂u(r, θ, t)

∂t
= −u+

∫ ∞

0

∫ 2π

0
w
(√
r2 + η2 − 2rη cos (θ − α)

)
f(u(η, α, t)− th)η dα dη.(3.7)

Stationary solutions of (3.7) satisfy

u(r, θ) =

∫ ∞

0

∫ 2π

0
w
(√
r2 + η2 − 2rη cos (θ − α)

)
f(u(η, α)− th)η dα dη.(3.8)

A solution is a circularly symmetric 1-bump solution if u is independent of θ and there is an
R0 > 0 such that

u(r) > th for 0 < r < R0, u(R0) = 0, and u(r) < th for r > R0.(3.9)

Since u is assumed to be independent of θ, we set θ = 0, and (3.8) reduces to

u(r) =

∫ R0

0

∫ 2π

0
w
(√
r2 + η2 − 2rη cosα

)
f(u(η, α)− th)η dα dη.(3.10)

Thus a 1-bump circularly symmetric solution satisfies (3.9)–(3.10). When N > 1, circularly
symmetric N -bump solutions are similarly defined.

Thus far, the only analytical results for circularly symmetric solutions are those given by
Taylor [59] and Werner and Richter [65]. Taylor [59] discusses the case f(u) = H(u), in which
case u(r) satisfies

u(r) =

∫ R0

0

∫ 2π

0
w
(√
r2 + η2 − 2rη cosα

)
η dα dη(3.11)

for couplings of the form

w(r) = Ke−kr2 −Me−mr2 ,(3.12)
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where K > M > 0 and k > m > 0. He classifies some of the solutions and discusses their
stability with respect to perturbations that vary only the radius of the solution. Werner and
Richter [65] also discuss solutions of (3.11), in particular, circular and ring solutions, some
of which were not found by Taylor. They also discuss the stability of these solutions with
respect to perturbations that vary only the radius of the solution. In the next section, we will
show how circularly symmetric N -bump solutions play an important role in the formation of
asymmetric N -bump patterns.

We end this section by stating an open problem. Suppose that the region of excitation of
a solution of (3.8) is a disc and that the firing rate function is a continuous increasing function
of u. Then is it the case that u must be independent of θ? Or is it possible that there are
coupling functions for which solutions exist which are not circularly symmetric? For elliptic
PDEs the analogous problem of classifying positive solutions on a disc is very important and
has been extensively studied [30, 57].

3.3. Noncircularly symmetric solutions: The PDE approach. There have been few at-
tempts to analyze solutions of (3.1) that do not have circular symmetry. Recently we have
made progress on this problem by successfully deriving a PDE that is equivalent to the
PIDE (3.1). We have also developed a method of analysis of the PDE which explains the
formation of N -bump solutions similar to those in Figures 3.7, 3.8, and 3.12. Our approach
is described below.

The first step is to apply the two-dimensional Fourier transform, defined by F (g) ≡
(2π)−1

∫∞
−∞

∫∞
−∞ e

−i(αx+βy)g(x, y)dx dy to (3.1). Note that F (g) is a function of α and β. We
obtain

F (u+ ut) = F (w)F (f(u− th)).(3.13)

For functions w(x, y) that depend only on
√
x2 + y2, it is known that F (w) is a function of√

α2 + β2 only. See Appendix A for a short proof. The coupling functions given in (3.4),
(3.5), and (3.6) satisfy these properties. However, in each case F (w) has a complicated form
which prevents the use of (3.13) to derive a PDE. To circumvent this problem, we approximate
F (w) by a rational function, G, of

√
α2 + β2 containing only even powers of its argument. The

rationale behind this is the same as for the one-dimensional case: we are using the observation
that F (∇2f) = −(α2 + β2)F (f).

We begin by choosing functions of the form

G
(√
α2 + β2

)
=

A

B + (α2 + β2 −M)2
,(3.14)

where A, B, and M are parameters. Once G is known, the approximate coupling function
ŵ(x, y) is given by the inverse two-dimensional Fourier transform of it. Because of the sym-
metry of G, this reduces to a Hankel transform of order 0:

ŵ(r) =

∫ ∞

0
sG(s)J0(rs) ds,(3.15)

where J0 is the Bessel function of the first kind of order zero (see Appendix A). In Figure 3.2,
we illustrate an example of a coupling function ŵ when G is of the form (3.14). Note the
similarity between this coupling function and the coupling function (3.6).
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Figure 3.2. ŵ(r) (3.15) for parameter values M = 1, A = 0.4, and B = 0.1.

