
pde2path – a Matlab package for continuation and bifurcation in 2D elliptic

systems

Hannes Uecker1, Daniel Wetzel2, Jens D.M. Rademacher3

1 Institut für Mathematik, Universität Oldenburg, D26111 Oldenburg, hannes.uecker@uni-oldenburg.de
2 Institut für Mathematik, Universität Oldenburg, D26111 Oldenburg, daniel.wetzel@uni-oldenburg.de

3 Centrum Wiskunde & Informatica, Science Park 123, 1098 XG Amsterdam, the Netherlands, rademacher@cwi.nl

March 10, 2013

Abstract

pde2path is a free and easy to use Matlab continuation/bifurcation package for elliptic systems
of PDEs with arbitrary many components, on general two dimensional domains, and with rather
general boundary conditions. The package is based on the FEM of the Matlab pdetoolbox,
and is explained by a number of examples, including Bratu’s problem, the Schnakenberg model,
Rayleigh–Bénard convection, and von Karman plate equations. These serve as templates to
study new problems, for which the user has to provide, via Matlab function files, a descrip-
tion of the geometry, the boundary conditions, the coefficients of the PDE, and a rough initial
guess of a solution. The basic algorithm is a one parameter arclength–continuation with op-
tional bifurcation detection and branch–switching. Stability calculations, error control and
mesh-handling, and some elementary time–integration for the associated parabolic problem are
also supported. The continuation, branch-switching, plotting etc are performed via Matlab

command–line function calls guided by the AUTO style. The software can be downloaded from
www.staff.uni-oldenburg.de/hannes.uecker/pde2path, where also an online documenta-
tion of the software is provided such that in this paper we focus more on the mathematics and
the example systems.

MSC: 35J47, 35J60, 35B22, 65N30
Keywords: elliptic systems, continuation and bifurcation, finite element method

Contents

1 Introduction 2

2 Some basics of continuation and bifurcation 5
2.1 Arclength continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Switching back and forth to the natural parametrization . . . . . . . . . . . . . . . . 7

3 Some scalar problems in pde2path 8
3.1 Bratu’s problem (bratu) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Installation and preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 General structure, initialization, and continuation runs . . . . . . . . . . . . 9
3.1.3 The PDE–coefficients and Jacobians . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.4 The geometry and the boundary conditions . . . . . . . . . . . . . . . . . . . 15
3.1.5 Error estimates and mesh adaptation . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.6 Eigenvalues and findbif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.7 The linear system solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.8 Screen output, plotting, convergence failure, auxiliary functions . . . . . . . . 19

3.2 The Allen–Cahn equation with Dirichlet boundary conditions (ac) . . . . . . . . . . 19
3.2.1 Parameter switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1



3.2.2 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 The Allen–Cahn equation with mixed λ-dependent boundary conditions (achex) . . 21
3.4 A quasilinear Allen–Cahn equation (acql) . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 An Allen–Cahn equation with global coupling (acgc) . . . . . . . . . . . . . . . . . . 22
3.6 First summary, and some remarks on customization . . . . . . . . . . . . . . . . . . 24

4 Two prototype Reaction–Diffusion Systems 25
4.1 Chemotaxis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Bifurcation diagram over rectangles (chemtax) . . . . . . . . . . . . . . . . . 26
4.1.2 Drawing general domains (animalchem) . . . . . . . . . . . . . . . . . . . . . 27

4.2 The Schnakenberg model (schnakenberg) . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 pmcont . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Three classical examples from physics 31
5.1 Bose–Einstein (vector) solitons (gpsol) . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 The scalar case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.2 A two–component condensate . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Rayleigh-Bénard convection (rbconv) . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Von Kármán description of the buckling of plates (vkplate) . . . . . . . . . . . . . . 36

6 Discussion 39

1 Introduction

For algebraic systems, ordinary differential equations (ODEs), and partial differential equations
(PDEs) in one spatial dimension there is a variety of software tools for the numerical continu-
ation of families of equilibria and detection and following of bifurcations. These include, e.g.,
AUTO [11], XPPaut [10] (which relies on AUTO for the continuation part) and MatCont [14], see
also www.enm.bris.ac.uk/staff/hinke/dss/ for a comprehensive though somewhat dated list.
Another interesting approach is the “general continuation core” coco, [31].

However, for elliptic systems of PDEs with two spatial dimensions there appear to be few
general continuation/bifurcation tools and hardly any that work out-of-the-box for non-expert
users. PLTMG [2] treats scalar equations, and there are many case studies using ad hoc codes,
often based on AUTO using suitable expansions for the second spatial direction; for 2D systems there
also is ENTWIFE [38], which however appears to be no longer maintained since 2001. For experts we
also mention Loca [29], which is designed for large scale problems, and oomph [16], another large
package which also supports continuation/bifurcation, though this is not yet documented.

Our software pde2path is intended to fill this gap. Its main design goals and features are:

• Flexibility and versatility. The software is based on the Matlab pdetoolbox and treats
PDE systems

G(u, λ) := −∇ · (c⊗∇u) + au− b⊗∇u− f = 0, (1)

where u = u(x) ∈ R
N , x ∈ Ω ⊂ R

2 some bounded domain, λ ∈ R is a parameter, c ∈
R
N×N×2×2, b ∈ R

N×N×2 (see (4), (5) below), a ∈ R
N×N and f ∈ R

N can depend on x, u,∇u,
and, of course, parameters. The standard assumption is that c, a, f, b depend on u,∇u, . . .
locally, e.g., f(x, u) = f(x, u(x)); however, the dependence of c, a, f, b on arguments can in

2



fact be quite general, for instance involving global coupling, see §3.5. The current version
supports “generalized Neumann” boundary conditions (BC) of the form

n · (c⊗∇u) + qu = g, (2)

where n is the outer normal and again q ∈ R
N×N and g ∈ R

N may depend on x, u, ∇u and
parameters. These boundary conditions include zero flux BC, and a “stiff spring” approxi-
mation of Dirichlet BC via large prefactors in q and g, that we found to work well.

There are a number of predefined functions to specify domains Ω and boundary conditions,
or these can be exported from matlab’s pdetoolbox GUI, thus making it easy to deal with
(almost) arbitrary geometry and boundary conditions. The software can also be used to
time-integrate parabolic problems of the form

∂tu = −G(u, λ), (3)

with G as in (1). This is mainly intended to easily find initial conditions for continuation.
Finally, any number of eigenvalues of the Jacobian Gu(u, λ) can be computed, thus allowing
stability inspection for stationary solutions of (3).

• Easy usage. The user has to provide a description of the geometry, the boundary conditions,
the coefficients of the PDE, and a rough initial guess of a solution. There are a number of
templates for each of these steps which cover some standard cases and should be easy to adapt.
The software provides a number of Matlab functions which are called from the command line
to perform continuation runs with bifurcation detection, branch switching, time integration,
etc.

• Easy hackability and customization. While pde2path works “out–of–the–box” for a
significant number of examples, already for algebraic equations and 1D boundary value prob-
lems it is clear that there cannot be a general purpose “solve–it–all” tool for parametrized
problems, see, e.g., [33, Chapter 3]. Thus, given a particular problem the user might want to
customize pde2path. We tried to make the data structures and code as modular and trans-
parent as possible. When dealing with a trade off between speed and readability we usually
opted for the latter, and thus we believe that the software can be easily modified to add new
features. In fact, we give some examples of “customization” below. Here, of course, having
the powerful Matlab machinery at our disposal is a great advantage.

Remark 1.1. The ith components of ∇ · (c⊗∇u), au and b⊗∇u in (1) are given by

[∇ · (c⊗∇u)]i :=
N
∑

j=1

[∂xcij11∂x + ∂xcij12∂y + ∂ycij21∂x + ∂ycij22∂y]uj , (4)

[au]i =

N
∑

j=1

aijuj , [b⊗∇u]i :=
N
∑

j=1

[bij1∂x + bij2∂y]uj , (5)

and f = (f1, . . . , fN ) should be seen as a column vector. If, for instance, we want to implement
−D∆u = −(d1∆u1, . . . , dN∆uN ) = −∇ · (D∇u) with D a constant diagonal diffusion matrix, as it
often occurs in applications, then

cii11 = cii22 = di, i = 1, . . . , N, and all other cijkl = 0, (6)

and there are special ways to encode this (and other symmetric situations for c and a) in the
pdetoolbox. See the templates below, and §3.1.3. For c, a, f see also the pdetoolbox documenta-
tion, for instance assempde in the Matlab help, while −b⊗∇u has been added by us. pde2path also

3



provides a simplified encoding for isotropic systems without mixed derivatives, see §4.1. Finally,
the ith component of the boundary term n · (c⊗∇u) is given by

[n · (c⊗∇u)]i =
N
∑

j=1

[n1(cij11∂x + cij12∂y) + n2(cij21∂x + cij22∂y)]uj , (7)

where n = (n1, n2), ⌋

Remark 1.2. Clearly, the splitting between a and f (or b and f) in (3) is not unique, e.g., for
G(u) = −∆u−λu+u3 we could use (a = −λ, f = −u3) or (a = 0, f = λu−u3). Similarly, for, e.g.,
G(u) = −∆u − ∂xu we can use b = (1, 0) and f = 0 or b = (0, 0) and f = ∂xu. This flexibility of
(1) has the advantage that in most cases the needed derivatives Gu, Gλ can be assembled efficiently
from suitable coefficients c, a, b, and no numerical Jacobians are needed.

Also note that (1) allows to treat equations in non divergence form, too. For instance, we may
write a scalar equation −c(u)∆u− f(u) = 0 as −∇ · (c(u)∇u) + (c′(u)∇u) · ∇u− f(u) = 0, and set
b111(u) = −c′(u)∂xu and b112(u) = −c′(u)∂yu, or add −(c′(u)∇u) · ∇u to f . ⌋

Currently, the main drawbacks of pde2path are:

• pde2path requires Matlab including the pdetoolbox. Its usage explains the form (1). One
of its drawbacks is a somewhat slow performance, compared to, e.g., some Fortran imple-
mentations of the FEM. Another drawback is a somewhat unhandy non–GUI description of
geometry and boundary conditions, but for these we provide fixes. See also, e.g., [27]. On the
other hand, in addition to the Matlab–environment, the pdetoolbox has a number of nice
features: it also takes care of the geometry and mesh generation, it is well documented, it is
fully based on sparse linear algebra techniques (which are vital for large scale problems), it
exports (sparse) mass and stiffness matrices, and it provides a number of auxiliary functions
such as adaptive mesh-refinement, or various plot options.

• Presently, only one parameter continuation is supported, and only bifurcations via simple
eigenvalues are detected, located, and dealt with. In case symmetries cause multiple eigen-
values, artificial symmetry breaking sometimes is a viable ad hoc solution for the latter. We
plan to add new features as examples require them, and invite every user to do so as well.

In the following we first very briefly recall some basics of continuation and bifurcation. Then
we explain design and usage of our software by a number of examples, mainly a modified Bratu
problem as a standard scalar elliptic equation, some Allen–Cahn type equations, some pattern
forming Reaction–Diffusion systems, including some animal coats intended for illustration of how
to set up problems with complicated geometries. We give a rather detailed bifurcation diagram for
the Schnakenberg system, and we consider three rather classical problems from physics: Rayleigh–
Bénard convection, some multi–component Bose–Einstein systems, and the von Kármán plate
equations. Thus, besides some mathematical aspects of continuation and the example systems,
here we explain the syntax and usage of the software in a rather concise way. More comprehensive
documentation of the data structures and functions is included in the software, or online at [26].

Acknowledgments. We thank Uwe Prüfert for providing his extension of the pdetoolbox and
the documentation. Users familiar with AUTO will recognize that AUTO has been our guide in many
respects, in particular concerning the design of the user interface. We owe a lot to that great
software. We thank Tomas Dohnal for testing early versions of pde2path and providing valuable
hints for making pde2path and this manual more user friendly, and we thank the anonymous
referees for their helpful comments on the manuscript. JR acknowledges support by the NDNS+
cluster of the Dutch Science Fund NWO.

4



Remark 1.3. Please report any bugs to pde2path@mathematik.uni-oldenburg.de, as well de-
sired additional features. We will appreciate any feedback, and will be happy to provide help with
interesting applications. See also [26] for an online documentation of the software, updates, FAQ,
and general further information.

2 Some basics of continuation and bifurcation

2.1 Arclength continuation

A standard method for numerical calculation of solution branches of G(u, λ) = 0, where G :
X × R → X is at least C1, X a Banach space, is (pseudo)arclength continuation. For convenience
and reference here we recall the basic ideas. Standard textbooks on continuation and bifurcation
are [33, 15, 20, 1], see also [19, 7], and the “matrix-free” approach [12]. Consider a branch z(s) :=
(u(s), λ(s)) ∈ X × R parametrized by s ∈ R and the extended system

H(u, λ) =

(

G(u, λ)
p(u, λ, s)

)

= 0 ∈ X × R, (8)

where p is used to make s an approximation to arclength on the solution arc. Assuming that
X is a Hilbert space with inner product 〈·, ·〉, the standard choice is as follows: given s0 and
a point (u0, λ0) := (u(s0), λ(s0)), and additionally knowing a tangent vector τ0 := (u̇0, λ̇0) :=
d
ds(u(s), λ(s))|s=s0 we use, for s near s0,

p(u, λ, s) := ξ 〈u̇0, u(s)− u0〉+ (1− ξ)λ̇0(λ(s)− λ0)− (s− s0). (9)

Here 0 < ξ < 1 is a weight, and τ0 is assumed to be normalized in the weighted norm

‖τ‖ξ :=
√

〈τ, τ〉ξ,
〈(

u
λ

)

,

(

v
µ

)〉

ξ

:= ξ 〈u, v〉+ (1− ξ)λµ.

For fixed s and ‖τ0‖ξ = 1, p(u, λ, s) = 0 thus defines a hyperplane perpendicular (in the inner
product 〈·, ·〉ξ) to τ0 at distance ds := s− s0 from (u0, λ0). We may then use a predictor (u1, λ1) =
(u0, λ0)+ds τ0 for a solution (8) on that hyperplane, followed by a corrector using Newton’s method
in the form

(

ul+1

λl+1

)

=

(

ul

λl

)

−A(ul, λl)−1H(ul, λl), where A =

(

Gu Gλ

ξu̇0 (1− ξ)λ̇0

)

. (10)

Since ∂sp = −1, on a smooth solution arc we have

A(s)

(

u̇(s)

λ̇(s)

)

= −
(

0
∂sp

)

=

(

0
1

)

. (11)

Thus, after convergence of (10) yields a new point (u1, λ1) with Jacobian A1, the tangent direction
τ1 at (u1, λ1) with conserved orientation, i.e., 〈τ0, τ1〉 = 1, can be computed from

A1τ1 =

(

0
1

)

, with normalization ‖τ1‖ξ = 1. (12)

Alternatively to (10) we may also use a chord method, where A = A(u1, λ1) is kept fixed during
iteration,

(

ul+1

λl+1

)

=

(

ul

λl

)

−A(u1, λ1)−1H(ul, λl). (13)

5



This avoids the costly evaluation of Gu at the price of a usually modest increase of required
iterations.

The role of ξ is twofold. First, if G(u, λ) = 0 comes from the discretization of a PDE G(u, λ)
such as (1) over a domain Ω with np spatial points, then u ∈ R

p with large p, say p = Nnp. Here
u stands for the FEM approximation of u, and G(u,λ) for the FEM approximation of G. Below,
the difference between the two will be clear from the context, and thus we will mostly drop the
different notations again. Typically, we want to choose ξ such that ξ‖u‖2

Rp is an approximation of
1

|Ω|‖u‖
2
L2(Ω). If (as usual), u ≡ 1 corresponds to uj = 1 for j = 1, . . . , np, then a rough estimate

can be obtained by assuming that each component ui ≡ 1, i = 1, . . . , N . Then

1

|Ω|‖u‖
2
(L2)N = N

!
= ξ‖u‖2Rp = ξNnp, hence ξ = 1/np. (14)

This gives the basic formula for our choice of ξ. It is important that different ξ may give different
continuations: in the Newton loop, small ξ favors changes in u, while larger ξ favors λ, see Fig.1
for a sketch. Moreover, ξ is also related to the scaling of the problem: if, e.g., we replace λ by,
say, λ̃ := 100λ, then ξ should be adapted accordingly, i.e., ξ̃ = ξ/100. In summary, ξ should be
considered as a parameter that can be used to tune the continuation, and that may also be changed
during runs if appropriate.

