
[13:24 16/12/2010 Bioinformatics-btq626.tex] Page: 167 167–174

BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 2 2011, pages 167–174
doi:10.1093/bioinformatics/btq626

Sequence analysis Advance Access publication December 12, 2010

PE-Assembler: de novo assembler using short paired-end reads
Pramila Nuwantha Ariyaratne1 and Wing-Kin Sung1,2,∗
1Computational & Mathematical Biology Group, Genome Institute of Singapore, 138672 and 2School of Computing,
National University of Singapore, Singapore 117543
Associate Editor: John Quackenbush

ABSTRACT

Motivation: Many de novo genome assemblers have been proposed
recently. The basis for most existing methods relies on the de bruijn
graph: a complex graph structure that attempts to encompass the
entire genome. Such graphs can be prohibitively large, may fail to
capture subtle information and is difficult to be parallelized.
Result: We present a method that eschews the traditional graph-
based approach in favor of a simple 3′ extension approach that has
potential to be massively parallelized. Our results show that it is able
to obtain assemblies that are more contiguous, complete and less
error prone compared with existing methods.
Availability: The software package can be found at
http://www.comp.nus.edu.sg/~bioinfo/peasm/. Alternatively it
is available from authors upon request.
Contact: ksung@comp.nus.edu.sg; sungk@gis.a-star.edu.sg
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on June 4, 2010; revised on October 18, 2010; accepted
on October 29, 2010

1 INTRODUCTION
De novo genome assembly has been a fundamental problem in
bioinformatics since the advent of DNA sequencing. The second-
generation sequencing technologies such as Illumina Solexa and
ABI SOLiD have introduced a new sense of vigor to the field. The
short length of the sequences coupled with high coverage and high
level of noise has transformed de novo assembly to a tractable yet
challenging proposition. The ease at which paired-end read libraries
can be generated on these platforms is an added advantage.

A number of works have been proposed to assemble short
reads. The first few de novo assemblers developed to handle high-
throughput short reads were based on base-by-base 3′ extension.
SSAKE, VCAKE and SHARCGS (Dohm et al., 2007; Jeck et al.,
2007; Warren et al., 2007) are examples using this principle.
To resolve ambiguities, these methods adapted trivial heuristics
such as ‘selecting the base with maximum overlap’ or ‘selecting
the base with the highest consensus’. Such arbitrary criteria results
in substandard assemblies that were often a compromise between
contiguity and error rate. Furthermore, the approaches were not
scalable to handle medium or large genomes; therefore, their use
is restricted to assembling BAC clones or small bacteria genomes.
They were also not designed to make use of paired-end reads, thus
greatly limiting their usefulness in assembling high-throughput data.

∗To whom correspondence should be addressed.

The more practical approaches for assembling high-throughput
short reads have spawned based on de Bruijn graph approach.
Velvet (Zerbino and Birney, 2008) is perhaps the most widely used
method for de novo genome assembly today. It is very fast in
execution, fairly memory efficient and produces reasonably accurate
assemblies. Similar to all other methods based on de Bruijn graph,
Velvet requires the entire genome to be stored in a graph structure.
In the presence of noise, the graph may be too large to be stored on
system memory. Furthermore, resulting assembly generated from
Velvet tends to contain many errors at small repeat regions. Another
approach, Euler-USR (Chaisson et al., 2009) is very similar in
concept to Velvet, but employs more sophisticated error detection
and correction steps. However, in practice, we noted Velvet produces
more contiguous and complete assemblies in comparison with Euler-
USR. Both Velvet and Euler-USR take full advantage of paired-end
read libraries.

One of the major shortcomings of de Bruijn graph approaches
is the inability to parallelize the assembly process. This is a
critical requirement as many powerful computers utilize multiple
processors where numerous threads can be run seamlessly in
parallel. Introduction of ABySS (Simpson et al., 2009) tackled this
issue. The core assembly algorithm of ABySS is very similar to
that of Velvet, but it allows de Bruijn graph to be distributed across
multiple cores/nodes, and each core/node can operate on the graph
independently to a certain extent. The assembly result of ABySS is
similar to that of Velvet. However, we noticed that when executed
in parallel in a multi-core single computer, Abyss does not offer any
advantage over Velvet in term of execution time or memory usage.
To utilize Abyss efficiently, it requires a multi-node computing
cluster that may seem a disadvantage in an era where computers
are increasingly made faster by adding more cores within a single
CPU. SOAPdenovo (Li et al., 2010) addressed many of these issues
by introducing a de Bruijn graph-based method that can seamlessly
takes advantage of multi-core systems.

Allpaths/Allpaths2 (Butler et al., 2008; MacCallum et al., 2009)
appears to be the most accurate method at present. It introduces an
interesting hybrid approach where the genome is still stored as a
large graph; however, the graph is separated into different segments
and assembly of these segments can be carried independently. This
makes it possible to run some stages ofAllpaths algorithm in parallel.
The high accuracy ofAllpaths is contributed by the fact that it tries all
possible ways to assemble every segments; however, this comes at a
tremendous cost in terms of time and memory usage, and therefore
it will not augment well for larger genomes.