We now derive the PDE. First, replace F (w) in (3.13) with (3.14). Next, multiply both
sides of (3.13) by B + (α2 + β2 −M)2 and take the inverse two-dimensional Fourier transform
to obtain

∇4(u+ ut) + 2M∇2(u+ ut) + (B +M2)(u+ ut) = Af(u(x, y, t)− th).(3.16)

This equation is exactly equivalent to the PIDE (3.1) if w is given by (3.15), where F (w) is
given by (3.14). It is interesting to note that the derivative of u with respect to time cannot
be separated from (3.16).

One can view this process of derivation of a PDE in two different ways. One is that, given a
coupling w(r), we can find its Fourier transform and then approximate that by an appropriate
rational function of

√
α2 + β2. This rational function can then be used to derive a PDE whose

dynamics will in some way approximate the dynamics of the original PIDE. The other way
to view it is that we define w(r) through (3.15) and, by varying the parameters A, B, and M
in (3.14) (or in another appropriate rational function of

√
α2 + β2), move through the space

of possible coupling functions that can be treated this way. From this second point of view,
there are no approximations made, but the tradeoff is that, by restricting G to be only rational
functions of

√
α2 + β2 with even powers of its argument, we may not be able to investigate

all coupling functions w(r) of interest. See section 3.5 for more discussion.
We now seek circularly symmetric solutions of (3.16). Under the assumption that u is not

a function of θ, (3.16) becomes
[
∂4

∂r4
+
2

r

∂3

∂r3
− 1

r2
∂2

∂r2
+

1

r3
∂

∂r
+ 2M

(
∂2

∂r2
+
1

r

∂

∂r

)

+B +M2

](
u+
∂u

∂t

)
= Af(u− th).(3.17)

Stationary solutions of (3.17) satisfy the ODE boundary value problem
{
u′′′′ + 2

ru
′′′ − 1

r2
u′′ + 1

r3
u′ + 2M

(
u′′ + 1

ru
′
)
+ (B +M2)u = Af(u(r)− th),

u′(0) = u′′′(0) = 0, and limr→∞(u, u′, u′′, u′′′) = (0, 0, 0, 0).
(3.18)
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In order to determine the stability of a stationary solution ũ(r) of (3.17), we linearize the full
PDE (3.16) around it. To do this, we follow [20] and write

u(r, θ, t) = ũ(r) + µν(r, t) cos (mθ),(3.19)

where µ is a small parameter, ν(r, t) is a perturbation function, and m ≥ 0, an integer, is the
azimuthal index. We choose this form of solution in order to investigate solutions that break
the circular symmetry of the system. Substituting (3.19) into (3.16) and linearizing in µ, we
obtain a PDE for ν:

[
∂4

∂r4
+
2

r

∂3

∂r3
+

(
2Mr2 − 2m2 − 1

r2

)
∂2

∂r2
+

(
2m2 + 1 + 2Mr2

r3

)
∂

∂r

+
m4 − 4m2 + (B +M2)r4 − 2Mm2r2

r4

](
ν +
∂ν

∂t

)
= Af ′(ũ− th)ν.(3.20)

Since this is a linear equation in ν, we expect the solution to be of the form ν(r, t) ∼ ν(r)eλt
as t → ∞, where λ is the most positive (real) eigenvalue and ν(r) is the corresponding
eigenfunction. In order to determine the stability of a particular circularly symmetric solution
with radial profile ũ(r), we substitute ũ(r) into (3.20), and for each integer m ≥ 0 we find the
largest value of λ(m). Then we determine the positive integer N at which λ is the greatest.
If λ(N) > 0, then the solution with radial profile ũ(r) is unstable. Our analysis predicts that
N bumps will form if the initial condition for (3.16) consists of a small random perturbation
of the circularly symmetric solution whose radial profile is ũ(r). The distance from the origin
at which these N bumps appear is determined by the shape of the eigenfunction ν(r) (see
examples below).