λ

u

ξ=0.1

ξ=0.9

ξ=0.5
z

0

z
1

(1) z
1

(2)
z

1

(3)z(s)

τ
0

Figure 1: The role of ξ in a one–dimensional (u ∈ R) sketch with τ0 = (u̇0, λ̇0) = (1, 1) (unnormalized).

Depending on ξ we get different hyperplanes {(u, λ) ∈ R
2 : 〈τ0, (u, λ)〉ξ = ds} and consequently different

“next points” z
(i)
0 , i = 1, 2, 3, on the solution curve z(s). Small ξ favors Newton search in u direction (and

thus orthogonal to a “horizontal” branch), while large ξ favors the λ direction (parallel to a “horizontal”

branch).

Given a weight ξ, a starting point (u0, λ0, τ0), and an intended step size ds, the basic continuation
algorithm thus reads as follows, already including some elementary stepsize control:

Algorithm cont

1. Predictor. Set (u1, λ1) = (u0, λ0) + dsτ0.

2. Newton–corrector. Iterate (10) (or (13)) until convergence; decrease ds if (10) fails
to converge and return to 1; increase ds for the next step if (10) converges quickly;

3. New tangent. Calculate τ1 from (12), set (u0, λ0, τ0)=(u1, λ1, τ1) and return to step 1.

Theoretically, this does not work at possible “bifurcation points” where A is singular (although
generically continuation routines simply shoot past singular points). More specifically, we define:

B1. A simple bifurcation point is a point (u, λ) where detA changes sign. The implicit assumption
is that this happens due to a simple eigenvalue of A crossing zero.

6



This clearly excludes folds (also called turning points), where a simple eigenvalue of A reaches
zero but detA does not change sign, see [19]. However, folds are no problem for the algorithm
and can easily be seen in the bifurcation diagram anyway. Therefore there is no special treatment
of folds in the current 1-parameter version of pde2path. B1 also excludes bifurcations via even
numbers of eigenvalues crossing, which are more complicated to deal with.

Remark 2.1. Numerically, for B1 we found it more robust to use ξ = 1/2 in the definition of A for
bifurcation purposes. For algorithmic reasons, we only use the first part of B1 for the detection of
bifurcation points, i.e., the sign change of detA, which also occurs for an odd number of eigenvalues
(counting multiplicities) crossing zero. Finally, by default we use the LU decomposition to calculate
sign(detA), but there are other options, see §3.1.6.

After detection of a bifurcation between sk and sk+1, the bifurcation is located by a bisection
method, with a secant, tangent, or quadratic predictor, see p.biflocsw below. Although this is a
slow method for finding roots of continuous real functions [9, Chapter 2], in the setting of calculating
sign changes of detA via LU decomposition it seems difficult to improve. See also §3.1.6.

To switch branches we use “Method I” of [19] (page 379). Let (u0, λ0) be a simple bifurcation
point, Gu = Gu(u0, λ0), and τ0 = (u̇0, λ̇0) be the tangent along the branch already computed. To
obtain a tangent τ1 along the other branch we proceed as follows:

Algorithm swibra

1. Calculate φ1, ψ1 with G0
uφ1 = 0, G0

u
T
ψ1 = 0, ‖φ1‖ = 1, 〈ψ1, φ1〉 = 1.

2. Let α0 = λ̇0, α1 = ψT u̇0, φ0 = α−1
0 (u̇0 − α1φ1).

3. Choose some small δ > 0 and calculate the finite differences

a1 =
1

δ
ψT
1

[

Gu(u+ δφ1, λ0)−G0
u

]

φ1,

b1 =
1

δ
ψT
1

[

[

Gu(u0 + δφ1, λ0)−G0
u

]

φ0 +Gλ(u0 + δφ1, λ0)−Gλ(u0, λ0)

]

.

Assuming α0 6= 0 (see [19] if this is not the case), set

α1 = −
(

a1α1

α0
+ 2b1

)

and τ1 =

(

α1φ1 + a1φ0
a1

)

.

Choose a weight ξ and a stepsize ds, set τ0 = τ1/‖τ1‖ξ and go to cont, step 1. (If branch
switching fails, i.e., if there is no convergence in cont or if the solution falls back onto
the known branch, then it may help to change ds and/or ξ.)

2.2 Switching back and forth to the natural parametrization

If λ̇ := ∂sλ does not change sign, then we know that a branch also has the “natural parametrization”
(u(λ), λ), and, except at possible bifurcation points, Gu(u, λ)u

′(λ) = −Gλ(u, λ) has the unique
solution

u′(λ) = −Gu(u, λ)
−1Gλ(u, λ).

Thus, given (u0, λ0) we may use the predictor (u1, λ1) = (u0, λ0) + ds (u′(λ0), 1) and then correct
with fixed λ = λ1. Algorithmically, however, we choose to keep the predictor (u1, λ1) = (u0, λ0) +
ds τ0, i.e., altogether,

(u1, λ1) = (u0, λ0) + ds τ0, ul+1 = ul −Gu(u
l, λ1)

−1G(ul, λ1). (15)

7



After convergence to (u1, λ1) we calculate the new tangent via (12), and B1 can again be used
as a check for bifurcation. Moreover, with tolλ̇ > 0 a given tolerance, say tolλ̇ = 0.5, this gives a
criterion when to switch back and forth between the algorithms, namely:

If |λ̇| > tolλ̇, then use (15), else use (10). (16)

Here again the weight ξ is important: for fixed ξ = 1/2 (say), λ̇→ 0 as np → ∞ unless the branch
is strictly horizontal, i.e., u̇ = 0.

Remark 2.2. If applicable, (15) is usually slightly faster than (10), as expected. On the other
hand, we found that even for “nearly horizontal” branches, locating the bifurcation point typically
works better with arclength continuation (10). ⌋

3 Some scalar problems in pde2path

We now start the tutorial on pde2path by way of basic examples. The names in brackets refer to
the sub-directory name of the directory demos, which contains the given example.

3.1 Bratu’s problem (bratu)

Our first example is the scalar elliptic equation

−∆u− f(u, λ) = 0, f(u, λ) = −10(u− λeu), u = u(x) ∈ R, (17)

on the unit square with zero flux BC, i.e.,

x ∈ Ω = (−1/2, 1/2)2, ∂nu|∂Ω = 0. (18)

This problem has the advantage that a number of results can immediately be obtained analytically,
that there are some nontrivial numerical questions (see below), and that we can compare with
previous results, see, e.g., [2, 5, 24]

There is a primary homogeneous branch u ≡ uh(s), λ = λ(s), “starting” in (0, 0), on which
(uh(s), λ(s)) satisfies f(u) = −10(u − λeu) = 0. Bifurcation points (uk, λk) are obtained from

Guw = −∆w − fuw
!
= 0 which yields 10(uk − 1) = µk where µk = (k21 + k22)π

2, k ∈ N
2
0, are the

eigenvalues of −∆ on Ω, see Table 1. From §2.1, for arclength continuation the fold is nothing

k (0,0) (1,0),(0,1), (1,1) (2,1),(1,2) (2,2) . . .

uk 1 1 + π2/10 1 + π2/5 1 + π2/2 1 + 4π2/5 . . .
λk = uke

−uk 1/e ≈ 0.3679 ≈ 0.2724 ≈ 0.1520 ≈ 0.0157 ≈ 0.0012 . . .
type fold double simple double simple . . .

Table 1: Bifurcations from the homogeneous branch in (17).

special and the two dimensional kernels k = (k1, k2), k1 6= k2, will go undetected using B1. The
simple bifurcation points should be detected, and branch switching can be tried. On bifurcating
branches, further bifurcations may be expected.

In pde2path, (17),(18) can be setup and run in a few steps explained next, to quickly obtain
the (basic) bifurcation diagram and solution plots in Fig. 2 on page 12.

8



3.1.1 Installation and preparation

The basic pde2path installation consists of a root directory, called pde2path, with a subdirectory
p2plib containing the actual software, a subdirectory demos with a further subdirectory for each
problem, a subdirectory octcomp, providing some basic octave compatibility (see [26]), and one
Matlab file setpde2path.m, which is a utility function to set the Matlab path. Each of the demos
comes with a file *cmds.m, which contains the commands to run the example (and some comments),
and which should be seen as a quarry for typical commands, and with a file *demo.m, which produces
more verbose output. To start we recommend to run setpde2path (without arguments) in the root
directory pde2path and then change into one of the demo–directories, e.g., type cd demos/bratu in
Matlab. Then inspect the file bratucmds.m and copy paste the commands to the Matlab command
line, or just execute bratucmds or bratudemo.

3.1.2 General structure, initialization, and continuation runs

In pde2path, a continuation and bifurcation problem is described by a structure, henceforth called
p (as in problem), which we now outline, see also Tables 2 and 4.1 Essentially, p contains

• function handles which describe the functions c, a, b, f and the BC (and possibly the Jacobian)
in (1);

• fields which describe the geometry of the problem, including the FEM mesh;

• fields which hold the current solution, i.e., u, λ and the tangent τ ;

• a number of variables, switches and further functions (i.e., function handles) controlling the
behavior of the continuation and bifurcation algorithm, and filenames for file output.

Studying a continuation and bifurcation problem using pde2path thus consist of:

• Setting up a file defining the coefficient functions c, a, b and f (and usually a function for the
Jacobians) in (1), e.g. bratuf.m (and bratujac.m). (Here we assume that the BC function
p.bcf is defined inline as in bratuinit.m and many of the further examples)

• Setting up an initialization function file, e.g., bratuinit filling p. This function is not called
by pde2path but should be used as a convenience function by the user. Thus, it can have
any sort of input/output arguments. As an example, in bratuinit.m we find it conve-
nient to include the lengths lx, ly and the discretization nx (from which ny is calculated)
as parameters, because, e.g., below we want to break the square symmetry of Ω to unfold
the double eigenvalues associated to k = (1, 0), (0, 1), k = (2, 1), (1, 2) etc, see §3.1.6. The
main initialization steps are (1) define p.f and p.jac, (2) define geometry and mesh, and
usually the BC by an inline function, (3) set the parameters and provide a starting point.
In many cases most parameters and switches can be set to “standard values”. For this we
provide the function p=stanparam(p), which should be called first, and afterwards individual
parameters can be reset as needed. For the mesh generation we provide an elementary func-
tion p=stanmesh(p,hmax), where hmax is the maximal triangle side–length. This is based on

1In addition to the fields/variables listed, there are quite a few more within p. See stanparam.m in directory
p2plib for these, and also for more comments on the ones which are listed. Some of the “control fields” are unlikely
to be changed by the user, at least at the beginning, e.g., p.evopts.disp=0 (to suppress output during eigenvalue
calculations), or p.pfig=1, p.brfig=2 (the figure numbers for plotting), and some of the additional fields/variables
are only generated during computation, e.g., the residual res and the error estimate err, which are put into p for easy
passing between subroutines and user access. Currently there are no global variables in pde2path, with the exceptions
pj,lamj which are set for numerical differentiation in resinj. However, see also §3.1.7 and §3.5 for examples of using
global variables to streamline calculations.

9



func. handles meaning example (in initbratu)

f [c,a,f,b]=f(p,u,lam) PDE coefficients in (1) p.f=@bratuf
jac [cj,aj,glam,bj]=jac(p,u,lam) used to build Gu, Gλ from

fu, fλ if desired (see jsw below),
p.jac=@bratujac

bcf bc=bcf(p,u,lam), boundary conditions function p.bcf=@(p,u,lam) bca,c

outfu out=outfu(p,u,lam), defining output for bifurcation dia-
gram, i.e., quantities saved on p.branch. Default setting
out=stanbra(p,u,lam) gives out=[‖u1‖∞; ‖u1‖L2 ];

p.outfu=@stanbrab

ufu cstop=ufu(p,brout,ds), user function, called after each cal-
culation of a point, e.g. for printing information and checking
stopping criteria

p.ufu=@stanufub

headfu headfu(p) (no return arguments); print screen output headline p.headfu=@stanheadfub

blss, lss (bordered) linear system solver, see §3.1.7 p.blss=@blssb, p.lss=@lssb.

various var. meaning example (in initbratu)

geo geometry (and also BC in call to recnbc1) [p.geo,bc]=recnbc1(0.5,0.5);a,b,c

points,edges,tria mesh p=stanmesh(p,lx,ly,nx)

bpoints,..,btria background mesh (used for mesh-adaptation) p=setbmesh(p)b

neq, np, nt number of equations, mesh points, triangles automatically from mesh
u,lam,tau,ds essential continuation data p.u=0.2*ones(p.np); . . . ;
branch, bifvals lists generated via p.outfu, used to plot bif. diagrams p.branch=[]; p.bifvals=[];

file names meaning standard (in setfn)

pre name of subdir for files; by default automatically set to the
struct name used in call to cont or *init

pname,bpname (base)filenames for output of points, bifurcation points; actual
filenames augmented by counter

p.pname=’p’ for point,
p.bpname=’bp’ for bif.point

a typical setup with bc independent of λ, u and hence defined in advance
b “standard” choices provided by p=stanparam(p)
c see bratuinit.m and documentation of pdetoolbox for explanation

Table 2: Basic variables in structure p of a problem, and their initialization in bratuinit.

main functions purpose

p=cont(p(,msteps)) main continuation routine; aux. argument msteps overrules p.nsteps
p=swibra(pre,file,newpre) branch-switching at bifurcation point from previous run, prefix set to newpre
p=meshadac(p,varargin) adapt mesh in p, see §3.1.5 for varargin
p=findbif(p(,nbifpoints)) locate (nbifpoints) bifurcation point(s) based on Gu;
p=loadp(pre,file,npre) load solution struct p from file and reset prefix to npre
plotbra(p,wnr,cmp(,aux) plot component cmp of branch over λ, in figure wnr, various aux arguments
plotbraf(pre,file,wnr,cmp(,aux)) as plotbra but from file (saved previously, leave out the ’.mat’)
plotsol(p,wnr,cmp,pstyle) plot solution, use plotsolf(pre,file,wnr,. . . ) to plot from file

Table 3: Main “user” functions in pde2path.

initmesh from the pdetoolbox, i.e., a Delaunay algorithm. For rectangular domains the syn-
tax p=stanmesh(p,nx,ny) is also allowed, which is based on poimesh from the pdetoolbox,
with obvious meaning. If applicable and used with care, this is faster and gives more regu-
lar meshes, i.e., nx/ny should correspond to Lx/Ly where Lx, Ly are the side lengths of the
rectangle.

• Calling a number of pde2path functions. The basic call is p=cont(p); (a continuation
run)2, which can be followed, e.g., by a repeated call to extend the branch. Or, in case
a branch point has been found, a call to branch switching and subsequent continuation
by q=swibra(’p’,’bp1’,’q’); q=cont(q); where, e.g., ./p/bp1.mat is data written at
a branch point during the previous run. In between runs, p can be modified from the com-
mand line, e.g., type p.imax=5 (say) to (re)set the maximal number of Newton-iterations, or

2also possible: p=cont(p,msteps), where msteps overrules (but does not replace) p.nsteps

10



Newton&Cont meaning

imax,normsw Newton controls: max number of steps and selection of a norm (‘norm-switch’)
tol stop-crit. for Newton, typically should be around 1e-10;
nsw 0 for Newton, 1 for chord
jsw switch for derivatives (Gu, Gλ). 0: (Gu, Gλ) by (c, fu, b, fλ),

1: Gu by c, fu, b, Gλ by FD, 2: Gu by FD, Gλ by fλ, 3: both by FD.
dsmin,dsmax,dlammax min/max stepsize in s, max stepsize in λ
lammin,lammax min/max λ, preset to ∓106, reset to use as stopping criteria
nsteps number of steps to take
parasw,lamdtol parametrization switch and tolerance: if parasw=0 resp. parasw=2 then always use

(15) resp. (10). If parasw=1 then use (16) with tolλ̇ =lamdtol
amod, maxt, ngen controls for mesh adaptation: adapt every amod-th step, aim at maxt triangles, in at

most ngen refinement steps
errchecksw, errtol switch and tol for a posteriori error estimate and handling, see §3.1.5.