We propose the method PE-Assembler that is capable of
handling large datasets and produces highly contiguous and accurate
assemblies within reasonable time. Our approach is based on simple

© The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 167

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/2/167/284712 by guest on 16 August 2022

http://www.comp.nus.edu.sg/~bioinfo/peasm/


[13:24 16/12/2010 Bioinformatics-btq626.tex] Page: 168 167–174

P.N.Ariyaratne and W.-K.Sung

3′ extension approach and does not involve representing the entire
genome in the form of a graph. Fundamentally, it is similar to other
3′ extension approaches such as SSAKE, VCAKE and SHARCGS.
However, it improves upon such early approaches in multiple ways.
The extensive use of paired-end reads ensures that the dataset is
localized within the region. Hence, our method can be run in parallel
to greatly speedup the execution while staying within reasonable
system requirements. Ambiguities are resolved using a multiple path
extension approach, which takes into account sequence coverage,
support from multiple paired libraries and more subtle information
such as the span distribution of the paired-end reads.

2 METHODS
Paired-end reads are also known as paired reads or mate pairs (depending on
some technical differences) in different literature. Essentially, they all refer
to a pair of short reads that originates from 5′ to 3′ ends of a DNA fragment
whose length is known approximately. The length of the fragment is referred
to as the insert size. For every paired-end read, its two reads are called the
mates of each other. The length of each read is denoted as ReadLength. It
could be of any length from 25 to 100 bp. The insert size is not exact. It may
vary from MinSpan to MaxSpan.

Our program is called PE-Assembler, which aims to reconstruct the
sample genome from a paired-end read library. PE-Assember can also accept
multiple paired-end read libraries of different insert sizes, which can facilitate
to resolve ambiguities that cannot be conclusively resolved using a single
paired-end read library.

PE-Assembler is fundamentally based on 3′ overlap extension, similar
to SSAKE and VCAKE. The procedure is illustrated in Figure 1. Given
a sequence, PE-Assembler extracts all reads whose prefix aligns with the
suffix of the sequence. We define this as an overlap. The suffix of each read,
which overhangs from the 3′ of the sequence, forms a feasible extension to
the contig. If there is a clear consensus for a single base, then that base is
appended to the end of the sequence and the process is iterated. Multiple
feasible extensions are handled differently in various stages of the algorithm
and are described in following sections.

PE-Assembler is implemented as a series of five steps, which are briefly
described as follows (also see Supplementary Fig. 1). First, the read screening
step selects a set of reads (called ‘solid’ reads) as starting points for extending
the assembly. This step specifically avoids reads containing sequencing errors
and reads occurring in repeat regions in the genome. The second step then
extends these ‘solid’ reads using single end reads to make them longer than
MaxSpan. Those successfully extended regions are called seeds. Seeds are
long enough for extension using paired-end reads. Our third step (called
contig extension) tries to extend all these seeds using paired-end reads. The
resulting sequences are called contigs. The fourth step links those contigs

Fig. 1. Overview of 3′ overlap extension. Both t and g are feasible
extensions.

using paired-end reads to form scaffolds (i.e. ordered set of contigs with
gaps in between). Finally, the last step tries to fill-in the gaps in between
scaffolded contigs. Below, we will detail the five steps.

2.1 Read screening
Many short read assemblers perform error correction/detection steps prior to
the assembly. While it is generally effective in detecting and fixing random
sequencing errors, it treats each read as a single read and therefore fails to
utilize the pairing information. This may result in overcorrecting the reads
coming from low coverage regions as the actual location of the paired-end
read is not taken into account.

Our approach does not perform error correction. However, we require a
pool of error-free and non-repetitive reads as starting points for the seed
building step (Section 2.2). These reads are isolated by carrying out a read
screening step.

The idea behind the screening step is similar to the kmer frequency based
error correction method proposed by Pevzner et al. (2001). Its details are
as follows. A kmer is a length k DNA sequence. Provided the genome is
sampled at a high coverage, a kmer that occurs in the genome is likely to
occur multiple times in the input reads. Suppose a particular kmer occurs
once (or very sparingly) in the input reads, such kmer is unlikely to occur in
the target genome and is likely to be a result of a sequencing error. Similarly,
if a kmer occurs at a higher frequency than expected, we can conclude that
it may have originated from a repeat region in the genome. A kmer that is
expected to occur in the actual genome is called a ‘solid’ kmer while a kmer
that is expected to occur within a repeat region is called a ‘repeat’ kmer. To
classify a read as either a solid kmer or a repeat kmer, we scan the entire
dataset of reads to extract the set of kmers and their frequencies. A kmer
frequency histogram is plotted. Then, we identify the solid kmer threshold
and the repeat kmer threshold from the troughs on either side of the main
peak (Fig. 2). A read is said to be ‘solid’ if the frequencies of all its kmers
are higher than the solid kmer threshold and lower than the repeat kmer
threshold. Only solid reads are chosen as the start points for the next step.
Note that this stage does not discard or correct any data. The entire dataset
is used in the assembly as it is.

