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Abstract: The peach is one of the most important global tree crops within the economically important
Rosaceae family. The crop is threatened by numerous pests and diseases, especially fungal pathogens,
in the field, in transit, and in the store. More than 50% of the global post-harvest loss has been
ascribed to brown rot disease, especially in peach late-ripening varieties. In recent years, the disease
has been so manifest in the orchards that some stone fruits were abandoned before harvest. In Spain,
particularly, the disease has been associated with well over 60% of fruit loss after harvest. The most
common management options available for the control of this disease involve agronomical, chemical,
biological, and physical approaches. However, the effects of biochemical fungicides (biological and
conventional fungicides), on the environment, human health, and strain fungicide resistance, tend
to revise these control strategies. This review aims to comprehensively compile the information
currently available on the species of the fungus Monilinia, which causes brown rot in peach, and the
available options to control the disease. The breeding for brown rot-resistant varieties remains an ideal
management option for brown rot disease control, considering the uniqueness of its sustainability in
the chain of crop production.

Keywords: Prunus persica; Monilinia spp.; host and pathogen; stone fruits; crop protection;
plant breeding

1. Introduction

Peaches (Prunus persica (L.) Batsch), nectarines (P. persica var. nectarina (Aiton) Maxim),
and paraguaya (P. persica (L.) Batsch var. platycarpa L.H. Bailey) are members of the Prunus genus
which includes hundreds of economically important fruits such as the cultivated almond (Prunus dulcis

(Mill.) D.A. Webb), the apricot (Prunus armeniaca (L.)), the European plum (Prunus domestica (L.)), the
Japanese plum (Prunus salicina (L.)) and the cherry (Prunus avium (L.)) [1].

The peach is the third most important global tree crop within the economically important Rosaceae
family after apples (Malus spp.) and pears (Pyrus spp.), and its largest producer is China, followed
by European countries (Spain and Italy) and the United States (Figure 1). Available information in
EUROSTAT shows that in the European Union (EU) agriculture, the fruit sector weighs 6.7% of the
agricultural output, peaches being the third product after apples and oranges [2].

Numerous fungal pathogens infect the peach in both the pre- and the post-harvest states.
The prominent ones include Rhizopus nigricans Ehrenb., Mucor spp., Botrytis cinerea Pers. Fr., Geotrichum

candidum Link ex Pers., Alternaria spp., Aspergillus spp., Penicillium spp., and Monilinia spp. [3].
However, for the purpose of this work we shall focus on the principal casual pathogens of brown rot
(BR) in peaches. Species of Monilinia are associated with brown rot, which is the most economically
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important disease of stone fruits worldwide [4,5]. Brown rot incidence (BRI) in peaches greatly varies
during the fruit development [6]. Fruits are less susceptible to brown rot at the early stage of formation,
becoming resistant during pit hardening, and increase susceptibility afterwards [7,8].

Figure 1. Global map of peach and nectarine production. Source: http://www.fao.org/faostat/en/
#data/QC/visualize ([9]).

The causal agent of brown rot (Monilinia spp.) is a polycyclic pathogen [10] involving infection
sequence repeated several times throughout the annual growth cycle of the host. The fungus survives
the winter in mummified fruits [11], in canopy or in the ground [12], in fruit peduncles [13], in cankers
on twigs, in spurs, and in branches [5,14,15]. These propagules [16] serve as sources of primary
inoculum to infect blossoms, buds, and young shoots, establishing a source of secondary inoculum.

The universal annual losses from the epidemic have been estimated at 1.7 billion Euros [17].
In some cases, the disease has been associated with up to 80% of the incidence of fruit loss after
harvest [18,19], mostly under favorable environmental conditions for the commencement and growth
of the diseases in the orchard.

There are various control and management strategies for the brown rot epidemic in peach
cultivation. These options include conventional, biological, chemical, physical, botanical, and
host-resistance techniques [4]. In the present review, we will focus on peaches, their interaction
with species of Monilinia, and the available management strategies, with a view to developing a
sustainable peach-breeding scheme.

2. The Peach

The origin of the peach is traceable to the Western part of China in the Eastern Asian continent,
where it was cultivated for 4000 years and from where it was subsequently dispersed to Europe,
Africa, and America [20]. The documentation of the first cultivated peach was recorded in Chinese
manuscripts as early as the 10th Century BC. In China, the species presents the greatest richness
in germplasm and has the largest collections of peach germplasm, with wild peaches still growing
today [20–22].

http://www.fao.org/faostat/en/#data/QC/visualize
http://www.fao.org/faostat/en/#data/QC/visualize
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The five most important countries for the production of peaches and nectarines are shown in
Figure 1 [9]. China was the leader in production (14.47 MT (million tons)), followed by Spain (1.53 MT),
Italy (1.43 MT), USA (0.93 MT), and Greece (0.85 MT). The cultivation area in the world revealed that
China is the leader with 838,768 ha and in the EU-28, Spain is the largest (86,896 ha), followed by Italy
(69,005 ha) and Greece (44,271 ha). In the EU, the cultivation and production are concentrated in the
countries of the Mediterranean region, including Spain, Italy, Greece, and France, owing to the fact
that the potential risk of damage from frost [23] is less than in the countries of the Northern part of
Europe. Hence, most plant disease models are known to use different climatic variables and operate at
a different spatial and temporal scale from the global climate models [24].

2.1. Geography and Ecological Requirements of Peaches

Geographically, global commerce has brought peach tree cultivation into both the Northern and
Southern hemispheres [20] which experience contrasting summers and winters allowing for year-round
availability. Peach trees require wet winters and hot dry summers and will not flourish in Oceanic
climates [20].

Oftentimes, the cropping practices employed in a region for the production of peaches are
principally determined by the different environments, water and nutritional requirements [20]. These
plantation crops, though cultivated mainly in temperate zones, between 30◦ and 45◦ latitude N and S,
are not very resistant to the cold and they require up to 400 to 800 cold hours for flowering and have
a good fruit set [20]. Minimum winter temperatures and spring frosts are important limiting factors
in quality peach production. In temperate zones, flower bud death due to chilling injury induced or
triggered by excessive cold during shooting or flowering [20]. Therefore, peaches cannot be grown
successfully where temperatures normally fall to −23 ◦C and −26 ◦C [20]. On the other hand, they do
not grow satisfactorily where winters are too mild, and most varieties require some winter chilling to
induce them to burst into growth after the annual dormant period.

Edaphically, the peach grows best on well-drained sandy or gravelly loams. Hence, the peach
seedling is susceptible to both calcareous and waterlogged soils [20,25]. Nevertheless, the search for
iron chlorosis-tolerant rootstocks using peach–almond hybrids has led to a selection of highly vigorous
rootstocks such as GF 677 [26], which were widely adopted in the Mediterranean basin countries. Later,
other rootstocks tolerant to calcareous and waterlogged soils have been released [27,28]. Nitrogen-rich
soils exceptionally support the performance of peach crops [29] when soil acidity is maintained above
pH 6.0. On the contrary, a soil pH below 5.5 is deleterious to peach tree growth, fruit yield and size,
and tree longevity [30].

2.2. Botany and Susceptibility of Peaches to Infection by Monilinia spp.

The peaches could be classified according to the flesh type (non-melting or melting), flesh color
(yellow, orange, white, or yellow/orange), fruit shape (round or platicarpa), fruit type (peach or
nectarine), and stone type (clingstone or freestone) [31]. Among the available varieties of peaches,
the yellow-fleshed varieties, such as the famous Elberta, Redhaven, and Halford, are preferred in
North America (USA), while both yellow- and white-fleshed types are popular in Europe [20,32]. Most
yellow-fleshed peaches are clingstone varieties, while white-fleshed peaches fall into the freestone
category [31]. The greatest difference between the two is really about texture and taste. The Spanish
peach industry, hitherto, was based on yellow, non-melting fleshed and clingstone types; however, the
replacement of the Spanish traditional varieties by introduced ones, mostly from North America, has
promoted melting flesh cultivars [32].

Peach trees under commercial cultivation (Figure 2) are usually kept between three and four
meters [33]. Peach trees are self-pollinating and have an impressive blossoming. Flowers are borne
in the leaf axils along the shoots of the previous season’s growth. The five petals, usually pink or
pink-salmon [31], five sepals and three whorls of stamens are fused on the hypanthium, that forms
the base of the flower that can be showy or non-showy [31]. The fruit is a large drupe with a thin
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epidermis, a pulpy mesocarp, and a woody endocarp containing the seed, more or less globose, with a
longitudinal groove and a cavity around the peduncle. Ordinarily, the skin of most ripe peaches is
downy or fuzzy; however, the nectarines are a class of peaches with smooth skins [33].

The degree of susceptibility to infection by Monilinia spp. is variable throughout fruit development.
The susceptibility is high during the early stages of fruit development, decreases during the green
fruit or pit hardening stage, and increases again during the ripening period [8,34]. Phenologically,
peach fruit development generally undergoes four stages (S-I to S-IV, Figure 2f–g) from flowering
to maturation: Fruit set (S-I), characterized by cell division and elongation, also referred to as the
exponential growth phase; pit hardening (S-II), when the endocarp hardens to form the stone and
scarcely increases the fruit size; pre-climacteric phase (S-III), which is another exponential growth
phase, with a resumption of rapid cell division and fruit size enlargement; the climacteric stage (S-IV),
with final cell division, cell expansion, and ripening/maturation [35,36].