To numerically determine λ and ν(r), we integrated (3.20) with a randomly chosen initial
condition ν(r, 0). In general this is composed of many eigenfunctions, but due to the exponen-
tial growth or decay in time, for large t, ν(r, t) is dominated by the eigenmode with the most
positive corresponding λ. The quantity λ can thus be determined by plotting the log of the
norm of ν(r, t) as a function of time and measuring the slope of the corresponding graph after
transients have died away. The eigenfunction ν(r) is simply ν(r, t) when t is large, suitably
scaled in amplitude if necessary. This process was repeated with a number of different random
initial conditions to verify that they did not affect the determination of λ and ν. In all of our
experiments, we found that the eigenfunctions either grew or decayed monotonically in time
as t → ∞. This reinforces our assumption that the dominant eigenvalue is real. It would be
interesting to investigate this further and provide a proof to rigorously determine the nature
of the dominant eigenvalue.

Below we use the procedures described above to compute specific multibump solutions.
To solve the PDEs (3.17) and (3.20), we used a finite difference scheme with 100 equally
spaced r values in the interval (0, 30] and an Euler step in time of length dt = 0.5. Boundary
conditions were u = ∂u/∂r = 0 at r = 30. We solved the full PDE (3.16) on the disc
Ω = {(r, θ)|0 ≤ r ≤ 30, 0 ≤ θ ≤ 2π} with boundary conditions u = ∂u/∂r = 0 at r = 30
for all θ ∈ [0, 2π]. Here we also used a finite difference scheme, discretizing the disc Ω into a
100×90 grid of (r, θ) values. In the t direction we again used an Euler step of length dt = 0.5.
The results shown were insensitive to changes in the time-step size, the number of points used
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in the spatial discretization, and whether finite-difference or spectral methods [61] were used
to approximate the spatial derivatives.

3.4. Examples of multibump formation. In this section, we demonstrate how three dif-
ferent families of multibump solutions form. The first is a 3-bump solution, the second is
a 12-bump solution, and the third is a 7-bump solution. Throughout we use the parameter
values M = 1, A = 0.4, and B = 0.1 in (3.14). For the firing rate we use

f(u) = e−τ/u2

H(u).(3.21)

This function is a scalar multiple of the function in (2.4) and is a natural extension of the
Heaviside function H(u) (i.e., (3.21) reduces to the Heaviside function when τ = 0). We fix
τ = 0.1 in (3.21). The first step is to find a circularly symmetric solution. For this we set
th = 0.25 and solve (3.17) to obtain the solution shown in Figure 3.3 (left, solid curve). Note
that this is only one of a number of stable solutions; it was selected by letting the initial
condition u(r, 0) be an appropriately chosen Gaussian.

u

r

1

−2

4 10

th=.25

16

.25 m

3

λ

0

.3

−.3

Figure 3.3. Left: Stable solution of (3.17) (solid curve, defined as γ1 in the text), and the eigenfunction
corresponding to m = 3 (dashed). The solution is the one at P1 in Figure 3.4. Right: λ as a function of m for
the solution in the left panel.

Next, we use AUTO97 [22] (applied to the system (3.18)) to continue this solution as
the parameter th varies. Figure 3.4 shows the resulting bifurcation curve. The vertical axis
is the maximum value of a solution, and the horizontal axis denotes the parameter th. The
bifurcation curve has multiple folds (compare with Figure 2.4), and solutions gain more bumps
as umax increases. For example, at th = 0.25 there are several coexisting solutions, three of
which are denoted by the points P1, P2, and P3.

The solutions corresponding to these points are shown in Figures 3.3, 3.5, and 3.6, re-
spectively. We have studied the stability of these solutions using (3.20), and for each we have
computed the corresponding function λ(m), shown in the right panels of Figures 3.3, 3.5,
and 3.6.
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Figure 3.4. Bifurcation diagram for solutions of (3.18) satisfying u(0) < 0 and u′′(0) > 0. The solutions
at P1, P2, and P3 are shown in Figures 3.3, 3.5, and 3.6, respectively. Branches marked with a “+” sign are
stable solutions of (3.17).
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Figure 3.5. Left: Unstable stationary solution of (3.17) corresponding to the point P2 in Figure 3.4. The
dashed line is u = th. Right: λ vs. m for the solution in the left panel. Note that λ(0) > 0, and hence we see
the instability of the solution.