2.2 Seed building
A ‘seed’ is defined as a contiguous region in the target genome which is of
length at least MaxSpan. To assemble a seed, we start with an unused solid
read as the initial seed and carry out 3′ overlap extension as described above.
However, due to the presence of small repeats or sequencing errors, there
may be multiple feasible candidates as the next 3′ base.

Ambiguities arising due to repeats can be resolved with the help of paired-
end reads. Throughout the seed assembly, we maintain a pool of reads whose

Fig. 2. The kmer frequency histogram. We can determine the solid kmer
cutoff and repeat kmer cutoff from the two troughs.

168

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/2/167/284712 by guest on 16 August 2022



[13:24 16/12/2010 Bioinformatics-btq626.tex] Page: 169 167–174

PE-Assembler

Fig. 3. Resolving ambiguities in the seed building step: suppose the current
seed can be extended by two possible candidates ‘a’ and ‘g’. Assume that,
for reads extending ‘g’, their mates overlap with the reads in the pool, while
the reads extending ‘a’ do not have such support. Then, we can safely select
candidate ‘g’ for extension.

Fig. 4. A paired-end read is said to overlap the 3′ end of a seed if the 3′
read of the paired-end read overlaps the 3′ end of the seed and the 5′ read
maps on the seed within the expected region, as determined by MinSpan and
MaxSpan of the library.

mates map on to the current seed. In case of any ambiguity, for every read
overlapping with the seed, we check if its mate overlaps with any reads in
the maintained pool (Fig. 3). Those without overlap support are assumed to
be noise and thus discarded.

The above method cannot resolve ambiguities arising due to sequencing
errors. In such case, we extend every candidate base up to a distance of
ReadLength. Any extension path arising due to sequencing errors is likely
to be terminated prematurely. If only one candidate path can reach the full
distance, then that path is assumed to be the correct extension.

At any stage, if there is no candidate for extension (likely due to low
sequencing coverage) or multiple candidates for extensions (possibly due to
longer repeats), the extension is terminated. Seed will then be extended from
the other side. The extension will be ‘successfully’ terminated once the seed
reaches the length of MaxSpan.

For every successfully terminated seed, a seed verification step is
performed to ensure that the seed represents a contiguous region in the target
genome. Precisely, to verify the 3′ end of a seed, we require at least one
paired-end read overlaps with 3′ end of the seed (Fig. 4). Similarly, we can
verify the 5′ end of a seed. All verified reads are immediately subjected to
contig extension step (Section 2.3). Seeds which fail the verification step are
discarded.

2.3 Contig extension
The contig extension step aims to extend each verified seed to form a longer
contig iteratively. Again, this step relies on overlap extension to elongate
the current contig; but with some differences. Since a contig is longer
than MaxSpan, instead of using single reads to extend the contig, we try
to identify feasible extensions from paired-end reads that overlap with the
contig. Moreover, when no paired-end read is found overlapping with the
contig, we identify feasible extensions from overlapping reads instead.

Fig. 5. Minimum span distance of this chimeric mapping is a+b. Actual
span may vary depending on the gap size between contigs X and Z.

If a clear consensus is found among the feasible extensions, then that base
is appended to the end of the contig and process is repeated. Occasionally,
there are multiple feasible candidates to extend the contig. Such scenario may
arise due to three reasons. The first reason is sequencing errors. These errors
can be dealt similar to the seed building step. The second reason is due to
short tandem repeat regions. In such case, we stop the extension and we
will try to estimate the correct number of tandem repeats during the gap
filling step. The third reason is due to long repeats. In such case we also
terminate the extension. Note that when the repeat is longer than MaxSpan,
we cannot theoretically resolve the ambiguity using the given paired-end
read information. A paired-end read library of longer insert size is required
to resolve such ambiguity.

The contig extension step is performed until we cannot extend the contig
from both ends. Then, the resultant contig is kept to be used in scaffolding.

2.4 Scaffolding
The objective of the scaffolding step is to find the correct ordering of the
resulting set of contigs.

As the scaffolding step is very sensitive to the presence of repeat regions,
the first step is to demarcate all repeat regions within assembled contigs. In
this step, all individual reads are mapped back to the contigs and read density
across all the contigs is calculated. The mode of the read density is assumed
to be the expected read coverage across the genome. Any region with read
density higher than 1.5 times of the mode is considered as a repeat region.
Any reads mapped onto such repeat region are discarded.

During this step, additional statistics such as average span and standard
deviation for each library is calculated. This information is used during the
gap filling stage.

For the scaffolding step, we only consider the paired-end reads whose two
reads map uniquely to two different contigs. Such a mapping is referred as a
chimeric mapping. Although we cannot estimate the exact span of a chimeric
mapping, the minimum span for a chimeric mapping can be calculated by
the distance that it has covered on the two contigs (Fig. 5). Every paired-end
read mapping whose minimum span exceeds MaxSpan is discarded.

