
3

PDoT: Private DNS-over-TLS with TEE Support

YOSHIMICHI NAKATSUKA, University of California, Irvine

ANDREW PAVERD*, Microsoft

GENE TSUDIK, University of California, Irvine

Security and privacy of the Internet Domain Name System (DNS) have been longstanding concerns. Recently, there is a

trend to protect DNS tra�c using Transport Layer Security (TLS). However, at least two major issues remain: (1) How do

clients authenticate DNS-over-TLS endpoints in a scalable and extensible manner? and (2) How can clients trust endpoints

to behave as expected? In this article, we propose a novel Private DNS-over-TLS (PDoT) architecture. PDoT includes a DNS

Recursive Resolver (RecRes) that operates within a Trusted Execution Environment. Using Remote Attestation, DNS clients

can authenticate and receive strong assurance of trustworthiness of PDoT RecRes. We provide an open source proof-of-

concept implementation of PDoT and experimentally demonstrate that its latency and throughput match that of the popular

Unbound DNS-over-TLS resolver.

CCS Concepts: • Security and privacy → Web protocol security; Hardware-based security protocols; Network security;

Privacy protections;

Additional Key Words and Phrases: Domain name system, privacy, trusted execution environment

ACM Reference format:

Yoshimichi Nakatsuka, Andrew Paverd, and Gene Tsudik. 2021. PDoT: Private DNS-over-TLSwith TEE Support.Digit. Threat.:

Res. Pract. 2, 1, Article 3 (February 2021), 22 pages.

https://doi.org/10.1145/3431171

1 INTRODUCTION

The Domain Name System (DNS) [41] is a global distributed system that translates human-readable domain
names into IP addresses. It has been deployed since 1983 and, throughout the years, DNS privacy has been a
major concern.
In 2015, Zhu et al. [52] proposed a DNS design that runs over Transport Layer Security (TLS) connections [19].

DNS-over-TLS protects privacy of DNS queries and prevents man-in-the-middle attacks against DNS responses.
Reference [52] also demonstrated the practicality of DNS-over-TLS in real-life applications. Several open source

*Work done partially while visiting the University of California, Irvine, as a US-UK Fulbright Cyber Security Scholar.

The �rst and third authors were supported in part by NSF Award Number:1840197, titled: “CICI: SSC: Horizon: Secure Large-Scale Scienti�c

Cloud Computing.” The �rst authorwas also supported by TheNakajima Foundation. The second authorwas supported by a US-UK Fulbright

Cyber Security Scholar Award.

Authors’ addresses: Y. Nakatsuka and G. Tsudik, University of California, CA 92697, United States of America; emails: {nakatsuy,

gene.tsudik}@uci.edu; A. Paverd, Microsoft Research Ltd, 21 Station Road, Cambridge CB1 2FB, United Kingdom; email: andrew.

paverd@microsoft.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the full citation on the �rst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speci�c permission and/or a fee. Request permissions

from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2576-5337/2021/02-ART3 $15.00

https://doi.org/10.1145/3431171

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

https://doi.org/10.1145/3431171
mailto:permissions@acm.org
https://doi.org/10.1145/3431171

3:2 • Y. Nakatsuka et al.

recursive resolver (RecRes) implementations, including Unbound [34] and Knot Resolver [18], currently sup-
port DNS-over-TLS. In addition, commercial support for DNS-over-TLS has been increasing, e.g., Android P
devices [25] and Cloud�are’s 1.1.1.1 RecRes [12]. However, despite attracting interest in both academia and
industry, some problems remain.
The �rst challenge is that clients need a way to authenticate the RecRes. Certi�cate-based authentication is

natural for websites, since the user (client) knows the URL of the desiredwebsite and the certi�cate securely binds
this URL to a public key. However, this approach cannot be used for a DNS RecRes, because the RecRes does not
have a URL or any other unique long-term user-recognizable identity that can be included in the certi�cate. One
way to address this issue is to provide clients with a white-list of trusted RecRes-s’ public keys. However, this
is neither scalable nor maintainable, because the white-list would have to include all possible RecRes operators,
ranging from large public services (e.g., 1.1.1.1) to small-scale providers, e.g., a local RecRes provided by a
co�ee-shop.
Even if the RecRes can be authenticated, the second major issue is the lack of means to determine whether a

given RecRes is trustworthy. For example, even if communication between client stub (client) and RecRes, and
betweenRecRes and the name server (NS) is authenticated and encrypted using TLS, theRecResmust decrypt the
DNS query to resolve it and contact the relevantNS-s. This allows the RecRes to learn unencrypted DNS queries,
which poses privacy risks of a malicious RecResmisusing the data, e.g., pro�ling users or selling their DNS data.
Some RecRes operators go to great lengths to assure users that their data is private. For example, Cloud�are
promises, “We will never sell your data or use it to target ads” and goes on to say, “We’ve retained KPMG to
audit our systems annually to ensure that we’re doing what we say” [12]. On March 31, 2020, Cloud�are released
the results of the privacy examination of its 1.1.1.1 DNS resolver [15]. The report is publicly available [13] and
it assures that during the time of inspection (conducted from February 1, 2019, to October 31, 2019), 1.1.1.1
was con�gured in such a way that it supports the commitment given by Cloud�are. While this report gives some
guarantee that the 1.1.1.1 resolver is honoring the client’s privacy, there are three drawbacks of this method.
First, it only provides a guarantee to a particular point in time.We cannot be certain whether the privacy promise
was kept before and after the inspection. Second, it takes a long time to conduct the inspection and release the
report. 1.1.1.1 was announced on April 1, 2018 [14], two years before the privacy report was released. Third,
this method requires users to trust the auditor and can only be used by operators who can a�ord an auditor.
Although 1.1.1.1may be one of the famous public resolvers that support DNS-over-TLS and DNS-over-HTTPS,
a recent study shows that there are many smaller organizations that also provide such resolvers [36]. Since these
organizations cannot a�ort to be inspected, it is more di�cult for them to convince their customers that they
are protecting their privacy.
In this article, we use Trusted Execution Environments (TEEs) and Remote Attestation (RA) to address these

two problems. By using RA, the identity of the RecRes is no longer relevant, since clients can checkwhat software
a given RecRes is running and make trust decisions based on how the RecRes behaves. RA is one of the main
features of modern hardware-based TEEs, such as Intel Software Guard Extensions (SGX) [39] and ARM Trust-
Zone [6]. Such TEEs are now widely available, with Intel CPUs after the seventh generation supporting SGX,
and ARM Cortex-A CPUs supporting TrustZone. TEEs with RA capability are also available in cloud services,
such as Microsoft Azure [40]. Speci�cally, our contributions are as follows:

• We design a Private DNS-over-TLS (PDoT) architecture, the main component of which is a privacy-
preserving RecRes that operates within a commodity TEE. Running the RecRes inside a TEE prevents
even the RecRes operator from learning clients’ DNS queries, thus providing query privacy. Our RecRes
design addresses the authentication challenge by enabling clients to trust the RecRes based on how it
behaves, and not on who it claims to be (see Section 4).

• We implement a proof-of-concept PDoT RecRes using Intel SGX and evaluate its security, deployability,
and performance. All source code and evaluation scripts are publicly available [32]. Our results show

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

PDoT: Private DNS-over-TLS with TEE Support • 3:3

that PDoT handles DNS queries without leaking information while achieving su�ciently low latency and
o�ering acceptable throughput (see Sections 5 and 7).

• To quantify privacy leakage via tra�c analysis, we performed an Internet measurement study. It shows
that 94.7% of the top 1,000,000 domain names can be served from a privacy-preserving NS that serves at
least two distinct domain names, and 65.7% from a NS that serves 100+ domain names (see Section 8).

2 BACKGROUND

2.1 Domain Name System

DNS is a distributed system that translates host and domain names into IP addresses. DNS includes three types of
entities: Client Stub (client), RecRes, and NS. Client runs on end-hosts. It receives DNS queries from applications,
creates DNS request packets, and sends them to the con�gured RecRes. Upon receiving a request, RecRes sends
DNS queries to NS-s to resolve the query on client’s behalf. When NS receives a DNS query, it responds to RecRes
with either the DNS record that answers client’s query, or the IP address of the next NS to contact. RecRes thus
recursively queries NS-s until the record is found or a threshold is reached. The NS that holds the queried record
is called: Authoritative Name Server (ANS). After receiving the record from ANS, RecRes forwards it to client.
It is common for RecRes to cache records so that repeated queries can be handled more e�ciently.

2.2 Trusted Execution Environment

A TEE is a security primitive that isolates code and data from privileged software such as the OS, hypervisor,
and BIOS. All software running outside TEE is considered untrusted. Only code running within TEE can access
data within TEE, thus protecting con�dentiality and integrity of this data against untrusted software. Another
typical TEE feature is RA, which allows remote clients to check precisely what software is running inside TEE.
One recent TEE example is Intel SGX, which enables applications to create isolated execution environments

called enclaves. The CPU enforces that only code running within an enclave can access that enclave’s data. SGX
also provides RA functionality.