3.4.1. The formation of a 3-bump solution. Define γ1 to be the solution of (3.18) shown
with a solid curve in the left panel of Figure 3.3 and Γ1 to be the surface obtained by rotating
γ1 through a full circle about the line r = 0. Note that the positive parts of Γ1 form a set of
concentric annuli (see Figure 3.7, top left). Figure 3.3 (right panel) shows that for γ1, λ < 0
when m = 0. This implies that γ1 is actually a stable solution of (3.17). (Indeed it must be,
as we found it by numerically integrating (3.17).) We also see that m = 3 is the integer with
the largest value of λ and that λ(3) is positive. The eigenfunction corresponding to m = 3
is shown in the left panel of Figure 3.3 (dashed curve). Its largest peak is centered over the
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Figure 3.6. Left: Stable stationary solution of (3.17) (solid curve) corresponding to P3 in Figure 3.4
(defined to be γ3 in the text), and the eigenfunction corresponding to m = 9 (dashed). Right: λ vs. m for the
solution in the left panel.

first positive bump of γ1. Therefore, we expect any instability of Γ1 in the full PDE (3.16) to
have three-fold rotational symmetry and to appear at the annular part of Γ1 corresponding to
the first positive bump of γ1. That is, if the initial condition of (3.16) is a small perturbation
from Γ1, we predict that the resulting solution will evolve into a 3-bump solution. Figure 3.7
illustrates that this is what happens. The upper left panel shows the initial condition, a
small random perturbation of Γ1 (the circularly symmetric solution generated by rotating γ1
through a full circle). The next two panels illustrate the formation of a 3-bump solution as
t increases from t = 0 to t = 30. If the integration is continued past t = 30, the 3-bump
solution stimulates nearby regions and more bumps form, eventually filling the entire region
(not shown). The resulting pattern is similar to that seen in the lower right panel of Figure 3.1.
However, if we raise the threshold from th = 0.25 to th = 0.3 at t = 30, the nearby regions
are not sufficiently stimulated, and the (now stable) 3-bump pattern persists (compare with
Figure 3.1, lower left).

We now briefly describe properties of the solution corresponding to P2, shown in the left
panel of Figure 3.5. This solution has two intervals on which u > th and is an unstable solution
of (3.17) since λ(0) > 0. Note that we had to use AUTO97 to find this solution due to its
instability. (Note also that it is not a stable solution of (3.16)).

3.4.2. The formation of a 12-bump solution. We now focus on the stationary solution
of (3.17), which we define as γ3, corresponding to the point P3 in Figure 3.4 (see Figure 3.6).
Upon rotation through a full circle about the line r = 0, γ3 generates the multiring annular
solution which we define to be Γ3, similar to that shown in the upper left panel of Figure 3.8.
γ3 is a stable solution of (3.17) since λ(0) < 0. However, it is an unstable solution of (3.16)
since for some m, λ(m) > 0. (Indeed, m = 9 is the integer with the largest positive λ.)
The eigenfunction corresponding to m = 9 is shown dashed in Figure 3.6 (left). The largest
peak of the eigenfunction is centered over the second positive bump of γ3. Thus, if a small
perturbation of Γ3 was used as the initial condition for (3.16), we predict that the solution
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Figure 3.7. The 3-peak solution resulting from the instability of the circularly symmetric solution whose
radial profile is given by the solid curve in Figure 3.3 (left). Top left: Initial condition (a small random
perturbation of Γ1). Top right: At t = 25. Bottom left: At t = 35. Bottom right: Level curve diagram at
t = 35. Clicking on the top left or bottom right panels will show movies of the development of the solution from
different viewpoints.

would develop 9-fold rotational symmetry, with the nine new bumps appearing in place of
the annulus corresponding to the second positive bump of γ3. That is, we predict that the
second ring will break into nine bumps. In Figure 3.8 we see that this is what happens. As t
increases from t = 0 to t = 25, the inner ring retains its circularly symmetric structure.

Although it is not easily seen in Figure 3.8, there is a subtle two-step process that happens
next. First, as t increases from t = 25, the amplitude of the inner ring shrinks until the inner
ring (taken in isolation) is the same size as the single ring shown in the upper left panel of
Figure 3.7. (Recall that this solution corresponds to the point P1 in Figure 3.4.) After this
point, the inner ring begins its evolution into a 3-bump structure, while the outer nine bumps
remain (lower panels of Figure 3.8). To understand the “shrinking” phenomenon, we have a

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60004_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60004_02.mpg
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Figure 3.8. The formation of a 12-peak pattern resulting from the instability of the circularly symmetric
solution whose radial profile is given by the solid curve in Figure 3.6 (left), the axially symmetric solution at
P3. Top left: Initial condition (a small random perturbation of Γ3). Top right: t = 25. Lower panels: t = 50
(left), and corresponding level curve diagram (right). Clicking on the top left or bottom right panels will show
movies of the development of the solution from different viewpoints.