Two contigs of specific orientation are said to be linked by an edge if there
is at least a certain number of chimeric mappings between the two contigs in
that orientation. The weight of the edge is the total number of such chimeric
mappings, normalized by the total number of paired-end reads in the library.
The maximum gap size is estimated by subtracting MaxSpan by the average
of minimum spans of all chimeric paired-end reads of that edge. Multiple
fragment libraries of different insert sizes may be used at this point. Each
library will result in its own distinct set of edges.

A potential scaffold is a linear ordering of contigs. An edge between two
contigs X and Z is deemed satisfied if both contigs X and Z occur within
the same scaffold in a correct orientation and the total length of all contigs
between X and Z is less than the maximum gap size estimated by that edge;
otherwise, if X and Z cannot be arranged so that they are within the expected
span, the edge is said to be contradicted. The score for each scaffold is
calculated by totaling the weights of all satisfied edges and subtracting the
weights of all contradicted edges.

The aim of the scaffolding algorithm is to produce a set of scaffolds
such that the above score is maximized. However, exact solution to this

169

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/2/167/284712 by guest on 16 August 2022



[13:24 16/12/2010 Bioinformatics-btq626.tex] Page: 170 167–174

P.N.Ariyaratne and W.-K.Sung

Fig. 6. Use of average span and standard deviation to resolve ambiguities in Staphylococcus aureus assembly: (A) Reference sequence from region in question.
Bolded segments are identical. Both ‘a’ and ‘t’ seems a valid choice after that region. (B) Sequence overlap shows both ‘a’ and ‘t’ as potential candidates.
Both paths are extended up to a distance of ‘TagLength’. (C) Illustration of the two different extensions. For each path, spans of paired-end reads mapping
across the branching point is kept. Spans resulting from the incorrect assembly are noticeably shorter due to missing region. (D) Histograms of perceived
paired-end read span of two different paths and that of the entire library. Note that span distribution of correct path closely follows that of the library. Path
with the span distribution closest to the library span distribution is chosen.

is computationally prohibitive. Therefore, we employ the following greedy
heuristic approach.

The scaffolding process starts by selecting a contig at random as the
initial scaffold. The process extends the scaffold iteratively by including
contigs to the right. A contig X is said to be a right neighbor of a scaffold
if there exists some contig Z in the scaffold such that (Z, X) is an edge
and the total length of contigs to the right of Z in the scaffold is less than
the maximum gap size of (Z, X). All right neighbors of the scaffold are
potential candidates to extend the scaffold from its 3′ end. Each candidate
right neighbor is temporally added to the 3′ end of the scaffold, and all
permutations of remaining right neighbors are appended after it to obtain
multiple possible orderings. Each such potential ordering is evaluated. The
candidate right neighbor that results in the ordering with the highest score is
permanently added to the 3′ end of the scaffold. This process is repeated until
any of the following occurs: neighborhood is empty; best ordering score is
negative or the current region of the scaffolding has already been ordered
elsewhere. If scaffolding is terminated from the 3′ end, we try to extend the
scaffold from the 5′ end. Once both ends are not extendable, we obtain one
scaffold and the entire procedure is repeated with an unused contig as the
start point to identify other scaffolds.

2.5 Gap filling
The scaffolding step reports a list (or lists) of contigs in the same order as they
would be in the actual genome. The adjacent contigs are usually separated
by an unknown sequence. The objective of the gap filling step is to assemble
the gap region between two adjacent contigs to form a longer contig. Note
that the length of the gap can be estimated using paired-end reads, which
map across two adjacent contigs.

For every read that occurs in the gap, its mate must map to either the left
or the right contig of the gap. Hence, the gap can be filled in using such
reads. As we are dealing with a localized set of data, gap filling step can
use a less stringent minimum overlap length, thus facilitating assembly of
low-coverage regions.

A key difference between the gap filling step and the seed building step
is that the former can resolve convoluted repeat regions by exploiting span
information of paired-end reads to a greater degree. Similar to seed building
step, the assembly is carried out using overlap extension. Whenever there
are multiple extension paths due to multiple candidate bases, each path is
extended up to a distance of ReadLength. Moreover, for each extension path,
we can obtain the span histogram of all paired-end reads, which map on this
extension path. The distribution of this ‘perceived’ span for each extension
path is compared against the span distribution of the entire library. The span

distribution of the correct extension will be inline with that of the entire
library, whereas distributions of incorrect extensions will exhibit a noticeable
shift. This idea is demonstrated in Figure 6.

The adjacent contigs whose gap can be successfully bridged are merged
as a single contig. The resulting set of contigs from this step represents the
final output of the assembly.

2.6 Parallelization
This section discusses the issue of parallelization for the five steps. For the
read screening step, since it is largely disk bound, parallelizing this step
does not improve the performance noticeably. All remaining steps can be
run as threads on multiple cores sharing the same memory space almost
independent of each other.