Memory Security. SGX reserves a portion of memory called the Enclave Page Cache (EPC). It holds 4-KB pages
of code and data associated with speci�c enclaves. EPC is protected by the CPU to prevent non-enclave access to
this memory region. Execution threads enter and exit enclaves using SGX CPU instructions, thus ensuring that
in-enclave code execution can only begin from well-de�ned call gates. From a software perspective, untrusted
code can make ECALLs to invoke enclave functions, and enclave code can make OCALLs to invoke untrusted
functions outside the enclave.

Attestation Service. SGX provides two types of attestation: local and remote. Local attestation enables one
enclave to attest another (running on the same SGX machine) to verify that the latter is a genuine enclave
actually running on the same CPU. Remote attestation involves more entities. First, an application enclave to
be attested creates a report that summarizes information about itself, e.g., code it is running. This report is
sent to a special enclave, called quoting enclave, which is provided by Intel and available on all SGX machines.
Quoting enclave con�rms that requesting application enclave is running on the same machine and returns a
quote, which is a report with the quoting enclave’s signature. The application enclave sends this quote to the
Intel Attestation Service (IAS) and obtains an attestation veri�cation report. This is signed by the IAS con�rming
that the application enclave is indeed a genuine SGX enclave running the code it claims. Upon receiving an
attestation veri�cation report, the veri�er can make an informed trust decision about the behavior of the attested
enclave.

Side-Channel Attacks. SGX is vulnerable to side-channel attacks [35, 49], and various mechanisms have been
proposed [17, 44, 47] to mitigate them. There have also been various studies investigating network side channel
attacks against encrypted DNS [28, 36, 46] (including both DNS-over-TLS [29, 52] and DNS-over-HTTPS [27]).

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

3:4 • Y. Nakatsuka et al.

Since defending against side-channel attacks is orthogonal to our work, we expect that a production implemen-
tation would include relevant mitigation mechanisms.

3 ADVERSARY MODEL AND REQUIREMENTS

3.1 Adversary Model

The adversary’s goal is to learn, or infer, information about DNS queries sent by clients. We consider two types
of adversaries, based on their capabilities:
The �rst type is a malicious RecRes operator who has full control over the physical machine, its OS and

all applications, including the RecRes. We assume that the adversary cannot break any cryptographic primi-
tives, assuming that they are correctly implemented. We also assume that it cannot physically attack hardware
components, e.g., probe CPU physically to learn TEE secrets. This adversary also controls all of the RecRes’s
communication interfaces, allowing it to drop/delay packets, measure the time required for query processing,
and observe all cleartext packet headers.
The second type is a network adversary, which is strictly weaker than the malicious RecRes operator. In

the passive case, this adversary can observe any packets that �ow into and out of RecRes. In the active case,
this adversary can modify and forge network packets. Note that this represents the strongest form of network
adversary who can observe and potentially manipulate both the downstream (i.e., client – RecRes) and upstream
(i.e., RecRes– NS) communication. In the common case, the network adversary would only be able to observe
the downstream communication (e.g., the adversary is another user connected to the same wireless network as
the victim). DNS-over-TLS alone (without PDoT) is su�cient to thwart a passive network adversary. However,
since an active adversary could redirect clients to a malicious RecRes, clients need an e�cient mechanism to
authenticate the RecRes and determine whether it is trustworthy, which is one of the main contributions of
PDoT.

We do not consider Denial-of-Service (DoS) attacks on RecRes, since these do not help to achieve either ad-
versary’s goal of learning clients’ DNS queries. Connection-oriented RecRes-s can defend against DoS attacks
using cookie-based mechanisms to prevent SYN �ooding [52].

3.2 System Requirements

We de�ne the following requirements for the overall system:

R1: Query Privacy. Contents of client’s query (speci�cally, domain name to be resolved) should not be
learned by the adversary. Ideally, payload of the DNS packets should be encrypted. However, even if
packets are encrypted, their headers leak information, such as source and destination IP addresses. In
Section 8.1, we quantify the amount of information that can be learned via tra�c analysis.

R2: Deployability. Clients using a privacy-preserving RecRes should require no special hardware. Minimal
softwaremodi�cations should be imposed. Also, for the purpose of transition and compatibility, a privacy-
preserving RecRes should be able to interact with legacy clients that only support unmodi�ed DNS-over-
TLS.

R3: Response Latency. A privacy-preserving RecRes should achieve similar response latency to that of a
regular RecRes.

R4: Scalability. A privacy-preserving RecRes should process a realistic volume of queries generated by a
realistic number of clients.

Note: Query privacy guarantees provided by PDoT rely on the forward-looking assumption that communica-
tion between RecRes and respective NS-s is also protected by DNS-over-TLS. The DNS PrivacyWorking Group is
working toward a standard for encryption and authentication of DNS resolver-to-ANS communication [8], using
essentially the same mechanism as DNS-over-TLS. We expect an increasing number of NS-s to begin supporting

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

PDoT: Private DNS-over-TLS with TEE Support • 3:5

Fig. 1. Overview of the proposed system.

this standard in the near future. Once PDoT is enabled at the RecRes, it can provide incremental query privacy
for queries served from a DNS-over-TLS NS. As discussed in Section 5, with small design modi�cations, PDoT
can be adapted for use in NS-s. Additionally, as a temporary solution until DNS-over-TLS becomes the norm for
protecting communications between the RecRes and NS, PDoT can be modi�ed to support DNS Security Exten-
sions (DNSSEC) [5]. Although DNSSEC does not provide DNS query privacy, it provides a means for PDoT to
authenticate the NS.

4 SYSTEM MODEL AND DESIGN CHALLENGES

4.1 PDoT System Model

Figure 1 shows an overview of PDoT. It includes four types of entities: client, RecRes, TEE, NS-s.We now summa-
rize PDoT operation, re�ected in the �gure: (1) After initial start-up, TEE creates an attestation report. (2) When
client initiates a secure TLS connection, the attestation report is sent from RecRes to the client alongside all
other information required to setup a secure connection. (3) Client authenticates and attests RecRes by verify-
ing the attestation report. It checks whether RecRes is running inside a genuine TEE and running trusted code.
(4) Client proceeds with the rest of the TLS handshake procedure only if veri�cation succeeds. (5) Client sends
a DNS query to RecRes through the secure TLS channel it has just set up. (6) RecRes receives a DNS query from
client, decrypts it into TEE memory, and learns the domain name that the client wants to resolve. (7) RecRes sets
up a secure TLS channel to the appropriate NS to resolve the query. (8) RecRes sends a DNS query to NS over
that channel. If NS’s reply includes an IP address of the next NS, then RecRes sets up another TLS channel to
that NS. This is done repeatedly, until RecRes successfully resolves the name to an IP address. (9) Once RecRes
obtains the �nal answer, it sends this to client over the secure channel. Client can reuse the TLS channel for
future queries.
Note that we assume RecRes is not under the control of the user. In some cases, users could run their own

RecRes-s, which would side-step the concerns about query privacy. For example, modern home routers are suf-
�ciently powerful to run an in-house RecRes. However, this approach cannot be used in public networks (e.g.,
airports or co�ee shop WiFi networks), which are the target scenarios for PDoT.

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

3:6 • Y. Nakatsuka et al.

Fig. 2. Overview of PDoT implementation.

4.2 Design Challenges

The following key challenges were encountered in the process of PDoT’s design:

C1: TEE Functionality Limitations. To satisfy their security requirements, current TEEs (e.g., SGX and
TrustZone) often limit the functionality available to code that runs within them. One example is the
inability to fork within the TEE. Forking a process running inside the TEE forces the child process to
run outside the TEE, breaking RecRes security guarantees. Another example is that system calls, such as
socket communication, cannot be made from within the TEE.

C2: TEE Memory Limitations. A typical TEE has a relatively small amount of memory. Although an SGX
enclave can theoretically have a large amount of in-enclave memory, this will require page swapping
of EPC pages. The pages to be swapped must be encrypted and integrity protected to meet the secu-
rity requirements of SGX. Therefore, page swapping places a heavy burden on performance. To avoid
page swapping, enclave size should be less than the size of the EPC—typically 128 MB. Since RecRes is a
performance-critical application, its size should ideally not exceed 128 MB. This limit negatively impacts
RecRes throughput, as it bounds the number of threads that can be spawned in a TEE.

C3: TEE Call-in/Call-out Overhead. Applications requiring functionality that is not available within the
TEE must switch to the non-TEE side. This introduces additional overhead, both from the switching
itself, and from the need to �ush and reload CPU caches. Identifying and minimizing the number of times
RecRes switches back and forth (whilst keeping RecRes functionality correct) is a substantial challenge.

5 IMPLEMENTATION

Figure 2 shows an overview of the PDoT design. Since our design is architecture independent, it can be imple-
mented on any TEE architecture that provides the features outlined in Section 2.2. We chose the o�-the-shelf
Intel SGX as the platform for the proof-of-concept PDoT implementation to conduct an accurate performance

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

PDoT: Private DNS-over-TLS with TEE Support • 3:7

evaluation on real hardware (see Section 7). Therefore, our implementation is subject to performance and mem-
ory constraints in the current version of Intel SGX. It is thus best suited for small-scale networks, e.g., a WiFi
hotspot provided by a typical co�ee shop. However, as TEE technology advances, we expect that our design will
scale to larger networks.

