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Abstract A general, fast, and effective approach is developed for numerical calculation of
kinetic plasma linear dispersion relations. The plasma dispersion function is approximated by
J-pole expansion. Subsequently, the dispersion relation is transformed to a standard matrix
eigenvalue problem of an equivalent linear system. Numerical solutions for the least damped or
fastest growing modes using an 8-pole expansion are generally accurate; more strongly damped
modes are less accurate, but are less likely to be of physical interest. In contrast to conventional
approaches, such as Newton’s iterative method, this approach can give either all the solutions in
the system or a few solutions around the initial guess. It is also free from convergence problems.
The approach is demonstrated for electrostatic dispersion equations with one-dimensional and two-
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1 Introduction

Given the richness of waves and instabilities in astro-
physical, space, laser, and laboratory plasmas, studying
the corresponding linear dispersion relations of different
plasma systems is of practical interest. However, except
for some simple cases, the dispersion relations are usu-
ally too complicated to be solved either analytically or
even numerically.

The multi-fluid plasma dispersion relation has been
numerically solved using matrix method in a previous
work, i.e., PDRF [1].

At present, several multi-component magnetized ki-
netic plasma dispersion relations solvers are available,
such as WHAMP by Ronnmark [2,3], NHDS by Ver-
scharen et al. [4], and solvers by Gary et al. [5,6], by
Willes and Cairns [7,8] and by Lin et al. [9], among
others. However, all these solvers obtain the disper-
sion relations from the determinant of the correspond-
ing 3-by-3 dielectric tensor using a given initial guess.
These solvers usually have difficulty in showing a com-
plete picture of the modes in the system. Furthermore,
these solvers may also suffer from convergence prob-
lems because the plasma dispersion function Z(ζ) and
Bessel functions (especially in high-order cyclotron fre-
quencies, e.g., ω > 10Ωc, where Ωc is the cyclotron

frequency) have several solutions around a given fre-
quency. Thus, a careful selection of the initial guess is
required to make it converge to the solution we want.

In this work, we extend our previous work, a multi-
fluid dispersion relation solver [1], to a general kinetic
version, but still maintain the use of a full-matrix ap-
proach. In contrast to the straightforward matrix trans-
formation in fluid case, two additional steps are re-
quired in the kinetic case: solving for the plasma disper-
sion function Z(ζ) and seeking an equivalent linear sys-
tem. The first step is accomplished by J-pole expansion
(Padé approximation) as used by Martin et al. [10] and
Ronnmark [2,3]. The first step has also been used by
Cereceda and Puerta [11] to solve the electrostatic 1D
(ES1D) system. Physical interpretations of the Padé
approximation of Z(ζ) are given by Tjulin et al. [12]

and Robinson and Newman [13]. The second step is
more difficult and should be treated on a case-to-case
basis as we can see in the following sections.

2 Electrostatic systems

We start with simple electrostatic systems to show
how our approach can be implemented.
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2.1 Electrostatic 1D

First, we solve the simplest multi-component electro-
static 1D (ES1D) problem with drift Maxwellian distri-
bution fs0 = ( ms

2πkBTs
)1/2 exp[− (v−vs0)

2

2kBTs
]. The disper-

sion relation is

D = 1 +
S∑

s=1

1
(kλDs)2

[1 + ζsZ(ζs)] = 0, (1)

where λ2
Ds = ε0kBTs

nsq2
s

, vts =
√

2kBTs

ms
and ζs = ω−kvs0

kvts
.

Unmentioned notations are standard. The plasma dis-
persion function Z(ζ) = 1√

π

∫∞
−∞

e−z2

z−ζ dz can be approx-
imated using J-pole expansion

Z(ζ) ' ZJ(ζ) =
J∑

j=1

bj

ζ − cj
, (2)

where J = 8 is used by Ronnmark [2,3] and J = 2, 3, 4
are provided by Martin et al. [10], producing accurate
results for most domains (except y <

√
πx2e−x2

when
x À 1, with ζ = x + iy), especially in the upper plane.
However, the method does not perform well for heavily
damped modes, which are of little interest anyway. For
completeness, the coefficients cj and bj for J = 4, J = 8
and J = 12 (see Appendix A) are provided in Table 1.
Note the useful relations [2]

∑
j bj = −1,

∑
j bjcj = 0

and
∑

j bjc
2
j = −1/2.

Combining Eqs. (1) and (2), yields

1 +
∑

s

∑

j

bsj

(ω − csj)
= 0, (3)

with bsj = bjcjvts

kλ2
Ds

and csj = k(vs0 + vtscj). The so-
lutions for the frequency ω = ωr + iωi = ωr + iγ are
usually complex numbers. An equivalent linear system
can be obtained as follows:

ωnsj = csjnsj + bsjE, (4a)
E = −∑

sj nsj , (4b)

which is an eigenvalue problem of a SJ × SJ dimen-
sional eigen matrix M , i.e., ωX = MX, with SJ =
S × J and X = {nsj}. The symbols nsj and E used
here do not have direct physical meanings but are anal-
ogy to the perturbed number density and electric field
in fluid derivation of Langmuir wave. The singularity
in the denominator of (3), which is encountered in con-
ventional methods, can be canceled by using the trans-
formation (4). Hence, the matrix method can easily
support multi-component systems.