For the seed building step and the contig extension step, the solid reads
and the seeds are distributed to different threads for parallel execution.
Provided the genome is reasonably large and the number of threads is not
impractically high, we can assume most of the threads assemble different
regions of the genome. Every thread will mark the reads which are so far
used in the assembly. Periodically, every thread will refer to this information
to detect if the region it is currently assembling has been previously
assembled by other threads. If a read is detected to be marked by other
threads, the thread will rewind the assembly to the last unmarked read and
terminated.

Scaffolding step involves mapping back each paired-end read to
assembled contigs and forming a graph comprising of contigs as nodes and
‘chimeric’ paired-end reads as edges. The graph building step is carried out
in parallel. Actual scaffolding is carried out in a single thread; however, this
step is not very time consuming.

Gap filling can be executed in parallel since gap filling is localized and is
independent from one another.

For the entire assembly process, the time taken is roughly inversely
proportional to the number of cores/threads utilized. (Please refer to the
Section 3.)

3 RESULTS

3.1 Simulated data
To evaluate the goodness of our approach, experiments were
carried out on simulated datasets based on Escherichia coli and
Schizosaccharomyces pombe reference genomes. Three libraries of
paired-end reads with varying ‘fragment lengths’ were simulated

170

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/2/167/284712 by guest on 16 August 2022



[13:24 16/12/2010 Bioinformatics-btq626.tex] Page: 171 167–174

PE-Assembler

Table 1. Details of the simulated dataset

Organism Escherichia coli Schizosaccharomyces pombe HG 18-Chr 10

No. of contigs/chromosomes 1 3 1

Genome length (bp) 4 639 658 12 571 820 135 374 737

Library 200 bp 1 kb 10 kb 200 bp 1 kb 10 kb 200 bp 1 kb 10 kb
Read length (bp) 35 35 35 35 35 35 75 75 75
Average insert size (bp) 235 1035 10035 235 1035 10035 275 1075 10075
Insert size range (average ± bp) ±40 ±200 ±2000 ±40 ±200 ±2000 ±40 ±200 ±2000
No. of paired reads (millions) 3.31 3.31 3.31 8.98 8.98 8.98 45.12 9.02 9.02
Coverage 50× 50× 50× 50× 50× 50× 50× 10× 10×
Seq. error rate, % 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Ligation error rate, % 0.0 2.0 2.0 0.0 2.0 2.0 0.0 2.0 2.0

Table 2. Comparison of simulated data results

Escherichia coli Schizosaccharomyces pombe HG18 chr10

PA Velvet Allpaths2 Abyss SOAP PA Velvet Allpaths2 Abyss SOAP PA Abyss SOAP

Parameters −minol = 25 −k = 27 −k = 21 −k = 25 −k = 27 −minol = 25 −k = 29 −k = 21 −k = 25 −k = 29 −minol = 50 −k = 45 −k = 31
−cov = auto −j = 3,−n = 10 −pair_num = 3 −cov = auto −j = 3 −n = 10 pair_num = 3 −j = 3 −p = 20
−exp = auto −np = 8 −p = 8 −exp = auto −np = 8 −p = 8 −n = 10

Contig statistics
No. of contigs (>200 bp) 6 56 44 283 199 31 181 164 650 348 4262 49015 18238
Average length (kb) 777.4 82606 107.6 22.3 22.8 394.7 67.9 75.3 23.1 35.0 30.2 2.9 6.6
Maximum length (kb) 2492.6 708.6 593.7 163.0 232.0 3519.6 856.1 851.0 297.3 468.7 403.5 65.2 155.8
Contig N50 size (kb) 2492.6 398.3 373.3 63.8 49.9 1487.7 273.0 226.8 80.1 99.8 62.4 5.3 13.0
Contig N90 size (kb) 2146.0 109.9 115.4 33.9 12.4 363.6 54.4 59.5 36.7 19.0 11.1 1.7 3.6
Coverage (%) 100.00 99.59 99.85 99.00 98.87 97.78 99.35 98.60 98.38 98.91 90.89 92.04 87.14

Evaluation
Large misassemblies 0 11 0 1 1 0 17 0 1 4 5 171 605
Segment maps (%) 99.68 94.74 99.18 93.31 93.66 96.42 94.44 96.83 92.72 94.31 86.17 63.61 32.2

Performancea

Total execution time (min) 21 10 227 43 5 101 40 734 98 11 748 N/Ab 240

Peak memory usage (gb) 2.3 2.9 29.7 2.9 5.9 4.5 7.7 66 6 8.1 15.1 N/Ab 48.0

aEscherichai coli and S.pombe datasets were run using eight threads for PE-Assembler, SOAPdenovo and ABySS. HG18 Chr10 dataset was run using 20 threads for PE-Assembler
and SOAPdenovo. For this dataset ABySS was run across four nodes in a cluster, each running two separate threads.
bExecution time and memory usage not available for ABySS. See Supplementary Material.

from each genome (Table 1); a short fragment library of average
span 200 bp, a medium fragment library of average span 1000 bp and
a long fragment library of average span 10 000 bp. All reads were
assumed to be 35 bp long. Precise criteria for simulation are detailed
in Supplementary section. For comparison, we executed all popular
de novo assembly programs such as Allpaths2, Velvet, ABySS and
SOAPdenovo in addition to PE-Assembler (denoted by ‘PA’ in
tables). Each program was run with multiple parameters and the
best result for each program is quoted below. The summary results
for all experiments and parameters are available in Supplementary
section.