5.1 PDoT

PDoT consists of two parts: (1) a trusted part residing in TEE enclaves and (2) untrusted part that operates else-
where. The former is responsible for resolving DNS queries, and the latter – for accepting incoming connections,
assigning �le descriptors to sockets, and sending/receiving data received from the trusted part.

Enclave Startup Process.When the application enclave starts, it generates a new public-private key-pair within
the enclave. It then creates a report that summarizes enclave and platform state. The report includes a SHA256
hash of the entire code that is supposed to run in the enclave (calledMRENCLAVE value) and other attributes of
the target enclave. PDoT also includes a SHA256 hash of the previously generated public key in the report. The
report is then passed on to the SGX quoting enclave to receive a quote. The quoting enclave signs the report and
thus generates a quote, which cryptographically binds the public key to the application enclave. The quoting en-
clave sends the quote to the application enclave, which forwards it to the IAS to obtain an attestation veri�cation

report. It can be used in the future by clients to verify the link between the public key and theMRENCLAVE value.
After receiving the attestation veri�cation report from IAS, the application enclave prepares a self-signed X.509
certi�cate required for the TLS handshake. In addition to the public key, the certi�cate includes: (1) attestation
veri�cation report, (2) attestation veri�cation report signature, and (3) attestation report signing certi�cate, ex-
tracted from (1). TheMRENCLAVE value and hash of public key are enclosed in the attestation veri�cation report.

TLSHandshake Process.1 Once the application enclave is created, PDoT can create TLS connections and accept
DNS queries from clients. The client initiates a TLS handshake process by sending a message to PDoT. This
message is captured by untrusted part of PDoT and triggers the following events.2 First, untrusted part of PDoT
tells the application enclave to create a new TLS object within the enclave for this incoming connection. This
forces the TLS endpoint to reside inside the enclave. The TLS object is then connected to the socket where
the client is waiting to be served. The RecRes then exchanges several messages with the client, including the
self-signed certi�cate that was created in the previous section. Having received the certi�cate from RecRes, the
client authenticatesRecRes and validates the certi�cate (see Section 5.2). Only if the authentication and validation
succeed does the client resume the handshake process.

DNS Query Resolving Process. The client sends a DNS query over the TLS channel established above. Upon
receiving the query, the RecRes decrypts it within the application enclave and obtains the target domain name.
The RecRes begins to resolve the name starting from root NS, by doing the following repeatedly: (1) set up a
TLS channel with NS, (2) send DNS queries and receive replies via that channel. Once the RecRes receives the
answer from the NS, the RecRes returns it to the client over the original TLS channel.
Figure 3 illustrates the threading model of PDoT. For each client, we spawn two threads, a ClientReader and

one or more QueryHandler threads.
The ClientReader thread is responsible for an accepting incoming connection from a client and performing the

TLS handshake. Once a TLS connection has been established, this thread reads the incoming DNS queries and
stores them in client-speci�c FIFO queues—the QueryLists in Figure 3.
The QueryHandler threads are responsible for performing the recursive resolution of queries, and sending the

responses to the clients. Each QueryList has one or more QueryHandler threads associated with it. Using the

1This design is derived from the SGX RA-TLS [31] whitepaper.
2Since we consider a malicious RecRes operator, it has an option not to trigger these events. However, clients will notice that their queries

are not being answered and can switch to a di�erent RecRes.

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

3:8 • Y. Nakatsuka et al.

Fig. 3. Overview of PDoT threading model.

thread synchronization primitives in the SGX SDK, the QueryHandler threads wait on a condition until they are
signalled by the ClientReader thread to indicate that there is a pending query in the QueryList. Once signalled, a
QueryHandler thread �rst checks whether the client is still accepting responses from RecRes, and if so, resolves
the query and sends the response via the established TLS connection.
In our implementation we only use one QueryHandler thread per client to maximize the number of concurrent

client connections we can support. Due to the limitations on enclave memory, only a limited number of threads
can execute within the enclave concurrently. This is controlled by the number of Thread Control Structure data
structures allocated during enclave compilation. Additionally, by using only a single QueryHandler thread per
client, this thread can be given exclusive write access to the client’s TLS connection, thus avoiding the need for
costly thread synchronization.
Having a dedicated ClientReader thread to read and bu�er the incoming queries from a single client enables

PDoT to receive concurrent requests. This allows a client to send multiple DNS queries within a short timespan
without waiting for the answers to previous queries. For example, when a client loads a webpage that includes
images and advertisements from di�erent domains, multiple DNS queries are triggered at the same time. How-
ever, because we chose to use one QueryHandler thread per client, PDoT does not resolve the concurrent requests
it received from a single client. In comparison to alternative designs (described below), we observed that this
approach provides higher throughput when multiple clients are connected (see Section 7.4).

We previously implemented an alternative design using a dedicated ClientWriter thread per client to bu�er
responses and write them out the the client. However, we found that this increased the number of concurrent
threads in the enclave without providing a performance bene�t. Moreover, using a dedicated ClientWriter thread
introduced additional queues and therefore required additional thread synchronization variables.
We also previously implemented another alternative design using a single QueryList shared between multiple

ClientReader threads and multiple QueryHandler threads. This allowed ClientReader threads to share multiple
QueryHandler threads, thus allowing PDoT to resolve multiple DNS queries from a single client concurrently.
However, we observed that this causes contention between the ClientReader threads when accessing the single
QueryList, leading to a large variance in query response times and causing some queries to time-out.

Caching. To measure the in�uence of caching, we implemented a simple in-enclave cache for PDoT. It uses a
red-black tree data structure and stores all records associated with the clients’ queries, indexed by the queried
domain. This results in O (loд2 (N)) access times with N entries in the cache. We discuss the potential privacy
risks of enabling caching and propose possible mitigation strategies in Section 6.

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

PDoT: Private DNS-over-TLS with TEE Support • 3:9

PDoT ANS with TEE support.With minor design changes, PDoT RecRes design can be modi�ed for use as an
ANS. Similarly to the caching mechanism described above, an PDoT ANS can look up the answers to queries in
an internal database, rather than contact externalNS-s. The same way that clients authenticate PDoT RecRes, the
RecRes can authenticate the PDoT ANS. Clients can thus establish trust in both RecRes and ANS using transitive
attestation [3].

5.2 Client with PDoT Support

We picked the Stubby client stub from the getdns project [33], which o�ers DNS-over-TLS support and modi�ed
it to perform remote attestation during the TLS handshake. We chose to use Stubby, as it is the most well devel-
oped, open sourced DNS-over-TLS client. We now describe how the client veri�es its RecRes, decides whether
the RecRes is trusted, and emits the DNS request packet.

RecRes Veri�cation. After receiving a DNS request from an application, the client �rst checks whether there
is an existing TLS connection to its RecRes. If so, then the client reuses it. If not, then it attempts to establish
a new connection. During the handshake, the client receives a certi�cate from RecRes, from which it extracts:
(1) attestation veri�cation report, (2) attestation veri�cation report signature, and (3) attestation report signing
certi�cate. This certi�cate is self-signed by IAS and the client is assumed to trust it. From (3), the client �rst
retrieves the IAS public key and, using it, veri�es (2). Then, the client extracts the SHA256 hash of RecRes’s
public key from (1) and veri�es it against (3). This way, the client is assured that RecRes is indeed running in a
genuine SGX enclave and uses this public key for the TLS connection.

Trust Decision. The client also extracts the MRENCLAVE value from (1), which it compares against the list of
acceptable MRENCLAVE values. If the MRENCLAVE value is not listed or one of the veri�cation steps fail, then
the client stub aborts the handshake, moves on to the next RecRes, and re-starts the process. Note that the trust
decision process is di�erent from the normal TLS trust decision process. Normally, a TLS server-side certi�cate
binds the public key to one or more URLs and organization names. However, by binding the MRENCLAVE value
with the public key, the clients can trust RecRes based on its behavior, and not its organization (recall that the
MRENCLAVE value is a hash of RecRes code). There several options for deciding which MRENCLAVE values
are trustworthy. For example, vendors could publish lists of expected MRENCLAVE values for their resolvers.
For open source resolvers like PDoT, anyone can re-compute the expected MRENCLAVE value by recompiling
the software, assuming a reproducible build process. This would allow trusted third parties (e.g., auditors) to
inspect the source code, ascertain that it upholds required privacy guarantees, and publish their own lists of
trusted MRENCLAVE values.

Sending DNS request. Once the TLS connection is established, the client sends the DNS query to RecRes

over the TLS tunnel. If it does not receive a response from RecRes within the speci�ed timeout, then it as-
sumes that there is a problem with RecRes and sends a DNS reply message to the application with an error code
SERVFAIL.

5.3 Overcoming Technical Challenges

As discussed in Section 4.2, PDoT faced three main challenges, which we addressed as follows.