For Langmuir wave Landau damping, calculating the
largest imaginary part solution using matrix method
(ωM ) and the original Z(ζ) function (ωZ) [14] are shown
in Table 2. We can see that the result of the matrix
method is accurate in 10−4 when J = 8 and the error
for J = 4 is also small (10%). Thus, we have verified
that our approach is feasible. In principle, infinite num-
bers of frequency solutions exist for a fixed wave vector

k (the physical discussions can be found in Ref. [15]
and references therein). Fig. 1 shows all the solutions
of the matrix method and the solutions using Z(ζ) func-
tion for kλDe = 0.8. The largest imaginary part (least
damped) solutions (first solution) are almost identical,
which is our objective. However, other heavily damped
solutions should be excluded due to the poor approx-
imation in those ranges. For example, the error for
the second solution between the Z(ζ) solution and the
J = 8 solution is around 10%, whereas the third solu-
tion is completely wrong for J = 8. Fortunately, for
most studies, these heavily damped modes are of lit-
tle interest. The J = 12 results can be more accurate
(10−7) as shown in Table 2 and Fig. 1. In principle,
Eq. (1) has no singularity for k 6= 0. Given the exis-
tence of multiple solutions, if the initial guess is not
good, then root finding cannot converge to the desired
solutions.

For the two-frequency-scale (s = e, i, me ¿ mi)
ion acoustic mode, besides the Langmuir mode ω =
2.0459 − 0.8513i, the largest imaginary part solution
obtained from the matrix method (J = 8) is also con-
sistent with the solution obtained from the Z(ζ) func-
tion, e.g., Ti = Te, mi = 1836me, kλDe = 1, gives
ω = 0.0420− 0.0269i. Hereafter, J = 8 will be used as
default.

We further check the electron bump-on-tail mode
(s=e,b), with Tb = Te, vb = 5vte and nb = 0.1n0

(ne = n0 − nb). Both J = 8 matrix method and root
finding using Z(ζ) function give the same largest imag-
inary part solution ω = 0.9785+0.2000i for kλDe = 0.2.
The J = 4 matrix method gives ω = 0.9772 + 0.2076i.
Fig. 2 shows ω and γ vs. k for the above parameters,
where the first three largest imaginary part solutions
from the matrix method (J = 8) and one solution from
Z(ζ) function are shown. ωZ is identical to ωM . How-
ever, different initial guesses should be tested to find
other solutions when using the Z(ζ) function. By con-
trast, no initial guess is required when using the matrix
method. Therefore, with matrix method, no important
solutions are missed.

Fig.1 Comparison of all the solutions obtained from the

matrix method and the Z(ζ) function. To avoid missing

solutions, the Z(ζ) function solutions are shown by contour

plot of Eq. (1) |D(ωr, ωi)| = 0 in the complex plane, which

can show the distribution of all solutions in the complex

plane directly. The arrows in the figures point out the posi-

tions of the first three solutions. We can see that J = 4, 8, 12

all can reproduce the first solution, but only J = 12 can re-

produce the second solution accurately
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Table 1. The coefficients cj and bj for J = 4 [10], J = 8 [2] and J = 12 (Appendix A) under J-pole approximations
of Z(ζ), where the asterisk denotes complex conjugation

b1=0.546796859834032+0.037196505239277i c1=1.23588765343592−1.21498213255731i

J = 4 b2=−1.046796859834027+2.101852568038518i c2=−0.378611612386277−1.350943585432730i

b(3 : 4)=b∗(1 : 2) c(3 : 4)=−c∗(1 : 2)

b1=−1.734012457471826E−2−4.630639291680322E−2i c1=2.237687789201900−1.625940856173727i

b2=−7.399169923225014E−1+8.395179978099844E−1i c2=1.465234126106004−1.789620129162444i

J = 8 b3=5.840628642184073+9.536009057643667E−1i c3=0.8392539817232638−1.891995045765206i

b4=−5.583371525286853−1.120854319126599E1i c4=0.2739362226285564−1.941786875844713i

b(5 : 8)=b∗(1 : 4) c(5 : 8)=−c∗(1 : 4)

b1=−0.004547861216840+0.000621096229879i c1=2.978429162453205−2.049696666440972i

b2=0.215155729059403−0.201505401705763i c2=−2.256783783969929−2.208618411911446i

b3=0.439545043457674−4.161084685092405i c3=1.673799856114519−2.324085194217706i

J = 12 b4=−20.216967308177410+12.885503528244977i c4=1.159032034062764−2.406739409567887i

b5=67.081488119986460−20.846345891864550i c5=−0.682287637027822 −2.460365014999888i

b6=−4.801467372237129e+01−1.072756140299431e+02i c6=0.225365375295874−2.486779417872603i

b(7 : 12)=b∗(1 : 6) c(7 : 12)=−c∗(1 : 6)