plausible explanation based on the following calculation: First, we let the initial condition for
a solution of (3.17) consist of the function which is equal to γ3 until its first negative-going zero
crossing and which is zero otherwise. (This initial condition is shown dashed in Figure 3.9.)
Next, we solved (3.17) with this initial condition and found that the solution quickly shrank
in amplitude and evolved into γ1 (shown in Figure 3.3), which corresponds to the point P1

in Figure 3.4. Since we know that Γ1 breaks into a 3-peak structure under the dynamics
of (3.16), we expect the “shrunken” inner ring to begin breaking into a 3-peak structure as t
increases further. Figure 3.8 shows that this is indeed what happens.

3.4.3. The formation of a 7-bump solution. For our third example, we consider the
class of circularly symmetric solutions consisting of a central peak surrounded by one or more

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60004_03.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60004_04.mpg
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Figure 3.9. The dashed curve shows the initial condition for (3.17) (its construction is given in the text),
and the solid line shows the stable stationary state, u(r, 100). The line u = th is also shown.
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Figure 3.10. Left: Stable solution of (3.17) (solid, defined as γ4 in the text) corresponding to the point Q1

in Figure 3.11, and the eigenfunction (dashed) corresponding to m = 6. Right: λ as a function of m for the
solution in the left panel. Parameters are th = 0.25, M = 1, A = 0.4, B = 0.1, r = 0.1.

annular rings. To find one such solution we again set th = 0.25 and solved (3.17). The
resulting curve is shown (solid line) in Figure 3.10 (left). We denote it by γ4 and denote by
Γ4 the surface produced by rotating γ4 through a full circle about the line r = 0 (Figure 3.12,
upper left). The initial condition was chosen so that the system (3.17) approached a solution
with u(0) > 0, in contrast with the solutions previously studied in this section.

The solution γ4 satisfies the ODE (3.18) with initial conditions of the form

u(0) > 0, u′(0) = 0, u′′(0) < 0, u′′′(0) = 0.(3.22)

As in the previous examples, we use AUTO97 to continue the solutions of (3.18) as the
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Figure 3.11. Bifurcation diagram for solutions of (3.18) satisfying u(0) > 0 and u′′(0) < 0. The solution at
Q1 is shown in Figure 3.10 (left). The “+” signs indicate that a particular branch is a stable solution of (3.17).
The “ ∗” signs indicate stable solutions of (3.16), i.e., λ < 0 for all m. At the critical value th ≈ 0.05, there is
a change in stability. See text.

parameter th varies. Figure 3.11 gives the resultant bifurcation curve. Again, the curve has
multiple folds, and solutions gain more bumps as umax increases (compare with Figure 3.4).
The point Q1 in Figure 3.11 represents γ4. We numerically solve (3.20) with ũ = γ4 to
determine its stability. The corresponding plot of λ as a function of m is shown in Figure 3.10
(right). We see that γ4 is a stable solution of (3.17) since λ < 0 whenm = 0. However, Γ4 is an
unstable solution of (3.16) since λ > 0 for some m > 0. (m = 6 is the integer with the largest
positive λ.) The eigenfunction corresponding to m = 6 is shown dashed in Figure 3.10 (left).
Its largest component is concentrated near the second positive bump of γ4, corresponding to
the innermost annular ring of Γ4. Thus, if the initial condition of (3.16) is a small random
perturbation of Γ4, we expect the innermost annular ring of the solution to break into six
bumps, which will surround the central peak, resulting in a total of seven bumps. Figure 3.12
shows that this is indeed what happens.

3.4.4. Discussion. In this section, we have investigated the formation of three particular
multibump patterns. These are not the only three, as there are many more solutions of (3.18),
with more superthreshold oscillations before their decay to zero at r = ∞. These can presum-
ably be analyzed in the same way as we have done here and will all lead to different patterns
being formed.