Figure 2. Phenological growth of peach trees from one season to the other (bare orchard to commercial
maturity) at the Aula Dei peach germplasm collection. (a) Peach orchard in the autumn-winter,
(b) Flowering peach orchard at early spring, (c) Flower buds (receptacle, sepals, and petals intact) (E),
(d) Flower in blossom (petals, stamens and pistil exposed) (F), (e) Flower petals and stamen shrinking
and about to fall off (G), (f) Fruit setting stage (S-I), (g) Pit hardening (S-II), (h) Physiologically matured
peach fruit (S-III), (i). Commercially matured peach fruit (S-IV). Capital letters in brackets: phenological
growth stages according to the Baggliolini codes (c–e) and fruit growth (f–i) [35,36].
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Peach fruit nutrients have been found to be at their peak in the first stages of fruit formation and
gradually reduce as the fruit develops [37]. Therefore, the period of highest brown rot susceptibility
conversely coincides with the lowest peach nutrient contents.

2.3. Economic Significance of Peaches in EU-28

The production of peaches and nectarines in the campaign 2017–2018 for the main EU-28
producers is estimated at 4 million tons (MT), 6% higher compared to the previous cropping season
2016–2017 (Table 1).

Table 1. Production and estimation of peaches and nectarines (in tons) in the EU-28 main producing
countries in different campaigns.

Country 2015–2016 2016–2017 2017–2018

Spain 1,581,510 1,475,849 1,487,444
Italy 1,408,504 1,262,127 1,362,749

Greece 777,160 788,120 910,000
France 217,146 207,004 214,800

Source: United States Department of Agriculture (USDA) [38], Spanish Ministry of Agriculture (MAPAMA) [39].

This production is attributable to an expected increase in most of the major producers; hence,
the EU has remained a net exporter of peaches and nectarines, with total exports largely exceeding
imports for three seasons running (Figure 3). However, there was a steady drop in the EU export
from the 2014–2015 to the 2016–2017 campaign (Figure 3), undoubtedly suggesting an increase in the
percentage of internal consumers of this precious product within the EU-28 during this period.

Figure 3. Total import and export of EU-28 of fresh peaches and nectarines during three seasons.
(2014–2017). Source: USDA [38]. Metric tons (MT = 1000 kg)

According to a special global report, Spain has become, in the last four seasons, the largest peach
and nectarine producer in the EU-28 [38]. The reasons for this feat were attributed to factors including
a steady performance from the country’s most important regions (Aragón, Cataluña, and Murcia)
together with improved productivity in other regions and an increase of early and mid-season peaches,
mainly due to good flowering and fruit set and the introduction of newer varieties in recent years [38].
According to the Spanish Ministry of Agriculture (MAPAMA) [39], peach and nectarine production
in Spain for 2017–2018 is projected to reach almost 1.487 MT, accounting for an almost 40% share of
the total EU-28 peach and nectarine production. This is 0.7% higher compared to the previous season
and is due to favorable weather conditions that resulted in a production characterized by very good
quality and calibers.
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Incidentally, the optimum peach commodity production is hindered by the brown rot epidemic,
with significant economic consequences [40]. In recent times, orchards have been abandoned before
harvest because of the severity of this disease [4]. Consequently, the universal annual losses from the
epidemic have been estimated at 1.7 billion Euros [17]. In Spain, particularly, the disease has been
associated with as high as 80% of fruit loss after the harvest [3], mostly under favorable environmental
conditions for the commencement and growth of the diseases in the orchard.

3. Brown Rot

3.1. Monilinia spp.

Monilinia belongs to the group of necrotrophic fungi (Ascomycota) in the order of Heliotiales
(Leotiales), a large family of inoperculate discomycetes which includes both human and plant
pathogens [41]. The teleomorph genus is Sclerotinia spp. (position in classification: Sclerotiniaceae,
Helotiales, Leotiomycetidae, Leotiomycetes, Pezizomycotina, Ascomycota) [42]. The species of
Monilinia are among the major causal organisms of brown rot disease in various orchard tree crops
including: (a) Stone fruits [4,40,41,43,44], such as apricots [45,46], peaches [5,8,47,48], nectarines [48],
cherries [49], and plums [45]; (b) Almonds [50] occasionally; and (c) Some pome fruits [51,52], such as
pears [51], apples [53], and quinces [54].

Monilinia laxa (Aderhold and Ruhland) honey is one of the most important species of Monilinia

globally associated with the brown rot in stone and pome fruits [4]. Monilinia fructigena (Honey),
Monilinia fructicola (G. Winter) [5] and Monilinia polystroma (G. Leeuwen) [48,55] are other important
species. The disease is highly destructive for peaches from fruit formation to storage, but additional
losses are caused by the blighting of flowers and twigs.

Hitherto, M. laxa and M. fructigena were reported to be the two most important fungi causing
the disease in peaches, particularly in Spain until 2006. Then, M. fructicola was detected for the
first time in peach orchards in the Ebro valley, Lerida, Spain [5], and spread, displacing M. laxa,
a supposedly indigenous pathogen [56], and reaching the same level of diffusion [56]. Nowadays,
in Spain, both Monilinia species (M. laxa (Aderhold and Ruhland) and M. fructicola (G. Winter)
Honey) coexist in the field [4,47]. It can be inferred that M. laxa and M. fructicola have similar
epidemiological physiognomies [57], considering such an inherent ecological coexistence. Incidentally,
the epidemiology and management of M. fructicola have been most extensively studied, whereas the
equally important M. laxa has received less attention [4].

Changes in the frequency of occurrence of different fungal pathogen species may be due to
fungicide resistance. Egüen et al. [18] suggested that fungicide resistance of the M. fructicola population
is co-acting with other factors such as an adaptation in the pathogen, changing the frequency of
occurrence of the three Monilinia species in Spain. The displacement of M. laxa by M. fructicola in
Spain has also been attributed to its conjugational potency related to sexual exchange and ability
to produce ascopores from pseudosclerotial mummified fruits and their gradual process of a sexual
propagation [56]. M. laxa is not known to produce apothecia [56], while M. fructicola does, from which
ascopores can easily be disseminated in the spring for possible infection in the fruiting season [58].

3.2. Geographical Distribution of the Species of Monilinia

The occurrence and distribution of the species of Monilinia, (Figure 4) are global, having been
detected in virtually all the continents of the world [4,40] where potential hosts are cultivated. Their
presence is established especially when peach fruits are moved (imported) from one country of origin to
another [4]. Presently, six closely related species of brown rot fungi have been reported, particularly in
stone and pome fruit, including Monilinia laxa (Aderhold and Ruhland) Honey, M. fructicola (G. Winter)
Honey, M. fructigena (Honey), M. polystroma (G.C.M. van Leeuwen), M. yunnanensis (M.J. Hu and
C.X. Luo), and M. mumecola (Y. Harada, Y. Sasaki, and T. Sano) [40,59,60].
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The geographic distribution of these species differs across the world (Figure 4). Hence, M. laxa

and M. fructicola are found more globally distributed [4,40,59,60] across the six continents of the world.
M. fructigena is mostly restricted to the European and Asian countries [4,59,60] although its presence has
also been reported in Africa (Morocco and Egypt). M. fructigena was a quarantine pathogen for Canada,
the USA, Australia, and New Zealand but now it is not present there (Figure 4). M. polystroma [55] has
been reported in Serbia [61], Japan, Hungary, China, Croatia, and Slovenia [59]; M. mumecola in Japan
and China [59] and M. yunnanensis [62] is only domiciled in China [59]. Consequently, it is no longer
relevant to affirm that the different species of Monilinia are distributed in specific regions considering
the obvious ubiquitous pattern of spread.

Figure 4. Global map showing the present continental distribution of the species of Monilinia spp.
Source: https://www.cabi.org/isc/ ([63]).

3.3. Life Cycle of Species of Monilinia

The species of Monilinia, as a polycyclic pathogen [10], produces numerous secondary cycles
throughout the annual growth cycle of the host (Figure 5). The fungus survives winter (and is
transmitted from year to year) in several structures, such as mummified fruits [11,64,65], in canopy
or on the ground [12], fruit peduncles [13], cankers on twigs, spurs, and branches [14,15]. These
propagule-infested materials, according to Gell et al. [16], serve as sources of primary inoculum,
and, when weather conditions are suitable, spores can infect blossoms, buds, and young shoots, thus a
establishing a source of secondary inoculum [16].

Thus far, the main primary inoculum in Spanish orchards is the mycelium and conidia present in
the mummies found in affected trees or on the orchard floor [66]. It has also been shown that there is a
positive correlation between the number of mummies in the trees and the incidence of post-harvest
fruit rots [16,66].

It is also very important to note here that brown rot propagules are practically everywhere during
the fruit-ripening period. In addition, infection is almost certain to occur if the weather is moist for
long periods [13] and if the fruit skin is bruised [67].