Bif.,Plot&User-control meaning

bifchecksw 0 for no checks, 1 for check via B1 with consistency with eigenvalues of Gu,
2 for B1 alone (default)

biflocsw bisection method, 0 for secant, 1 for tangent, 2 for 2nd order (default)
neig number of eigenvalues to be calculated in spcalc for stability, default 50
neigdet number of eigenvalues to be calculated in bifdetec, default 0 (use LU decomposition)
eigsstart 0 to start eigs randomly, 1 to start with (1, . . . , 1) (default)
bisecmax max number of bisections to locate bifurcation; turned off by bisecmax=0
spcalcsw 0/1 for eigenvalue calculation off/on (default 1)
pmod/pstyle plot each pmod-th step in style pstyle (1 mesh, 2 pcolor, 3 rendered 3D, . . . )
pcmp, bpcmp component to plot, component of branches to plot
smod save every smod-th step
isw,vsw interaction/verbosity switch: 0=none, 1=some, 2=much;
pfig,brfig,ifig figure-numbers for u-plot, branch-plot and info-plot during cont.; in ifig we plot addi-

tional information, e.g., after mesh adaptation, or the new tangent after swibra
timesw if > 0, print timing info after cont. See stanparam.m for the timers in p.
nbp number of user–components of branch to be printed on screen (p.ufu=@stanufu)

resfac, mst, pmimax pmcont only, see §4.3

Table 4: Main switches and controls in a structure p used in cont, see stanparam.m for typical
values and a number of additional switches with detailed comments. See also §4.3 for additional
parameters controlling pmcont, the parallelmulti–continuation version.

call p=meshref(p) to refine the mesh before a subsequent run; afterwards, call p=cont(p)
again. According to the settings, data is plotted and written to files in a sub-directory with
name p.pre. There are also functions for further post processing, e.g., plotting of solutions
and bifurcation diagrams, whose documentation is mainly provided within the corresponding
matlab files, and by the calls in the example directories.

The fundamental user provided functions thus are the coefficient function p.f and the addition-
ally recommended Jacobian function p.jac, see §3.1.3. To study a new problem, we recommend to
edit copies of the files *init.m, *f.m and *jac.m of a suitable example (e.g. *=bratu for a scalar
problem) in an empty directory, and start with calling p=[];p=newinit(p); p=cont(p). The bi-
furcation diagram in Fig. 2 and the solution plots are generated from the commands in Table 5,
either given from the command line, or put into a Matlab script.

Remark 3.1. Here as in most of the examples we follow bifurcating branches only in one direc-
tion, since typically the other direction is related via some symmetry. In Fig. 2 both displayed
bifurcations are pitchforks, and for instance the other direction of the q branch simply has max-
ima in (x, y) = ±(0.5, 0.5). The direction at bifurcation can conveniently be chosen by calling
swibra(’p’,’bp1’,’q’,ds) with positive resp. negative ds. ⌋

11



function p=bratuinit(p,lx,ly,nx) % init-routine, see bratuinit.m for more comments

p=stanparam(p); p.neq=1; p.f=@bratuf; p.jac=@bratujac; [p.geo,bc]=recnbc1(lx,ly);

p.bcf=@(p,u,lam) bc; % typical inline definition of the BC function

ny=round(nx*ly/lx);p=stanmesh(p,nx,ny); p=setbmesh(p); % mesh and "background" mesh

pre=sprintf(’%s’,inputname(1)); p=setfn(p,pre); % set filename (prefix)

p.xi=1/p.np; p.dlammax=0.02; p.lammin=0.02;

p.lam=0.2; p.u=0.1*ones(p.np,1); p.ds=0.05; % "trivial" branch

function [c,a,f,b]=bratuf(p,u,lam) % coeff for Bratu

u=pdeintrp(p.points,p.tria,u); c=1; a=0; f=-10*(u-lam*exp(u)); b=0;

function [cj,aj,glam,bj]=bratujac(p,u,lam) % Jacobian for Bratu

u=pdeintrp(p.points,p.tria,u); cj=1; aj=10*(1-lam*exp(u)); glam=-10*exp(u); bj=0;

% commands to run bratu in pde2path (selection, see also script file bratucmds.m)

p=[];p=bratuinit(p,0.5,0.5,20); p=cont(p);

q=swibra(’p’,’bp1’,’q’); q.lammin=0.1;q.nsteps=20;q=cont(q);

plotbra(p,3,2,’ms’,12,’lw’,5,’fs’,16,’cl’,’k’);plotsolf(’q’,’p20’,4,1,1);

Table 5: The basic init–routine bratuinit.m, the definitions of PDE coefficients and Jacobian (see §3.1.3),
and some selected commands (see bratucmds.m) to run pde2path. See also the files for detailed comments.

(a) (b)

0.1 0.2 0.3
0.5

1

1.5

2

2.5

3

3.5

q20

r20

λ

||
u
||

2

(c) (d)

Figure 2: (a) Elementary bifurcation diagram for (17) generated by pde2path, over a uniform mesh with

800 triangles. Thick lines indicate stable (parts of) branches, thin lines unstable branches, ◦ bifurcation

points. (b), (c) Some solution plots. (d) Preview of mesh refinement. See §3.1.5 for the quality of the mesh

at the “ends” of branches q, r and the due mesh–refinement.

3.1.3 The PDE–coefficients and Jacobians

The coefficient function p.f is of course mandatory, and the Jacobian function p.jac is recom-
mended. The input argument u of both are the nodal values, u1(·) =u(1:p.np), u2(·) =u(p.np+1:2*p.np),

12



. . . , uN (·) =u((p.neq-1)*p.np+1:p.neq*p.np). For the outputs c, a, f, b (of p.f) we allow two
forms, i.e., (arrays of) constants, or (arrays of) values on the triangle midpoints of the FEM–mesh,
essentially as explained in [35]. There are two major ways to generate c, a, f, b from u. We first
focus on f :

a) Use u=pdeintrp(p.points,p.tria,u) to first interpolate u to the triangle values (again
called u), which yields a matrix

u =





u11 u12 . . . u1,nt

. . . . . . . . . . . .
uN1 uN2 . . . uNnt



 ,

where nt is the number of triangles in the mesh. Then write, e.g., f(u) in a standard Matlab

way, i.e., f=-10*(u-lam*exp(u)); see bratuf in Table 5.

b) First express, e.g., c, f as “Matlab text expression in x,y,u,ux,uy” (from [35]), with obvious
meaning. For this, a parameter lam must be converted to a string. Afterwards, pdetxpd is
called to evaluate the text expression on the triangle midpoints. See file bratuft.m for an
example.

Option a) has the advantage that it is more “natural”, more flexible, and, at least for sim-
ple expressions, slightly shorter. If, however, f depends on x, ux, . . ., then option b) might be
shorter. To some extent it is a matter of taste which way to generate f is preferred (and similarly
c,. . . ), therefore for (17) we provide both as templates. However, b) only allows local dependence
f(u, . . .) = f(u(x), . . .).

For c, which in principle is the N × N × 2 × 2 = 1×1×2×2 tensor c11kl =

(

1 0
0 1

)

we simply

write c=1 which corresponds to the simplest symmetric case. 3

The tensor b = bijk, i, j = 1, . . . , N , k = 1, 2 in (1) is not part of the pdetoolbox. Its coding
and storage mimics that of c. In detail, b is an 2N2 ×m array, where m = 1 (constant case) or
m =p.nt, in the order

b =
[

b111; b112; b211; b212; . . . bN11; bN12; b121; b122; . . . ; bN21; bN22; . . . b1N1; . . . ; bNN2

]

, (19)

i.e., bijk is in row 2N(j−1)+2i+k−2. Unlike the pdetoolbox setup for c, a there are currently no
schemes to encode special situations such as, e.g., b⊗∇u = α∂xu which corresponds to advection
into direction x. Thus, in this case, for N = 2, b reads b = [α; 0; 0; 0; 0; 0;α; 0], while, e.g., β∂yu
yields b = [0;β; 0; 0; 0; 0; 0;β]. Again we remark that advective terms can also be put into f such
that p.f may simply return b=0. However, b is needed if there are advective terms and we want
explicit Jacobians as explained next.

If p.jsw< 3 then the user must also set p.jac to a function handle with outputs cj, aj, glam, bj
again defined on triangle midpoints. These are the coefficients for assembling Gu and Glam, where
in fact cj is the same as c in p.f, compare Table 5. Providing the same c=cj (and also often the
same b = bj) twice (in p.f and p.jac) is redundant, and there are situations where only either
cj,aj,bj or glam are needed, namely jsw=1 resp. jsw=2. However, we found the small overhead
of recomputing cj,bj, resp. unnecessarily computing aj, bj resp. glam acceptable to have a clear

3There are various special coding schemes for diagonal or symmetric cases, see [35]. For convenience here we just
note that in the general case c is a 4N2 × p.nt matrix (or in case of constant coefficients a 4N2 column vector) with
cijkl in row 4N(j − 1) + 4i + 2l + k − 6, i, j = 1, . . . , N , k, l = 1, 2. In this scheme we have c=[1;0;0;1] to encode
the Laplacian. Similarly, there are special storage schemes for symmetric a, but in general a = aij , i, j = 1, . . . , N , is
stored as a N2 × p.nt matrix (resp. a N2 column vector in case of constant coefficients) with aij in row N(j − 1)+ i.
Note the somewhat non–lexicographical order.

13



code. On the other hand, splitting the calculation of PDE coefficients and Jacobian coefficients
into two routines is reasonable since often at least for testing it is convenient to use jsw=3 where
analytical Jacobians are never needed.

Remark 3.2. Given coefficients c, a, f, b = c(u0), a(u0), f(u0), b(u0), the FEM transforms (1) into

the algebraic system K(u0)u− F(u0)
!
= 0 where K is called the stiffness matrix, assembled from c, a

and b, and F is the FEM representation of f . Thus, u solves the FEM discretization of (1) if the

residual r = resi(p, u, lam) := K(u)u− F(u)
!
= 0. The basic pdetoolbox routine to assemble K=K0

(in case b = 0) and F is [K,F]=assempde(...,c,a,f), where “. . . ” stands for boundary conditions
and mesh-data. To assemble the advection matrix B we additionally provide B=assemadv(p,t,b).
The full system–matrix then is K = K0 −B .

Thus, if a = b = 0 and c does not depend on (u, λ), then with the local derivatives aj = −fu
and glam = −fλ returned from p.jac, the Jacobian Gu and the derivative Gλ can be obtained
from

[Gu, Glam] = assempde(. . . , cj, aj, glam), (20)

and this is done for jsw=0. If a 6= 0 is independent of u (and still b = 0), then p.jac must return

aj = a− fu.

If b = 0 but, e.g., a depends on u, then the formulas must be adapted accordingly, and if, e.g.,
c = c(u) or b = b(u) 6= 0, then Gu can still be assembled using cj(u) = c(u) and suitable bj and aj,
see §3.4 and §4.1 for examples. Similarly, glam must always be understood in a “generalized” sense,
i.e., it must assemble to Gλ, even if this involves derivatives of u which originally were implemented
via c.

For jsw=1, Gu is still assembled but Glam is calculated by finite differences. Since approximating
Gλ by finite differences only takes one additional call of resi, speed is not an issue for choosing
between jsw=0 and jsw=1. In the latter case, simply set flam=0 in p.jac. See §3.2.1 for an example.
For jsw = 2 we use numjac to calculate Gu; to be efficient this requires a sparsity structure S, and
here we assume that Fi depends only on (all components of) u on the i-th node and all neighboring
nodes, which corresponds to the sparsity structure obtained by [Gu,Glam]=assempde(...,0,a,0)

with aij = 1 for i, j = 1, . . . , N . Our experience is that numerical Jacobians are fast enough for
moderate size problems, i.e., for up to a few thousand degrees of freedom. Of course this also
depends on the structure of the problem: diagonal diffusion or not, weak or strong coupling of the
different components of u. Still, assembling Jacobians is usually much faster. For jsw = 3, both
Gu and Glam are approximated by finite differences. In any case, for both (jsw ≤ 1 and jsw ≥ 2)
we assume local dependence of f on u. See, however, §3.5 for some modifications for the case of
global coupling. ⌋

Remark 3.3. The boundary conditions, see §3.1.4, are updated from bc=p.bcf(p,u,lam) before
assembling. In the (frequent) case that the BC do not change during continuation we set may
p.bcf=@(p,u,lam) bc in the init-routine (after generating bc). See, however, §3.3 for examples
with λ–dependent BC. ⌋

As mentioned, when applicable, assembling Gu via cj,aj and bj (p.jsw=0,1) gives a matrix
Gu,a and is faster (by orders of magnitude for large Nnp) than numerical differentiation by numjac

(p.jsw=2,3), which gives a matrixGu,n which is in general close to but not equal toGu,a. Intuitively
we might also expect Gu,a to be “more accurate” than Gu,n. However, we need some caution: in
fact, Gu,n often gives better convergence of the Newton loop for the algebraic system r(u) =

K(u)u − F (u)
!
= 0. The reason is that Gu,a involves interpolation of nodal values to triangle

14



values in c, a, b and fu, while for Gu,n this is done on c, a, f, b, consistent with the definition of
r(u). This effect becomes prominent on poor (underresolved) meshes, where the relative error
e = ‖Gu,n − Gu,a‖/‖Gu,n‖ can be of order 0.05 or larger. However, e → 0 for mesh spacing
h→ 0. For convenience we provide the function [Gua,Gun]=jaccheck(p) which returns Gu,a, Gu,n,
produces spy–plots of these matrices, and prints the timing and some diagnostics.

Thus, for small np it might appear that Gu,n is favorable. On the other hand, Gu,a is obtained
in acceptable time on much finer meshes, where the FEM solution uh should be much closer to a
PDE solution u. In fact, using jsw=2,3 can even be dangerous in the sense that it may mask the
fact that a FEM solution uh is not close to a PDE solution u. See §3.1.5.

3.1.4 The geometry and the boundary conditions

The domain Ω is typically described as a polygon. As the pdetoolbox syntax is somewhat unhandy,
and the rectangular case is quite common we provide the function geo=rec(lx,ly) which yields
Ω = [−lx, lx]× [−ly, ly]. An extension is the function polygong, see [27] for its syntax. Setting up
“arbitrary complicated” geometries Ω is most convenient if there is a drawing img.jpg of Ω in the
current directory. Type im=imread(’img.jpg’); figure(1);image(im); [x,y]=ginput; which
yields a crosshair. Click (counterclockwise) on ∂Ω, stop with return. The obtained vectors x,y

can be saved as a *.mat or *.txt file, and piped through geo=polygong(x,y). Finally, geometries
can also be exported from the pdetoolbox GUI.

The pdetoolbox syntax for the boundary conditions (2) is also somewhat unhandy. For
scalar equations the most common BC are homogeneous Dirichlet or Neumann BC. The routine
[geo,bc]=recdbc1(lx,ly,qs) approximates Dirichlet BC over rectangles via “stiff spring” Robin
BC of the form n · (c⊗∇u) + qshu = 0 with a large qs = qs.

For c of order 1 typically qs = O(102) or qs = O(103) works well. For homogeneous Neumann
BC we provide [geo,bc]=recnbc1(lx,ly), with the extension [geo,bc]=recnbc2(lx,ly) to 2–
component systems.