Table 2. Comparison of the Landau damping solutions using the matrix method and the original Z(ζ) function.
Here, ω is normalized by ωpe =

√
nee2/ε0me

kλDe ωM
r (J = 4) ωM

i (J = 4) ωM
r (J = 8) ωM

i (J = 8) ωM
r (J = 12) ωM

i (J = 12) ωZ
r ωZ

i

0.1 0.9956 9.5E-3 1.0152 1.7E−5 1.0152 9.5E−8 1.0152 −4.8E−15

0.5 1.4235 −0.1699 1.4156 −0.1534 1.4157 −0.1534 1.4157 −0.1534

1.0 2.0170 −0.8439 2.0459 −0.8514 2.0458 −0.8513 2.0458 −0.8513

2.0 3.2948 −2.6741 3.1893 −2.8272 3.1891 −2.8272 3.1891 −2.8272

Fig.2 Comparison of the first three (ωM ) largest imaginary part solutions obtained from the matrix method (J = 8) and

one solution (ωZ) obtained from Z(ζ) function for the bump-on-tail parameters. The matrix method reproduces one of the

Z(ζ) function solutions accurately and can also give other solutions directly

2.2 Harris dispersion relation

We go further to solve a more complicated exam-
ple, including the n-th (n = −∞ to ∞) order cyclotron
frequency, i.e., the electrostatic 3D-magnetized (ES3D)
Harris dispersion relation [16]

D = 1 +
S∑

s=1

1
(kλDs)2

[
1 +

ω − kzvs0 − nΩs + λT nΩs

kzvzts

×
∞∑

n=−∞
Γn(bs)Z(ζsn)

]
= 0, (5)

where, λ2
Ds = ε0kBTzs

ns0q2
s

, vts =
√

2kBTs

ms
, λT =

Tz/T⊥, ζsn = ω−kzvs0−nΩs

kzvzts
, Γn(b) = In(b)e−b,

bs = k2
⊥ρ2

cs, ρcs =
√

v2
⊥ts

Ωs
, In is the modi-

fied Bessel function, and the equilibrium distribu-
tion is assumed to be drift bi-Maxwellian fs0 =
f⊥(v⊥)fz(vz), with f⊥ = ms

2πkBTs⊥
exp[− msv2

⊥
2kBTs⊥

] and

fz = ( ms

2πkBTs⊥
)1/2 exp[−ms(v‖−vs0)

2

2kBTsz
]. The background

magnetic field is assumed to be B0 = (0, 0, B0), and the
wave vector k = (kx, 0, kz) = (k sin θ, 0, k cos θ), which
gives k⊥ = kx and k‖ = kz.

This dispersion relation contains infinite-order sum-
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mation of Bessel functions. However, Eq. (5) is
very similar to Eq. (1). Thus, the transformation to
an equivalent linear system/matrix is the same and
straightforward. In the computation, we only keep
the first N Bessel functions, i.e., n=−N to N . The
dimensions of the eigen matrix is SNJ × SNJ , with
SNJ = S × (2N + 1) × J . The singularity for kz → 0
around ω − nΩcs → 0 in Eq. (5) is removed after the
transformation.

2.2.1 Electron Bernstein modes

First, we benchmark the electron Bernstein modes
(s=e). The result is shown in Fig. 3(a), with parameter
ωpe = 2.5ωce. For the modes with frequency ω < 6ωc,
considering the N = 10-order Bessel functions is accu-
rate enough. The upper hybrid frequency calculated at
the cold limit is ωUH =

√
ω2

c + ω2
p = 2.69, which is con-

sistent with the matrix solution in the limit k⊥ρc → 0.
Fig. 3(a) also agrees with Fig. 9.8 in Ref. [16]. The cor-
responding ES1D3V particle-in-cell (PIC) simulation
(ion immobile, k = k⊥) verification is also shown in
Fig. 3(b), where good agreement is observed. Standard

PIC simulation method [17] is used here. The contour
plot of the spectra in Fig. 3(b) is calculated by Fourier
transformation of the electrostatic potential δφ(x, t) to
δφ̂(k, ω).

2.2.2 Anisotropic instabilities

Second, we benchmark the anisotropic instabilities
with Ref. [18]. The contour plot of the growth rate
γ/ωc is shown in Fig. 4, with ωp = ωc and N = 4. The
results agree with Fig. 2 in Ref. [18].