Brown rot is spread by the dispersal of Monilinia propagules through other microorganisms [20],
wind and water [68], insects, birds, and man [69]. They are also transferred by rain/overhead irrigation
splashes [13]. Finally, insect and hail wounds, fruit cracking, limb rubs, twig punctures, and a variety
of picking and packing injuries are predisposing factors that greatly increase fruit losses due to brown
rot [70]. Hence, a clarion call for an adequate orchard sanitary [13,71] observation at all times, especially
at the onset of spring. Young uninjured fruits are thus, always fairly, safe from infection. Special care

https://www.cabi.org/isc/
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should be taken during harvesting and packing to prevent puncturing or bruising of the ripe fruit.
In addition, wild or neglected stone fruit trees that serve as collateral reservoirs for the disease must
always be removed [70].

Figure 5. Brown rot disease cycle.

For M. fructicola, an occasional source of inoculum can be sexual spores (ascospores) [4]. Around
the blossoming time, a mummified fruit produces up to 20 or more small, tan, cup-like structures
on slender stalks that are called apothecia (sg. apothecium) (Figure 5). As an apothecium matures,
it becomes thicker, and the cup opens to a bowl-like disc 3 to 12 mm in diameter across the top.
The inner surface of each of these bowl-like discs is lined with thousands of spore-containing sacs
(asci). At this stage, the slightest disturbance or air movement will cause an apothecium to effectively
discharge millions of spores. If a film of water (either from dew, rain, or irrigation—especially overhead
irrigation) is present for five hours or longer, the spores can germinate and penetrate the plant [4].

Infected blossoms soon wilt, and tan-gray tufts, composed of masses of another type of asexual
spore (conidia), develop on the outside of the flower shuck [66]. If the infected blossom does not drop
off, the fungus soon grows through the pedicel on the twig, initiating a canker. Masses of conidia are
soon produced on the newly cankered twig surface during moist periods throughout the early part of
the fruit development period (Figure 5). When entering the summer period, spores are easily detached
and, just like the ascospores, are mainly wind-borne. Then, the brown rot disease cycle continues as
indicated in Figure 5. However, when conditions (weather) are unfavorable, the infection can remain
latent [72] until fruit maturity, the optimal time of disease development [8,57,73].

M. laxa, as a mycelium, overwinters in twig cankers, blighted blossoms parts, peduncles, and
mummified peach fruits in the canopy or on the ground [12]. In addition, in the spring, mycelia
propagules begin to sporulate and produce abundant conidia which initiate infections on close contact
with susceptible tissues, such as blossoms, spurs, and twigs [74]. Fruits are susceptible to M. laxa
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infection particularly in the time of fruit maturation, which may lead to a disease epidemic by harvest
and infected mummified fruits [74].

3.4. Ecological Requirements of Monilinia Species

Epiphytologically, the knowledge of the ecological requirements of Monilinia species is essential
in the development of a predictive model to comprehend the epidemiology of brown rot and provide
adequate disease management strategies [75,76]. Important abiotic factors determining the potential for
conidia germination and the growth of Monilinia propagules on the host exterior include temperature
(T), water availability (water activity aw), and wetting period (W) [77,78]. The effects of these factors
on Monilinia pathogenicity combine with those exerted by the moisture content of the spore, the age of
the spore, and the inoculum concentration. According to Casals et al. [78], more than 80% of viable
conidia of M. fructicola and M. fructigena can germinate at 25 ◦C and 0.99 aw within 2 h, whereas those
of M. laxa require 4 h. The three species can germinate at a temperature range from 0 to 35 ◦C under
0.99–0.95 aw. The optimum temperatures for M. fructicola and M. laxa were determined at 24.5 and
19.8 ◦C, respectively [79]. The estimated maximum temperature for lesion development is higher for
M. fructicola (30 ◦C) than for M. laxa (10 ◦C), inferring that M. fructicola is favored by a warmer weather
compared to M. laxa. Hence, Bernat et al. [57] reported that M. fructicola is better adapted to high
temperatures, whereas M. laxa is better adapted to low temperatures. These authors observed that,
under optimal conditions, M. laxa is as aggressive as M. fructicola on peach fruits. M. laxa, unlike the
others (M. fructicola and M. fructigena), has the potential to germinate in the absence of free water (aw)
in the host, which makes this fungus relatively more virulent. The minimum germination temperatures
estimated for M. fructicola and M. laxa were 4.7 and 0 ◦C, respectively [78]; nevertheless, the conidia of
M. laxa have been reported to germinate even at −4 ◦C [75].

Though the lowest storage temperature for stone fruit is 0 ◦C, the conidia of the species of
Monilinia, in general, could have the potential to germinate at a temperature range from 0 to 35 ◦C of
2 h from the initial exposure in vitro, especially when the value of free water (aw) or relative humidity
(RH) under the equilibrium condition is under 0.99–0.90 aw. Hence, the pathogen on the peach skin
can germinate under 0–40 ◦C at 100–80% RH [66]. However, an optimum temperature range for brown
rot (moniliosis) initiation in peaches at the commercial stage is 22.5–25 ◦C, at which more than 79% of
fruits could be infected under a wetting period of 12 h minimum [77].

3.5. Characterization and Identification of Monilinia Species

Monilinia species, including M. laxa (Aderhold and Ruhland) Honey, M. fructigena (Honey),
M. fructicola (G. Winter), and M. polystroma (G. Leeuwen) appear difficult to differentiate from one
another. However, a relative distinction is possible through the use of “CMM”, which is the observation
and combination of cultural, morphological, and molecular methods [80]. The main characteristics of
the morphological variance in cultures (classical) of M. laxa and the other three related EU-28 Monilinia

species are presented in Table 2.

3.5.1. Classical Methods

As indicated in Table 2, classical quantitative or qualitative characterizations and identification
in species of Monilinia are possible by combining morphological data, such as conidial dimensions
and the length of the germ tube [81], with cultural physiognomies [82], such as growth rate, growth
pattern, and colony color index (CCI) [83].

Though with some similarities, in germ tube per conidia and colony colors, particularly
between M. laxa and M. fructicola, there are peculiar pronounced characteristics in the culture of
the former (M. laxa) that distinguish it from the others, including the formation of the smallest conidia
(11–13 × 8–9.5 µm), a short and twisted germ tube, a shorter germ tube (150–350 µm) at 22 ◦C after
more than 18 h of incubation (Table 2).
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Table 2. Main differences in culture between Monilinia laxa and the other three associated EU-28 Monilinia species.

Characteristics/Pathogen M. laxa M. fructicola M. fructigena M. polystroma Source

Conidia dimension 11–13 µm × 8–9.5 µm 12.5–14.5 µm × 8–10 µm 17.5–20.5 µm × 10.5–12.5 µm 13–17 µm × 9–10.5 µm EPPO Bull [80]; van Leeuwen et al. [55]

Number of germ tube 1/conidia 1/conidia 2/conidia 2/conidia EPPO Bull [80]; van Leeuwen et al. [55]

Form of germ tube Short and twisted Long and straight Long and straight Long and straight EPPO Bull [80]; van Leeuwen et al. [55]

Size description Smaller Larger Similar to M. laxa Similar to M. fructigena EPPO Bull [80]; van Leeuwen et al. [55]

Length of germ tube (>18 h at 22 ◦C) 150–350 µm 750–900 µm 600–900 µm 700–1000 µm EPPO Bull [80]; van Leeuwen et al. [55]

Sporulation Delayed and sparse Quick, intense and abundant Sparse Sparse EPPO Bull [80]; van Leeuwen et al. [55]

Sporulation range * 0–3.7 2.8–5.3 - na Hu et al. [62]

Mean sporulation * 1.8 3.9 na na Hu et al. [62]

Colony color Hazel/Isabelline (greyish-brown) Hazel/ Isabelline (greenish-brown) Pale luteous (yellowish/creamy) Pale luteous (yellowish/creamy)
EPPO Bull. [83]; Petróczy et al. [61];

Petróczy et al. [84]

Mycelium in distinct layers/colony rosetted
Resetting (mycelium in distinct

layers on top of each)
No/rare

On distinct tufts; rings of aerial
mycelium

Intense formation of black,
stromatal plates initiated after

10–12 days incubation

van Leeuwen et al. [55]; EPPO Bull. [80];
Petróczy et al. [84]

Colony rosette with black arcs Yes No No No EPPO Bull [80]; van Leeuwen et al. [55]

Concentric ring of spores No Yes Sometimes Sometimes van Leeuwen et al. [55]

Colony margins Serrulated/lobed Not lobed but entire Not lobed but entire Not lobed but entire
van Leeuwen et al. [55];

Petróczy et al. [84]

Range of colony growth rate (mm/24 h) 2–11 9–20 0–12 nd de Cal et al. [81]; van Leeuwen et al. [55]

Mean colony growth rate (mm/24 h)
(in continuous darkness)

6 13 3.7 7
EPPO Bull [83]; Hu et al. [62];

Petróczy et al. [84]

Growth rating scale Low High Low-moderate Moderate van Leeuwen et al. [55]

* Log-transformed number of conidia per cm, (Hu et al.) [62]; nd = not detected, na = not available.
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On potato dextrose agar (PDA), the colonies of M. laxa are greyish-brown, while the colonies of M.

fructigena are yellowish or creamy (Table 2). In addition, colony formation in M. laxa is in distinct layers
on top of each other (resetting) with black curvatures and never associated with a concentric ring of
spores as observed for Monilinia fructicola. In addition, in M. laxa, the colony margins are serrulated or
lobed with low growth rating scale (Figure 6).