Limited TEE Functionality. The inability to use sockets within the TEE is a challenge, because the RecRes can-
not communicate with the outside world. We address this issue by having a process running outside the TEE, as
described in Section 5.1. This process forwards packets from the client to TEE through ECALLs and sends packets
received from TEE via OCALLs. However, because it is outside the TEE, this process might redirect the packet to
a malicious process or simply drop it. We discuss this issue in Section 7.1. Another function unavailable within
TEE is forking a process. PDoT uses pthreads instead of forking to run multiple tasks concurrently in a TEE.

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

3:10 • Y. Nakatsuka et al.

Limited TEE Memory.We use several techniques to address this challenge. First, we ensure no other enclaves
(other than the quoting enclave) run on the RecRes SGX machine. This allows PDoT to use all available EPC
memory. Second, we minimize the number of threads running inside the enclave to save space.

OCALL and ECALL Overhead. ECALLs and OCALLs introduce overhead and therefore should be avoided as
much as possible. For example, all threads mentioned in the previous section must wait until they receive the
following information: for the ClientReader thread, the DNS query from the client, and for the QueryHandler

thread, the query from the QueryList. PDoT was implemented so that these threads wait inside the enclave
whenever possible to minimize the number of expensive enclave entries and exits.

6 PRIVACY-PRESERVING DNS CACHING

Some DNS recursive resolvers cache query results and can use these to answer a query directly in the case of
a cache hit. Caching is bene�cial from the client’s perspective, because it reduces query latency. The RecRes

also bene�ts from not having to establish connections to external NS-s. However, if implemented naively, then
caching at the RecRes may allow adversaries to learn something about the victim’s query. In this section, we
discuss the potential privacy risks, and show how these can be overcome in PDoT.

6.1 A�acks Exploiting Caching

As explained in Section 3.1, we consider attacks by either a malicious RecRes operator or a network adversary.
Both aim to learn information from a naive caching implementation.

Network adversary: As discussed in the previous section, the network adversary cannot see the contents of
the victim’s query thanks to the TLS connection. However, we assume this adversary can still observe all (en-
crypted) packets sent and received by the RecRes on both the upstream and downstream communication links.
We assume the network adversary can also submit queries to the RecRes and measure the time between queries
and responses.
The network adversary’s goal is to infer whether a speci�c query, submitted by either the victim or himself,

was answered from the cache. This could be achieved by measuring the time between query and response,
since a cache hit can be answered relatively quickly. Alternatively, the adversary could observe any (encrypted)
recursive queries on the upstream interface, since a cache hit can be answered without consulting upstream
NS-s. Knowing whether a query was answered from the cache can leak information to the adversary in two
ways:

• The adversary could have primed the cachewith speci�c domains before the victim arrives; thuswhenever
the victim’s query is answered from the cache, the adversary can infer that the victim queried one of the
primed domains.

• The adversary can probe the cache by submitting queries after the victim; thus whenever one of his own
queries is answered from the cache, the adversary can infer that the victim had previously queried this
domain.

In most cases, these attacks would be complicated by the presence of other users and the inability of the net-
work adversary to clear the RecRes’s cache. However, we consider the worst-case scenario, since the network
adversary can block packets from other users to isolate the victim’s tra�c.

Malicious RecRes operator: A malicious RecRes operator can perform the same attacks as the network ad-
versary and can also observe the memory access pattern of the RecRes. In addition to learning whether or not
a speci�c query was answered from the cache, the malicious operator also aims to learn which cached response
was used. Depending on the type of TEE used to implement PDoT, the malicious operator might be able to
monitor PDoT’s (encrypted) memory accesses. For example, it has been shown that in Intel SGX, an adversary

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

PDoT: Private DNS-over-TLS with TEE Support • 3:11

in control of the OS can monitor memory accesses deterministically at page granularity (typically 4 kB) [49],
or probabilistically at cache-line granularity [35]. Similarly to the network adversary, this information can be
leveraged in two ways:

• The malicious operator could prime the cache with speci�c domains before the victim arrives, and record
the address of each primed entry in the cache. When there is a cache hit, the address of the response
reveals exactly which domain the victim queried.

• If there are multiple users, then the malicious operator could wait for the users to �ll the cache, whilst
recording which users created which cache entries. Afterwards, the malicious operator could submit its
own queries, and if there are any cache hits, the address reveals which user queried for that domain.

6.2 Mitigating Cache A�acks

We propose the following techniques to mitigate the above attacks. In some cases, multiple techniques must be
combined. During remote attestation, clients can ascertain which mitigations the RecRes is using.

A nocache bit: Short of disabling caching completely, the impact of the above attacks could be minimized by
giving users the choice of whether or not to use the cache on a per-query basis. For non-sensitive queries, the
cache could be used as normal, whilst for sensitive queries, the users could specify that the query should not be
answered from the cache (even if an answer is available) and that the response should not be cached. This could
be done by assigning the currently unused Z bit in the DNS query header as a nocache (NC) bit. Historically, the
Z bit was used to indicate that only a response from the primary server for a zone was acceptable [21], which
is already very similar to the nocache bit. The only addition is that the RecRes would not cache responses to
queries with this bit set.
The distinction between sensitive and non-sensitive queries should be made by each user or their client soft-

ware (e.g., when browsing in “incognito mode,” all DNS queries could be marked as sensitive). The adversary
would still be able to perform all the above attacks, but the impact to the user would be minimal since these
would only reveal information about non-sensitive queries. Sensitive queries would be indistinguishable from
cachemisses. Although less e�cient than normal non-privacy-preserving caching, this approach ismore e�cient
than disabling caching completely, whilst providing similar privacy guarantees.

Delayed responses: In most cases, a realistic network adversary’s abilities are weaker than the assumptions
we make in Section 3.1. Speci�cally, this adversary would not usually be able to see upstream communication
between the RecRes and the NS-s. For example, in the co�ee shop scenario, a malicious user on the wireless
network may be able to observe the communication between other wireless clients and the RecRes, but not the
RecRes’s upstream communication, as this would take place via a wired interface. This type of network adversary
can thus only infer whether there was a DNS cache hit (either his own or a victim’s query) by measuring the
time between the query and response.
One possible mitigation is therefore to introduce arti�cial delay when answering queries from the cache [2].

For example, when there is a cache miss, the RecRes itself can measure the time required to resolve a particular
query and store this time measurement along with the answer in the cache. When this answer is subsequently
served from the cache, the RecRes can simply wait for the same amount of time before sending the response to
the client. Although this results in higher-latency responses for the clients, it is still bene�cial for the RecRes,
as it reduces the load on the upstream connection. This addresses both types of attacks by the weaker network
adversary, although it does not help against the malicious RecRes operator, who can observe whether or not the
RecRes makes an upstream query.

Pre-populated cache:On startup and periodically while it is running, the RecRes itself could query for example
the top 1,000 most popular domains and store the results in the cache. This mitigates the �rst of the two possible
attacks the network adversary can perform, because when there is a cache hit by the victim, the adversary cannot

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

3:12 • Y. Nakatsuka et al.

distinguish whether it is for a primed or a pre-populated domain. In other words, this negates the adversary’s
ability to prime the cache. Note that the network adversary can still probe the cache after the victim’s query. The
malicious RecRes operator can also bypass this mitigation by observing the RecRes’s memory access pattern to
distinguish between primed and pre-populated domains.

Oblivious memory accesses: To prevent the malicious RecRes operator for learning which memory address
in the cache contained the desired result, we need to make all cache memory accesses oblivious to the operator.
This could be used in conjunction with the pre-populated cache mitigation above. Since this is a more general
challenge for applications using SGX enclaves, multiple techniques are already available, including general-
purpose oblivious RAM schemes (e.g., References [16, 43]), and purpose-built oblivious access schemes (e.g.,
Reference [47]). These techniques could be applied to the caching mechanism described in the previous section.

6.3 DNS Cache Poisoning

Although not an attack on privacy, introduction of a cache also opens PDoT to the possibility of DNS cache
poisoning attacks, whereby a network adversary causes incorrect answers to be stored in the cache. This could
be used as the precursor to a man-in-the-middle attack where the adversary redirects the victim to a malicious
IP address, even though the domain appears to be correct.
A network adversary could attempt to poison the cache by pretending to be an upstream NS and responding

to upstream queries from the RecRes before the realNS response arrives. Alternatively, the adversary could force
the RecRes to query a malicious upstreamNSwith which the adversary is colluding (e.g., simply by querying the
relevant domain). The DNS response from the malicious NS could also include falsi�ed additional information

records for other domains, which would also poison the cache. These attacks can be mitigated by the RecRes

using DNSSEC [5] wherever possible.

7 EVALUATION

7.1 Security Analysis

This section describes how query privacy (Requirement R1) is achieved, with respect to the two types of adver-
saries, per Section 3.1.