3 Electromagnetic dispersion re-
lation

In the above section, we have shown that the ma-
trix method can solve the kinetic dispersion relations.
In addition, the results are accurate enough even if we
used Padé approximation to the Z function, which gives
us enough confidence with the approach to extend its
application further to the magnetized electromagnetic
(EM3D) dispersion relations, which has not been solved
well using conventional approaches.

Fig.3 The electron Bernstein modes calculated from the Harris dispersion relation using the matrix method (red ‘+’). The

green dash lines are ω = nωc. The upper hybrid frequency calculated at the cold limit is ωUH =
√

ω2
c + ω2

p = 2.69 (blue

dash line), which agrees with the matrix solution in the limit k⊥ρc → 0. The plasma dispersion relation kinetic version

(PDRK-ES3D) solutions also agree with the contour plot of the PIC spectra (b)

Fig.4 The anisotropic instabilities (growth rate γ/ωc) calculated from the Harris dispersion relation using the matrix

method. The results agree with Ref. [18]
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3.1 The dispersion relation

The equilibrium distribution is still assumed to be drift bi-Maxwellian as in section 2.2, and also B0 = (0, 0, B0)
and k = (kx, 0, kz). The dispersion relation can be derived as [19]

∣∣∣∣∣∣∣

Kxx − c2k2

ω2 cos2 θ Kxy Kxz + c2k2

ω2 sin θ cos θ

Kyx Kyy − c2k2

ω2 Kyz

Kzx + c2k2

ω2 sin θ cos θ Kzy Kzz − c2k2

ω2 sin2 θ

∣∣∣∣∣∣∣
= 0, (6)

with K = I +
∑

s

ω2
ps

ω2

[ ∑
n

{
ζ0Z(ζn)− (1− 1

λT
)[1 + ζnZ(ζn)]

}
Xn + 2η2

0λT L
]
, where

Xn =




n2Γn/b inΓ′n −(2λT )1/2ηn
n
αΓn

inΓ′n n2/bΓn − 2bΓ′n i(2λT )1/2ηnαΓ′n
−(2λT )1/2ηn

n
αΓn −i(2λT )1/2ηnαΓ′n 2λT η2

nΓn


 , (7)

ηn = ω+nΩ
kzvT z

, λT = Tz

T⊥
, b = (kxvT⊥

Ω )2, α = kxvT⊥
Ω , v2

Tz
= kBTz

m , v2
T⊥ = kBT⊥

m and the matrix components of L are all
zero, except for Lzz = 1.

3.2 The linear transformation

To seek an equivalent linear system, the Maxwell’s equations

∂tE = c2∇×B− J/ε0, (8a)
∂tB = −∇×E, (8b)

do not need to be changed. We only need to seek a new linear system for J = ←→σ · E. It is easy to find that after
J-pole expansion, the relations between J and E has the following form:




Jx

Jy

Jz


 =




a11 +
∑

snjm

bsnjm11

ω − csnjm11
a12 +

∑
snjm

bsnjm12

ω − csnjm12
a13 +

∑
snjm

bsnjm13

ω − csnjm13

a21 +
∑

snjm

bsnjm21

ω − csnjm21
a22 +

∑
snjm

bsnjm22

ω − csnjm22
a23 +

∑
snjm

bsnjm23

ω − csnjm23

a31 +
∑

snjm

bsnjm31

ω − csnjm31
a32 +

∑
snjm

bsnjm32

ω − csnjm32
a33 +

∑
snjm

bsnjm33

ω − csnjm33
+ d33ω







Ex

Ey

Ez


 .

(9)
Fortunately, noting the relations in Z function (

∑
j bj = −1,

∑
j bjcj = 0 and

∑
j bjc

2
j = −1/2) and in Bessel

functions [
∑∞

n=−∞ In(b) = eb,
∑∞

n=−∞ nIn(b) = 0,
∑∞

n=−∞ n2In(b) = beb], we find that aij = 0 (i, j = 1, 2, 3) and
d33 = 0. Eq. (9) can be changed further to




Jx

Jy

Jz


 = −




b11
ω +

∑
snj

bsnj11

ω − csnj

b12
ω +

∑
snj

bsnj12

ω − csnj

b13
ω +

∑
snj

bsnj13

ω − csnj

b21
ω +

∑
snj

bsnj21

ω − csnj

b22
ω +

∑
snj

bsnj22

ω − csnj

b23
ω +

∑
snj

bsnj23

ω − csnj

b31
ω +

∑
snj

bsnj31

ω − csnj

b32
ω +

∑
snj

bsnj32

ω − csnj

b33
ω +

∑
snj

bsnj33

ω − csnj







Ex

Ey

Ez


 . (10)

Combining Eqs. (8) and (9), the equivalent linear system for (6) can be obtained as




ωvsnjx = csnjvsnjx + bsnj11Ex + bsnj12Ey + bsnj13Ez,
ωjx = b11Ex + b12Ey + b13Ez,
Jx = jx +