In general, the identification in culture of Monilinia species is often difficult because their
appearance varies from isolate to isolate within the same species [85]. For this reason, the
aforementioned quantitative methods do not allow an effective screening; therefore, there is a need for
standardized conditions (molecular methods) starting with pure cultures.

Figure 6. Pure cultures on potato dextrose agar (PDA) showing the morphologies of the three major
species of Monilinia at 10 days (22 ◦C) of incubation: (a) M. laxa, (b) M. fructicola, and (c) M. fructigena.
(Photograph Courtesy APS Press). Reproduced with permission from Compendium of Stone Fruit
Diseases, 1995, American Phytopathological Society, St. Paul, MN, USA.). https://www.apsnet.org/
edcenter/intropp/lessons/fungi/ascomycetes/Pages/BrownRotStoneFruits.aspx [86].

3.5.2. Molecular Methods

Since the first decade of this century, several methods of molecular characterization to distinguish
Monilinia species [4,40,85,87,88] exist. Most of the molecular methods for characterization or disease
detection include the Polymerase Chain Reaction (PCR), which is an in vitro, primer-directed,
enzymatic reaction capable of exponential amplification of DNA. A recent review published in
2017 [89] revealed that the molecular techniques used for Monilinia characterization include many PCR
variants [PCR, nested PCR (nPCR), cooperative PCR (Co-PCR), multiplex PCR (M-PCR), real-time
PCR (RT-PCR), and DNA fingerprinting] and fluorescence in situ hybridization (FISH), which are all
based on DNA analysis.

The method using Monilinia-specific DNA primers of the internal transcribed spacer (ITS region)
was employed by Forster and Adaskaveg [90] in the detection of early brown rot infections in cherry
fruits. With the same technique (ITS), Ioos and Frey [91] used the endpoint PCR to study the genomic
variation within M. laxa, M. fructigena, and M. fructicola and designed primers to successfully achieve
results directly on the diseased fruits. This method is considered the conventional PCR standard
test (EPPO Bulletin 2015). A species-specific detection of M. fructicola from California stone fruits
and flowers was developed by Boehm et al. [92] using the PCR technique in 2001. Côté et al.,
in 2004 [85], worked on the characterization and identification of M. fructigena, M. fructicola, M. laxa,
and M. polystroma using a multiplex PCR. Later in 2007, Gell et al. [87] utilized two different PCR
approaches for the universal diagnosis of brown rot and identification of Monilinia spp. in stone fruit
trees combining a set of universal primers with the inclusion of an internal control for the diagnosis of

https://www.apsnet.org/edcenter/intropp/lessons/fungi/ascomycetes/Pages/BrownRotStoneFruits.aspx
https://www.apsnet.org/edcenter/intropp/lessons/fungi/ascomycetes/Pages/BrownRotStoneFruits.aspx
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brown rot caused by the three more important species. More recently, the RT-PCR method developed
by Brouwershaven et al. [88] was validated against all four brown rot-causing Monilinia species (M.

laxa, M. fructicola, M. fructigena, and M. polystroma). In 2016, Guinet et al. [93] used a multiplex real-time
PCR (RT-PCR) to detect and discriminate the three common species of Monilinia (M. laxa, M. fructicola,
and M. fructigena) on Prunus and Malus. Other authors, [94] applying high-resolution melting (HRM)
techniques, distinguished six different species of Monilinia in peach (M. laxa, M. fructicola, M. fructigena,

M. mumecola, M. lithartiana, and M. yunnanensis) by analyzing the melting curve of amplicons of two
universal primer pairs.

Recently, Garcia-Benitez [95] compared the overnight freezing-incubation technique (ONFIT)
and the modified RT-PCR quantitative polymerase chain reaction (qPCR)-based methods of van
Brouwershaven et al. [88] to detect latent brown rot infections and, subsequently, distinguish between
the Monilinia spp. in flowers and peach fruits. The same authors [96] later validated the method to test
performance accuracy, analytical specificity, sensitivity, repeatability, and reproducibility, as defined by
standard PM7/98 of the European Plant Protection Organization (EPPO) for detection of Monilinia

spp., demonstrating that was more sensitive, reliable, and quicker than ONFIT for detecting a latent
brown rot infection.

The merits of DNA-based detection methods include reliability, timesaving, and higher sensitivity
and specificity, when compared to the traditional and serological assays techniques employed during
the processes of artificial cultivation [93,95]. For example, the molecular technique of multiplex RT-PCR
assay (One step) developed in 2016 by Guinet et al. [93] is efficient and prompt in characterizing the
three major species of Monilinia responsible for brown rot (M. laxa, M. fructicola, and M. fructigena).
These authors also inferred that the exceptional reliability of their results is of paramount importance
in the framework of phytosanitary regulations, considering that the performance data were generated,
and the assay was fully validated in accordance to the EPPO guidelines [72].

In summary, molecular biology-based methods are progressively providing the means for a timely
identification of quarantine plant pathogens including some species of Monilinia. The methods do not
necessitate the isolation of the particular species of Monilinia and, therefore, significantly accelerate
the identification process compared with methods based on quantitative characteristics. Finally, these
methods can potentially be improved to directly and specifically identify the species infecting peaches.
Their prominence, no doubt, is also necessitated by the inefficient classical screening systems, however,
there are limitations associated with molecular assays

In the last decade, several protocols could not distinguish some Monilinia species, although
modern RT-PCR has been modified to overcome this [59,95]. The methods of PCR primers
and protocols for M. fructicola as documented by Förster and Adaskaveg [90], Boehm et al. [92],
and Ma et al. [97], though discriminating M. fructicola from M. laxa, have not been validated for
distinguishing M. fructicola from M. fructigena.

The characterization methods of Ioos and Frey [91], Miessner and Stammler [98], and Hily et al. [99]
reliably differentiated three species of Monilinia (M. fructigena, M. fructicola, and M. laxa), but were
practically unable to distinguish M. fructigena from M. yunnanensis. Similarly, the methods developed
by Ioos and Frey [91] and Ma et al. [97,100] did not discriminate between M. mumecola and M. laxa.
In addition, the method developed by Hily et al. [99] did not differentiate M. mumecola from M. fructicola,

and the methods of Miessner and Stammler [98] and Hily et al. [99] also could not discriminate between
M. yunnanensis and M. mumecola. Moreover, some investigators [96] in their study of RT-PCR detection
of latent Monilinia spp. infection in nectarine flowers and fruits could only prevent cross-detection by
stringently including an allelic discrimination step (with an extra cost) in the qPCR runs, to enable the
differentiation between M. fructicola and M. laxa [95].

Finally, results from multiplexed and quadruplexed PCR [101] in particular, have demonstrated
that this molecular assay is sensitive and specific. Other investigators [102,103] have recommended
that for optimum performance and accurate identification, particularly when using PCR tests, and
regardless of the DNA extraction method, chemicals’ and thermocyclers manufacturers, or staining
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methods, there is the exigency for a careful selection of species-specific primer pairs for the correct
molecular diagnosis of Monilinia species. In all, it has been recommended [96] that additional research
of new primers and probes for the characterization of Monilinia species should be conducted to make
the method more transferable among qPCR platforms and laboratories [96]. We refer to Raja et al. [104]
for more information on the merits and demerits of the use of “molecular tools” in fungi detection
and identification.

4. Host–Pathogen Interactions

Brown rot is the pathologic result of a parasitic interaction between the species of Monilinia and
the peach [105]. In this association, and depending on the region of first contact (blossom, spur, twig,
branch, fruit), the pathogen initiates and promotes rot in preharvest and after harvest [87,106]. Hence,
the pathogen’s activity on the host is highly destructive from the flowering stage, through the peach
formation stage, to storage [107], thereby creating an infection chain, as shown in Figure 7. Brown
rot is a polycyclic epidemic [10]; hence, various secondary or monocyclic components of the brown
rot infection sequence are generated throughout the annual growth cycle of the host. This biological
proficiency conversely causes a grave impairment of the harvest, storage, and commercial shelf
life of the product [87,108]. Interestingly, as it is found in any pathogen–host association, the
growth and development of brown rot is influenced by different physicochemical conditions, such as
temperature and water activity [109], light, aeration and pressure [110], pH, and titratable acidity of
the fruits [8,111,112].

During such impending epiphytotics, the aforementioned physicochemical factors influence the
microbial activity, determining either the growth and reproduction or the inhibition of activity and the
inactivation of the pathogen. In particular, the pH and titratable acidity (TA) are interrelated concepts
of organic acids [113,114] controlling physicochemical factors that act in an additive and interactive
mode to inhibit the pathogen’s metabolic pathways [112].

Figure 7. Infection chain of Monilinia laxa in host peach. (a) Mummified peach; (b) blighted blossoms;
(c) infected peach fruits.