Malicious RecRes operator. Recall that a malicious RecRes operator controls the machine that runs PDoT
RecRes. It cannot obtain the query from intercepted packets since they �ow over the encrypted TLS channel.
Also, because the local TLS endpoint resides inside the RecRes enclave, the malicious operator cannot retrieve
the query from the enclave, as it does not have access to the protected memory region.
However, a malicious RecRes operator may attempt to connect the socket to a malicious TLS server that re-

sides in either (1) an untrusted region or (2) a separate enclave that the operator itself created. If the operator can
trick the client into establishing a TLS connection with the malicious TLS server, then the adversary can obtain
plaintext DNS queries. For case (1), the veri�cation step at the client side fails, because the TLS server certi�-
cate does not include any attestation information. For case (2), the malicious enclave might receive a legitimate
attestation veri�cation report, attestation veri�cation report signature, and attestation report signing certi�cate
from IAS. However, that report would contain a di�erent MRENCLAVE value, which would be rejected by the
client. To convince the client to establish a connection with PDoT RecRes, the adversary has no choice except to
run the code of PDoT RecRes. Therefore, in both cases, the adversary cannot trick the client into establishing a
TLS connection with a TLS server other than the one running a PDoT RecRes.

Network Adversary. Recall that this adversary captures all packets to/from PDoT. It cannot obtain plaintext
queries since they �ow over the TLS tunnel. The only information it can obtain from packets includes cleartext
header �elds, such as source and destination IP addresses. This information, coupled with a timing attack, might

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

PDoT: Private DNS-over-TLS with TEE Support • 3:13

let the adversary correlate a packet sent from the client with a packet sent to an NS. The resulting privacy leakage
is discussed in Section 8.1

7.2 Deployability

Section 5 argues that PDoT clients do not need special hardware and require only minor software modi�ca-
tions (Requirement R2). To aid deployability, PDoT also provides several con�gurable parameters, including the
number of QueryHandle threads (to adjust throughput), the amount of memory dedicated to each thread (to
serve clients that send a lot of queries at a given time), and the timeout of QueryHandle threads (to adjust the
time for a QueryHandle thread to acquire a resource). Another consideration is incremental deployment, where
some clients may request DNS-over-TLS without supporting PDoT. PDoT can handle this situation by having
its TLS certi�cate also be signed by a trusted root CA, since legacy clients will ignore PDoT-speci�c attestation
information.
On the client side, an ideal deployment scenario would be for browser or OS vendors to update their client

stubs to support PDoT . The same way that browser vendors currently include and maintain a list of trusted root
CA certi�cates in their browsers, they could include and periodically update a list of trustworthy MRENCLAVE
values for PDoT resolvers. This could all be done transparently to end-users. As with root CA certi�cates, expert
users can manually add/remove trusted MRENCLAVE values for their own systems. In practice, there are only a
handful of recursive resolver software implementations. Thus, even allowing for multiple versions of each, the
list of trusted MRENCLAVE values would be orders of magnitude smaller than the list of public keys of every
trusted resolver, as would be required for standard DNS-over-TLS.

7.3 Latency Evaluation

We aim to assess overhead introduced by running RecRes inside an enclave. To do so, we measure the time to
resolve a DNS query using PDoT and compare this with the corresponding latency incurred by Unbound [34],
a popular open source RecRes. To meet requirement R3, PDoT should not incur a signi�cant increase in latency
compared to Unbound.

Experimental Setup.We ran PDoT on a DC4s_v2 series virtual machine (VM) in Microsoft Azure. This VM has
four virtual CPUs and 16 GB of memory and supports Intel SGX with up to 112 MB of EPC. We used Ubuntu
18.04 for the OS and Intel SGX SDK version 2.9. We con�gured our PDoT to support up to 100 concurrent clients
and used Stubby as the DNS-over-TLS client.
We measured latency under two scenarios: cold start and warm start. In the former, the client sets up a new

TLS connection every time it sends a query to the RecRes. In the warm start scenario, the client sets up one TLS
connection with the RecRes at the beginning, and reuses it throughout the experiment. In other words, cold start
measurements also include the time to establish the TLS connection. In this experiment, caching mechanisms of
both PDoT and Unbound were disabled.
We created a Python program to feed DNS queries to the client. It sends 100 queries sequentially (i.e., waits for

an answer to the previous query before sending the next query) for each of the top ten domains in the Majestic
Million domain list [38].

The Python programmeasures the time between sending the query and receiving an answer. For the cold start
experiment, we spawned a new Stubby client and established a new TLS connection for each query. In the warm
start scenario, we �rst established the TLS connection by sending a query for another domain (not in the top 10)
but did not include this in the timing measurement.
Note that the numeric latency values are speci�c to our experimental setup, because they depend on network

bandwidth of the RecRes, and latency between the latter and relevant NS-s. The important aspect of this ex-
periment is the ratio between the latencies of PDoT and Unbound. Therefore, it is not meaningful to compute
average latency over a large set of domains. Instead, we took multiple measurements for each of a small set of

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

3:14 • Y. Nakatsuka et al.

Fig. 4. Latency comparison of PDoT and Unbound.

domains (e.g., 100 measurements for each of 10 domains) so as to analyse the range of response latencies for
each domain.

Results and observations. The results are shown in Figure 4. Red boxes show latency of PDoT and the blue
boxes of Unbound. In these plots, boxes span from the lower to upper quartile values of collected data. Whiskers
span from the lowest datum within the 1.5 interquartile range (IQR) of the lower quartile to the highest datum
within the 1.5 IQR of the upper quartile. Median values are shown as black horizontal lines inside the boxes.
For the cold-start case in Figure 4(a), although Unbound is typically faster than our proof-of-concept PDoT

implementation, the range of latencies is similar. For 5 of 10 domains, the upper whisker of PDoT was lower
than that of Unbound. Moreover, we observed that the range of latencies of PDoT overlap with that of Unbound.
Across the tested domains, PDoT shows an average of 73% overhead compared to Unbound in this setting.

For the warm-start case in Figure 4(b), the median latency is lower across the board compared to the cold-
start setting, because the TLS tunnel has already been established. In this setting, PDoT shows an average of 44%
overhead compared to Unbound. Compared to the cold start setting, the di�erence of the range of latencies is
smaller. In fact, for half of the domains, the range of PDoT latencies is smaller than that of Unbound. In practice,
once the client has established a connection to RecRes, it will maintain this connection; thus, the vast majority
of queries will see only the warm-start latency.

7.4 Throughput Evaluation

The objective of our throughput evaluation is to measure the rate at which the RecRes can sustainably respond
to queries. PDoT’s throughput should be close to that of Unbound to satisfy requirement R4.

Experiment setup.We used the same experimental setup as for the latency evaluation (Section 7.3). The client
and RecRes were run on di�erent VMs, located in the same virtual network, so that the RecRes could use all
available resources of a single VM. This is representative of a local RecRes running in a small network (e.g., a
co�ee shop WiFi network). We conducted this experiment using Stubby and the same two RecRes-s as in the la-
tency experiment. Stubby was con�gured to reuse TLS connections where possible and the caching mechanisms
of both PDoT and Unbound were disabled. To eliminate further variance due to external network latency, we
also ran our own authoritativeNS in the same virtual network as the RecRes. Running our own authoritativeNS
also has the bene�t of not applying strain on the public NS during our evaluation. All queries sent to the RecRes

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

PDoT: Private DNS-over-TLS with TEE Support • 3:15

Fig. 5. Throughput overhead comparison of PDoT.

could be resolved with a single upstream query to our local NS. To simulate a small to medium-scale network,
we varied the number of concurrent client connections between 1 and 70 and adjusted the query rate from 1 to
10 queries per second per client. We maintained each constant query rate for half a minute.

Results and observations. The results of our throughput experiments are shown in Figure 5. Each graph corre-
sponds to a di�erent number of clients. The horizontal axis shows di�erent per-client query rates and the vertical
axis shows the overhead for response latencies compared to the average response latency of Unbound for the
same setting. During our preliminary evaluation, we found that the average latency of Unbound is consistently
about 0.05 s across the evaluated scenarios. The red dots show the average overhead of PDoT, and the black error
bars represent the standard deviation.
Figure 6 is a combination of the individual plots in Figure 5, showing the total rate at which PDoT is processing

queries for di�erent numbers of concurrent client connections in the x-axis and the average latency overhead in
the y-axis. From this �gure, we can see that the average latency overhead increases linearly as the total number
of queries sent by the clients increases up to 200 queries per second. However, we can observe that the increase
in the overhead is smaller after 200 queries per second. In fact, we can almost see that the overhead is converging

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

3:16 • Y. Nakatsuka et al.

Fig. 6. Average overhead of PDoT for di�erent numbers of clients.

to a particular value. For instance, after 500 queries per second, the latency overhead that 70 clients experience
is around 0.3 s on average.

7.5 Caching Evaluation

7.5.1 Caching Domains. First, we counted how many domains can be handled by the in-enclave cache, as
described in Section 5. A single client was set up to query domains from the Majestic Million domain list [38].
The client queried domains until PDoT experienced a signi�cant increase in latency, indicating that the cache
starts to exceed the size of the EPC. Although the cache could grow beyond this point, this would lead to increased
latency, because memory pages would have to be swapped in and out of the EPC. The memory setting for each
thread was the same as the throughput evaluation. Even though di�erent queries have answers of di�erent sizes,
this experiment showed that PDoT can cache at least 10,000 domains.