∑
snj vsnjx,

ωvsnjy = csnjvsnjy + bsnj21Ex + bsnj22Ey + bsnj23Ez,
ωjy = b21Ex + b22Ey + b23Ez,
Jy = jy +

∑
snj vsnjy,

ωvsnjz = csnjvsnjz + bsnj31Ex + bsnj32Ey + bsnj33Ez,
ωjz = b31Ex + b32Ey + b33Ez,
Jz = jz +

∑
snj vsnjz,

ωEx = −c2kzBy − Jx/ε0,
ωEy = c2kzBx − c2kxBz − Jy/ε0,
ωEz = c2kxBy − Jz/ε0,
ωBx = kzEy,
ωBy = −kzEx + kxEz,
ωBz = −kzEy,

(11)
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which yields a sparse matrix eigenvalue problem. Again, the symbols vsnjx, jx,y,z and Jx,y,z used here do not have
direct physical meanings but are analogy to the perturbed velocity and current density in the fluid [1] derivations
of plasma waves. The elements of the eigenvector (Ex, Ey, Ez, Bx, By, Bz) still represent the original electric and
magnetic fields. Thus, the polarization of the solutions can also be obtained in a straightforward manner. The
dimension of the matrix is NN = 3× (SNJ + 1) + 6 = 3× [S × (2×N + 1)× J + 1] + 6. The coefficients are





bsnj11 = ω2
psbj(1− kzbj0/csnj)n2Γn/bs,

b11 =
∑

snj ω2
psbj(kzbj0/csnj)n2Γn/bs,

bsnj12 = ω2
psbj(1− kzbj0/csnj)inΓ′n,

b12 =
∑

snj ω2
psbj(kzbj0/csnj)inΓ′n,

bsnj21 = −bsnj12, b21 = −b12,
bsnj22 = ω2

psbj(1− kzbj0/csnj)(n2Γn/bs − 2bsΓ′n),
b22 =

∑
snj ω2

psbj(kzbj0/csnj)(n2Γn/bs − 2bsΓ′n),
bsnj13 = ω2

psbj [cj/λTs − nωcsbj0/(csnjvtzs)]Γn/bs,
b13 =

∑
snj ω2

psbj [nωcsbj0/(csnjvtzs)]Γn/bs,

bsnj31 = bsnj13, b31 = b13,

bsnj23 = −iω2
psbj [cj/λTs − nωcsbj0/(csnjvtzs)]

√
(2λTs)Γ′nbs,

b23 = −i
∑

snj ω2
psbj [nωcsbj0/(csnjvtzs)]

√
(2λTs)Γ′nbs,

bsnj32 = −bsnj23, b32 = −b23,
bsnj33 = ω2

psbj [(vs0/vtzs + cj)cj/λTs − nωcsbj0(1 + nωcs/(csnj)v2
tzs)/kz]2λTsΓn,

b33 =
∑

snj ω2
psbj [n2bj0/(csnjv

2
tzskz)]2λTsΓn,

csnj = kzcjvtzs + kzvs0 − nωcs,

(12)

where bj0 = vs0 + (1− 1/λTs)cjvtzs.
If aij 6= 0, then the equivalent linear transformation is still straightforward. However, the eigenmatrix will not

be sparse (the ES1D and ES3D eigenmatrices in section 2 are not sparse, see Appendix B for the sparse ones). If
d33 6= 0, then the equivalent linear transformation will be more complicated. For our purposes, we do not need to
discuss these cases.

4 Benchmarks and applications

The PDRK code (see https://github.com/hsxie/pdrk
or http://hsxie.me/codes/pdrk/. Three versions are
included at present: ES1D, ES3D, EM3D. If not spec-
ified, PDRK represents PDRK-EM3D.) is developed
based on the above method. We now benchmark this
code and show some typical applications. Default pa-
rameters for the succeeding cases are c2 = 104, B0 = 1,
me = 1, qe = −1, ε0 = 1.

4.1 Benchmark with fluid solver PDRF

First, we compare PDRK with the fluid solver
PDRF [1]. Fig. 5 shows the results at the cold limit
with parallel propagation (k = kz). In PDRF, we set
Te = Ti = 0; in PDRK, we set Te = Ti = 0.01 ¿ 1. The
real frequencies in PDRK (ωK) and in PDRF (ωF ) are
almost identical. However, the kinetic damping is not
zero as in the fluid framework, especially the cyclotron
damping for ions, which is apparent in Panel (b). This
cyclotron damping is not predicted in the fluid theory.

Fig. 6 shows the results for warm plasma with per-
pendicular propagation. We see that the fluid version
results are close to the kinetic version results at small
k (kc/ωce < 2), but deviates at large k. This kinetic
correction (Bernstein modes) from the harmonics of the
cyclotron frequency is also not predicted in fluid theory.