We adapted the following approach to evaluate each assembly
result. All contigs were aligned against the reference genome using
BLAT (Kent, 2002). Any contig which does not completely align
to the reference genome, while allowing for small indels and
mismatches, is deemed a ‘large misassembly’. To evaluate the
accuracy at micro level, we segmented the reference genome into
continuous, non-overlapping sequences of 1000 bp and check if

they can be mapped on the assembly’s contigs without errors. The
number of error-free segments that can be mapped on the contigs is
reflective of the accuracy of the assembly. Contiguity of the assembly
is measured by the N50 and N90 sizes. The completeness of the
assembly is evaluated by calculating the percentage of reference
genome covered by the assembled contigs. The computational
complexity of each assembler is measured by its running time
and memory usage. These evaluation steps are detailed in the
Supplementary section.

The results for simulated data are summarized in Table 2.
The experiments demonstrate that PE-Assembler can generate
highly contiguous assemblies at a very low error rate using less
system resources. While Velvet is fast in execution, the number of
misassemblies shows that it lags behind PE-Assembler and Allpaths
in terms of accuracy. Both ABySS and SOAPdenovo produces
highly fragment results with relatively small N50 sizes.

To demonstrate that PE-Assembler is scalable to handle
large genomes, we simulated three paired-end read libraries of

171

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/2/167/284712 by guest on 16 August 2022



[13:24 16/12/2010 Bioinformatics-btq626.tex] Page: 172 167–174

P.N.Ariyaratne and W.-K.Sung

Table 3. Performance of PE-Assembler using different read lengths

Escherichia coli

35 bp reads 50 bp reads 75 bp reads 100 bp reads

PA Velvet PA Velvet PA Velvet PA Velvet

No. of contigs (>600 bp) 73 90 64 89 67 83 53 80
Contig N50 size (kb) 124.7 111.8 133.0 132.6 144.0 132.8 178.3 171.8
Contig N90 size (kb) 31.9 35.0 35.2 31.5 35.2 40.1 41.4 40.1
Large misassembiles 0 1 0 1 1 0 1 1
Coverage (%) 98.78 98.76 99.11 99.08 98.91 99.37 98.73 99.36
Execution timea (min) 7 6 7 6 6 6 6 7
Peak memory usage (g) 1.4 1.7 1.4 2.1 1.3 2.7 1.3 3.5

aPE-Assembler was run using 20 parallel threads.
Velvet was run with following k-values, respectively, 23, 31, 43 and 47. –cov_cutoff and –exp_cov was set to auto.

Table 4. Details of the experimental datasets

Organism Staphylococcus aureus Escherichia coli Schizosaccharomyces pombe Neurospora crassa

No. of contigs/chromosomes 3 1 4 251

Genome length 2 903 107 4 638 902 12 554 318 39 225 835

Library (bp) 200 3000 200 3000 200 3000 200 3000
Read length (bp) 35 26 35 26 35 26 35 26
Average insert size (bp) 224 3845 210 3771 208 3658 210 3650
Insert size range (bp) 195–255 3175–4725 180–260 3026–4626 195–265 2935–4535 175–245 2875–4675
No. of paired reads (millions) 5.52 3.89 15.04 5.46 27.58 25.62 95.66 61.88
Approximate coverage 130× 35× 230× 60× 150× 110× 170× 80×

aforementioned fragment sizes from chromosome 10 of HG18 and
assembled using PE-Assembler. PE-Assembler can cover 90% of
the original chromosome with N50 size exceeding 60 000. ABySS
and SOAPdenovo produces a large number of contigs with very low
N50 value. We failed to execute both Allpaths2 and Velvet for this
dataset due to their high memory usage.

Furthermore, we simulated four libraries of 500 bp fragment
paired-end data of four different read lengths at 60× coverage to
assess the impact of increase in read length on PE-Assembler. The
results (Table 3) show that PE-Assembler benefits from increase
in read length and compares favorably against Velvet for all read
lengths.

3.2 Experimental data
To assess our approach against wet lab data, we used four datasets
provided with Allpaths2. Each dataset contains two paired-end read
libraries; one of approximate fragment length 200 bp and the other
ranging from 3000 to 4500 bp (Table 4). The single reads were not
used.

As the reference genome is provided for every dataset, the
evaluation criteria remained the same as Section 3.1. However, since
the reference genome and the sequenced genome are not expected to
be identical, some minor errors are expected and allowed when we
map the assembled contigs onto the reference genome. The results

are summarized in Table 5. It shows that PE-Assembler is equally
adept in handling experimental data. It records the highest contiguity
in the form of N50 sizes across all four datasets.