7.5.2 E�ect on Latency. Next, we quanti�ed the e�ect of caching on query latency by repeating the latency
evaluation with and without caching. The results are shown in Figure 7. The average latency of PDoT without
caching in the cold start setting is 249 ms and with caching is 117 ms. In the warm start setting, the average
latency without caching is 123 ms and with caching is 1 ms. In addition to reducing average latency, caching
also reduces the variance of the latency, thus preventing time-outs and improving the stability of the system.

7.5.3 Benefiting from Caching. Section 7.5.2 showed how both users and PDoT can potentially bene�t
from caching query answers and Section 7.5.1 showed that our simple proof-of-concept in-enclave cache can
accommodate at least 10,000 domains. The overall performance impact of this type of cache depends heavily on
the pattern of DNS queries sent by each user. However, we expect that a signi�cant number of queries would
fall within the most popular 10,000 domains, and could thus be answered from the cache. Additionally, PDoT
operators can also pre-populate the cache with domains that are frequently queried by their users.

7.5.4 E�ect of Di�erent Numbers of Domains in Cache. Last, we evaluated performance of both resolvers
with caching enabled; Unbound with its default caching behavior, and PDoT with the proof-of-concept caching
mechanism.

Experiment setup. To simulate a realistic small-scale network, we ran PDoT on a low-cost Intel NUC consisting
of an Intel Pentium Silver J5005 CPU with 128 MB of EPC memory and 4 GB of RAM, using Ubuntu 16.04 and the

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

PDoT: Private DNS-over-TLS with TEE Support • 3:17

Fig. 7. Latency comparison of PDoT without caching (red) and with caching (blue).

Fig. 8. Latency comparison of PDoT (red) and Unbound (blue) with di�erent number of domains in cache.

Intel SGX SDK version 2.2. We pre-populated resolvers’ caches with varying numbers of domains and measured
response latency for a representative set of 10 popular domains.

Results and observations. Figure 8 shows the response latency with caching enabled. The box and whisker
plots have the same meaning as in Figure 4. Unbound serves responses from cache with a consistent latency
irrespective of the number of entries in the cache. Although PDoT achieves lower average latencies when the
cache is relatively empty, it has higher variability than Unbound. This is possibly due to the combination of our
unoptimized caching implementation and latency of accessing enclave memory. Nevertheless, Figure 8 shows
that even with the memory limitations of current hardware enclaves, PDoT can still bene�t from caching a small
number of domains.

7.6 Real-world Evaluation

In this experiment, we evaluated the di�erence in latency between Cloud�are’s 1.1.1.1 and PDoT.

Experiment setup. PDoT was set up in an Microsoft Azure VM with caching enabled. The VM was set up on
the US East coast region. Meanwhile, we con�rmed that 1.1.1.1 resides on the US West coast region. A Stubby

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

3:18 • Y. Nakatsuka et al.

Fig. 9. Latency comparison of PDoT (red) and 1.1.1.1 (blue).

client on a machine residing on the US West coast region. We ran the same latency evaluation script we used in
Section 7.3. Since it is highly likely that 1.1.1.1 has the ten domains cached in its system, we also pre-populated
the domains in PDoT’s cache before conducting the experiment.

Results and observations. Figure 9 shows the result of the latency measurement. The box and whisker plots
have the same meaning as in Figure 4. We can see that in both settings there is a di�erence in latency between
the two resolvers. In the cold start setting, the average latency of PDoTwas 0.5 s while 1.1.1.1was 0.02 s. In the
warm start setting, the average latency of PDoT was 0.06 s while 1.1.1.1 was 0.005 s. The di�erence in latency
in the warm start setting can be due to several reasons. This includes the network latency due to the location
of the resolver, 1.1.1.1 using optimized caching mechanisms, more powerful machines, and load balancing
methods. As the cold start setting includes the TLS handshake, we assume the di�erence in latency in the cold
start setting is largely due to the fact that 1.1.1.1 uses optimized cryptographic operations and optimized TLS
handshake methods. Overall, we can conclude that the query response latency of our proof-of-concept PDoT is
well below standard timeout time, which is 5 s for DNS queries. A production level PDoT can adopt the methods
that 1.1.1.1 uses to further decrease its latency in resolving queries.

8 DISCUSSION

8.1 Information Revealed by IP Addresses

Even if the connections between the client, RecRes, and NS-s are encrypted using TLS, some information is still
leaked. The most prominent and obvious is source/destination IP addresses. The network adversary described
in Section 3.1 can combine these cleartext IP addresses with packet timing information to correlate packets sent
from client to RecRes with subsequent packets sent from RecRes to NS.

Armed with this information, the adversary can narrow down the client’s domain name query to one of the
records that could be served by that speci�c ANS. Assuming the ANS can serve R domain names, the adversary
has a 1/R probability of guessing which domain name the user queried. When R > 1, we call this a privacy-

preserving ANS. This prompts two questions: (1) What percentage of domains can be answered by a privacy-
preserving ANS and (2) What is the typical size of anonymity set (R) provided by a privacy-preserving ANS?
To answer these questions, we designed a scheme to collect records stored in various ANS-s. We sent DNS

queries for 1,000,000 domains from the Majestic Million domain list [38] and gathered information about ANS-s

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

PDoT: Private DNS-over-TLS with TEE Support • 3:19

Fig. 10. Percentage of Majestic Million domains answered by an ANS with at least N records.

that can possibly provide the answer for each. By collecting data on possible ANS-s, we can map domain names
to each ANS and thus estimate the number of records held by each ANS. Following the Guidelines for Internet
Measurement Activities [11], we limited our querying rate to avoid placing undue load on any servers.
As shown in Figure 10, only 5.7% of domains we queried were served by non-privacy-preserving ANS-s, i.e.,

those that hold only one record). Examples of domain names served from non-privacy-preserving ANS-s in-
cluded: tinyurl.com3, bing.com, nginx.org, news.bbc.co.uk, and cloudflare.com. However, 9 of 10 queries
were served by a privacy-preserving ANS and 65.7% by ANS-s that hold over 100 records.

These results are still approximations. Since we do not have data for domains outside the Majestic Million
list, we cannot make claims about whether these would be served by a privacy-preserving ANS. We hypothesize
that the vast majority of ANS-s would be privacy-preserving for the simple reason that it is more economical
to amortize the ANS’s running costs over multiple domains. However, we can be certain that our results for
the Majestic Million are a strict lower bound on the level of privacy, because the ANS-s from which these are
served could also be serving other domains outside of our list. It would be possible to arrive at a more accurate
estimate by analyzing zone �les of all (or at least most) ANS-s. However, virtually all ANS-s disable the interface
to download zone �les, because this could be used to mount DoS attacks. Therefore, this type of analysis would
have to be performed by an organization with privileged access to all ANS-s’ zone �les.

8.2 Supporting DNS-over-HTTPS

Concurrently with the development of DNS-over-TLS, there have also been signi�cant development of protocols
and standards for DNS resolution over HTTPS (DoH) [26].

Similarly to DoT, the aim of DoH is to protect the con�dentiality and integrity of DNS queries and responses
in transit between the client and RecRes. DoH still uses TLS as the underlying secure channel but layers the
DNS queries and responses on top of HTTPS. Whereas DoT uses its own dedicated port (853), DoH uses the
same port as other HTTPS tra�c (443). The last main di�erence is that DoH adds the ability for a server to push
DNS responses to a client without the client having to �rst send a request.
DoH is already supported by a similar set of public DNS resolvers as DoT (e.g., Cloud�are’s 1.1.1.1) and is

gaining support in web browsers (e.g., Firefox [9]) and operating systems (e.g., Windows 10 [30]). In February
2020, it was estimated that on average there are still seven times more DoT requests than DoH requests, but this
may change in future [4].

3Since tinyurl.com is a URL shortening service, this is actually still privacy preserving, because the adversary cannot learn which short

URL was queried.

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

3:20 • Y. Nakatsuka et al.

DoH faces similar challenges to DoT and thus would also bene�t from the security guarantees provided by
PDoT. PDoT could bemodi�ed to support DoH by adding anHTTP parsing layer. Although this slightly increases
the amount of software running within the TEE (i.e., the software trusted computing base), only minimal HTTP
parsing functionality would be required.