A further test (Fig. 11) of the electron Bernstein
modes, which is quasi-electrostatic and makes use of

the parameters in Fig. 3, gives similar results between
PDRK-EM3D and PDRK-ES3D. Thus, for this step,
PDRK-EM3D works well.

4.2 Parallel propagation kinetic modes

The kinetic dispersion relation for parallel propaga-
tion modes [16,19] is relatively simple to solve because
the effects of the higher-order cyclotron harmonics are
zero. One branch is the same as the ES1D dispersion
relation Eq. (1). The other two branches are given by

D(k, ω) = 1−k2c2

ω2
+

∑
s

ω2
ps

ωkvts
Z

(
ω ± ωcs

kvts

)
= 0. (13)

Eqs. (1) and (13) are solved by root finding with the
original Z function [20] and comparing with PDRK. A
typical result is shown in Fig. 7. We find a good agree-
ment between the two methods. In addition, the ion
and electron cyclotron damping and the Landau damp-
ing are clearly shown. However, too many extrane-
ous solutions exist in the PDRK results. Most of the
heavily damped solutions are not shown in the figure.
The solutions represented by the red solid line (ωR) in
the figure should be real solutions. At large k (e.g.,
kc/ωce > 7, where PDRK solutions still agree with ωR

but not shown), the damping rates of several artificial
solutions are smaller than ωR, which makes it difficult
to separate the real and the artificial solutions directly.

To this step, PDRK-EM3D works well for Ts‖ = Ts⊥
and vs0 = 0. For the heavily damped solutions, keeping
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all the interesting solutions while removing the artifi-
cial solutions is usually not easy. Besides the heavily
damped solutions, the artificial solutions roughly sat-
isfy ωr − nΩc ∝ k‖ and γ ∝ k‖ (come from the poles
ζ−cj → 0 of J-pole expansion). Therefore, this process
can also be used to remove some of the artificial solu-
tions. Several of the ES3D artificial solutions in Fig. 8
are removed based on this property.

When a sparse matrix is not used, the computation
time is around O(NNα) with 2 < α < 3 and the mem-

ory required is around O(NN2). A typical personal
computer with 4 GB memory can calculate NN up to
7000 (NN = 7000, S = 2, J = 8, give N ' 60 ) in
minutes. Thus, for modes with frequency ω < 60Ωci,
all the solutions in the system can be obtained easily.
When a sparse matrix is used, NN can reach up to 106.
Thus N can be up to 104. The standard sparse matrix
algorithm can solve one or several solutions around the
initial guess.

Fig.5 PDRK (dot) vs. PDRF (solid line), cold (Te = Ti = 0.01), parallel propagation. The real frequencies in both solvers

are almost identical. However, the cyclotron damping is not predicted in PDRF

Fig.6 PDRK (dot) vs. PDRF (solid line), warm (Te = Ti = 100), perpendicular propagation. The positive γ ' 10−13

comes from numerical error of J = 8

Fig.7 PDRK solutions (dot) vs. Z function solutions (solid and green dash lines), warm (Te = Ti = 400), parallel

propagation. Heavily damped (both real and artificial) solutions are not shown
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4.3 Landau damping of lower hybrid
wave

Now, we benchmark the Landau damping of lower
hybrid wave (LHW) using a real mass ratio mi/me =
1836, where large N should be used to make the so-
lutions convergent. For the electrostatic case, with
k2ρ2

e ¿ 1, ωci ¿ ω ¿ ωpe and k‖/k ¿ 1, the ana-
lytical solution ω = (ωr, γ) for LHW can be found in
Ref. [21]. We use the same parameters (ωpe = ωce,
k‖/k⊥ = 0.066, Te = Ti) as in Fig. 1 of Ref. [21] for the
benchmark because this has also been verified by first-
principle PIC simulations in that paper. The results
are shown in Fig. 8, where the electrostatic assumption
works well for large k. For small k (k⊥ρce < 0.04),
the electromagnetic effects should be included, which is
consistent with the results on fluid frequency and po-
larization in a previous study [1].

Note that several limits for the parameters have been
used to obtain the analytical solution. Similar lim-
its have also been used for warm EM LHW (see e.g.,
Ref. [8]). Therefore, it is not surprising that the analyt-
ical solution does not hold for large k (k⊥ρce > 0.4) in

the figure. For fusion (e.g., Ref. [22]) or space studies,
the approximate analytical solution is not always valid.
Thus, PDRK can serve as a numerical tool for a wider
range of parameters.

For this step, we have shown that PDRK-EM3D
works well also for N ≥ 50 by using a sparse matrix,
though an initial guess is required and the computa-
tional time is longer.