We have presented one particular way of forming multibumps here, namely, finding cir-
cularly symmetric solutions that are unstable with respect to perturbations that break the
circular symmetry and using small perturbations of these circularly symmetric solution as
initial conditions for fixed parameter values. Another, perhaps more realistic, way of causing
these patterns to form is to find circularly symmetric solutions of (3.16) that are stable with
respect to perturbations that break the circular symmetry (i.e., have λ < 0 for all m) and
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Figure 3.12. The 7-peak solution resulting from the instability of the circularly symmetric solution whose
radial profile is given by the solid curve in Figure 3.10 (left), the axially symmetric solution at Q1. Top left:
Initial condition (a small random perturbation of Γ4). Top right: t = 28. Lower panels: t = 35 (left), and
corresponding level curve diagram (right). Clicking on the top left or bottom right panels will show movies of
the development of the solution from different viewpoints.

then vary the parameters in such a way as to make the solution unstable with respect to
these perturbations. This can be thought of as mimicking the change in the bulk properties
of the neural tissue that would result from, for example, the action of neuromodulators (see,
for example, [32].)

As an example, in Figure 3.13 we show a solution of (3.17) with th = 0.08 corresponding
to the lowest branch in Figure 3.11. The corresponding plot of λ as a function of m is shown
in Figure 3.14 (squares). We see that λ < 0 for all m, and thus the circularly symmetric
solution formed by rotating the curve in Figure 3.13 through a full circle about the line r = 0
is a stable solution of (3.16). We now decrease th. The solution shown in Figure 3.13 changes
very little, but its stability changes markedly. In Figure 3.14, we show plots of λ as a function

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60004_05.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/60004_06.mpg
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Figure 3.13. A stable solution of (3.17). Parameter values are A = 0.4, B = 0.1, M = 1, r = 0.1, th = 0.08.

of m for th = 0.0536 and th = 0.046. As th is decreased, the solution becomes unstable at
th ≈ 0.05 (see Figure 3.11), with m = 6 being the integer with the most positive value of λ.
The eigenfunction corresponding to m = 6 has its largest peak near the bump of the solution
in Figure 3.13 between r = 5 and r = 10 (not shown).

Thus we expect that if the initial condition of (3.16) is a small perturbation of the circularly
symmetric surface with radial profile given by the solution in Figure 3.13 and at some point
in the simulation th is reduced sufficiently from th = 0.08, we should see a breakup of the
solution in a way similar to that shown in Figure 3.7. This is indeed what is seen (not shown).

3.5. General couplings. In this paper we have investigated one particular family of cou-
pling functions, defined through their Fourier transform (3.14). However, a number of other
types of coupling functions have been studied in the past, notably “Mexican hat”–type cou-
pling [26, 31, 50]. (Examples are a difference of Gaussians [40, 55] and a difference of exponen-
tials [6, 16, 33, 42].) Gaussian functions have also been used [35, 53, 54, 64] as have sinusoidal
functions on a periodic domain [37, 41] and general nonnegative even functions [5, 7, 8, 27].
Specific nonneural applications whose models involve these types of coupling function include
martinsitic phase transitions in steel, the behavior of diblock copolymers, and population
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Figure 3.14. λ as a function of m for three different values of th.

dynamics. We now show that our technique of approximating the Fourier transform of the
coupling function so that a PDE can be derived can also be applied to these types of coupling.

First consider a two-dimensional coupling function whose radial dependence is Gaussian.
Since the two-dimensional Fourier transform of such a function is also circularly symmetric
with a Gaussian dependence on distance in Fourier space, the problem reduces to approxi-
mating a one-dimensional Gaussian in η by a rational function of η2. For concreteness, choose
F (η) = exp (−η2). Figure 3.15 shows the Gaussian for 0 < η < 4 and two approximations
to it. One approximation is a Padé approximant, a generalization of a Taylor series that
matches F and as many derivatives at η = 0 as possible. This approximant is of degree (0, 4),
as the numerator is a polynomial of degree 0 and the denominator is of degree 4. (Note that
due to the evenness of the Gaussian, only even powers of η will appear in the approximant,
automatically satisfying the general condition that only even powers appear in the approxi-
mation of the Fourier transform of the coupling function.) The other function shown is the
least squares fit of a function of the form a1/(a2 + a3η

2 + a4η
4) to 100 evenly spaced points

on the Gaussian curve. Note that these coefficients will change if the domain over which the
Gaussian is considered is changed. Both of the approximations presented here are good and
can be used to derive a fourth order PDE. Since both approximations have numerators of or-
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Figure 3.15. Dotted: The Gaussian exp (−η2). Solid: The Padé approximant 1/(1 + η2 + η4/2). Dashed:
The least squares approximation 2.7287/(2.7758 + 1.7504η2 + 3.3574η4).

der zero, the right-hand side of the corresponding equation of the form (3.16) will not contain
spatial derivatives. Clearly, as either the degree of the Padé approximant or the degree of the
rational function that is fit to the Fourier transform of the coupling function is increased, the
approximation will become better and the order of the resulting PDE will rise.