9 RELATED WORK

There has been much prior work aiming to protect the privacy of DNS queries [10, 22, 23, 37, 45, 50, 51]. For
example, Lu et al. [37] proposed a privacy-preserving DNS that uses distributed hash tables, di�erent naming
schemes, and methods from computational private information retrieval. Federrath et al. [23] introduced a dedi-
cated DNS Anonymity Service to protect the DNS queries using an architecture that distributes the top domains
by broadcast and uses low-latency mixes for requesting the remaining domains. These schemes all assume that
all parties involved do not act maliciously.
There have also been some activities in the Internet standards community that focused on DNS secu-

rity and privacy. DNSSEC [5] provides data origin authentication and integrity via public key cryptography.
However, it does not o�er privacy. Bortzmeyer [7] proposed a scheme Also, though not Internet standards, sev-
eral protocols have been proposed to encrypt and authenticates DNS packets between the client and the RecRes
(DNSCrypt [42]) and RecRes and NS-s (DNSCurve [1]). Moreover, the original DNS-over-TLS paper has been
converted into a draft Internet standard [29]. All these methods assume that the RecRes operator is trusted and
does not attempt to learn anything from the DNS queries.
Furthermore, there has been some research on establishing trust through TEEs to protect con�dentiality and

integrity of network functions. Speci�cally, SGX has been used to protect network functions, especially middle-
boxes. For example, Endbox [24] aims to distribute middle-boxes to client edges: Clients connect through VPN
to ensure con�dentiality of their tra�c while remaining maintainable. LightBox [20] is another middle-box that
runs in an enclave; its goal is to protect the client’s tra�c from the third-party middle-box service provider while
maintaining adequate performance. Finally, ShieldBox [48] aims to protect con�dential network tra�c that �ows
through untrusted commodity servers and provides a generic interface for easy deployability. These e�orts focus
on protecting con�dential data that �ows in the network, and do not target DNS queries.

10 CONCLUSION AND FUTURE WORK

This article proposed PDoT, a novel DNS RecRes design that operates within a TEE to protect privacy of DNS
queries, even from amalicious RecRes operator. In terms of query throughput, our unoptimized proof-of-concept
implementation matches the throughput of Unbound, a state-of-the-art DNS-over-TLS recursive resolver, while
incurring an acceptable increase in latency (due to the use of a TEE). To quantify the potential for privacy leakage
through tra�c analysis, we performed an Internetmeasurement study that showed that 94.7% of the top 1,000,000
domain names can be served from a privacy-preserving ANS that serves at least two distinct domain names, and
65.7% from an ANS that serves 100+ domain names. As future work, we plan to port the Unbound RecRes to Intel
SGX and conduct a performance comparison with PDoT, as well as to explore methods for improving PDoT’s
performance using caching while maintaining client privacy. We also plan to investigate supporting DNS-over-
HTTPS.

ACKNOWLEDGMENTS

We thank Geonhee Cho for the initial data collection for the privacy-preserving ANS analysis in Section 8.1. We
are also grateful to the article’s shepherd, Roberto Perdisci, and the anonymous ACSAC’19 and DTRAP reviewers
for their valuable comments.

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

PDoT: Private DNS-over-TLS with TEE Support • 3:21

REFERENCES
[1] 2009. Introduction to DNSCurve. Retrieved May 29, 2019 from https://dnscurve.org/index.html.

[2] G. Acs, M. Conti, P. Gasti, C. Ghali, and G. Tsudik. 2013. Cache privacy in named-data networking. In Proceedings of the 2013 IEEE 33rd

International Conference on Distributed Computing Systems. 41–51.

[3] Fritz Alder, N. Asokan, Arseny Kurnikov, Andrew Paverd, and Michael Steiner. 2019. S-FaaS: Trustworthy and accountable function-

as-a-service using Intel SGX. In Proceedings of the ACM Cloud Computing Security Workshop (CCSW’19).

[4] Darren Anstee. 2020. Disappearing DNS: DoT and DoH, Where One Letter Makes a Great Di�erence. Retrieved May 15, 2020 from

https://www.securitymagazine.com/articles/91674-disappearing-dns-dot-and-doh-where-one-letter-makes-a-great-di�erence.

[5] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. 2005. DNS Security Introduction and Requirements. Technical Report. DOI:

https://doi.org/10.17487/rfc4033

[6] ARM. 2009. ARM Security Technology—Building a Secure System using TrustZone Technology. Retrieved May 29, 2019 from

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html.

[7] S. Bortzmeyer. 2016. DNS Query Name Minimisation to Improve Privacy. Technical Report. DOI:https://doi.org/10.17487/RFC7816

[8] S Bortzmeyer. 2018. Encryption and authentication of the DNS resolver-to-authoritative communication. Retrieved from https://tools.

ietf.org/html/draft-bortzmeyer-dprive-resolver-to-auth-01.

[9] Jon Brodkin. 2020. Firefox turns encrypted DNS on by default to thwart snooping ISPs. RetrievedMay 15, 2020 from https://arstechnica.

com/information-technology/2020/02/�refox-turns-encrypted-dns-on-by-default-to-thwart-snooping-isps/.

[10] Sergio Castillo-Perez and Joaquin Garcia-Alfaro. 2008. Anonymous Resolution of DNS Queries. Springer, Berlin, 987–1000. DOI:

https://doi.org/10.1007/978-3-540-88873-4_5

[11] V. G. Cerf. 1991. Guidelines for Internet Measurement Activities. Technical Report. DOI:https://doi.org/10.17487/rfc1262

[12] Cloud�are. DNS over TLS—Cloud�are Resolver. Retrieved May 29, 2019 from https://1.1.1.1/dns/.

[13] Cloud�are. [n.d.]. 1.1.1.1 Resolver Examination Report. Retrieved from https://www.cloud�are.com/compliance/.

[14] Cloud�are. [n.d.]. Announcing 1.1.1.1: The Fastest, Privacy-�rst Consumer DNS Service. Retrieved from https://blog.cloud�are.com/

announcing-1111/.

[15] Cloud�are. [n.d.]. Announcing the Results of the 1.1.1.1 Public DNS Resolver Privacy Examination. Retrieved from https://blog.

cloud�are.com/announcing-the-results-of-the-1-1-1-1-public-dns-resolver-privacy-examination/.

[16] Manuel Costa, Lawrence Esswood, Olga Ohrimenko, Felix Schuster, and Sameer Wagh. 2017. The pyramid scheme: Oblivious RAM for

trusted processors. arXiv:1712.07882. Retrieved from https://arxiv.org/abs/1712.07882.

[17] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal Hardware Extensions for Strong Software Isolation. 857–874.

https://www.usenix.org/conference/usenixsecurity16/technicalsessions/presentation/costan.

[18] cs.nic. 2019. Knot Resolver. Retrieved May 29, 2019 from https://www.knot-resolver.cz/.

[19] T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol Version 1.2. Technical Report. DOI:https://doi.org/10.17487/

rfc5246

[20] Huayi Duan, CongWang, Xingliang Yuan, Yajin Zhou, QianWang, and Kui Ren. 2017. LightBox: Full-stack protected stateful middlebox

at lightning speed. arxiv:1706.06261. Retrieved from http://arxiv.org/abs/1706.06261.

[21] D. Eastlake. 2013. Domain Name System (DNS) IANA Considerations. Technical Report. DOI:https://doi.org/10.17487/rfc6895

[22] Annie Edmundson, Paul Schmitt, and Nick Feamster. 2018. ODNS: Oblivious DNS. Retrieved May 29, 2019 from https://odns.cs.

princeton.edu/.

[23] Hannes Federrath, Karl-Peter Fuchs, Dominik Herrmann, and Christopher Piosecny. 2011. Privacy-preserving DNS: Analysis of Broad-

cast, Range Queries and Mix-based Protection Methods. Springer, Berlin, 665–683. DOI:https://doi.org/10.1007/978-3-642-23822-2_36

[24] David Goltzsche, Signe Rusch, Manuel Nieke, Sebastien Vaucher, NicoWeichbrodt, Valerio Schiavoni, Pierre-Louis Aublin, Paolo Cosa,

Christof Fetzer, Pascal Felber, Peter Pietzuch, and Rudiger Kapitza. 2018. EndBox: Scalable middlebox functions using client-side trusted

execution. In Proceedings of the 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’18). IEEE,

386–397. DOI:https://doi.org/10.1109/DSN.2018.00048

[25] Google. 2018. DNS over TLS Support in Android P Developer Preview. Retrieved May 29, 2019 from https://security.googleblog.com/

2018/04/dns-over-tls-support-in-android-p.html.

[26] P. Ho�man. 2018. DNS Queries Over HTTPS (DoH). Technical Report. DOI:https://doi.org/10.17487/rfc8484

[27] P. Ho�man and P. McManus. 2018. DNS Queries over HTTPS (DoH). DOI:https://doi.org/10.17487/RFC8484

[28] Rebekah Houser, Zhou Li, Chase Cotton, and Haining Wang. 2019. An investigation on information leakage of DNS over TLS. In

Proceedings of the 15th International Conference on Emerging Networking Experiments and Technologies (CoNEXT’19). Association for

Computing Machinery, Inc., New York, NY, 123–137. DOI:https://doi.org/10.1145/3359989.3365429

[29] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and P. Ho�man. 2016. Speci�cation for DNS over Transport Layer

Security (TLS). Technical Report. DOI:https://doi.org/10.17487/RFC7858

[30] Tommy Jensen, Ivan Pashov, andGabrielMontenegro. 2019.WindowsWill ImproveUser PrivacywithDNS overHTTPS. RetrievedMay

15, 2020 from https://techcommunity.microsoft.com/t5/networking-blog/windows-will-improve-user-privacy-with-dns-over-https/

ba-p/1014229.