4.4 Firehose and mirror modes

Firehose and mirror modes are typical unstable
modes driven by pressure anisotropic T‖ 6= T⊥. For cold
electrons, the approximate analytical kinetic dispersion
relations for the firehose mode is ω2 = ω2

A[ bi
1−Γ0(bi)

+
βi⊥−βi‖

2 ]. For the mirror mode, it is ζiZ(ζi) = ηi
βi⊥Γ1(bi)

−
(1− ηi), with ηi = βi‖/βi⊥.

A typical result is shown in Fig. 9, where ωpe/ωce =
2, mi/me = 100, ωA = k‖vA = 0.01ωci and βe = 0.08.
The PDRK solutions agree with the analytical solutions
for both the firehose and mirror modes. The small devi-
ation is not surprising because the analytical solutions
are not accurate.

Fig.8 Landau damping of lower hybrid wave. Solutions from PDRK-ES3D (red, N = 150), PDRK-EM3D (blue, N = 50),

and the analytical solution (dash green line) in Ref. [21]. It took about 1 CPU hour to compute the data in this figure

Fig.9 Growth rates for the firehose and mirror modes vs. k⊥ρci. The dashed green lines in (a) an (b) are analytic solutions

for firehose or mirror modes respectively

104



XIE Huasheng et al.: PDRK: A General Kinetic Dispersion Relation Solver for Magnetized Plasma

4.5 Whistler beam mode

The beam vs0 6= 0 can also drive instabilities. We
benchmark the whistler beam mode here. The param-
eters are similar to Fig. 8.8 of Ref. [5], with s=b,c,i,
mi/me = 1836, ni = 1.0e4, nb = 0.1ni, nc = 0.9ni,
Tc = Ti = Tb/10 = 0.5556 and vb0 = −9vc0 = 2.108,
which yield ωpe = 100ωce, βc = 1.0 and vb0 = 2.0vtc,
where βc is the background plasma β. The ω and γ vs.
(kz, kx) results are shown in Fig. 10. The most unstable
mode is the parallel propagation mode (k = k‖), which
is consistent with Gary’s conclusion [5].

4.6 Dispersion surface

The 2D structure of ω vs. (kx, kz) (dispersion sur-
face [23]) is shown in Fig. 11 for electron Bernstein wave
(EBW). This type of figure is helpful in displaying the
fine structure of the dispersion relations in (k⊥, k‖)
space and in revealing the relations among different
modes. It is clearly shown in Panel (b) that the solu-
tions are separated by cyclotron frequencies, i.e., the so-
lution nωc < ω < (n+1)ωc (n = 0, 1, 2, ...) exists for any
k. In Fig. 11, we only keep N = 10, and both real and
artificial solutions are shown. To see the fine structure

of the real solutions more clearly, further processing is
required to remove the artificial solutions, which is the
main disadvantage of the present version of PDRK.

4.7 Others

In the above benchmarks, no apparent numerical
problems are found. However, this does not mean that
we can apply PDRK for all cases because only approx-
imations of Z function are used. In WHAMP [2], the
Z function is also approximated by J-pole expansion.
A further approximation is taken for the Bessel func-
tion summation. Thus, in principle, PDRK-EM3D will
give more accurate results than WHAMP. Similar issues
regarding the validity of Padé approximation for Z is
discussed in detail in the WHAMP report [2]. Based
on our results, the error for J = 8 is less than 10−4,
which may bring some artificial growing modes. If the
same solution also exists for other J (e.g., J = 4, 12),
it is more likely to be a real solution. Otherwise, care
should be exercised in treating this solution. We can
distinguish real and artificial solutions by using differ-
ent J . The artificial solutions change when J changes.
In contrast, the real solutions do not change that much.

Fig.10 Electromagnetic whistler beam instability. The real frequency ω is only shown for unstable (γ > 0) solutions. The

parallel propagation (k = k‖) results are similar to Fig.8.8 of Ref. [5]. N = 3 is used for this calculation

Fig.11 Dispersion surface (b) from PDRK-EM3D, using the EBW parameters in Fig. 3 and c2 = 102. The ω vs. k⊥ (a)

result is close to the ES3D result in Fig. 3, which confirms that EBW is (quasi-) electrostatic
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5 Summary and discussion

A general, fast, and effective approach is devel-
oped for numerical calculation of kinetic plasma dis-
persion relations based on Padé approximation and ma-
trix transformation. And, this method is implemented
in a general kinetic plasma dispersion relation solver,
PDRK, where the equilibrium distribution function is
assumed to be drift bi-Maxwellian. For other non-
Maxwellian distribution functions, the J-pole expan-
sion (Appendix A) of the corresponding new Z func-
tions [14] should be obtained first. Note that the rel-
ativistic effect (e.g., Refs. [24-26]) is not included in
the present study as this would make the solution
more complicated. However, in principle, it can also
be treated using Padé approximation [25]. Further im-
provements of the present method to treat the disper-
sion relations without infinite Bessel function summa-
tion (e.g., Ref. [27]) or with ring-beam velocity distri-
butions (e.g., Ref. [28]) would also be interesting. Al-
though PDRK is more accurate than PDRF, the latter
is still advantageous in some cases because it can han-
dle more configurations, such as relativistic systems, lo-
cal non-uniform systems, and systems where collisions
are considered. For practical applications, one can use
PDRF to obtain rough solutions, and then use these to
provide initial guesses for PDRK or use them for as-
sistance in removing the artificial solutions in PDRK.
Besides the multi-fluid model, PDRK also provides a

tool to check the validity of other reduced models, such
as Darwin [20] and gyro-kinetic [9,29] models.