For the genuine systems case (or the case of non–rectangular domains) we provide the routines
bc=gnbc(pneq,varargin) and bc=gnbcs(pneq,varargin). For a system with neq components
and a domain with nedges edges, bc=gnbc(neq,nedges,q,g) creates “generalized Neumann BC”
(2) that are given as numerical data. Different boundary conditions qj , gj at the edge with index
j are generated by a call of the form bc=gnbc(neq,q1,g1,...,qnedges,gnedges). For g, q given in
terms of an explicit formula, e.g., involving x, u,∇u, the function gnbcs accepts a string variable
encoding of g and q or gj , qj and otherwise works in the same way. See the demos below.

3.1.5 Error estimates and mesh adaptation

As an ad hoc way to check whether a FEM solution uh =p.u approximates a PDE solution u
we provide [q,ud]=meshcheck(p,cmp). This (adaptively) refines the FEM mesh in p to roughly
the double number of triangles and calculates a new FEM solution uh,new from the old solution
uh,old. Then uh,old is interpolated to ũh,new on the new mesh, udiff = uh,new − ũh,new is formed,
and ‖udiff‖∞ and the relative error ‖udiff‖∞/‖uh,new‖∞ are printed. The new solution structure q

and the difference ud= udiff are returned, and for cmp> 0 we additionally generate a plot of the
cmpth component of udiff . For instance, in Fig. 3(a) we check the mesh at point 20 on the q branch
in Fig. 2 which indicates that the mesh in 2 corners is clearly too poor, and before continuing for
smaller λ we should refine the mesh.

Thus, some (automatic) mesh adaptation may be vital for reliable continuation. The pdetoolbox
comes with mesh refinement based on an a posteriori error estimator as follows. For the scalar Pois-
son problem −∆u = f , u|∂Ω = 0, let uh be the FEM solution and u the PDE solution. Then, with

15



α, β > 0 some constants independent of the mesh,

‖∇(u− uh)‖L2 ≤ α‖hf‖+ βDh(uh), (21)

where h = h(x) is the local mesh size, and Dh(v) =
(
∑

τ∈Ei
h2τ (∂nτ v)

2
)1/2

. Here ∂nτ v is the jump
in normal derivative of v over the edge τ , hτ the length of the edge, and Ei the set of all interior
edges. For equations −∇(c⊗∇u) + au = f this suggests the error indicator function

E(K) = α‖h(f − au)‖K + β

(

1

2

∑

τ∈∂K

h2τ (nτ · c∇uh)2
)1/2

(22)

for each triangle, which is calculated by the Matlab routine pdejmps. For convenience we provide
the interface routine err=errcheck(p).4 Calling, e.g., err=errcheck(p) yields err=0.273 which
somewhat overestimates the error in Fig. 3(a). In cont, for errchecksw>0 we call errcheck after
each successful step and store the result in p.err.

The (basic) mesh refinement strategy is to introduce new triangles where E(K) is large.5 This is
done by the pdetoolbox routine refinemesh, but we provide the interface routine p=meshref(p,

varargin).6 Since meshref also interpolates the tangent τ to the new mesh, we can continue
with cont immediately after mesh refinement. However, instead of mesh refinement, which means
introduction of new points into the mesh, we rather need mesh adaptation, which means refinement
where necessary, but coarsening where possible, to limit the problem size. In pde2path, mesh–
adaptation is implemented in an ad hoc way in the function p=meshadac(p,varargin) by first
interpolating a given solution to a (typically somewhat coarse) “base–mesh” or “background-mesh”
and then refining. (Base-mesh given by p.bpoints, p.bedges, p.btria, varargin as above).

During continuation runs there are basically two strategies for mesh-adaptation, which can also
be mixed:

(i) call meshadac every p.amodth step, for p.amod>0, or
(ii) call meshadac whenever p.err>p.errbound (choose p.errchecksw>1 for this), where we

refine until err<p.errbound/2 in order to allow some margin for the next steps.
See Figures 3(b),(c) for a comparison of the different approaches.
In summary, mesh adaptation strategies and error bounds are highly problem dependent, and

moreover, may not be rigorously justified for the system case or general BC. Thus, for a given
problem we recommend to first experiment with mesh adaptation to, e.g., achieve a given error
bound ε, i.e., call p refined=meshref(p,’eb’,ε). Mesh adaptation works well for all examples
we considered, and is essential in some, in particular in §4.2 and §5.1. See also Remark 3.5 for
another simple scalar example with details on mesh sizes and error estimates.

Remark 3.4. For bifurcation from trivial branches, another good strategy is to prepare a finer base
mesh than the starting mesh, for instance if the trivial branch consists of spatially homogeneous
solutions, but the bifurcating solutions develop sharp gradients. For convenience we also provide
the functions p=newmesh(p), which interpolates the current (u, τ) to a new mesh generated after
user input in the form hmax or nx,ny, and p=setbmesh(p) which sets the base mesh to the current
mesh. This should be called if it is expected that the current mesh is a good base for adaptation
in the steps to come. ⌋

4 With a,f,b returned from p.f, this also re–calculates f (via fb=bgradu2f(p,f,b,u)) to include b ⊗ ∇u into
fb, as pdejmps does not take b⊗∇u into account directly. Similarly, the mesh refinement below always recalculates
f to include b⊗∇u. Moreover errcheck also contains our settings for some tunable parameters of pdejmps. Finally,
at the end of most *cmds.m files there are templates how to (re)evaluate E(K) at any given solution.

5It is not a priori clear if this is also suitable for systems, but it works well for all our examples.
6where varargin takes pairs ’maxt’,maxt=number of triangles aimed at, or ’ngen’,ngen=number of refinement

steps, or ’eb’,eb=error bound. Calling for instance q0r=meshref(q0,’eb’,0.0025,’maxt’, 50000, ’ngen’,20)

shows that to achieve an estimated error≤ 0.0025 we need about 30.000 triangles.

16



(a) (b) (c)

0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

λ

e
rr

o
r 

e
s
ti
m

a
te

 

 

q0

q1

q2

0.05 0.1 0.15

1.9

2

2.1

2.2

2.3

2.4

2.5 1

26

λ

||
u

||
2

11

11 q1

q0

q2

Figure 3: (a) Error in u at q0=point 20 on the q branch from Fig. 2 obtained from calling meshcheck(q0,1).

(b) p.err over λ for continuing from point 10 on the q branch, without mesh-adaptation (labeled q0), with

strategy (i) (amod=10, labeled q1) and with strategy (ii) (p.errbound=0.1, labeled q2). (c) The bifurcation

diagrams belonging to (b). In q1 a rather large jump appears from refinement after the 10th step.

3.1.6 Eigenvalues and findbif

To obtain stability information of u as a stationary solution of ∂tu = −G(u, λ) we provide the
function [ineg,muv]=spcalc(Gu,p) which by default uses eigs.m to calculate the set Σ0 of p.neig
smallest eigenvalues of Gu, and returns the number ineg of eigenvalues with negative real-part and
the (vector of) eigenvalues muv. The implicit assumption, based on ellipticity of Gu, is that p.neig
is sufficiently large such that all eigenvalues with negative real part are always contained in Σ0.

7

A similar method can also be used to calculate sign( detA) by calculating p.neigdet eigenvalues
ηi of A closest to 0, p.deig > 0, and then use

sign( detA)=sign(Π
deig
i=1Reηi). (23)

This, however is usually much slower (though it also gives more information) than using the LU
decomposition of A, which we use as standard by setting p.neigdet=0.

For problems with symmetries, often multiple eigenvalues of A and Gu cross the imaginary axis
simultaneously. Even if such a symmetry is artificially broken, for instance by a small “detuning”
of the domain, often still a rather large number of eigenvalues of A and Gu crosses the imaginary
axis on rather short parts of branches. To find the associated bifurcation points would then require
unpractically small p.ds. Therefore we also provide a routine findbif which scans a branch for
changes of the signature of Gu, i.e., the number ineg of unstable eigenvalues of Gu, to detect bifur-
cations, where again ineg is based on calculating p.neig eigenvalues as above. This in particular
can be used to detect if an even number of eigenvalues crosses the imaginary axis in a given step,
and then start a bisection. In detail, p=findbif(p) continues a branch until the signature changes
and then tries to detect the successive points between which it changes by ±1. p=findbif(p,m)

with m ≥ 1 tries to detect m such index changes. Besides the bifurcation points, the first point,
each point just ahead of and behind a bifurcation, and the last point on the considered branch
are saved. Thus findbif can be considered as a version of cont with bifurcation detection based
on the eigenvalues of Gu. This can also be extended to detect and localize bifurcations with a
prescribed signature change δ = ±2,±3, . . ., i.e., double/triple/. . . bifurcation points. However, as
already said, presently we stick to simple bifurcation points.

7Use p.eigref=’sa’ for alternatively calculating eigenvalues with smallest real parts (typically somewhat slower,
even if used with small p.neig). Our standard setting is neig = 50, but of course this is highly problem dependent
and should be adapted by the user when needed. We give a warning if |µ1| > |µneig|/2 since then eigenvalues might
wander out of ΣGu

to the left in the next steps, which might give false stability information.

17



In principle, a similar algorithm could be set up based on the eigenvalues of A, but as the
signature of Gu also immediately gives the stability information, here we opted for Gu. In any case,
the final localization of the bifurcation points presently again uses bisection based on sign changes
of detA, without calculation of eigenvalues. In future versions we plan to improve this to some
regula falsi or Anderson–Björk–King method based on the actual eigenvalue crossing, and also to
try some more sophisticated methods such as continuation of invariant subspaces (CIS) [3, 4].

See Fig.4 for examples of using findbif from the end of bratucmds.m. In some of the examples
below we use findbif to locate bifurcations from “the main trivial” branches, on which the solutions
do not change (or at least not significantly); since the stepsize adaptation in findbif is based on the
signature of Gu, in this case findbif can be run with rather large p.ds and thus the bifurcations
can be found quickly.

(a) (b) (c) (d)

0.2 0.25 0.3 0.35

0.5

1

1.5

2

2.5

1

5

10
15

20

λ

||
u

||
2

0.2 0.25 0.3 0.35

0.5

1

1.5

2

2.5

1

5

10

15

λ

||
u

||
2

0.27 0.272

1.98

2

12

Figure 4: Finding bifurcation points with findbif. (a) On a square domain Ω = (−0.5, 0.5)2, the double

bifurcation point at λ ≈ 0.2724 is initially detected by findbif but not localized. (b) Breaking the square

symmetry by setting Ω = (−0.5, 0.5) × (−0.495, 0.495) this bifurcation unfolds and findbif conveniently

localizes the resulting two simple bifurcation points, although quite close. Associated eigenvectors in (c),(d).

3.1.7 The linear system solvers

Recall that after discretization with np points we have nodal values u ∈ R
p with p = Nnp large,

and

Gu ∈ R
p×p and A =

(

Gu Gλ

ξu̇ (1− ξ)λ̇

)

∈ R
(p+1)×(p+1) (24)

are large, but sparse (block) matrices. The question is how to best solve Guv = r and the bordered
systems such as Aτ = z, respectively. In all the examples that we considered, our experience is
that the highly optimized matlab solver z=A\b of Az = b works remarkably well, but for easy
customization of the code we never call \ directly but use two interface routines:

1. v=p.lss(M,r,p,lam) to solve Mv = r with M = Gu ∈ R
p×p;

2. z=p.blss(A,b,p,lam) to solve Az = b with A ∈ R
p+1×p+1.

Here blss and lss stand for (bordered)linear system solver.
The default solvers lss and blss just contain one command, namely v=M\r resp. z=A\b. Never-

theless, for large systems or for some special classes of problems iterative solvers might work better,
and as templates we provide the two routines ilss and iblss, using gmres with (incomplete ilu)
LU factorization as preconditioners. These should, of course, be reused as long as gmres converges
quickly, and here (and in resinj.m) we thus introduce some global variables, namely global L

U; resp. global bL bU. Thus, when using, e.g., ilss the user must also issue global L U; L=[];

U=[]; from the command line. The reason for this construction is that we do not want to make

18



L,U a part of p since this needs a lot of disk space when saving p: typically, we get fill–in factors
for L,U of 10 and larger.

It turns out that for scalar problems these outperform the direct solvers lss and blss for large
np, np > 105, say. On the other hand, for systems, \ beats gmres with LU preconditioning even
for very large np. In summary, the iterative solvers ilss and iblss should only be regarded as
template files to create problem specific iterative solvers when needed. See also §3.5 for adaptations
of lss and blss to some special situation.

Finally, various approaches have been proposed for the solutions of the bordered systems Az = b,
see, e.g., [19, 15]. As alternatives to blss we provide bellss (“bordered elimination”) and belpolss
(“bordered elimination plus one”). To use these, simply set, e.g., p.blss=@belpolss. In our tests
the performances of bellss and belpolss are roughly the same as blss.

3.1.8 Screen output, plotting, convergence failure, auxiliary functions

The screen output during runs is controlled by the two functions p.headfu (headline) and the
function p.ufu. These are preset in stanparam as p.headfu=@stanheadfu, p.ufu=@stanufu to
first print a headline and then, after each step, some useful information. To print some other
information the user should adapt stanheadfu and stanufu to a local copy, say myhead.m, and
set p.headfu=@myhead, and similar for stanufu and p.ufu. The bifurcation diagram and solution
plots are also generated during continuation runs, but in general it is more convenient to postprocess
via plotbra, plotsolf etc.

The files p*.mat and bp*.mat contain the complete data of the respective point on a branch,
including the mesh, which is necessary if, e.g., some mesh refinement occurred during continuation.
To save disk space, however, we deliberately chose to not make Gu a part of p. Thus, a run which
is no longer in memory can be simply reloaded by, e.g., q=loadp(pre,pname,’q’), where pre,

pname is the name data of a previously saved point, and the third argument is used to set the
directory name for the newly created struct. The loaded point will often be either the last one or
the first; in the latter case, to change direction of the branch, use, e.g., q=loadp(’p’,’p1’,’q’);
q.ds=-q.ds; q=cont(q);

If the Newton–loop does not converge even after reducing ds to dsmin then cfail.m is called.
The standard option is to simply abort cont, but we offer a number of alternatives, e.g., to change
some parameters like dsmin or imax, or to try, e.g., some mesh refinement or adaptation. Clearly,
the choice here is strongly problem dependent, and thus we recommend to adapt cfail.m if needed;
see §3.6 for remarks on such “customization without function handles”.

Besides those already mentioned we provide further auxiliary functions, see [26, m2html] for a
complete documented list.

3.2 The Allen–Cahn equation with Dirichlet boundary conditions (ac)

In our second example we use Dirichlet boundary conditions (DBC), and explain some ad hoc
parameter switching, and time integration. We consider a cubic–quintic (to have folds) Allen–
Cahn equation

−µ∆u− λu− u3 + u5 = 0 on Ω = [−Lx, Lx]× [−Ly, Ly], u|∂Ω = 0, (25)

with two parameters µ > 0 and λ ∈ R. We use [p.geo,bc]=recdbc1(lx,ly,1e3) to approximate
the DBC, and set Lx = 1 and Ly = 0.9 to break the square symmetry present in bratu in order to
have only simple bifurcations, namely at λkl = µπ2((k/Lx)

2+(l/Ly)
2). First we fix µ = 0.25 which

yields λ11 = 1.3784, λ21 = 3.2289, λ12 = 3.6630, . . ., and continue in λ, which yields Fig. 5(a)–(c).
After branch switching we turn on mesh–adaptation after each 5 steps, see Remark 3.5, and see

19



acdemo.m or accmds.m for more details, which also contain an example of perturbing a solution
and subsequent time integration.

(a) (b) (c)

1 2 3 4
0

0.5

1

1.5
q10

r10

λ

||
u
||

2

(d) (e) (f)

Figure 5: (a) Elementary bifurcation diagram for (25) with µ = 0.25. No secondary bifurcations occur, and

the mode–structure on each branch is completely determined at bifurcation. (b),(c),(d) points resp. mesh

on branches as indicated. (e),(f) Solution and mesh after continuation in µ from (b) to µ ≈ 0.093.