In peach fruits, acidity is an important genetic quality trait [113] which influences both perception
of sourness and sweetness found in varying proportions depending on the cultivar and the ripening
stage [115]. The influence of pH and TA on fungal–host interactions is documented [8,116]. Some
fungal species prefer neutral to slightly alkaline conditions [110]. However, the Monilinia species,
in general, are acidophilic and therefore prefer acidic conditions for their growth [8,110]. Results by
Holb [111] have shown that healthy peach fruits are quite acidic (pH < 3.5), but the pH levels rapidly
increase in infected fruits reaching values of 4.6–5.4 depending on the cultivar and fungus isolate.
On the contrary, other authors have found that species of Monilinia can acidify the host tissue of peaches
and nectarines from pH values of 4.50 and 4.45, to pH values of 3.75 and 3.90, respectively [117].
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5. Management Strategies to Control Brown Rot in Peaches

The weather conditions have been reported to influence the percentage of latent infections in
peach and nectarine flowers and fruits [73] and remain a significant factor that must be considered
in the effective management of this disease. This is a pathological situation where the infected fruit
can remain asymptomatic (latent), and visual decay symptoms only develop during the late ripening
period and after harvesting [57], particularly when there is a favorable ambient condition. Most stone
fruits with a latent brown rot infection caused by Monilinia do not develop visible signs of disease
until their arrival at the market or consumers’ home. A rapid, accurate, and reliable [118] detection of
Monilinia latent infections [95] is recommended to prevent and control the dispersion of Monilinia spp.
in infected localities and non-infected countries [72].

There are other control and potential management options available for the brown rot epidemic
in peaches, which include agronomical practices, biological, chemical, physical and biofungicides
treatments, and host resistance [4].

5.1. Agronomical Management

Agronomical/cultural management is one of the first methods in all disease control, and in case
of BR one of the most effective. Sanitation by prompt removal and adequate destruction of all infected
parts (spurs, twigs and branches, mummified fruits, etc.) in winter, helps break the life cycle of the
disease [16] in individual trees and the entire orchard as whole, and has been reported to keep brown
rot below damaging levels. It is important to rake up and remove any fallen fruit or debris from under
trees [13]. Prune trees to remove fruit mummies from the trees immediately after harvest or during
the dormant season [70]. Pruning trees occasionally also helps to improve air circulation and add to
fruit quality [113]. It is also advisable to use Tanglefoot® Pruning Sealer to seal all cuts and wounds
and protect against insects [70], and disease organisms [20]. Avoid rain irrigation but instead use drip
system under the canopy to keep from wetting blossoms, foliage and fruit [4]. Timely application
to avoid rapid depletion of fungicide residue. In a commercial setting, all fruit not harvested or
affected must be removed from the orchard, preventing to become mummies, thereby minimizing
overwintering inoculum for next year’s crop. Possible artificial fruit injury must be avoided. Hence
thinned green fruits [119], undetached but injured green fruits are all potential source of inoculum and
must be removed and adequately destroyed [120]. Tillage operations such as harrowing also help in
destruction and burial of remnant propagules on the orchard. Carry out regular weeding and removal
of wild or neglected stone fruit trees that serve as reservoirs for the disease [70]. Finally, it is very
important to avoid excess water and Nitrogen application [20].

5.2. Biological Control Agents

Evidence abounds on the practical and biological control possibilities for diseases of the Monilinia

species (Table 3) [121,122]. Biological control also refers to the use of formulations of living organisms
(biofungicides) to control the activity of plant pathogenic fungi and bacteria [123].

An example of the use of the biological control agents (BCA) is EPS125 (Pantoea agglomerans, a
Gram-negative bacterium) [124], which is effective in preventive treatments for the control of brown
rot in several stone fruit crops, including peach. This study showed the ability of EPS125 to colonize,
rapidly grow, and survive in wounds, indicating that its main mechanisms of action is mediated by
cell-to-cell interactions in the absence of major toxicological effects, which constitute interesting traits
for its effective use as a biofungicide in commercial conditions.
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Table 3. Biological control agents (BCAs) against Monilinia spp. in peach.

Biological Agents Formulation Target Pathogen Disease Application Phase Effectiveness Reference

Penicillium frequentans P. frequentans Monilinia laxa (Aderh. & Ruhl.) Honey Twig blight Preharvest Effective and practical de Cal et al. [121]

Penicillium purpurogenum strain 828
Monilinia laxa (Aderh. & Ruhl.) Honey and

Fusarium oxysporum f. sp.lycopersici (Snyder & Hansen)
Shoot canker Preharvest Enhanced mycoparasitism Larena and Melgarejo [122]

Pantoea agglomerans EPS125
Monilinia laxa (Aderh. & Ruhl.) Honey and

Rhizopus stolonifer (Ehrenb., Fr.)
Brown rot Postharvest Potentially effective Bonaterra et al. [124]

Epicoccum nigrum Fresh conidia Monilinia spp. Brown rot
Preharvest

(bloom and pre-harvest)
Reduced brown rot at

post-harvest
Larena et al. [125]

Bacillus subtilis CPA-8
Monilinia laxa (Aderh. & Ruhl.) Honey and

Monilinia fructicola (Wint.) Honey
Brown rot Postharvest

Effective growth inhibition
achieved

Yánez-Mendizábal et al. [126]

Penicillium frequentans
FOR1, FOR2 and

16 others
Monilinia spp. Brown rot

Preharvest
(blossom to harvest)

Good potential for
development

Guijarro et al. [127]

Bacillus amyloliquefaciens CPA-8
Monilinia laxa (Aderh. & Ruhl.) Honey and

Monilinia fructicola (Wint.) Honey
Brown rot Preharvest

Potential alternative against
Monilinia spp

Gotor-Vila et al. [128]
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Larena et al. [125] carried out seven field experiments in peach orchards located in three different
countries (Spain, Italy, France), to develop an effective and practical method of controlling brown rot
disease caused by Monilinia spp. by the pre-application of Epicoccum nigrum. The result of their work
demonstrated that E. nigrum applications, alone or in combination with fungicides treatments, to peach
trees in the field reduced post-harvest brown rot. Bacillus spp. are among the most recommended
bacteria to use against plant diseases, including brown rot, and marketed as commercial products
(QST 713 strain (Table 4) [4]. Yánez-Mendizábal et al. [126] used Bacillus subtilis (CPA-8) strain to
control Monilinia spp. in peaches and indicated that fengycin-like lipopeptides play a major role in
the biological action against Monilinia laxa and M. fructicola. In addition, antagonistic microorganisms
such as Penicillium frequentans and Bacillus amyloliquefaciens [127,128] are examples of practical control
measures, for peach production.The potential of B. amyloliquefaciens CPA-8 to control Monilinia spp.
has been tested under field conditions, and CPA-8 remained active on the treated peach fruit surface at
harvest and after harvest on self [128].

According to records, the number of new bio-pesticide registrations in the EU-28 is growing
steadily, but they currently represent only 2.5% of the pesticide market [4]. However, there are several
issues to consider before marketing the bio-pesticides. For example, Giobbe et al. [129] found that a
biofilm-forming strain of Pichia fermentans proved to be most effective in controlling brown rot on apple
fruit but pathogenic on peach fruit when co-inoculated into artificial wounds with a phytopathogenic
isolate of M. fructicola. The authors, therefore, emphasized the need for a thorough risk assessment
before allowing any deliberate release of bio-control agents, considering the associated potential
effects, such as displacement of nontarget organisms, allergenicity to humans and other animals,
toxicity, pathogenicity, and genetic stability. Hence, any minimal potential biohazard is inherent to the
application of any bio-control agents [129] in peach commodity.

5.3. Fungicide Treatments

Synthetic fungicides such as cyproconazole, iprodione, and thiophanate-methyl [18], have been
used to control Monilinia in the orchards in conventional and integrated pest management programs
depending of the country. As an example in the European Union, the main conventional products,
allowed in Spain including application doses and maximum residue limit (MRL) for European
countries is shown in Table 4. Only two active substances are approved for the control of this
fungus in commodities post-harvest product store: fludioxonil, with two different formulations
(Table 4) (fludioxonil 23% (Solution Concentrate, SC) W/V and fludioxonil 60% (SC) W/V), currently
registered until 31 December 2019, and pyrimethanil 30% (GE) W/W, valid until 30 April 2019 [39].
The CODEX Alimentarius as part the World Health Organization (WHO) and the Food and Agriculture
Organization (FAO) provides users with a list of MRL tolerances by commodity, pesticide, or functional
class of the database at http://www.codexalimentarius.net/pestres/data/index.html [130]. Details
for fungicides treatments, doses and MRL allowed in the United States are also provided in
Adaskaveg et al. [130].

Furthermore, only eighteen active ingredients from more than 197 bio-fungicidal formulations,
registered in the national pesticide guide website of the “Ministerio de Agricultura, Pesca, Alimentación
y Medio Ambiente de España”, are authorized for use in the control of the brown rot of peach in
Spain (Table 4). A permission limit (deadline) for fungicide use in stone fruit production is also
provided. The same fungicide can be used in both pre- and post-harvest treatment, with corresponding
restrictions in each case.

http://www.codexalimentarius.net/pestres/data/index.html


Agriculture 2018, 8, 125 17 of 34

Table 4. Chemical and biological formulations used against Monilinia in stone fruit production in Spain.