For the two smaller genomes, the coverage statistics are
nearly identical for all four approaches. Assemblies produced by
Velvet and ABySS shows several large misassemblies whereas
those of PE-Assembler and Allpaths2 are void of such errors.
Performance-wise, PE-Assembler is more efficient in memory
consumption compared with all other programs. Especially
noteworthy is the large amount of memory consumed by Allpaths2
to assemble even the smallest of genomes.

Repeated attempts to assemble the two larger datasets using
Allpaths2 failed in our system. We suspect this is due to high memory
usage of Allpaths2. Therefore, the comparison is based on the output
provided at Allpaths website. The timing quoted here is that reported
on the Allpaths2 publication.

For the highly repetitive S.pombe genome, PE-Assembler results
in an assembly with N50 and N90 sizes far greater than that of
Allpaths2, Velvet and ABySS. PE-Assembler also shows better
coverage than Allpaths2. The high number of large misassemblies in
Velvet and ABySS assemblies demonstrates the susceptibility of de
Bruijn graph approach to misassemble genomes in the presence of
short repeat regions. In contrast, PE-Assembler and Allpaths2 results
in only three and two large misassemblies, respectively. Of the three
‘misassembled’ contigs in PE-Assembler output, two of them can

172

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/2/167/284712 by guest on 16 August 2022



[13:24 16/12/2010 Bioinformatics-btq626.tex] Page: 173 167–174

PE-Assembler

Table 5. Comparison of experimental data results

Staphylococcus aureus Escherichia coli

PA Velvet Allpaths2 ABySS PA Velvet Allpaths2 ABySS

Parameters −minol = 25 −k = 23 −k = 21 −k = 25 −minol = 25 −k = 27 −k = 21 −k = 25
−cov = auto −j = 2 −n = 10 −cov = 12 −j = 2 −n = 10
−exp = auto −np = 8 −exp = auto −np = 8

Contig statistics
No. of contigs (>200 bp) 24 60 14 187 21 121 25 277
Average length (kb) 119.8 48.0 205.0 18.3 176.8 37.5 184.1 21.4
Maximum length (kb) 949.9 475.6 1122.8 175.1 895.9 356.6 1015.3 160.4
Contig N50 size (kb) 685.8 314.9 477.2 63.8 428.8 105.6 337.1 55.2
Contig N90 size (kb) 107.5 37.79 84.0 31.9 143.1 25.4 81.7 31.8
Coverage (%) 99.45 98.99 99.24 98.28 99.56 99.19 99.63 98.96

Evaluation
Large misassemblies 0 5 0 1 0 4 0 1
Segment maps (%) 98.48 96.66 98.55 94.56 98.73 95.60 99.18 94.55

Performancea

Total execution time (min) 17 8 95 13 34 25 222 29
Peak memory usage (gb) 1.9 2.8 20 2.6 3.3 6.9 37.6 5.3

Schizosaccharomyces pombe Neurospora crassa

PA Velvet Allpaths2 ABySS PA Velvet Allpaths2 ABySS

Parameters −minol = 25 −k = 25 −k = 25 −minol = 25 −k = 25 −k = 25
−cov = 3 −j = 2 −n = 10 −cov = auto −j = 2 −n = 10
−exp = auto −np = 8 −exp = auto −np = 16

Contig statistics
No. of contigs (>200 bp) 169 362 353 1028 2708 5079 1687 9916
Average length (kb) 72.1 33.7 33.8 13.0 12.8 6.8 18.3 3.8
Maximum length (kb) 571.1 443.0 257.2 136.8 156.2 71.0 161.2 56.0
Contig N50 size (kb) 147.7 110.6 50.0 36.0 20.7 11.6 17.6 8.1
Contig N90 size (kb) 40.0 33.2 12.2 12.3 − − − 1.0
Coverage (%) 96.97 97.82 95.20 97.93 87.40 87.70 78.38 88.70

Evaluation
Large misassemblies 3 26 2 27 16 273 18 395
Segment maps (%) 95.51 94.26 92.60 91.08 82.06 77.44 74.66 71.28

Performancea

Total execution time (min) 364 125 4830b 72 1416 266 5196b 331
Peak memory usage (gb) 6.6 15 N/A 6.6 21 45 N/A 25.6

aAll experiments were run in a 8-core machine except for N.crassa dataset, which was run using 16-cores.
bReported as in Allpaths2 publication, where experiments were carried out in a 16-core machine.

be properly aligned against other strains of S.pombe and therefore
they are likely due to differences between assembled strain and the
reference. PE-Assembler’s assembly for S.pombe also results in the
highest number of segments maps, testament to both its coverage
and accuracy.

For the relatively larger Neurospora crassa genome,
PE-Assembler’s result leads in terms of contiguity and coverage.
Note that Allpaths2’s assembly is of significantly low coverage
in comparison with other assemblies. Also note that N.crassa
reference genome is unfinished and it consists of many contigs.
The ‘large misassemblies’ reported is likely to be inflated.