3.2.1 Parameter switching

Unlike AUTO, pde2path (currently) has no switches or presets for multi–parameter continuation.
However, switching to a new parameter for continuation can be achieved in a simple and flexible
way by modifying the structure p from the command line. As an example we want to continue in µ
from point 10 on q to µ = 0.1. This is achieved by the commands in Table 6, and yields Fig. 5(d).
The basic idea is to copy q to w (this is not strictly necessary) and then reset w.f and w.jac. We
make our life simple by setting w.jsw=1 such that we do not need Gλ, and set ξ = 10−6 since the
dependence on µ is quite sensitive. We introduce a new parameter w.up1 ( ’user parameter 1’, but
any name will be fine) which is used to pass the current λ to acfmu, see Table 6.

Remark 3.5. The base mesh in Fig. 5 consists of 800 triangles, and the mesh adaptation produces
the following numbers: if we continue q without adaptation, then from (22) we obtain an error
estimate E(K) ≈ 0.0047 at q10, while with adaptation to the mesh in Fig. 5(d) with nt = 2484
triangles we obtain E(K) ≈ 0.0013. Similarly, if we continue with this mesh and no further
adaptation to µ = 0.1 we get E(K) ≈ 0.0016, while the error estimate with adaptation to the
mesh in Fig. 5(f) with nt = 2112 is E(K) ≈ 0.0001. Together with the quite reasonable meshing
obtained, we take this as a further illustration of efficiency of the mesh adaptation. ⌋

3.2.2 Time integration

For time integration of (3) using the struct p we provide a simple semi-implicit Euler method.
Writing u(n) for u(tn, ·), choosing a time–step h, approximating ∂tu(tn) ≈ 1

h(u
(n+1) − u(n)) where

20



w=q;w.up1=w.lam;w.lam=0.25;w.lammin=0.05;w=setfn(w); w.ds=-0.01;

w.f=@acfmu;w.f=@acjacmu;w.jsw=1;w.parasw=0;w.xi=1e-6;w.restart=1;w=cont(w);

function [c,a,f,b]=acfmu(p,u,lam) % AC for cont in mu

u=pdeintrp(p.points,p.tria,u); c=lam; a=0; f=p.up1*u+u.^3-u.^5; b=0;

function [cj,aj,glam,bj]=acjacmu(p,u,lam) % Jac for cont of AC in mu; use jsw=1

u=pdeintrp(p.points,p.tria,u); cj=lam; glam=0; bj=0; aj=-p.up1-3*u.^3+5*u.^4;

Table 6: Switching to continuation in µ, commands, and modified coefficient and Jacobian functions.

tn = t0 + nh, and evaluating, e.g., ∇ · (c⊗∇u) as ∇ · (c(u(n))⊗∇u(n+1)) we obtain, on the FEM
level,

1

h
M(u(n+1)−u(n)) = −K(u(n))u(n+1)+F (u(n))

⇔ u(n+1) = (M+hK(u(n)))−1(Mu(n)+hF (u(n))).

Here M is the mass matrix and K is the stiffness matrix on time–slice n. This is implemented
in tint(p,h,nstep,pmod), where nstep is the number of time steps, and a plot (of component
p.pcmp) is generated each pmod’th step. Thus we may call, e.g., p.u=p.u+0.1*rand(p.neq*p.np,1);
p=tint(p,0.1,50,4,10) to first perturb a given solution and then time-step. See accmds.m for
an example, where we perturb a solution on the unstable part of the q branch into both directions
of the unstable manifold; in the subsequent time integration the solution converges to the stable
trivial solution or the stable q branch, respectively, as expected. However, the main purpose of
tint is to generate (stable) initial data for continuation, i.e., after tint call cont. See also §5.2
for an example where tint is used in this spirit.

Remark 3.6. In each step in tint we assemble K(u(n)), and solve (M + hK(u(n)))u(n+1) = g(n)

by lss. Clearly, for special cases this can be optimized: for instance, if c, a, b do not depend on
u, then the textbook approach would be to assemble K at the start, followed by some incomplete
LU–decomposition of M + hK combined with some iterative solver. However, similar remarks as
in §3.1.7 apply, and thus we use the very elementary form above, but stress again that tint in its
present form is not intended for heavy time-integration. ⌋

3.3 The Allen–Cahn equation with mixed λ-dependent boundary conditions
(achex)

We illustrate a few more possibilities with pde2path by modifying the Allen-Cahn example (25)
from above. We consider again (25), i.e., −0.25∆u−λu−u3+u5 = 0, but instead of homogeneous
Dirichlet BC on a rectangle, we consider hexagonal domains Ω and parameter dependent mixed
Dirichlet-Neumann BC. Figure 6(a) shows an example for Ω, which basically consists of a square,
with the top boundary shifted by δy = 0.5 between [−lx, lx], lx = 0.5. Denote this part of ∂Ω
by ΓD, and set ΓN = ∂Ω \ ΓD. To define the domain we could, e.g., use the pdetool GUI to
draw a polygon composed of six edges, one for each segment and export the geometry. However,
usually the function polygong [27] is much more convenient. See geo=hexgeo(lx,dely), which
also contains a slightly edited output of the GUI for comparison. Second, we want to define the
boundary conditions

n · ∇u = 0 on ΓN , u = λx on ΓD. (26)

To implement this we use a stiff spring approximation on ΓD in via gnbcs, i.e.,

qd=mat2str(10̂ 4);gd=[mat2str(10̂ 4*lam) ’*x’]; qn=’0’; gn=’0’;

bc=gnbcs(1,qn,gn,qn,gn,qn,gn,qn,gn,qd,gd,qn,gn);
(27)

21



(a) (b) (c)

0 1 2
0

0.5

1

1.5

2

2.5

λ

||
u

||
2

q10

1 1.5
1.1

1.3

λ

m
a

x
(u

)

q2

q1

p40

Figure 6: (a) Bifurcation diagram for (25) with BC given by (26). (b),(c) selected solution plots. Basic

mesh created by p=stanmesh(p,0.1) with 1602 triangles and E(K) ≈ 0.007 at, e.g., q10.

With pde2path we perform a continuation starting from the trivial zero solution and obtain the
bifurcation diagram plotted in Fig. 6; see ac6cmds. Bifurcation detection and branch switching
work without problems, and the error estimate E(K) is always well below 0.01. To generate both
parts of the r branch we first call r1=swibra(’p’,’bp2’,’r1’,-0.1);r1=cont(r1) and then
r2=loadp(’r1’,’p1’,’r2’); r2.ds=-r1.ds; r2=cont(r2) to proceed in the other direction. At
the end of ac6cmds we also run an example with u = λ on ΓD implemented via gnbc.

3.4 A quasilinear Allen–Cahn equation (acql)

To give an example of a more complicated Jacobian we modify (25) to the quasilinear Allen–Cahn
equation

−∇ · [(0.25 + δu+ γu2)∇u]− f(u, λ) = 0 on Ω = [−Lx, Lx]× [−Ly, Ly], u|∂Ω = 0, (28)

with f(u, λ) = λu+u3−u5 and Lx = 1, Ly = 0.9 as before. See acqlf.m. The linearization around
u gives the linear operator

Gu(u, λ)v = −∇·[(0.25+δu+γu2)∇v]+[−fu(u, λ)−δ∆u−2γ(∇u·∇u+u∆u)]v−[(δ+2γu)∇u]·∇v.

Hence, in acqljac.m we now have fu = fu + δ∆u + 2γ(∇u · ∇u + u∆u), and b111 = (δ + 2γu)ux
and b112 = (δ + 2γu)uy, cf. Remark 3.2. To generate (ux, uy) and ∆u as coefficients in acqljac.m

we use pdegrad resp. pdegrad, pdeprtni and pdegrad again, see [35].
The term δu in c changes the u 7→ −u symmetry of the Allen-Cahn equation (25). The

bifurcation points from the trivial branch u ≡ 0 in (28) are as in (25), but the bifurcations change,
see Fig. 7. In particular the first bifurcation changes from pitchfork to transcritical.

3.5 An Allen–Cahn equation with global coupling (acgc)

As an example of a “non–standard” elliptic equation we treat an Allen–Cahn equation with a
global coupling. We fix µ = 0.1 and λ = 1 in (25), introduce a new parameter (again called λ) and
consider

G(u, λ) := −0.1∆u− u− u3 + u5 − λ 〈u〉 = 0 on Ω = [−π/2, π/2]2, u|∂Ω = 0, (29)

where 〈u〉 =
∫

Ω u dx. The term λ 〈u〉 is called a global coupling or global feedback, positive for
λ > 0 resp. negative for λ < 0. Problems with global coupling occur, e.g., in surface catalysis, where

22



1 2 3 4
0

0.5

1

1.5

q10

r5

w10

λ

||
u

||
2

Figure 7: Elementary bifurcation diagram for (28) with δ = −0.2 and γ = 0.05, and some solution plots.

The two blue branches are in fact one branch, and the corner at the transcritical bifurcation from the trivial

branch is due to the choice of vertical axis. The symmetry u 7→ −u no longer holds, and “up” humps are

steeper than “down” humps due to δ < 0. The w–branch is still double due to the x 7→ −x symmetry.

global coupling arises through the gas phase [28], in semi-conductors and gas-discharges [37, 34],
and as “shadow systems” in pattern formation when there is a very fast inhibitor diffusion [18].

The global feedback does not fit into the framework of (1) if f is assumed to be local. For the
definition of G(u) this is not yet a problem as we may simply define f as, e.g, f=u+u.^3-u.^5+lam*

triint(u,p.points,p.tria) where triint(g,points,tria) is the Riemann sum of
∫

g(x) dx
over the given mesh. However, for continuation we make extensive use of Jacobians, and Gu(u) is
now given by

[Gu(u)v](x) = −0.1∆v(x)− (1 + 3u(x)2 − 5u4(x))v(x)− λ 〈v〉 .

As yet we cannot deal with last term, cf. Remark 3.2. The first try would be to simply ignore it in
continuation, but this in general only works for small |λ| while for larger |λ| we loose convergence
in the (false) Newton loop. We can express 〈v〉 on the FEM level via a matrix M such that
Gu(u)v = (K − λM)v. Essentially, for “natural parametrization” we need to solve

Gu(u)v = r, where Gu(u) = (K − λνηT ) with ν, η ∈ R
np . (30)

Here η = (aT )T where (a1, . . . , ant) contains the triangle areas, T ∈ R
nt×np interpolates u ∈ R

np

from nodal values to triangle values (such that 〈u〉 =triint(g,points,tria)=eta*u), and νi =
∫

Ω 1φi dx corresponds to adding 〈v〉 to all nodes with the correct weight. However, (K−λνηT ) is a
full matrix and should never even be formed. Instead we customize lss to use a Sherman–Morrison
formula which gives (for (30))

v = K−1r + α(K−1ν)(ηTK−1)r, α =
λ

1− ληTK−1ν
. (31)

In acgcjac.m we then just ignore the term λ 〈u〉. Similar remarks apply to the bordered systems
solved by blss.

In the actual implementation we introduce global variables nu,eta. The idea is that it is
sufficient to calculate ν,η once for a given mesh, for instance in acgcf.m, as this is always called
before the Jacobian acgcjac or the linear system solvers gclss or gcblss. If we set aside mesh–
refinement then we could calculate ν, η at startup and store them e.g. as p.nu,p.eta but with
mesh refinement global variables are more convenient. See Table 7 for the full code of gclss.m,
and Fig. 8 for the result of the basic continuation runs contained in acgccmds.m. We switch off

23



spectral calculations and bifurcation checks by setting spcalcsw=0; bifchecksw=0; since out of
the box these would be based on the (wrong) local Jacobian, and the two branches were generated
by using two different starting points.

function x=gclss(A,b,p,lam) % lss for AC with global coupling, Sherman-Morrison

global eta nu; y=A\b; z=A\nu; al0=lam*eta*z; al=lam*eta*y/(1-al0); x=y+al*z;

Table 7: Sherman–Morrison in customized gclss.m; see also acgcf.m and gcblss.m.

(a) (b) (c) (d)

−0.5 0 0.5 1

0

5

10

15 1

20

λ

<
u

>

1
10

p

q

Figure 8: (a) Two solution branches for (29), and three selected solutions. By positive global feedback, the

plateau in (b) (u around 1.93) is substantially above the zero (1+
√
5)/2 ≈ 1.62 of f(u) = u+u3−u5. Here,

some mesh refinement near the boundary is also crucial; e.g., at pp1 we have an E(K) ≈ 0.063 with the

base mesh of nt = 1800, and E(K) = 0.009 after refinement to nt = 3768. Decreasing λ to slightly negative

values u gets pushed below 0 near the boundary (c). Note that (29) is symmetric w.r.t. (u, λ) 7→ (−u, λ).

3.6 First summary, and some remarks on customization

We end this introductory section based on scalar examples with a first summary and some imple-
mentation remarks.

The p.f=@.. syntax has the advantage that multiple version of f can be maintained and switch-
ing can be done by only changing p.f=@... On the other hand, we do not want to overwhelm the
user with such options, and thus we restricted the “user–definable” functions to p.f,...,p.headfu
from Table 2, where in fact in most cases the user only needs to set up p.f, and p.jac for p.jsw≤ 2.
Nevertheless, as outlined above any function of pde2path can be customized for a given problem
by just copying it from ../p2plib/ to the current directory (where Matlab searches first) and then
modifying it. Main candidates for customization are, e.g., plotbra.m, plotsol.m if additional
features/options are desired in plotting the bifurcation diagram or/and the solutions. See, e.g.,
§5.1 and §5.2.

Most functions of pde2path only require a few input/output arguments. An important excep-
tion is plotbra(p,wnr,cmp,varargin) where varargin is a possibly long list of argument/value
pairs. See plotbra.m for a detailed description, and also the various plotbra example calls in the
demos.

As mentioned, by default there are no global variables in pde2path, with the exceptions pj,lamj
which are set for numerical differentiation in resinj, and possibly LU preconditioners for iterative
linear system solvers, see §3.1.7. On the other hand, e.g., p.f, p.jac, p.lss etc. do not return
p. This is to have a somewhat clean distinction between functions for specific calculations and
function like p=cont(p), p=swibra(...), p=meshref(p) which modify the structure p, including
the mesh. As a result, the user might want to introduce some global variables to streamline
calculations, see §3.5 for an example. These should then be declared before initialization of p.

24



For convenience, in Table 8 we summarize the typical steps in the usage of the software.

Initialization. Declare (user defined) global variables (if any). Initialize structure p, typically by first
calling p=stanparam(p), followed by problem dependent calls to define (function handles for the) PDE
coefficients, BC and Jacobian, and the geometry, mesh, and starting point.
function p=cont(p)

1. If restart=1 then inistep: generate first two points on branch and (secant) τ0

2. Predictor (u1, λ1) = (u0, λ0) + dsτ0 with stepsize ds

3. Corrector: depending on parasw and λ̇0 use nlooppde for (15) or nloopext for (10) or (13). This
uses getder, getGu resp. getGlam to obtain derivatives, and lss resp. blss as linear systems
solver.

4. Call sscontrol to assess convergence (res,iter returned from nlooppde resp. nloopext): If
res≤p.tol accept step, i.e., goto 5, (and increase ds if iter<imax/2). If res>p.tol and ds>

dsmin then decrease ds and goto 2. If res>p.tol and ds=dsmin then no convergence, hence call
cfail.

5. Postprocessing: calculate new tangent τ1 by (12), call spcalc (if spcalcsw=1), bifdetec (if
bifchecksw=1). Check for error and mesh adaptation. Update p, i.e., put u0 = u1, λ0 = λ1,
τ0 = τ1 into p, call out=outfu(p,u,lam), plot and save to disk. Call p.ufu for printout and
further user-defined actions.

6. If stopping criteria met (p.ufu returned 1 or stepcounter>nsteps) then stop, else next step, i.e.,
goto 2.

Post–processing. Plot bifurcation diagrams via plotbra (plotbraf) and solutions via plotsol

(plotsolf). If bifurcations have been found, use swibra (and cont to follow some of these).