Formulation
Number of

Comercial Products
Doses/Application

SP
(Days)/MRL

Permissible Limit

Sulphur 80% + Cyproconazole 0.8% (WG) W/W 1 0.1–0.2%/pulverization 14/0.1 21/11/2018

Cyproconazole 10% (WG) W/W 1 0.01–0.02% 14/0.1 12/09/2018

Cyprodinil 37.5% + fludioxonil 25% (ESP) (WG) W/W 1 0.8 kg/ha; 1 application 7/2 30/04/2019

Copper (II) hydroxide 35% (WG) W/W 23 0.2–0.25% NA/5 31/01/2020

Iprodione 75% (WG) W/W 1 0.1% at a maximum of 2 applications/season and less than 1 kg/ha 14/10 31/10/2018

Mancozeb 20% + Dicopper chloride trihydroxide 30% (WP) W/W 20 2.5–3 kg/ha 14/2 31/01/2020

Mancozeb 75% (WG) W/W & 80% 35 0.2% at a maximum of 4 applications/season and less than 2 kg/ha 30/2 30/01/2020

Thiophanate–methyl 50% (SC) W/V; 70% (WG) W/W 4 0.09% at 1 application per season 14/2 31/10/2019

Mancozeb 8% + Cuprocalcium sulphate 20% (WP) W/W 4 4–5 kg/ha NA/2 31/01/2020

Myclobutanil 4.5% (EW) W/V 1 0.66–1.1% 7/0.5 31/05/2021

Dicopper chloride trihydroxide 11% + Cuprocalcium sulphate 10% (WP) W/W 1 0.35–0.55%; 1.75–5.5 kg/ha to a maximum of 7.1 kg/ha per year NA/5 31/01/2020

Copper (I) oxide 40% (01) W/W 12 0.65% at a maximum of 3.75 kg/ha per year NA/5 31/01/2020

Copper (I) oxide 50% (WP) W/W & 52% 47 0.3%; 2.5 kg/ha NA/5 31/01/2020

Copper (I) oxide 70% (WG) W/W 16 0.15%; 1.35 kg/ha NA/5 31/01/2020

Tribasic copper sulphate 40% (WG) W/W 14 0.2–0.3%; 1–3.75 kg/ha per year NA/5 31/01/2020

Tebuconazole 25% (WG) W/W 11 0.05–0.075%; 0.75 kg/ha 7/0.6 31/08/2020

Fenbuconazol 2.5% (EW) W/V 2 0.2–0.6%; 3 L/ha 3/0.5 30/04/2022

Bacillus subtilis (Strain QST 713) 15.67% (5.13 × 1010 CFU/g (WP) W/W 1 2.5–4 kg/ha NA 30/04/2019

Total active ingredients applicable in preharvest peach and nectarine bio-fungicidal control (18)

Fludioxonil 23% and 60% (SC) W/V 2 0.3–0.4% NA/10 12/31/2019

Pyrimethanil 30% (GE) W/W 1 6 g/tm NA/5 30/04/2019

Total active ingredients applicable in postharvest peach and nectarine bio-fungicidal control (2)

Total number of commercial bio-fungicidal products allowed in Spanish peach market (197)

SP (Security Period); MRL (maximum residue limit in EU mg/Kg); WG (water dispersible granules); S/C (suspension concentrate); W/W (weight/weight); W/V (weight/volume);
ESP (Spain); NA (not applicable); WP (wettable powder); SC (suspension concentrate); EW (emulsion of oil in water); CFU (colony-forming units) tm (metric tons); Source: MAPAMA [39].
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5.4. Limitations in the Use of Conventional Fungicides

The increase in the demand for fresh fruit with reduced residual quantities [4] has placed into
interrogation the continuous use of conventional fungicides (CF) in peaches. CF treatments often
alter the micro-ecosystem and, in the long term, modify disease severity by altering the interactions
among microorganisms [131]. Moreover, the toxic chemical residues pose additional ecological
issues and whenever possible, integrate pest management (IPM) is recommended as a sustainable
environment and cost effective crop production [132]. Furthermore, recent reports have confirmed that
the differential resistance to CF in Monilinia spp. is evolving and could be modifying the frequency
of occurrence of fungicide sensitive and fungicide-resistant Monilinia spp. [133]. The evolution of
tolerance in species of Monilinia (M. laxa) to certain CF [134,135], the increasing cost of chemical control
and post application cleanup [136], and the threat of regulatory restrictions are all yearning the need
for sustainable and endearing management measures to control brown rot [137].

The regulation of CF use, however, has become stricter in EU countries, especially after the release
of the European Directive 2009/128/EC [80]. There is also a global intensification in the number of
countries advocating for reduction and waning regarding conventional chemical uses [40]. Particularly,
the use of CF is becoming more unfashionable because of consumer demands for residue-free fruit [3].
In addition, the contamination of the environment should be avoided [138]. Finally, the steady
rise in the development and occurrence of Monilinia strains resistant to CF, worldwide, has been
reported [133,134,138–140]. With all these adverse implications it is, therefore, pertinent to search for
alternatives control strategies as IPM with lasting effect, enhancing consumer acceptability, and at
the same time environmentally friendly. Integration of techniques for pest and disease control and
subsequent integration of appropriate measures that discourage the development of pest populations
and keep pesticides and other interventions to levels that are economically justified and reduce
or minimize risks to human health and the environment is becoming the preference all over the
world [141].

5.5. Botanical Fungicides

Plants provide a wide range of secondary metabolites and essential oils that have an array of
properties, including antimicrobial, allelopathical, bioregulatory, and antioxidative properties [142–144].
This class of plant derivatives is collectively referred to as biopesticides and includes the botanical
fungicides [145]. Information, both descriptive [146] and practical (Table 5) [147,148], on biopesticidal
efficacy and utility against phytopathogens abounds [149,150]. Some of these bioactive substances
have also been assayed in vitro and in vivo [151] and found to be potent enough against brown rot of
Monilinia species [151,152].
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Table 5. Botanical products used on stone fruits in the postharvest control of brown rot.

Species Common Name Treatment Form Disease Target Pathogen Fruit Type Effectiveness Reference

Mentha balsamea Wild and Ocimum basilicum L.
Peppermint and

sweet basil
Essential oils

Yellowish, curl, brown blotch,
white and soft rots syndromes

Rhizopus stolonifer (Ehrenb., Fr.);
Monilinia fructicola (Wint.) Honey;

Aspergillus niger Vantighm
Peach High antifungal activity Ziedan and Farrag [148]

Thymus vulgaris L., Eugenia caryophyllata L.,
and 2 others

Thyme and
clavero

Essential oils Brown and gray mold rots
Monilinia fructicola (Wint.) Honey and

Botrytis cinerea (Pers. Fr.)
Apricot Good antifungal activity Hassani et al. [150]

Copernicia cerifera (Mill.) wax Carnauba palm Wax Brown rot and Rhizopus rot
Monilinia fructicola (G. Winter) Honey
and Rhizopus stolonifer (Ehrenb.) Vuill.

Plums and
nectarines

Presents great potential Goncalves et al. [151]

Apiaceae and Asteraceae families NA Active substances Brown rot
Monilinia fructigena (Aderhold & Ruhl.)

Honey
Stone fruits Potentially effective Ganchev [152]

Ocimum basilicum L., Ocimum tenuiflorum L.
and 2 others

Basil and holy
basil

Essential oils Brown rot Monilia laxa (Aderh. & Ruhl.) Honey
Peach and

nectarine fruits
Potential antifungal

properties
Carović-Stanko et al. [153]

Ocimum basilicum L., Foeniculum officinale var.
sativum (Bertol.) Arcangel plus 8 others

Basil and fennel Essential oils Brown rot and grey mold rot
Monilinia laxa (Aderh. & Ruhl.) Honey

and Botrytis cinerea (Pers. Fr.)
Stone fruits

Variability in
effectiveness

Lopez-Reyes et al. [154]

Thymus vulgaris L. and Laurus cinnamomum L.
Thyme and
cinnamon

Essential oil
vapours

Brown rot Monilinia laxa (Aderh. & Ruhl.) Honey Peach
Effective in preventive

and curative treatments
Cindi et al. [155]



Agriculture 2018, 8, 125 20 of 34

In an overview, Hassani et al. [150] evaluated, in vivo, the antifungal activities of four different
(Thymus vulgaris (L.), Eugenia caryophyllata (L.), Cinnamomum zeylanicum (Blume) and Carum copticum

(L.) plant extracts against two post-harvest pathogens (M. fructicola and Botrytis cinerea) of stone fruit.
Other authors [151] obtained promising results using carnauba wax in post-harvest treatments for
the control of brown rot and Rhizopus rot in plums and nectarines in experiments carried out under
conditions of elevated inoculum pressure for the mature fruits. Just recently, Cindi et al. [155] have
recommended thyme oil for post-harvest handling as a biofumigant for peaches after indicating that
thyme oil vapor effectively reduced the incidence of brown rot caused by M. laxa. These authors [155]
have also suggested that thyme oil fumigation treatment can be considered as a good alternative
treatment because of the low concentration effective in brown rot decay control in peaches.

Nevertheless, some authors observed some limitations in the evaluated biofungicides and made
adequate recommendations accordingly. Cindi et al. [155] observed the need to conduct further studies
on the effect of thyme oil fumigation on fruit quality (by evaluating sensory parameters) in naturally
infected peaches after low temperature storage and in retail shelf conditions. Thyme oil influences on
peach volatile compounds, such as alcohols, aldehydes, carboxylic esters, ketones, and esters, need to
be investigated [155].

5.6. Physical Treatments

There are various options of physical control in the postharvest management of brown rot in
peaches (Table 6). These include: hot water dipping [156], dry heat [138], wet heat treatment curing
with chitosan or in combination with Bacillus CPA-8 [157], radio frequency (water immersion and air
exposure) [108], and hydro-cooling [158].