Current version of SOAPdenovo ignores reads of length <35 bp
for the scaffolding process. Therefore, we did not test SOAPdenovo

against the experimental datasets as it would not be a fair
comparison.

3.3 Parallelization and running time
One of the most important aspects of our method is its ability to
carry out the entire assembly process in parallel. We carried out a
series of experiments to determine how parallelization affects the
execution time of the assembler. The simulated E.coli dataset with
200 and 10 000 bp libraries were assembled using 1–8 separate
threads in an 8-core-CPU machine. Each thread was executed in a
separate CPU core.

173

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/2/167/284712 by guest on 16 August 2022



[13:24 16/12/2010 Bioinformatics-btq626.tex] Page: 174 167–174

P.N.Ariyaratne and W.-K.Sung

Fig. 7. Execution time with respect to number of threads/cores utilized.
Utilizing multiple cores dramatically reduces execution time. Theoretically,
the improvement should be linear with number of parallel threads; however,
this is masked by the fact that each step has constant IO overhead which
cannot be parallelized.

Figure 7 shows that distributing each step across multiple CPU
cores in parallel decreases the execution time proportionally to the
number of CPUs utilized. However, unlike the implementation in
Allpaths2, the parallel implementation does not come at an extra
memory overhead as the data structures are shared by each thread.
In each of the experiments, the maximum memory utilization was
constant at 1.3 GB.

4 DISCUSSION
PE-Assembler has demonstrated that it is possible to obtain
complete and highly accurate de novo genome assemblies using
high-throughput sequencing data within reasonable time and
memory constraints. The highlight of PE-Assembler is that it
eschews the traditional graph-based approach in favor of a simple
extension approach.

The advantages of this approach are numerous. Memory
requirements of graph-based approaches seem to increase
exponentially as genome and data size increase. This was highlighted
by the inability of Velvet and Allpaths2 to cope with simulated HG18
Chr10 dataset. In contrast, PE-Assembler produced a very usable
assembly within a realistic memory limit.

Our approach is fundamentally similar to other 3′ extension
approaches such as SSAKE, SHARCGS and VCAKE, but
distinguishes itself due to its extensive use of paired-end reads. Not
only does it make such approach scalable to larger genomes’datasets
by localizing data, it also contributes to its high accuracy. As evident
from both simulated and experimental data results, PE-Assembler
is the least prone of all algorithms to misassemble different regions
of the genome in a continuous segment.

Perhaps the most important aspect of PE-Assembler is its ability
to seamlessly parallelize the assembly process. Multiple threads can
simultaneously assemble the genome at various positions across
the genome, while a simple detection mechanism will ensure that
multiple assemblies of the same region are highly unlikely. Also
noteworthy is that parallel assembly in PE-Assembler does not come
at an extra cost in memory as in other methods such as Allpaths2 or
ABySS. Being able to massively parallelize the assembly process at
no extra overhead, it will prove valuable in assembling mammalian
genomes as well as in larger metagenomics projects. With minor
modifications, this approach can be extended to be run in a computer
cluster across multiple nodes to further decrease the running time.

ACKNOWLEDGEMENTS
The authors would like to extend their gratitude to Pauline Chen
of Research Computing Group, GIS, for her help in evaluation and
testing process. We further like to thank Daniel Zerbino for his help
in running Velvet and the reviewers for their useful feedback and
insight.

Funding: This research was supported by MOE AcRF Tier 2
funding R-252-000-444-112 and Agency for Science, Technology
and Research (A*STAR).

Conflict of Interest: none declared.

REFERENCES
Butler,J. et al. (2008) ALLPATHS: de novo assembly of whole-genome shotgun

microreads. Genome Res., 18, 810–820.
Chaisson,M.J.P. et al. (2009) De novo fragment assembly with short mate-paired reads:

Does the read length matter? Genome Res., 19, 336–346.
Dohm,J.C. et al. (2007) SHARCGS, a fast and highly accurate short-read assembly

algorithm for de novo genomic sequencing. Genome Res., 17, 1697–1706.
Jeck,W.R. et al. (2007) Extending assembly of short DNA sequences to handle error.

Bioinformatics, 23, 2942–2944.
Kent,J.W. (2002) BLAT–the BLAST-like alignment tool. Genome Res.,12, 656–664.
Li,R. et al. (2010) De novo assembly of human genomes with massively parallel short

read sequencing. Genome Res., 20, 265–272.
MacCallum,I. et al. (2009) ALLPATHS 2: small genomes assembled accurately and

with high continuity from short paired reads. Genome Biol., 10, R103.
Pevzner,P.A. et al. (2001) An Eulerian path approach to DNA fragment assembly. Proc.

Natl Acad. Sci. USA, 98, 9748–9753.
Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short read sequence data.

Genome Res., 19, 1117–1123.
Warren,R.L. et al. (2007) Assembling millions of short DNA sequences using SSAKE.

Bioinformatics, 23, 500–501.
Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read assembly

using de Bruijn graphs. Genome Res., 18, 821–829.

174

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/2/167/284712 by guest on 16 August 2022