Since taking the Fourier transform is a linear operation, coupling functions formed from
the difference of Gaussians can be dealt with using the ideas just presented.

As a second example, we consider a difference of exponentials of the same form as (3.4).
We need to find the two-dimensional Fourier transform of the function

w(r) = Ke−kr −Me−mr,(3.23)

where M < K, m < k, and r is the radius. From the result in Appendix A, we have

F (w)(η) =

∫ ∞

0

[
Ke−kr −Me−mr

]
J0(rη)r dr,(3.24)

where J0 is the Bessel function of first kind of order 0. Using the results of Appendix B, we
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Figure 3.16. Left: The coupling function (3.23) (dotted), and the inverse Fourier transform of the function
shown solid in the right panel (solid). Right: The exact Fourier transform of w, given by (3.25) (dotted), and
its approximation (3.26) (solid).

have

F (w)(η) =
Kk

(k2 + η2)3/2
− Mm

(m2 + η2)3/2
.(3.25)

We setK = 3.5,M = 2.8, k = 1.8, andm = 1.52, the values used in section 3.1. In Figure 3.16
(left, dotted) we show the coupling function w(r), and in the right panel (dotted) we show
its exact Fourier transform (3.25). We have approximated (3.25) by an appropriate rational
function of η, minimizing the least squares error for the data shown in Figure 3.16, right. The
result is

G(η) =
1.2636η2 − 1

7.7592 + 4.1991η2 + 3.3163η4
.(3.26)

This function is shown with a solid curve in Figure 3.16, right. In the left panel of Figure 3.16,
we show the coupling function resulting from taking the inverse Fourier transform of G(η),
given by (3.15) (solid line). We chose a rational function of the form (3.26) as it gave a good
approximation. Using higher order polynomials (with even powers of η) in the numerator
and denominator of the approximation would result in a better approximation of w by ŵ but
would also result in higher order PDEs. Clearly, the coupling in (3.26) can be used to derive
a fourth order PDE for u, and the dynamics of this equation will be equivalent to the integral
equation (3.1) for the coupling shown with the solid curve in Figure 3.16 (left).

4. Summary. In this paper we have studied a class of PIDEs which have been used
extensively in neuronal modeling. Our goal throughout has been to develop methods which
help us understand the dynamics of multibump formation in two space dimensions.

Section 2 summarizes results for the model in one space dimension. These include the
existence, multiplicity, and stability of N -bump solutions. In section 3, we focus on the
two-dimensional model. This part of our investigation has led to the following results:
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(i) the development of a method to approximate a PIDE with a PDE;
(ii) a description of the important properties of circularly symmetric solutions of the PDE;
(iii) the development of a method to analyze the PDE and determine the stability of

circularly symmetric solutions. For unstable solutions, our methods predict the exact
number of bumps that form as the unstable solution evolves.

We then applied these techniques to a specific equation and illustrated the dynamic formation
of multibump solutions in three different scenarios. Finally, in section 3.5, we discuss the
feasibility, both numerical and theoretical, of extending our methods to models with other
couplings.

Similar results regarding the breakup of annular rings include [20], in which the stability
of higher-bound states in self-focusing optical media is studied, and [46], in which the breakup
of concentric rings in a reaction-diffusion system is studied. Both of these examples involve
PDEs, and our results appear to be the first for integro-differential equations.

A first step in making our methods mathematically rigorous is to prove the existence of
the fundamentally important solutions of the ODE problem (3.18). These describe circu-
larly symmetric solutions of the PDE. This problem is especially challenging since (3.18) is
nonautonomous and is neither reversible nor Hamiltonian. One approach is to cast (3.18)
as a two-dimensional shooting problem. Here the two free parameters are the values of u(0)
and u′′(0). Note that while the relationship between homoclinic orbits and spatially localized
patterns in one dimension is well known [14, 38, 43], we use such orbits here to find patterns
in two spatial dimensions.

Another issue to be addressed is the correspondence between solutions of the PDE (3.16)
and the integral equation (3.1), when the coupling function is given by (3.15). Formally, the
equations are equivalent, but it remains to be proven that solutions of one are also solutions
of the other, and if so, whether stability of a solution of one equation implies stability of that
solution from the point of view of the other equation. We have not attempted to numerically
solve the integral equation (3.1).