Jemric et al. [156] indicated that it is possible to control post-harvest BR on peaches using hot
water dipping (HWD) at 48 ◦C for 12 min and on nectarine using HWD at 48 ◦C for 6 min without a
significant loss of fruit quality. However, they recommended the optimization of the method according
to the cultivar to prevent the loss of acidity.

In the study of Liu et al. [138], the use of heat (wet and dry) showed that both the direct inhibition
of the pathogen and the elicitation of the defense response in the fruit contributed to a significant
reduction of decay in peaches. The investigators associated the control effect to the inhibition of
M. fructicola germination and growth, intracellular reactive oxygen species (ROS) accumulation,
mitochondrial impairment leading to a reduction in ATP, and induction of defense-related enzymes
in peaches.

Table 6. Physical treatments to control brown rot in peach: conditions, period, and effects.

Treatments Temperature
Period of
Exposure

Effects Reference

Hot water dipping (HWD) 48 ◦C 6/12 min
Reduced brown rot (BR) incidence and no

significant loss of fruit quality
Jemric et al. [156]

Heat treatment (HT) 40 ◦C 5/10 min Significant reduction in peach BR Liu et al. [138]

Heat treatment (HT) 95% RH 50 ◦C 2 h
Proposed as potential strategy to control

brown rot on peaches and nectarines
Casals et al. [157]

Radio frequency (RF) of
dipping in hot water (HT)

60 ◦C 20 s

A 100% BRI reduction at 6 to 12 h after
inoculation and 85.7%. BRI reduction at 0
to 48 h after inoculation as compared to

untreated fruit

Spadoni et al. [159]

Radio frequency (RF) at
27.12 MHz of water

immersion
20 ◦C 9 min

Controlled brown rot without adverse
external and internal damage in both

peaches and nectarines
Sisquella et al. [108]

Radio frequency (RF) at
27.12 MHz of exposition in air

20 ◦C 18 min
Brown rot incidence significantly reduced
in both peaches and nectarines of different

fruit size
Sisquella et al. [108]

Radio frequency (RF) at
27.12 MHz of water

immersion
40 ◦C 4.5 min

Reduced BRI in stone fruits inoculated
(0–48 h) before treatment and at all maturity

levels evaluated in both peaches and
nectarines without impaired fruit quality

Sisquella et al. [160]

Hydro cooling (HC) and
water dump (WD)

4 ◦C 30 s/10 min
Reduced brown rot incidence by 50–77%
when treated at 2/24 h of fruit harvest

Bernat et al. [158]
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Casals et al. [157] used heat to protect peaches and nectarines from brown rot by exposing the
fruits to 50 ◦C and 95–99% relative humidity (RH) for 2 h, which should markedly eradicate the
pre-existing (from the field) Monilinia spp. infections, in combination with the application of chitosan
at 20 ◦C for 1 min or the antagonist B. subtilis strain CPA-8. Other authors [159], combining hot water
treatment with radio frequency (RF), after inoculating the fruit with conidia of Monilinia laxa, found
BRI reduction. On the basis of these positive results, the authors recommended the techniques as a
new alternative for BRI reduction in peaches.

Sisquella et al. [108] used RF (27.12 MHz) treatment to control brown rot in stone fruits either with
immersion in water for 9 min or with exposure to air for 18 min as potential post-harvest alternatives for
brown rot control in peaches and nectarines (Table 6). Later [160], they confirmed that the RF treatment,
particularly with water immersion at 40 ◦C for 4.5 min, is very promising and has commercial potential
for the post-harvest control of brown rot on peaches and nectarines. Furthermore, they reported a
significantly reduced brown rot incidence (BRI) in the naturally infected fruit, from 92% in control
fruit to less than 26% in peaches, and complete brown rot control in nectarines [160]. However, before
the commercial application of this treatment technique, these authors rightly suggested that “it is
necessary to design specific equipment for water immersion to determine the economic cost of the
treatment”. Finally, Bernat et al. [158] applied hydro-cooling and water dump techniques to reduce
BRI on peach fruit with recent infections (2 or 24 h before treatment). The techniques were able to
reduce BR incidence in comparison to direct storage at 0 ◦C, but not when the infections were already
established (≥48 h before treatment).

5.7. Host Resistance and Genetic Management

Because of the increasing concern about the effects of biochemical fungicides (BCAs and
conventional fungicides) on the environment [129] and human health [106] and about strain fungicide
resistance [131], there is still a need for alternative treatments, based for instance on host resistance,
which is considered one of the most cost-effective and environmentally safe strategies for disease
control. Breeding for host resistance is a preventive decision measures in crop protection management.
Apart from the pre-harvest issues, the length of conservation and commercial shelf life of peaches
are also negatively influenced by post-harvest diseases principally associated with the brown rot,
BR [108]. Nowadays, in the management of crop production, for effective and sustainable disease
control, protective measures (prophylactic) are often preferred to curative measures with chemicals
(chemotherapeutic). Consequently, breeders (Brazil, California, Italy, USA, France, and Spain), either
individually or associated with pathologists, have concentrated their efforts on obtaining new cultivars
resistant to the BR pathogen. Nonetheless, reports of resistance (in Mexican and Brazilian peaches) or
tolerance (in peaches from Florida, New Jersey, and Harrow programs) to fruit brown rot in peaches
exist [40,161].

Breeding for disease resistance is one of the most challenging objectives for crop improvement
because disease expression is tetrahedral: Resistance is simultaneously influenced by agent, host,
environment, and human management [162]. Screening for BR resistance in germplasm collections is
a very time- and effort-consuming task [40]. Notwithstanding, different methodologies and varying
protocols have continued to be assayed in breeding programs to evaluate the genetic resistance of
stone fruit crops to fungi [40,48,163,164].

The ‘Bolinha’ peach variety, of Brazilian origin, presents a good resistance mechanism and less
susceptibility to brown rot than other varieties and, although this variety possesses relatively poor
quality characteristics, it has been observed that the resistance to this disease is transmitted to its
descendance [40,58,163]. The lack of extensive studies on M. laxa, in particular [4], especially on the
use of tolerant varieties or genotypes with good quality characteristics in BR management and crop
improvement, calls for academic and practical attention to that area.

The use of commercial varieties or genotypes with some level of disease resistance remains
one of the surest and long-lasting tolerant alternatives within disease protection and improvement
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management techniques in crop cultivation [20,165]. Host tolerance to plant pathogens is important
for cost-effective and environmentally safe strategies for BR management. In line with this, according
to Gell et al. [87], the use of tolerant cultivars for crop improvement is the topmost principle of
crop protection, as this allows plants and plant products to be protected (prophylactic) from disease
epidemics [166,167] and not to require cures from diseases (chemotherapeutic). Among other factors,
the cultivar genotype significantly influences rot incidence and severity in stone fruits [168] and,
therefore, represents an ideal modifiable element for disease control [16]. A lasting prophylactic
treatment of peaches using M. laxa-tolerant cultivars means prevention of the pathogenic problems
starting from the orchard.

Interestingly, in recent times, phytochemicals from plants and plant organs, including fruits, have
drawn increasing attention due to their potent antioxidant properties and their marked effects on the
prevention of various oxidative and stress-associated diseases [169,170]. In addition, several other
studies also point to an active involvement of these phytochemicals in the protective reactions of crops
against phytopathogens including fungi, bacteria, and viruses [40,171–173]. It is essential to note here
that there are many studies showing that certain phenolic compounds present in peaches [174] have
inhibitory effects in vitro and in vivo against Monilinia spp. [34,40]. Phenolic compounds, including
caffeic and chlorogenic acids, may inhibit M. fructicola growth and reduce the lesion size [34]. Hence,
an increase in susceptibility to brown rot infection has been associated with a concomitant decline in
the concentrations of these antioxidant compounds especially in maturing fruits [175].

Breeding programs all over the world, especially the ones located in humid areas, have disease
resistance as one of their top priorities, in part because the consumers’ concern about chemical residues
on fruits and vegetables has increased considerably. In this respect, tolerant genotypes will allow a
sustainable control with zero residues in fruits and decreasing disease problems in the products during
storage, leading to increased economic benefits. The total absence of treatment residues due to the use
of prophylactic tolerant peach cultivars is environmentally friendly [176]. However, disease-resistant
varieties are not readily available for many fruit crops [177], including commercial peach cultivars [20].
Developing peach cultivars tolerant to M. laxa requires, first of all, the identification of existing tolerant
and susceptible genotypes by screening the germplasm [178].

It has been reported that, although a greater number of commercial stone fruit cultivars are
susceptible to Monilinia spp. [51,179], there could exist genetic disease control elements [180,181]
to be introgressed in high-quality fruit’s genetic backgrounds [40]. Hence, the relative tolerance
or susceptibility of fruits to disease has often been used for selecting disease-resistant genotypes
for subsequent peach breeding. In addition, considering the recent drive for alternative
technologies effective to control post-harvest diseases [177,182,183], in particular of stone fruits [3],
any documentation of composites inhibiting BR development would have an influence on the breeding
schemes and could be particularly useful to maintain fruit quality after harvesting, in the peach market.
Having into account that the genetic control for the tolerance to Monilinia spp. in peach is complex,
quantitative and multi-genic it would be of relevance to find candidate genes for resistance in peach.
With the available version 2 of Prunus persica whole genome assembly and annotation [184] and new
techniques such as GBS (Genome by Sequencing) we can search for new markers to fine mapping
these quantitative regions or assay GWAs (Genome Wide Association).