Table 8: Typical software usage, including pseudo–code of p=cont(p), with main function calls.

4 Two prototype Reaction–Diffusion Systems

Pattern–formation in Reaction–Diffusion Systems (RDS), in particular from mathematical biology
[25], is one of the main applications of path-following and bifurcation software. Here we first consider
a quasilinear two-component system with “cross diffusion” from chemotaxis [23] to explain the setup
of c in this rather general case, and the setup of general domains in pde2path. We essentially recover
the bifurcation diagrams from [23] without special tricks or customization.

Our second example is the Schnakenberg model [32], which is semilinear with a diagonal con-
stant diffusion matrix, and thus in principle simpler than the first example. However, here we are
interested in a more complete bifurcation picture, and the Schnakenberg model shows many bifur-
cations already on small domains. Therefore we need some adaptations of the basic cont algorithm
to pmcont (parallel multi continuation), and we introduce findbif to locate some first bifurcations
from the homogeneous branch.

4.1 Chemotaxis

An interesting system from chemotaxis has been analyzed in [23], including some numerical path-
following and bifurcations using ENTWIFE. The (stationary) problem reads

0 = G(u, λ) := −
(

D∆u1 − λ∇ · (u1∇u2)
∆u2

)

−
(

ru1(1− u1)
u1

1+u1
− u2

)

. (32)

25



where λ ∈ R is called the chemotaxis coefficient and D > 0 and r ∈ R are additional parameters.
In (32) we have b ≡ 0, may set a = 0, and identify the second term with f(u). The linearization
reads

Gu(u, λ)

(

v1
v2

)

=

[

−
(

D∆ −λ∇ · (u1∇·)
0 D∆

)

+

(

r(2u1−1)+λ∆u2 0
−(1 + u1)

−2 1

)](

v1
v2

)

+λ

(

∇u2 · ∇v1
0

)

,

(33)

and in the notation from Remark 3.2, the first matrix in (33) relates to c, the second to −fu, and
the last term gives −b⊗∇v with b111 = −λ∂xu2, b112 = −λ∂yu2, and bijk = 0 else.

4.1.1 Bifurcation diagram over rectangles (chemtax)

Following [23] we first study (32) on a rectangular domain Ω = [−Lx/2, Lx/2] × [−Ly/2, Ly/2]
with homogeneous Neumann BC. Again a number of results can then be obtained analytically.
There are two trivial stationary branches, namely u = (0, 0) which is always unstable, and u =
u∗ = (1, 1/2). From the BC, the eigenvalue problem Mv = µv for the linearization around
u∗ has solutions of the form µ = µ(m, l, λ), v = v(m, l, λ;x) = φem,l(x, y) with φ ∈ R

2 and

em,l(x, y) = cos

(

mπ

Lx
(x+

Lx

2
)

)

cos

(

mπ

Ly
(y +

Ly

2
)

)

, (m, l) = (1, 0), (0, 1), (2, 0), (1, 1), . . .. To

study bifurcations from u∗ we solve µ(m, l, λ)
!
= 0 for λ which yields

λm,l := 4(Dk2 + r)(k2 + 1)/k2, where k2 := π2
(

m2

L2
x

+
l2

L2
y

)

.

As in [23, Fig.3] we choose D = 1/4, r = 1.52 and the “1× 4” domain Lx = 1, Ly = 4, which yields
Table 9.

(m, l) (0,2) (0,3) (0,1), (1,0),(0,4) (1,1) (1,2) . . .

λml 12.01 13.73 17.55 17.57 18.15 19.91 . . .

Table 9: Bifurcation from u∗ = (1, 1/2) in (32), D = 1/4, r = 1.52.

To encode (32) we note that c1111 = c1122 = D, c1211 = c1222 = −λu1, c2211 = c2222 = 1,
and all other entries of c are zero. In particular, c is isotropic and thus we may use isoc.m to
encode it, see Table 10 for chemf.m. For convenience and illustration, here by default we first use
p.jsw=3 in cheminit.m such that p.jac need not be set. With p=stanmesh(p,0.075) leading
to p.nt=2376 this still gives quick results, which moreover essentially do not change under mesh
refinement. Also, in cheminit we introduce p.vol=|Ω|; we want to use this quantity in chembra.m

since the bifurcation diagrams in [23] plot ‖u1 − 1‖L1/|Ω| over λ. Again this is a simple example
that the user can augment the structure p with whatever is useful. The commands in chemcmds.m

function [c,a,f,b]=chemf(p,u,lam) % chemotaxis system with isoc

u=pdeintrp(p.points,p.tria,u);a=0;b=0; v1=ones(1,p.nt);

f1=r*u(1,:).*(1-u(1,:));f2=u(1,:)./(1+u(1,:))-u(2,:); f=[f1;f2];

D=0.25;r=1.52; c=isoc([[D*v1 -lam*u(1,:)];[0*v1 v1]],p.neq,p.nt);

Table 10: chemf.m as a prototype for definition of PDE coefficients in case of a (nonsymmetric) c
depending on u and λ. See isoc and the assempde documentation for the order of cijkl in c.

yield the bifurcation diagram in Fig.9, where the bifurcation values λm,l (except for λ10 = λ04) are
found with reasonable accuracy, and which agrees well with [23, Fig.3(a)], with one exception: on

26



the (1, 1) branch there is a loop near λ = 20.5 with two bifurcations, during which the solution
structure changes as detailed in (b),(c). Presumably, this loop was just missed in [23] due to a
larger stepsize.

(a) (b) (c)

10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ

||
u

1
−

1
||

L
1
/|
Ω

|

10

25

(1,2)

(1,1)

(0,2)

(0,3)

(0,1)

Figure 9: (a) Bifurcation diagram for (32) with jsw=3, i.e., numerical Jacobians, and nt=2376. Of the

bifurcating branches only the (0, 2)–branch is stable in a certain λ range, and a number of secondary bifur-

cations occur on each branch. (b),(c) The shape of solutions before and after the loop on the (1, 1) branch.

For jsw=1 we need finer meshes (nt ≈ 104 to 2 · 104 and adaptive refinement), which, while giving smaller

error-estimates, also destroy the speed advantage of assembled Jacobians.

Alternatively, to run (32) with jsw=1 we also provide chemjac.m which encodes (33). For this,
however, we need considerably finer meshes, mainly since the calculation of the coefficient ∆u2
(needed for jsw<2) via pdegrad and pdeprtni does not go together well with Neumann bound-
ary conditions, since the averaging involved in pdeprtni produces some error at the boundaries.
Therefore, we also replace p=cheminit(p) by p=cheminitj(p), which resets a number of switches
to (re)run (32) with jsw=1. See the end of chemcmds.m resp. chemdemo.m.

4.1.2 Drawing general domains (animalchem)

In animalchem we consider (32) on the animal–shaped domain in Fig.10, taken from [25], with
Neumann BC. To set up Ω we proceed graphically as explained in §3.1.4, see animalgeo.m, also for
the setup of the BC. The plots in Fig.10 are generated from the commands in animalcmds.m. For
problems of this type, the bifurcation directions from a trivial branch are often most interesting,
and can be generated with plottauf.

(a) (b) (c)

8 10 12
0

0.1

0.2

0.3

0.4

λ

||
u

1
−

1
||

L
1
/|
Ω

|

25

Figure 10: Bifurcation diagram for (32) (‖u1 − 1‖L1/|Ω| over λ), first bifurcation direction from the trivial

branch, and a stable solution on the bifurcating branch.

27



4.2 The Schnakenberg model (schnakenberg)

We consider the (stationary) Schnakenberg system in the form

0 = G(u) =

(

−∆u1 + u1 − u21u2
−d∆u2 − λ+ u21u2

)

, (34)

fix d = 60, use λ as bifurcation parameter, and let (x, y) ∈ Ω = [−lx, lx]× [−ly, ly] with Neumann
BC. Over Ω = R

2 the spatially homogeneous solution u∗(λ) = (λ, 1/λ) becomes Turing unstable

[25] when decreasing λ below λc =
√
d
√

3−
√
8 ≈ 3.2085, with critical wave number kc =

√√
2−1 ≈

0.6436. In 2D, the most famous Turing patterns are stripes and spots which modulo rotational
symmetry and spatial translations can be expanded as

u(x, y) = u∗ + [A cos(kcx) +B cos(kc2 x) cos(
√
3
2 kcy)]Φ + h.o.t.

where A,B ∈ R are suitable amplitudes, Φ ∈ R
2 is the critical eigenvector of the linearization of

G around u∗ at λc, h.o.t. stands for higher order terms (in A,B, λ − λc), and we dropped the λ
dependence of all terms. For A 6= 0 and B = 0 we have stripes, for A = B 6= 0 hexagonal spots,
and there are also so called mixed patterns with 0 6= A 6= B 6= 0.

If the domain and BC permit it, both (spots and stripes) bifurcate simultaneously from the
trivial branch at λ = λc. Here, to make λc a simple bifurcation point (for vertical stripes), we
choose lx = 2mπ/kc and ly = 2nδπ/(

√
3kc), m,n ∈ N, where δ ≈ 1 is a deformation parameter,

such that for δ 6= 1 the multiple bifurcation point splits into simple bifurcation points. The
(analytical and numerical) bifurcation diagram for (34) with these settings is discussed in detail
in [36], including symmetries and a number of new tertiary bifurcations leading so called snaking
branches between stripes and spots. However, since the Schnakenberg system is a standard model in
pattern formation, and since it motivated us to implement the extension pmcont to cont described
below, here we also include a short discussion.

Figure 11 shows a bifurcation diagram and some solution plots obtained for m = n = 2 and
δ = 0.99, which we call a “2× 2” domain as 2 spots in both directions fit in. To locate the primary
bifurcations we use findbif.m on the homogeneous branch. Here we use the term “hot” (“cold”)
spot for spots with a maximum (minimum) of u1 in the middle of the domain, and in analogy
keep these names also for mixed modes. We also plot |ûkl|1/2, where û is the discrete Fourier
transform of u1−〈u1〉, see fourierplot.m in directory schnakenberg. These Fourier plots are often
interesting for pattern forming systems: for instance Fhhp10 shows that the pattern is essentially

still generated from the basic harmonics exp(ikcx)
m and exp(ikc(

1
2x±

√
3
2 y)

n, m,n = ±1, while at

hhp30 higher harmonics exp(ikcx)
m exp(ikc(

1
2x±

√
3
2 y))

n, m,n ∈ N, contribute more significantly.
The tangents plots for bifurcation in Fig. 12 show that the slightly “detuned” domain yields

that the first branch point shows a 3×1.5 (rectangular) nodal structure. The stripes are then found
as the second bifurcation point, and the third branch point actually corresponds to a “rectangle”
branch with a 2× 2 nodal structure; see also the associated Fourier plot in Figure 11. However, for
this branch the Newton loop immediately takes us on the hexagonal branch, which in this case we
happily accept since this is the branch we are interested in. Here, to speed up calculations, after
calculating the first bifurcations from hom with findbif, we mostly switch off bifurcation detection,
and instead locate the bifurcations to the bean branches a posteriori via findbif. Thus, in the
bifurcation diagram we also plot only very few of the branch points that can be found on these
branches, namely the branch points to the so called bean branches, and the bifurcation points on
the hot beans, discussed further in [36].

Figure 11 is not generated by cont alone, because with cont we quickly obtain some undesired
branch switching. For instance when continuing the stripe branch hs with standard settings we

28



1 1.5 2 2.5 3

1

2

3

4

5

6

λ

m
a
x
 u

1
 r

e
s
p
. 
m

in
 u

1

12
24

10
30

30

20

30

10

hh
hb

hs

cs

ch

cb

hom

Figure 11: Bifurcation diagram and a selection of patterns for (34) over a “2 × 2”–domain, δ = 0.99, see
schnak22cmds.m. The branch hom in the bifurcation diagram are the homogeneous solutions, hs the (hot)
stripes, cs the phase shift of hs, hh the hot hexagons, ch the cold spots. hb and cb are mixed modes, also
called beans. ◦ are bifurcation points. Thick lines mean stable branches and thin lines unstable. For hs,
hh and hb we plot the maximum of u1 and for cs, ch and cb the minimum. As usual, hsp30 stands for the
third point of hs.

switch to the beans branch hb when approaching its bifurcation point. This particular branch
switching can be avoided by decreasing ξ to ξ = 0.1/p.np, say, but only to the effect that we get
branch switching at some later point on the s branch. Such undesired branch switching is a serious
problem in all continuation algorithms, see, e.g., [33, §3]. Here we use a modification pmcont of
cont explained in the next section, which also incorporates some parallel computing for speedup.
Still, the bifurcation diagram in Fig. 11 is computationally quite expensive: about 40 minutes on a
quad-core desktop PC, with 20.000 triangles in the base mesh and about 60.000 triangles on average
during mesh adaptation. This large number of triangles is mainly needed to avoid undesired branch
switching. It gives error–estimates E(K) ≤ 0.04 for all solutions calculated. To also provide a
cheaper example, the init-function p=schnakinit(p,m,n,nx,del) takes the domain sizes m,n, the
deformation parameter δ and the startup spatial discretization nx as parameters. schnak11demo.m
(or schnak11cmds.m) then uses m = n = 1 and δ = 0.97 and only takes a few minutes for a
bifurcation diagram similar to Fig. 11 over the smaller domain.

Figure 12: Tangents for bifurcation at the first and the third bifurcation points on hom.

29



4.3 pmcont

Theorem 4.4 in [19] guarantees that the standard continuation converges to a given branch for
“sufficiently small” ds, but near bifurcation points only in cones around the branch. Thus, near
a bifurcation point it is often not useful to choose very small ds. To circumvent this and similar
problems we provide the function pmcont. The basic idea is explained in Fig. 13.

λ

u

z
0

z
1

(1)

ds

4ds

z
1

(3)

2ds

z
1

(2)
3ds

fast convergence, 
accept

slow convergence, 
discard

no convergence, 
discard

Algorithm pmcont
1. Multi-predictors. (ui, λi) = (u0, λ0) + i p.ds τ , i = 1, . . . , p.mst

2. Newton–loops (parallel). Use (35) to identify “good points”.

3. Tangents (sequentially). Calculate new tangents τ1, . . . , τm at good
points, using (12).

4. Bifurcation detection and localization (parallel).

5. Postprocess (sequentially). Call ufu, save, plot, return to 1.

Figure 13: Sketch of the basic idea of multiple predictors and convergence monitoring, and pseudo code

of pmcont. The arrows from, e.g. “2ds” to z
(2)
1 just illustrate the result of the Newton loops, not the

hyperplanes {(u, λ) ∈ R
Nnp+1 : 〈τ0, (u, λ)〉ξ = ds} as in Fig.1.

Instead of using just one predictor (u1, λ1) = (u0, λ0) + p.ds τ , pmcont creates in every contin-
uation step the predictors

(ui, λi) = (u0, λ0) + i p.ds τ, i = 1, . . . , p.mst,

and starts a Newton loop for each. pmcont then monitors the convergence behavior of each loop to
decide whether it yields a “good” point, i.e., a point on the present branch. The criterion is that
in each Newton step the residual has to decrease by a factor 0 < α < 1, i.e.,

‖G(un+1, λn+1)‖ ≤ α‖G(un, λn)‖, (35)

otherwise the loop is stopped. The heuristic idea is that if the Newton loop converges slowly, then
probably the solution is on a different branch, because the loop has to (slowly) change the solution
“shape”.