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

https://dnscurve.org/index.html
https://www.securitymagazine.com/articles/91674-disappearing-dns-dot-and-doh-where-one-letter-makes-a-great-difference
https://doi.org/10.17487/rfc4033
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
https://doi.org/10.17487/RFC7816
https://tools.ietf.org/html/draft-bortzmeyer-dprive-resolver-to-auth-01.
https://tools.ietf.org/html/draft-bortzmeyer-dprive-resolver-to-auth-01.
https://arstechnica.com/information-technology/2020/02/firefox-turns-encrypted-dns-on-by-default-to-thwart-snooping-isps/
https://arstechnica.com/information-technology/2020/02/firefox-turns-encrypted-dns-on-by-default-to-thwart-snooping-isps/
https://doi.org/10.1007/978-3-540-88873-4_5
https://doi.org/10.17487/rfc1262
https://1.1.1.1/dns/
https://www.cloudflare.com/compliance/
https://blog.cloudflare.com/announcing-1111/
https://blog.cloudflare.com/announcing-1111/
https://blog.cloudflare.com/announcing-the-results-of-the-1-1-1-1-public-dns-resolver-privacy-examination/
https://blog.cloudflare.com/announcing-the-results-of-the-1-1-1-1-public-dns-resolver-privacy-examination/
https://arxiv.org/abs/1712.07882
https://www.usenix.org/conference/usenixsecurity16/technicalsessions/presentation/costan
https://www.knot-resolver.cz/
https://doi.org/10.17487/rfc5246
https://doi.org/10.17487/rfc5246
http://arxiv.org/abs/1706.06261
https://doi.org/10.17487/rfc6895
https://odns.cs.princeton.edu/
https://odns.cs.princeton.edu/
https://doi.org/10.1007/978-3-642-23822-2_36
https://doi.org/10.1109/DSN.2018.00048
https://security.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://security.googleblog.com/2018/04/dns-over-tls-support-in-android-p.html
https://doi.org/10.17487/rfc8484
https://doi.org/10.17487/RFC8484
https://doi.org/10.1145/3359989.3365429
https://doi.org/10.17487/RFC7858
https://techcommunity.microsoft.com/t5/networking-blog/windows-will-improve-user-privacy-with-dns-over-https/ba-p/1014229
https://techcommunity.microsoft.com/t5/networking-blog/windows-will-improve-user-privacy-with-dns-over-https/ba-p/1014229

3:22 • Y. Nakatsuka et al.

[31] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and Mona Vij. 2018. Integrating remote attestation with

transport layer security. arxiv:1801.05863. Retrieved from http://arxiv.org/abs/1801.05863.

[32] SPROUT Lab. 2019. PDoT Source Code. Retrieved from https://github.com/sprout-uci/PDoT.

[33] NLnet Labs. Stubby. Retrieved May 29, 2019 from https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+Daemon+-+Stubby.

[34] NLnet Labs. Unbound. Retrieved May 29, 2019 from https://nlnetlabs.nl/projects/unbound/about/.

[35] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-level cache side-channel attacks are practical. In Pro-

ceedings of the 2015 IEEE Symposium on Security and Privacy. IEEE, 605–622. DOI:https://doi.org/10.1109/SP.2015.43

[36] Chaoyi Lu, Baojun Liu, Zhou Li, Shuang Hao, Haixin Duan, Mingming Zhang, Chunying Leng, Ying Liu, Zaifeng Zhang, and Jian-

ping Wu. 2019. An end-to-end, large-scale measurement of DNS-over-encryption: How far have we come? In Proceedings of the

ACM SIGCOMM Internet Measurement Conference, IMC. Association for Computing Machinery, New York, NY, 22–35. DOI:https://

doi.org/10.1145/3355369.3355580

[37] Y. Lu and G. Tsudik. 2010. Towards plugging privacy leaks in the domain name system. In Proceedings of the 2010 IEEE 10th International

Conference on Peer-to-Peer Computing (P2P’10). IEEE, 1–10. DOI:https://doi.org/10.1109/P2P.2010.5569976

[38] Majestic. 2012. Majestic Million. Retrieved from https://blog.majestic.com/development/majestic-million-csv-daily/.

[39] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Sha�, Vedvyas Shanbhogue, and Uday R. Savagaonkar.

2013. Innovative instructions and software model for isolated execution. In Proceedings of the 2nd International Workshop on Hardware

and Architectural Support for Security and Privacy (HASP’13). ACM Press, New York, New York, 1 page. DOI:https://doi.org/10.1145/

2487726.2488368

[40] Microsoft. 2017. Introducing Azure Con�dential Computing. Retrieved May 29, 2019 https://azure.microsoft.com/en-us/blog/

introducing-azure-con�dential-computing/.

[41] P. V. Mockapetris. 1987. Domain Names—Implementation and Speci�cation. Technical Report. DOI:https://doi.org/10.17487/rfc1035

[42] DNSCrypt Project. 2019. DNSCrypt. Retrieved May 29, 2019 from https://dnscrypt.info/.

[43] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. 2017. ZeroTrace: Oblivious memory primitives from Intel SGX. IACR Cryp-

tology ePrint Archive 2017 (2017), 549.

[44] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX: Eradicating controlled-channel attacks against enclave

programs. In Proceedings of the Network and Distributed System Security Symposium (NDSS’17).

[45] Haya Shulman and Haya. 2014. Pretty bad privacy: Pitfalls of DNS encryption. In Proceedings of the 13th Workshop on Privacy in the

Electronic Society (WPES’14). ACM Press, New York, NY, 191–200. DOI:https://doi.org/10.1145/2665943.2665959

[46] Sandra Siby, Marc Juarez, Claudia Diaz, Narseo Vallina-Rodriguez, and Carmela Troncoso. 2020. Encrypted DNS –> Privacy? A tra�c

analysis perspective. In Proceedings of the Network and Distributed System Security Symposium (NDSS’20). DOI:https://doi.org/10.14722/

ndss.2020.24301 arxiv:1906.09682

[47] Sandeep Tamrakar, Jian Liu, Andrew Paverd, Jan-Erik Ekberg, Benny Pinkas, and N. Asokan. 2017. The circle game: Scalable private

membership test using trusted hardware. In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security

(ASIA CCS’17). DOI:https://doi.org/10.1145/3052973.3053006

[48] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhatotia, and Christof Fetzer. 2018. ShieldBox: Secure middle-

boxes using shielded execution. In Proceedings of the Symposium on SDN Research (SOSR’18). ACM Press, New York, New York, 1–14.

DOI:https://doi.org/10.1145/3185467.3185469

[49] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel attacks: Deterministic side channels for untrusted operat-

ing systems. In Proceedings of the 2015 IEEE Symposium on Security and Privacy. IEEE, 640–656. DOI:https://doi.org/10.1109/SP.2015.45

[50] Fangming Zhao, Yoshiaki Hori, and Kouichi Sakurai. 2007. Analysis of privacy disclosure in DNS query. In Proceedings of the 2007

International Conference on Multimedia and Ubiquitous Engineering (MUE’07). IEEE, 952–957. DOI:https://doi.org/10.1109/MUE.2007.84

[51] Fangming Zhao, Yoshiaki Hori, and Kouichi Sakurai. 2007. Two-servers PIR based DNS query scheme with privacy-preserving. In

Proceedings of the 2007 International Conference on Intelligent Pervasive Computing (IPC’07). IEEE, 299–302. DOI:https://doi.org/10.

1109/IPC.2007.27

[52] Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison Mankin, and Nikita Somaiya. 2015. Connection-oriented DNS to improve

privacy and security. In Proceedings of the 2015 IEEE Symposium on Security and Privacy. IEEE, 171–186. DOI:https://doi.org/10.1109/

SP.2015.18

Received May 2020; revised September 2020; accepted October 2020

Digital Threats: Research and Practice, Vol. 2, No. 1, Article 3. Publication date: February 2021.

http://arxiv.org/abs/1801.05863
https://github.com/sprout-uci/PDoT
https://dnsprivacy.org/wiki/display/DP/DNS+Privacy+Daemon+-+Stubby
https://nlnetlabs.nl/projects/unbound/about/
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1145/3355369.3355580
https://doi.org/10.1145/3355369.3355580
https://doi.org/10.1109/P2P.2010.5569976
https://blog.majestic.com/development/majestic-million-csv-daily/
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/2487726.2488368
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://doi.org/10.17487/rfc1035
https://dnscrypt.info/
https://doi.org/10.1145/2665943.2665959
https://doi.org/10.14722/ndss.2020.24301
https://doi.org/10.14722/ndss.2020.24301
https://doi.org/10.1145/3052973.3053006
https://doi.org/10.1145/3185467.3185469
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1109/MUE.2007.84
https://doi.org/10.1109/IPC.2007.27
https://doi.org/10.1109/IPC.2007.27
https://doi.org/10.1109/SP.2015.18
https://doi.org/10.1109/SP.2015.18