5.7.1. In Situ and Ex Situ Screening Methods to Evaluate Brown Rot Tolerance

There are two major known systems for screening a germplasm for susceptibility or tolerance to
a disease or pathogen. These systems are the in situ/field method, which mostly encompasses
an evaluation of flowers, bud, twigs, and shoots, and the ex situ/laboratory method, which is
mostly an assessment on the commercial fruit derived from a germplasm. A researcher, therefore,
can screen these phylogenetic properties in peach, especially in the ex situ evaluation by: (a) assessment
of lesion development on wounded, injured, or bruised fruit [185]; (b) assessment of lesion
development on intact, uninjured, or unbruised fruit [45,185]; (c) assessment of spore production
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from determined lesions [46]; (d) assessment of post-harvest biodegradation from natural and latent
infection; (e) assessment of cuticle thickness and firmness of commercial ripe fruits [46]. Table 7
shows some research in the ex situ evaluation of brown rot susceptibility in stone fruits. Some
researchers [45,181,185] inoculated both bruised and intact fruit to screen for brown rot resistance in
clingstone peach germplasm. The uninjured fruit inoculation test (UFIT) and artificially injured fruit
inoculation test (AIFIT) were utilized [185] to evaluate the resistance to M. fructicola in peaches, and
to M. laxa in apricots, plums, and peaches [45]. Walter et al. [46] adopted the assessment for lesion
development, spore production, storage performance, and cuticle thickness and firmness in screening
apricot fruits for resistance to brown rot caused by Monilinia spp. Many advantages exist in support
of the ex situ over the in situ method: the manipulation of the fruit is easier, the inoculum load is
centrally placed on the fruit cheeks, randomly including mature and immature sides [48], and the
pathogenic factors, such as lesion and fungi colonization, are adequately evaluated on each inoculated
fruit. Furthermore, the ex situ methodology facilitates the post-inoculation evaluation of qualities
such as firmness and soluble solid contents (SSC). In addition, the ex situ method enables the washing
and disinfection of the fruits, making them pure and uncontaminated for screening against targeted
pathogens. However, the artificial inoculation on unwounded fruits, though found to be a reliable
method in evaluating brown rot resistance ex situ [8,48], was reported to be not only lengthy and
laborious but also affected by season and year variability [20,161].

Other different parts have been used to study the genetic resistance to pathogens of plant parts,
such as flowers in apricots [186] and fruits in peaches [180,181,187]. Moreover, the evaluations have
consistently been performed in situ with attached fruits, in natural ambient situations in the field on
peaches and nectarines [180,188], or ex situ on apples [189] and stone fruits [40,190,191], involving
detached apricots [45,46] and peaches, under controlled conditions [48,190,192]. Considering the fact
that several mechanisms are known to be involved in BR resistance, including phenolic concentration,
thickness of the epidermis, and flesh texture, the selection should be simultaneously based on all
known and unknown components. Hence, some authors [46,179] have highlighted certain imperative
factors to be considered when breeding for disease resistance as: (i) the adequate knowledge of the
pathogenic agent, including its virulence; (ii) the knowledge of the availability, diversity, and types
of genetic resistance within the breeding program as well as within the species in exam and its close
relatives; (iii) the need to handle, develop, and improve the screening and phenotyping methods,
including the accurate selection of the appropriate environment for the exhibition of resistance to allow
its accurate tracking.

The overriding importance of the third point is underscored by Thomidis [73] who stressed
that the knowledge and consideration of host specificity/non-specificity in disease management is
paramount in the selection and preparation of new orchard sites and in the choice of tree species to
be planted.

5.7.2. Procedures for Spore Production and Inoculation in Lieu of Brown Rot Susceptibility Screening

Many different procedures have been adopted in the quest to have Monilinia spores and mycelia
for the purpose of artificial inoculation (Table 7). Hence, Monilinia isolates could be grown on PDA
Petri dishes directly from infected organs, i.e., fruits, mummies, twigs [193], or already prepared
cultures. In addition, there are numerous methodologies describing partially similar, and in some
cases divergent, protocols concerning spores concentration, inoculum load, and associated variables
for screening BR susceptibility in stone fruits, peach and nectarine in particular. All the techniques
presented in Table 7 were accomplished ex situ (in the laboratory controlled environment) with
different inoculum densities and loads [190,191].

Several studies have investigated tolerance to BR in existing phenotypes for peach breeding
purposes [178,185,190,192], and, in most cases, the relationships with the fruit quality traits [187] have
not been ignored [40,45,46]. Apart from peaches and nectarines [40,192], other stone fruit germplasm
that are being investigated include apricots [45,46], plums [45] and cherries [49,191].
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Table 7. Assessment conditions to screen ex situ brown rot (Monilinia spp.) susceptibility in stone fruits. References, host inoculation, spores production, and
parameters recorded.

Authors Fruit Type
Number
of Fruit

Method of
Inoculation

Fruit cheek
Source of
Inoculum

Inoculum
Density (cfu)

Inoculum Load
Incubation

Period
Temperature/RH

of Incubation
Susceptibility Variables

Biggs and Northover [190] Peach NA UFIT Randomly PDA culture 106–103 mL−1 30 µL (30,000 to
30 spores)

144 h 20 ◦C/60–95% Disease severity score

Northover and Biggs [191] Cherry 10 UFIT Suture PDA culture 106–103 mL−1 30 µL (30,000 to
30 spores)

144 h 20 ◦C/60–95% % BRI, lesion diameter

Gradziel and Wang [185] Peach 16 UFIT/AIFIT
Most

matured
PDA culture 2 × 104 mL−1 10 µL

(200 spores)
72 h 22 ◦C–25 ◦C/95% Lesion diameter

Pascal et al. [45]
Peach, Plum

Apricot
10 UFIT/AIFIT Randomly Natural fruit 106 mL−1 20 µL

(20,000 spores)
240 h/120 h 23 ◦C % BRI, lesion diameter

Bassi et al. [192] Peach 15 UFIT Randomly NA 105 mL−1 NA 168 h 25 ± 2 ◦C/95–100% % BRI, lesion diameter

Walter et al. [46] Apricot 8 UFIT/AIFIT Randomly Natural fruit 1.5 × 104 mL−1 30 µL
(450 spores)

48 h/120 h
Ambient

temperature/lightly
misted with dH2O

Lesion area, spore counts, storage
rot and cuticle thickness

Pacheco et al. [181] Peach 10 UFIT/AIFIT
Sun-exposed
fruit cheek

Peach fruit 5 × 106 mL−1 10 µL
(50,000 spores).

120 h 25 ◦C/high RH
% BRI, average rot
diameter by scores

Obi et al. [48] Peach 20 UFIT Randomly Peach fruit 25 × 103 mL−1 25 µL
(625 spores)

120 h 23 ◦C/50–60%
Lesion diameter, colonization

diameter, % BRI, disease severity

Abbreviations: NA (Not available); cfu (Colony forming units); RH (Relative humidity); dH2O (distilled water); % (percentage); BRI (brown rot incidence); UFIT (Uninjured fruit
inoculation test in epidermis [45]); AIFIT (Artificially injured fruit inoculation test in mesocarp [45]); PDA (Potato dextrose agar).
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The parameters usually considered in such tests comprise: the extent of necrosis and intensity
of sporulation [190], the percentage of fruit infection and lesion development [191], the extension of
the lesion area, the spore count, the storage rot and cuticle thickness [46]. Blighted flowers, twigs,
and shoots have also been used [106,194]. However, the use of the fruit in susceptibility screenings
is widely used among stone fruits [46,48]. In this case, the BRI (percentage of fruits with lesion) is
determined [48,195].

6. Conclusions

Despite the importance of brown rot, there has been relatively little work done on the development
of BR-resistant peach fruit cultivars, which is probably due to the lack of collaborative tendencies
among the specialist actors involved, including farmers, breeders and phytopathologists. The lack of
national projects for breeding and in general peach management (cultivation, marketing, innovations),
in addition to the low price and scarce gain for the farmer, are limiting the investment for research
in Monilinia spp. in many countries. Anyway, the search for phenotyping protocols to accurately
characterize and evaluate brown rot infections is a mission that should always be encouraged by
both breeders and pathologists in crop breeding programs. This review has clearly described the
characteristic variance of the three most economically important species of Monilinia (M. laxa, M.

fructicola, M. fructigena), in addition to M. polystroma, and the chemical formulations used for brown
rot management in Spain, indicating also their permission limits. The continued increased demand
of healthy fruit by consumers and the environmental concerns regarding the use of pesticides and
associated ecomicrobial destitution require a sustainable alternative measure to combat brown rot in the
peach market. In recent times, several studies have investigated tolerance to brown rot in existing peach
phenotypes for peach breeding purposes and, in most cases, its relationships with the fruit quality traits.
These studies have often described the use of host-resistant cultivars as a prophylactic measure rather
than a chemotherapeutic strategy for brown rot management. If adequately and effectively combined
with other alternative control schemes (Integrated Pest Management) and biological strategies, host
resistance could promote a more sustainable peach fruit farming in the future.
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