For the crucial parameter α, which describes the desired convergence speed, we recommend
trying α = 0.1. 8 Of course, these heuristics in no way guarantee that no branch switching occurs,
or anyway that we get convergence for long predictors (ui, λi) = (u0, λ0) + i · dsτ with i > 1,
but in practice we find the idea to work remarkably well. See also §5.2 for an example of the
“unreasonable effectiveness” of pmcont, together with an example that long predictors in pmcont

tend to branch–switching in imperfect bifurcations.
We need three additional parameters: the number of predictors p.mst, α = p.resfac, and

p.pmimax. These are used to gain some flexibility for (35) via stepsize control. If p.mst equals
the number of solutions found and p.ds is smaller than p.dsmax/p.dsincfac, then p.ds will
be increased by the factor p.dsincfac, essentially as in cont. If no solution is found and p.ds

is greater than (1+p.mst)·p.dsmin, then the step size p.ds will be divided by 1+p.mst in the
next continuation step. Finally, if p.ds is less than (1+p.mst)·p.dsmin and p.pmimax is less
than p.imax, then p.pmimax will be increased to p.pmimax+1, and ‖G(un+p.pmimax, λn+p.pmimax)‖ ≤
p.resfac‖G(un, λn)‖ is required instead of (35). The only new functions used in pmcont are
pmnewtonloop.m and pmbifdetec.m.

8However, for instance on the “hot hexagon branch” hh in Fig. 11 we need to use α = 10−6 to avoid branch–
switching, see schnak22cmds.m.

30



Another advantage of the p.mst predictors is that the Newton loops can be calculated in parallel,
which on suitable machines gives substantial speedups (where we use the Matlab Parallel Computing
Toolbox in a standard setup). All final Newton iterates with a residual smaller than p.res are
taken as solutions, and plotted and saved as in cont. Next, the tangents τ1, . . . , τm are calculated
sequentially, because τl+1 needs τl, and afterwards the bifurcation detection and localization is again
in parallel. The last solution and its tangent will be used for the next continuation step. Mesh
adaptation/refinement is inquired at the start of pmcont, i.e., before generating the predictors, but
not on the individual correctors.

In summary, for p.resfac=1 and p.mst=1 we have that pmcont is roughly equivalent to cont,
except for slightly less versatile mesh adaptation and error estimates. For p.mst> 1, pmcont takes
advantage of parallel computing, and is often useful to avoid convergence problems and undesired
branch switching close to bifurcation points. The main reasons why we (currently) keep the two
version and do not combine them into one is that cont is simpler to hack and implements Keller’s
basic, well tested algorithm.

5 Three classical examples from physics

In this section we consider models for Bose-Einstein (vector) solitons, Rayleigh-Bénard convection,
and the von Kármán system for buckling of an elastic plate, as examples for systems with more
than two components, and with BC implemented via gnbc as described in §3.1.4. The largest and
most complicated system (in the sense of number of components and implementation of BC) here
is the von Kármán system. Hence, for this we also explain the coding in pde2path in most detail,
while for Bose-Einstein solitons and Rayleigh-Bénard convection we mostly refer to the m-files for
comments.

5.1 Bose–Einstein (vector) solitons (gpsol)

As an example with x, y dependent coefficients, nontrivial advection, and interesting localized
solutions we consider (systems of) Gross–Pitaevskii (GP) equations with a parabolic potential that
arise for instance as amplitude equations in Bose–Einstein condensates.

5.1.1 The scalar case

First, following [21] we consider the scalar equation

i∂tψ = −∆ψ + r2ψ − σ|ψ|2ψ, (36)

where ψ = ψ(x, y, t) ∈ C, r2 = x2 + y2, and σ = 1 (focusing case). This has a huge number
of families of localized solutions, aka solitons, which may be time periodic, standing or rotating
in space. Going into a frame rotating with speed ω and splitting off harmonic oscillations with
frequency µ, i.e.,

ψ(x, y, t) = Φ(r, φ− ωt)e−iµt, (37)

we obtain

[

∂2r +
1

r
∂r +

1

r2
∂2θ − iω∂θ + µ− r2

]

Φ+ σ|Φ|2Φ = 0. (38)

A typical ansatz for (approximate) solutions has the form

Φ(r, θ) = Aφ(r/a)(cos(mθ) + ip sin(mθ)), φ ∈ R, e.g. φ(ρ) = ρmL(m)
n (ρ2)e−ρ2/2, (39)

31



with L
(m)
n the nth Laguerre polynomial. Plugging this into (38) yields expressions for A, a, p, ω

for approximate solutions. The case n=0 and p=0 corresponds to so called (non rotating, since
ω = 0) real m–poles, and |p| = 1 to a so called radially symmetric vortex of charge m, while
the intermediate cases 0 < |p| < 1 give to so called rotating azimuthons with interesting angular
modulations of |Φ|.

Our goal is to calculate these solutions numerically with pde2path. Returning to Cartesian
coordinates, i.e., setting Φ(r, θ) = u(x, y)+ iv(x, y) we obtain the 2-component real elliptic system

−∆u+ (r2 − µ)u− |U |2u− ω(x∂yv − y∂xv) = 0, (40a)

−∆v + (r2 − µ)v − |U |2v − ω(y∂xu− x∂yu) = 0, (40b)

where |U |2 = u2+v2. Our strategy is to use (39) for ω = 0 and to continue in λ := ω. A measure for
the deformation of multi-poles into vortices for the numerical solutions is the “modulation depth”
p of the soliton intensity

p = max |ImΦ|/max |ReΦ| = max |v|/max |u|. (41)

The result of typical continuation of a quadrupole using a stiff–spring approximation of DBC for u, v
on domain Ω = [−5, 5]2 is shown in Fig.14, (a)-(f), see gpf.m, gpjac.m, gpcmds.m and gpinit.m,
and also plotsol.m in directory gpsol for the customized of plotsol.

The following remarks are in order. First, we switch off stability or bifurcation tracking
(spcalcsw=0, bifchecksw=0), see Remark 5.1 below. Second, the linearization of (40) is given
by (recall that λ = ω)

Gu(u, v) =

(

−∆ 0
0 −∆

)

+

(

−µ+r2−3u2−v2 −2uv
2uv −µ+r2−3v2−uv

)

−λ
(

0 x∂y−y∂x
−x∂y+y∂x 0

)

.

Thus, the last term is a good example how to use assemadv with a relatively complicated b. Third,
some problems might be expected from the large number of solutions of (38), in particular the
phase–invariance: if Φ is a solution, so is eiαΦ for any α, or equivalently, (40) is invariant under

multiplication with M(α) =

(

cosα − sinα
sinα cosα

)

, and indeed we can also phase rotate our numerical

solutions without changing the residual, see the end of gpcmds.m. Thus, even for all parameters
fixed, solutions of (40) always come in continuous families, and hence Gu as a linear operator on
[L2(R2)]2, say, always has a zero eigenvalue. See also [21] and the references therein for some
tricks for the numerical solution of (38), which however we do not need, for the following reasons.
Analytically, the kernel of Gu(U), U = (u, v), is spanned by Ψ =

(

d
dαM(α)|α=0

)

(u, v) = (−v, u).
Then, in the Newton step Un+1 = Un −Gu(Un)

−1G(Un) we have

〈Ψ, G(U)〉 =
∫ (

v
−u

)

·
(

∆u− (r2 − µ)u+ |U |2u+ ω(x∂yv − y∂xv)
∆v − (r2 − µ)v + |U |2v + ω(y∂xu− x∂yu)

)

dx

=
ω

2

∫

x∂y(u
2 − v2)− y∂x(u

2 − v2) dx = 0, (42)

due to the Dirichlet boundary conditions. Thus, G(Un) is orthogonal to the kernel of Gu(Un).
Numerically we find that the eigenvalue of Gu(U) closest to zero typically has modulus 10−5 or
smaller, and the condition estimate for Gu is on the order of 106 to 108; however, (42) also holds
to the order of 10−7 or 10−8, and the \ operator accurately solves Gu(Un)Vn = G(Un). Again see
the end of gpcmds.m.

One trick we do use is to start with a coarse mesh of 30 × 30 points, first take some (rather
arbitrary) monopole as dummy–starting guess, use meshref to generate a rather fine mesh in the
center, define a quadrupole initial guess using (39) on that first refined mesh, and then refine again,
yielding the (still small) number of 5208 triangles for this continuation, with an error–estimate less
than 0.01. On a small laptop computer the whole continuation takes about a minute.

32



(a)

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

10

15

ω

p
=

m
a
x
|u

|/
m

a
x
|v

| 
(r

e
s
p
. 
p

1
)

10

15

(b)

−2 0 2

−2

0

2

(−v,u) at pp1
(c)

−2 0 2

−2

0

2

(−v,u) at pp10

(d) (e) (f)

(g) (h)

−2 0 2

−2

0

2

(−v
1
,u

1
) at qp1

(i)

−2 0 2

−2

0

2

(−v
1
,u

1
)  at qp10

Figure 14: (a) Continuing a quadrupole to an azimuthon to a 2-vortex, p = max |u|/max |v| over

λ = ω, (p branch, black); and continuing a vector dipole to a vector–azimuthon to a vector–vortex,

p1 = max |v1|/max |u1| over λ = ω (q branch, red), µ = 2 resp. µ1 = 2, µ2 = 2.2. (b),(c) vectorfield

plots at λ = 0 (quadrupole) resp. λ ≈ 0.66 (azimuthon). (d)–(f) |U | and arg(u+ iv) as indicated. (g) mesh

for p p.nt=5208 from mesh-refinement during initialization. (h),(i) vectorfield plots for the first condensate

ψ1 in q as indicated, second condensate similar. Also see the customized plotsol.m in gp. The phase plot

in (f) is somewhat ragged due to the coarse mesh away from the center. In the q branch we used q.amod=8

with q.maxt=9000 which lead to q.nt=10064 at, e.g., point 10. Error estimates E(K) around 0.025 on the

p branch and around 0.007 on the q branch.

5.1.2 A two–component condensate

The above can be generalized to multi–component condensates [22]. For two components, we then
have coupled GP equations of the form, e.g.,

i∂tψ1 = [−∆+ r2 − σ|ψ1|2 − g12|ψ2|2]ψ1, i∂tψ2 = [−∆+ r2 − σ|ψ2|2 − g21|ψ1|2]ψ2, (43)

where g12, g21 are called interspecies interaction coefficients. Physically, it makes sense to use
ansätze of the form (37) with different µ but equal ω, i.e., ψj(x, y, t) = Φj(r, φ−ωt)e−iµjt. Next we
can use the form (39) for each component Φj and classify the thus obtained approximate solutions as
soliton-soliton, soliton–vortex, soliton–azimuthon etc pairs. To calculate such solutions numerically
we set Φj(r, θ) = uj(x, y) + vj(x, y) and obtain an elliptic system of the form (40) but with four
real equations. This has been implemented in vgpf, with Jacobian vgpjac. Figure 14 (a),(g),(h)

33



shows the continuation of a two–dipole obtained from vgpcmds. Similar remarks as for the scalar
case apply, see the comments in vgpcmds.m.

Remark 5.1. This clearly was just a very introductory demo of continuation of solutions of (36)
resp. (43); there are many more and interesting branches, and further questions, again see, e.g.,
[21, 22]. Interesting questions concern, e.g., the dependence of vector solitons on |µ1−µ2| which can
for instance be studied by fixing ω and continuing in λ = µ2, or the effect of including a periodic
potential, leading to gap solitons [8]. Some of these questions will be considered elsewhere. Also,
to study any bifurcations for (36) or (43) the phase invariance must be broken by adding some
constraints. ⌋

5.2 Rayleigh-Bénard convection (rbconv)

As an example from fluid dynamics we consider two-dimensional Rayleigh-Bénard convection in
the Boussinesq approximation in the domain Ω = [−2, 2] × [−0.5, 0.5]. In the streamfunction
formulation the stationary system reads

−∆ψ + ω = 0,

−σ∆ω − σR∂xθ + ∂xψ∂zω − ∂zψ∂xω = 0, (44)

−∆θ − ∂xψ + ∂xψ∂zθ − ∂zψ∂xθ = 0,

with streamfunction ψ, temperature θ, and the auxiliary ω = ∆ψ. Moreover, σ is the Prandtl
number, set to 1 here, and R the Rayleigh number, which will be the continuation parameter. The
implementation of (44) in pde2path is relatively straightforward, including analytical Jacobians,
see rbconvf.m and rbconvjac.m.

The boundary conditions at the top and bottom plates are taken at constant temperature and
with zero tangential stress

ψ = ∂zzψ = θ = 0, at z = ±0.5,

which also means ∆ψ = 0 at z = ±0.5. Motivated by the analysis in [17], laterally we consider on
the one hand “no-slip” (and perfectly insulating) BC

ψ = ∂xψ = ∂xθ = 0, at x = ±L, (45)

and on the other hand “stress free” BC

ψ = ∂xxψ = ∂xθ = 0, at x = ±L. (46)

See the comments in rbconvbc noslip.m resp. rbconvbc stressfree.m for the implementation
(approximation) of these BC based on (2).

In both cases it is known that continuation of the trivial zero state for increasing R gives a
sequence of bifurcations alternating between even and odd modes. The stability thresholds are
plotted in [17], Figure 1(a) for (46) and 1(b) for (45). We use these to choose initial values of
λ = R for the first two bifurcations, respectively.

For the no-slip case (45), the resulting bifurcation diagram is plotted in Fig. 15, which cor-
responds to the sketch Fig. 2 in [17]. No secondary bifurcations are found up to R = 900. For
stress-free BC we obtain the bifurcation diagram in Fig. 16(a), which corresponds to the case
b′2 > a′2, b′ > 0 in Fig. 3 of [17]. Here the secondary symmetry breaking pitchfork from [17] is
turned into an imperfect pitchfork. The x→ −x reflection symmetry is broken by the triangle data
of the mesh (here we use poimesh) and the stiff-spring approximation of the boundary conditions.
We have located the stable branch s of the imperfect pitchfork by time-integrating (which is not

34



(a) Bifurcation diagram

750 800 850 900
0

0.5

1

1.5

2

2.5

3

R

m
a

x
ψ

q10

r8

(b) q10 (top) and r8 (bottom)

Figure 15: (a) Bifurcation diagram of (44) with (45). (b) sample solutions (ψ, and arrows indicating the

fluid flow) from (a). See arrowplot.m.

(a) bifurcation diagram

700 750 800 850 900
0

0.5

1

1.5

2

2.5

3

sf1−40

sf2−30 sf2−60

sf3−65

R

m
a

x
ψ

(b) sf1-40 (top) and sf2-30 (bottom)

(c) sf2-60 (left) and sf3-65 (right)

Figure 16: Bifurcation diagram of (44) with stress-free b.c. and sample solutions (ψ). Here sf1-40 and

sf2-30 are approximately symmetric, while sf2-60 and sf3-65, generated in a (numerically) imperfect

pitchfork around R = 860, are not.

equivalent to the time integration of the time-dependent Boussinesq equations) with tint from the
unstable branch in the suitably chosen unstable direction.

The demos run on a rather coarse mesh of 100 × 25 grid points, because even with assembled
Jacobians the calculations are rather slow due to a non–simple structure of the Jacobians. Thus,
we use pmcont for the bifurcating q and r branches, which gives a huge speed advantage and works
remarkably well even directly after bifurcation from the trivial branch, where long predictors are
far off the actual branches. E.g., in Fig. 15 all points are calculated from the essentially “vertical”
predictors at bifurcation. To check that this does not miss any (possibly imperfect) bifurcation we
compared with cont with small ds and obtained the same branches but much slower. In Fig. 16,
however, we switch back to cont when approaching the imperfect pitchfork since pmcont tends to
switch from the r to the s branch via long predictors.

Error estimates E(K) are around 0.125 for the uniform 100× 25 mesh. Here mesh refinement
also tends to be quite uniform, and E(K) roughly halves for the double number of triangles.
Increasing the number of meshpoints brings the diagram closer to a symmetry breaking pitchfork.

35



In fact, for both boundary conditions, qualitatively the same bifurcation diagram can be found for
even coarser meshes, but the location of the branches can be off by order 100 in R.