There are several ways to extend the techniques developed in this paper. A more general
extension could involve combining the methods introduced here with the ideas of Bressloff [10]
regarding pattern formation on inhomogeneous domains. It would also be interesting to
see if the results found here could be extended to a two layer system using one population
of excitatory neurons and one of inhibitory neurons with appropriate nonnegative coupling
weights [25, 35, 54].

We have concentrated only on the instability of circularly symmetric bumps with respect to
perturbations that break that symmetry. There are many other pattern-forming mechanisms
that can potentially be studied using the ideas presented here. One example is spiral wave
formation [4, 50], a phenomenon that cannot occur in one-dimensional domains. We have
observed these patterns in a system of the form (3.1) with purely positive (excitatory) coupling
and a simple form of adaptation like that used in [41] to prevent the whole domain from
becoming active (not shown).

Another extension would be to use the ideas presented here to study a network of spiking
neurons to see whether the appearance of the sorts of patterns investigated here could be
predicted in such a network. The firing rate function f would have to be the appropriate
function for the neurons used, but provided the neurons do not synchronize, the profiles of
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firing frequency as a function of space should be the same for the rate and spiking models [40],
and the techniques presented here should be applicable.

In conclusion, the main result presented here is the link between PIDEs and PDEs. The
techniques introduced here enable one to apply the results for pattern formation in PDEs (of
which there are many [15, 21, 23, 24, 36, 48, 49, 51]) to systems involving spatial integrals
[5, 6, 7, 8, 10, 12, 13, 16, 27, 28, 47, 53, 54, 55] for which there are far fewer results, but which
are of great interest.

Appendix A. Symmetry properties of the two-dimensional Fourier transform. We define
the two-dimensional Fourier transform of a function g(x, y) to be

F (g) ≡ 1

2π

∫ ∞

−∞

∫ ∞

−∞
e−i(αx+βy)g(x, y)dx dy.(A.1)

Move to polar coordinates with x = r cos θ, y = r sin θ, α = η cosψ, and β = η sinψ, and
assume that g is a function of r only. Then (A.1) becomes

F (g) =
1

2π

∫ ∞

0
g(r)r

[∫ 2π

0
e−irη cos (θ−ψ)dθ

]
dr.(A.2)

It is clear that the inner integral (and therefore F (g)) is independent of ψ, so we set ψ = π/2,
and the inner integral in (A.2) becomes

∫ 2π

0
e−irη sin θdθ.(A.3)

Letting z = eiθ and moving to the complex plane, we have

∫ 2π

0
e−irη sin θdθ =

∫

C

e−rη(z−1/z)/2

iz
dz,(A.4)

where C is the unit circle in the complex plane. In [56, p. 161], it is shown that

eτ(z−1/z)/2 =

∞∑

N=−∞

JN (τ)z
N ,(A.5)

where JN (·) is the Bessel function of the first kind of order N . Thus, setting τ = −rη, we
have

∫ 2π

0
e−irη sin θdθ =

∞∑

N=−∞

J0(−rη)
∫

C

zN−1

i
dz = 2πJ0(−rη),(A.6)

and using the evenness of J0, (A.2) becomes

F (g) =

∫ ∞

0
g(r)J0(rη)r dr.(A.7)
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This is clearly a function of η (=
√
α2 + β2) only.

Appendix B. A particular Fourier transform. We now show that

I ≡
∫ ∞

0
e−krJ0(rη)r dr =

k

(k2 + η2)3/2
,(B.1)

which, in combination with (A.7), gives (3.25). We start with the series expansion of the
Bessel function

J0(x) =

∞∑

n=0

(−1)nx2n

22n(n!)2
.(B.2)

Using this,

I =

∞∑

n=0

(−1)nη2n
22n(n!)2

∫ ∞

0
e−krr2n+1dr =

∞∑

n=0

(−1)nη2n(2n+ 1)!

22n(n!)2k2n+2
,(B.3)

where the integral has been evaluated using the Gamma function. Now, using the notation
(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1) and the identity (2n+ 1)! = 22nn!(3/2)n, we have

I =

∞∑

n=0

(−1)nη2n(3/2)n
n! k2n+2

=
1

k2

∞∑

n=0

(3/2)n
n!

(−η2
k2

)n

=
(1 + η2/k2)−3/2

k2
=

k

(k2 + η2)3/2
(B.4)

as was claimed in (B.1).
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