For systems with small N (e.g., N < 60 for two
species) or unstable modes, PDRK works excellently
and is applicable to most cases used. For large N
(e.g., N > 60), especially in studying the effect of nΩc

the modes (e.g., LHW), the performance of PDRK is
limited mainly by the computational time and mem-
ory. However, this concern may be remedied by using
sparse matrices. Further optimization is possible. For
example, we do not need to treat N equally for each
species, e.g., for LHW, we can use large Ni but small
Ne. The main disadvantage of PDRK is that artifi-
cial solutions originate from the poor approximation
for strongly damped modes.

Compared with conventional solvers, the PDRK
method/solver is fast and can give all solutions. There-
fore, no important solutions are missed. It is also free
from convergence problems. Hence, this method and
solver can find wide applications in space, astrophysi-
cal, laser, and laboratory plasma studies.

Mathematically, after Padé approximation, this ma-
trix transformation method is similar to find a com-
panion matrix to a rational function. In linear algebra,
there only exists standard form of the companion ma-
trix for a polynomial function. Thus, the present work
may also inspire some general theory for the companion
matrix to rational functions.

Appendix A: Arbitrary J-pole expansion

The J-pole expansion coefficients bj and cj are provided only for small J in literature. Here, based on the study
of Ronnmark [2], we develop a scheme to calculate numerical coefficients for any J . This is possible because we do
not need analytical expressions. The J-pole expansion is

Z(ζ) ' ZJ
A(ζ) =

∑J−1
k=0 pkζk

q0 +
∑J

k=1 qkζk
, (14)

with q0 = 1, it should be matched with the following two-side approximation

Z(ζ) '
{ ∑∞

k=0 akζk ' i
√

πe−ζ2 − ζ
∑∞

n=0(−ζ2)n Γ(1/2)
Γ(n+3/2) , ζ → 0∑∞

k=0 a−kζ−k ' iσ
√

πe−ζ2 −∑∞
n=0

Γ(n+1/2)
Γ(1/2)ζ2n+1 , ζ →∞ (15)

where

σ =





0, IM(ζ) > 0,
1, IM(ζ) = 0,
2, IM(ζ) < 0,

(16)

and Γ is Euler’s Gamma function. A further expansion is e−ζ2
=

∑∞
n=0

ζ2n

n! . However, iσ
√

πe−ζ2
is omitted, which

does not match well for the range y <
√

πx2e−x2
when x À 1. The system of equations to be solved are

pj =
∑j

k=0 akqj−k, 1 ≤ j ≤ I (17a)

pL−j =
∑j

k=0 a−kqL+k−j , 1 ≤ j ≤ K (17b)

where I + K = 2J , and pj = 0 for j > J − 1 and j < 0, and qj = 0 for j > J and j < 0. Thus 2J equations
determine 2J coefficients pj and qj in (14). The derivation of (17) is similar to that of Eqs. (III-5) and (III-7) in
Ronnmark [2]. Eqs. (17) are solved using matrix inversion. The ‘residue’ function in MATLAB is used to calculate
bj and cj in (2) from (14). The results for J = 12 using I = 16 equations of (17a) and K = 8 equations of (17b)
are given in Table 1.
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Usually, a large J gives better approximations. How-
ever, this is not always the case. Test should be made
before using them. Moreover, the truncated error when
using double precision data can accumulate to 10−11.

Calculating the J-pole expansions for other equilib-
rium distribution functions [14] is also straightforward.
We merely replace the coefficients ak and a−k in (15).

Appendix B: Equivalent sparse
matrix for ES1D system

As mentioned, the equivalent matrix from Eq. (4) for
ES1D system is not sparse. An equivalent sparse ma-
trix for ES1D system can be constructed as following:

ωnsj = csjnsj + bsjE, (18a)
ωE = −∑

sj csjnsj −
∑

sj bsjE. (18b)

This is similar by changing the ES1D Vlasov-
Poisson system to the ES1D Vlasov-Ampere sys-
tem [15]. Eq. (18b) can be further simplified to be
ωE = −∑

sj csjnsj , because
∑

sj bsj = 0. The ES3D
matrix in Sec. 2.2 can be changed to sparse matrix in
a similar manner.
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