5.3 Von Kármán description of the buckling of plates (vkplate)

The von Kármán equations

−∆2v − λ∂2xv + [v, w] = 0, −∆2w − 1

2
[v, v] = 0, (47)

can be derived to describe the deformation of an elastic (rectangular) plate Ω = [−lx, lx]×[−ly, ly] ⊂
R
2 under compression. Here v : Ω → R is the out of plane deformation, w : Ω → R is the Airy

stress function, ∆2 = (∂2x + ∂2y)
2 is the squared Laplacian, λ is the compression parameter, and the

bilinear form [·, ·] is given by

[v, w] := vxxwyy − 2vxywxy + vyywxx.

There are a number of choices for the boundary conditions for (47). For v one can choose for
instance between (in the notation from [13])

I(v) : v = ∆v = 0 on ∂Ω, (simply supported),

II(v) : v = ∆v = 0 on y = ±ly, v = ∂nv = 0 on x = ±lx,
(simply supported on the sides, clamped at the ends)

III(v) : v = ∂nv = 0 on ∂Ω, (clamped on whole boundary).

Similarly, for w we may consider, on ∂Ω,

I(w) : w = ∆w = 0, II(w) : ∂nw = ∂n(∆v) = 0, III(w) : w = ∂nw = 0.

Clearly, for all BC-combinations and all λ the trivial state v = w = 0 is a solution. Mathe-
matically, the combination a) (I(v),I(w)) (sometimes as a whole called simply supported) is most
simple because it allows an easy explicit calculation of bifurcation points from the trivial branch.
However, [30] argues that physically the combinations b) (II(v),I(w)) or c) (II(v),II(w)) are more
reasonable, and various combinations and modifications have been studied since, see [6] and the
references therein for an overview.

Here we focus on case b) since this yields secondary bifurcations, called “mode jumping” in
this field. The other cases can be handled quite similarly and, e.g., a) is in fact slightly simpler.
The aim is to show how (47) can be put into pde2path and thus recover a number of interesting
bifurcations.

Clearly, the first idea to set up (47) would be to introduce auxiliary variables ∆v,∆w and set

u = (u1, u2, u3, u4) = (v,∆v, w,∆w)

to obtain the (quasilinear elliptic) system









−∆ 1 0 0
−λ∂2x −∆ 0 0
0 0 −∆ 1
0 0 0 −∆









u−









0
−[u1, u3]

0
1
2 [u1, u1]









= 0,

for instance in case a) with homogeneous Dirichlet BC u1 = u2 = u3 = u4 = 0. The prob-
lem with this formulation in pde2path are the derivatives ∂2xu1, . . . , ∂x∂yu3 in the nonlinearity.

36



In principle, these can be obtained from calling pdegrad, pdeprtni, and pdegrad again. E.g.,
[u1xt,u1yt]=pdegrad(p.points,p.tria,u(1:p.np)); u1x=pdeprtni(p.points,p.tria,u1xt);

[u1xx,u1xy]= pdegrad(p.points,p.tria,u1x); could be used to calculate (approximate) ∂2xu1.
However, the first problem is that this introduces some averaging into the second derivatives, in
particular at the boundaries. The second problem is that with this approach we have no easy way
to generate the Jacobian of G since pdegrad/pdeprtni neither fit to matrix assembling nor to
numerical differentiation. For the latter the next-next-neighbor effect of pdegrad/pdeprtni does
not comply with the Jacobian stencil, see Remark 3.2.

Thus, here we choose to introduce additional auxiliary variables, i.e., set

u = (v,∆v, w,∆w, ∂2xv, ∂
2
yv, ∂x∂yv, ∂

2
xw, ∂

2
yw, ∂x∂yw) ∈ R

10.

For instance, u5 = ∂2xu1 can then be simply added as a linear equation −∂2xu1 + u5 = 0 in the
pde2path formulation (see below for the BC for u5, . . . , u10). However, since this way we get a
number of indefinite equations, in particular the mixed derivatives −∂x∂yu1+u7 = 0 and −∂x∂yu3+
u10 = 0, here we use an ad hoc regularization and set −∂2xu1 + (1 − δ∆)u5 = 0 with small δ > 0
(i.e., δ = 0.05 numerically) and similarly for u6, . . . , u10. Thus, instead of (47) we now really treat
the problem

−∆2v − λ∂2xv +
(

SvxxSwyy − 2SvxySwxy + SvyySwxx

)

= 0,

−∆2w −
(

SvxxSvyy − SvxySwxy

)

= 0,
(48)

with the smoothing operator S = (1− δ∆)−1. However, for small δ, comparison of our results with
the literature shows that the regularization plays no qualitative or even quantitative role (in the
parameter regimes we consider).

Thus, we now have a 10 component system, and to illustrate its implementation in pde2path

we write it in the form (−C +A)u− f = 0 with

f = (0,−(u5u9 − 2u7u10 + u6u8), 0, u5u6 − u27, 0, 0, 0, 0, 0, 0)
T , and

−C +A =



























−∆1 111

−λ∂2
x5 −∆45

−∆89 133

−∆133

−∂2
x17 −D̃45

177

−∂2
y21 −D̃56

221

−∂x∂y25 −D̃67
265

−∂2
x109 −D̃78

309

−∂2
y113 −D̃89

353

−∂x∂y117 −D̃100
397



























.

Here, (for layout reasons) D̃ = δ∆+1, and the subscripts 1, 5, 17, . . . denote the starting positions of
the respective 2×2 tensor stored in the “400 rows vector” c. I.e., −∆1 means c1 = [1; 0; 0; 1] stored
in positions 1 to 4 in c, ∂2x5 means c2 = [1; 0; 0; 0] stored in positions 5 to 8 in c, and so on. The
superscripts 11, 33, . . . denote the positions in the “100 rows vector” a, and for D̃ subscripts refer
to δ∆ and superscripts to +1. See vkf.m. Similarly, it is now rather easy to put the linearization
fu into pde2path, i.e., the second and fourth row of fu as a 10× 10 matrix read

fu, 2nd row: (0 0 0 0 −u942 −u852 2u10
62 −u672 −u582 2u7

92 )
fu, 4th row: (0 0 0 0 u6

44 u5
54 −2u7

64 0 0 0 ).

Here again the superscripts give the positions in aj. Of course, the full aj = a − fu also contains
the constant coefficient terms at positions 11, 33, 45 etc from A; see vkjac.m.

37



It remains to encode the boundary conditions. First note that v = 0 and w = ∆w = 0 imply

u5 = vxx = 0 and u6 = vyy = 0 on horizontal edges, and

u6 = vyy = 0 on vertical edges, but no condition for u5 = vxx, and

u8 = wxx = 0 and u9 = wyy = 0 on all edges.

For u5 on the vertical edges and u7, u10 on all edges we take homogeneous Neumann boundary
conditions. To put this into pde2path via (2) we thus need two boundary matrices qh and qv. For
the horizontal boundaries (y = ±ly), qh has diagonal qhd =

(

s s s s s s 0 s s 0
)

. For the
vertical boundaries (x = ±lx) qv has diagonal qvd =

(

0 0 s s 0 s 0 s s 0
)

and additionally
qv2,1 = s, where s = 103 stands for the stiff spring constant. Positions 7 and 10 in qhd and qvd give

the Neumann BC for u7, u10, while the top left 2 × 2 block

(

0 0
s 0

)

in qv gives ∂nu1 = 0 via the

first row and u2 = 0 via the second row.
The (analytical) calculation of bifurcation points from (v, w) = 0 in case b) is rather tedious, see

[30]. There, motivated by mode–jumping, the particular interest is in (the lowest) double bifurcation
points, which yields l =

√

k(k + 2) with eigenfunctions w1(x, y) =
(

k+2
k sin(k x

l )− sin((k+2)xl )
)

sin(y)
resp. w2(x, y) =

(

cos(k x
l )− cos((k+2)xl )

)

sin(y) (over the domain [0, lπ]× [0, π]). The first bifurca-

tion is then obtained for k = 1, hence l =
√
3. The idea is to perturb l slightly which may lead to

secondary bifurcations between branches coming originally from the same λ.
Putting all these ideas together we indeed get a secondary bifurcation between the first two

primary branches, see Fig. 17. A number of further bifurcations from the trivial branch is also
detected and can be followed. However, in the tutorial run vkcmds we use a rather coarse mesh
with 1250 triangles, which should be refined before following higher bifurcations.

5 6 7 8
0

2

4

6

8

λ

||
u

1
||

2

3

6

rbp1

qbp1

Figure 17: Secondary (“mode jumping”) bifurcation (w-branch, red) in the (regularized) partially clamped

plate (48). Bifurcation diagram and selected plots of u1 and u3. ly=π/2, lx=4π/5, regular mesh with 25×25

points (nt=1250 triangles). Error estimate E(K)≈0.3 at, e.g., rbp1. By mesh refinement we can obtain,

e.g., E(K)≈0.04 with nt≈ 15000. Then, however, a typical step takes a couple of minutes, where about 80%

of the time is spent in blss or lss (standard setting). We expect that this can be optimized considerably,

but here we content ourselves with the “proof of principle” setup for the 10 components system for (48).

38



6 Discussion

Clearly, numerical continuation and bifurcation analysis for 2D elliptic systems poses additional
challenges compared to algebraic equations or 1D BVP, partly of course due to the more demanding
numerics, but in particular also due to the typically very rich solution and bifurcation structure.
With pde2path we believe to provide a general tool that works essentially out-of-the-box also for
non-expert users and allows to start exploring such systems and the rich zoo of their solutions. Of
course, in many respects this is just a first step, and probably the main entries on our to–do–list
are:

1. Implement some more general (stationary) bifurcation handling, in particular bifurcation via
nonsimple eigenvalues as these are quite ubiquious in 2D systems due to various symmetries.
The detection and localization of these is relatively straightforward by a modification of
findbif.m, see §3.1.6, but the implementation of branch–switching will require additional
work. Hopf bifurcations and similar phenomena will still be much more demanding.

2. Implement some (genuine) multi–parameter continuation. For instance, the bifurcation to
travelling waves generically requires a second parameter γ (the wave speed) to adapt, and
consequently we need to further extend the “extended system” (8) by one more equation,
the “phase condition”. More generally, adding some constraints to (8) will also be useful to
remove degeneracies as, e.g., the phase invariance in §5.1.

We believe that our set–up of pde2path is sufficiently modular and transparent such that this and
similar adaptions will pose no implementation problems, but for now we confine ourselves to the
basic one–parameter continuation and simple bifurcations.

References

[1] E. Allgower and K. Georg. Numerical continuation methods. Springer, 1990.

[2] R. E. Bank. PLTMG. http://ccom.ucsd.edu/∼reb/software.html.

[3] W.-J. Beyn, W. Kless, and V. Thümmler. Continuation of low-dimensional invariant subspaces in
dynamical systems of large dimension. Fiedler, Bernold (ed.), Ergodic theory, analysis, and efficient
simulation of dynamical systems. Springer Berlin 47-72, 2001.

[4] D. Bindel, J. Demmel, and M. Friedman. Continuation of invariant subspaces in large bifurcation
problems. SIAM J. Sci. Comput., 30(2):637–656, 2008.

[5] G. Bratu. Sur les equations integrales non lineares. Bull. Soc. Math. France, 42:113–142, 1914.

[6] C.-S. Chien, S.-Y. Gong, and Z. Mei. Mode jumping in the von Kármán equations. SIAM J. Sci.

Comput., 22(4):1354–1385, 2000.

[7] E. J. Doedel. Lecture notes on numerical analysis of nonlinear equations. Krauskopf, Bernd (ed.) et al.,
Numerical continuation methods for dynamical systems. Path following and boundary value problems,
1–49, Springer., 2007.

[8] T. Dohnal and H. Uecker. Coupled mode equations and gap solitons for the 2D Gross–Pitaevsky
equation with a non-separable periodic potentia. Phys.D, 238:860–879, 2009.

[9] G. Engeln-Müllges and F. Uhlig. Numerical algorithms with C. Springer Berlin, 1996.

[10] B. Ermentrout. XPP-Aut. www.math.pitt.edu/∼bard/xpp/xpp.htm.

[11] E. Doedel et al. AUTO: Continuation and bifurcation software for ordinary differential equations.
http://cmvl.cs.concordia.ca/auto/.

39



[12] K. Georg. Matrix-free numerical continuation and bifurcation. Numer. Funct. Anal. Optim., 22:303–320,
2001.

[13] J. Gervais, A. Oukit, and R. Pierre. Finite element analysis of the buckling and mode jumping of a
rectangular plate. Dyn. Stab. Syst., 12(3):161–185, 1997.

[14] W. Govaerts. MatCont. http://sourceforge.net/projects/matcont/.

[15] W. Govaerts. Numerical methods for bifurcations of dynamical equilibria. SIAM, 2000.

[16] M. Heil and A.L. Hazel. oomph. http://oomph-lib.maths.man.ac.uk/doc/html/.

[17] P. Hirschberg and E. Knobloch. Mode interactions in large aspect ratio convection. J. Nonlinear Sci,
7:537–556, 1997.

[18] D. Iron and M. J. Ward. A metastable spike solution for a nonlocal reaction–diffusion model. SIAP,
60(3):778–802, 2000.

[19] H.B. Keller. Numerical solution of bifurcation and nonlinear eigenvalue problems. Application of
bifurcation theory, Proc. adv. Semin., Madison/Wis. 1976, 359-384, 1977.

[20] Y. A. Kuznetsov. Elements of applied bifurcation theory. 3rd ed. Springer, 2004.

[21] V. M. Lashkin. Two–dimensional multisolitons and azimuthons in Bose-Einstein condensates. Phys.

Rev. A, 77:025602, 2008.

[22] V. M. Lashkin, E. A. Ostrovskaya, A. S. Desyatnikov, and Yu. S. Kivshar. Vector azimuthons in
two-component Bose-Einstein condensates. Phys. Rev. A, 80:013615–6, 2009.

[23] P.K. Maini, M.R. Myerscough, J.D. Murray, and K.H. Winters. Bifurcating spatially heterogeneous
solutions in a chemotaxis model for biological pattern formation. Bull. Math. Biol., 53:701–719, 1991.

[24] H.D. Mittelmann. Multilevel continuation techniques for nonlinear boundary value problems with
parameter dependence. Appl. Math. Comput., 19:265–282, 1986.

[25] J. D. Murray. Mathematical biology. Springer-Verlag, Berlin, 1989.

[26] pde2path homepage, www.staff.uni-oldenburg.de/hannes.uecker/pde2path.

[27] U. Prüfert. PDE Toolbox. http://page.math.tu-berlin.de/∼pruefert/.

[28] K.C. Rose, D. Battogtokh, A. Mikhailov, R. Imbihl, W. Engel, and A.M. Bradshaw. Cellular structures
in catalytic reactions with global coupling. Phys. Rev. Lett., 76:3582–3585, 1996.

[29] A. Salinger. LOCA (library of continuation algorithms). http://www.cs.sandia.gov/LOCA/.

[30] D. Schaeffer and M. Golubitsky. Boundary conditions and mode jumping in the buckling of a rectangular
plate. Commun. Math. Phys., 69:209–236, 1979.

[31] F. Schilder and H. Dankowicz. coco. http://sourceforge.net/projects/cocotools/.

[32] J. Schnakenberg. Simple chemical reaction systems with limit cycle behaviour. J. Theoret. Biol.,
81(3):389–400, 1979.

[33] R. Seydel. Practical bifurcation and stability analysis. 3rd ed. Springer, 2010.

[34] L. Stollenwerk, S.V. Gurevich, J.G. Laven, and H.-G. Purwins. Transition from bright to dark dissipative
solitons in dielectric barrier gas-discharge. Eur. Phys. J. D, 42:273–278, 2007.

[35] Matlab PDE Toolbox, online documentation.

[36] H. Uecker and D. Wetzel. Localized patterns, stationary fronts, and snaking in bistable ranges of spots
and stripes. Preprint, 2013.

[37] R. Woesler, P. Schütz, M. Bode, M. Or-Guil, and H.-G. Purwins. Oscillations of fronts and front pairs
in two- and three-component reaction-diffusion systems. Physica D, 91:376–405, 1996.

[38] www.sercoassurance.com/entwife/introduction.html, 2001.

40


