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Abstract. Fall Detection (FD) has drawn the attention of the research
community for several years. A possible solution relies on on-wrist wear-
able devices including tri-axial accelerometers performing FD autonomously.
This type of approaches makes use of an event detection stage followed
by some pre-processing and a final classification stage. The event de-
tection stage is basically performed using thresholds or a combination of
thresholds and finite state machines. In this research, a novel event detec-
tion is proposed avoiding the use of user predefined thresholds; this fact
represents the main contribution of this study. It is worth noticing that
avoiding the use of thresholds make solutions more general and easy to
deploy. Moreover, a new set of features are extracted from a time window
whenever a peak is detected, classifying it with a Neural Network. The
proposal is evaluated using the UMA Fall, one of the publicly available
simulated fall detection data sets.
Results show the improvements in the event detection using the new
proposal, outperforming the base line method; however, the classifica-
tion stage still needs improvement. Future work includes introducing a
finite state machine in the event detection method, adding extra features
and a pre-classification of the post-peak interval and a better training
configuration of the Neural Networks.

Keywords: Fall Detection, Event Detection, Classification, Wearable
Devices.

1 Introduction

The mean age of the Europe’s population is rising, which means the society needs
to solve some challenges to allow a healthy aging; the detection of fall events or
Fall Detection (FD) is among the challenges to solve. Interested readers can find
complete reviews on FD in [5,4]. There is a wide spread of studies concerning this
topic, such as analyzing video recordings from cameras [21] or using wearable
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devices (WD) and the data from the sensors in the detection [12]. The ubiquity
of WD leads, in senior houses, to a reduce the effort of the carers to check the
inhabitants and also to study their level of activity during each day. Besides,
autonomous on-wrist wearable devices, such as smart-watches, including FD
might play a crucial role in helping the elder to continue living by their own.
These devices can be easily worn because the population usually carry watches or
bracelets; because some smart devices are programmable, deploying intelligent
services on them is feasible. In this research, we focus on smart-watches with
built-in tri-axial acceleromenters (3DACC), which is by far the most chosen
option in FD with wearables [22,10,20,2,11].

Thresholds have been proposed as the elementary decision system [2,11,13,8,9];
in all these cases, the TS values are analyzed until it surpasses a predefined com-
bination of thresholds or the features extracted from the current sliding window
becomes out of the predefined range. Machine Learning is used in the majority of
the wearable-based FD to learn the patterns related with falls and with Activities
of Daily Living (ADL). Modelling techniques such as Support Vector Machines
(SVM), K-Nearest Neighbours, Neural Networks or Decision Trees have been
widely used. For instance, SVM were used to classify features extracted from
sliding windows [22,20]. A comparison of different classification algorithms has
been presented in [10].

There are also studies concerned with the dynamics in a fall event [1,7].
The former study proposed the use of these dynamics as the basis of the FD
algorithm [1], with moderate computational constraints but a high number
of thresholds to tune. This solution is appealing when developing solutions to
run in smart-watches due to their lack of computational power. The proposal of
Abbate et al has been modified in a series of papers [14,15,18] to adapt the sensor
placement on a wrist. We refer to this event detection as on-wrist Abbate. This
sensor location introduces changes in the peak detection, forcing to introduce an
over-sampling data balancing stage (using the Synthetic Minority Over-sampling
Technique - SMOTE) and modifying the feed-forward Neural Network learning
process.

The main contribution in this study consist of a new event detection mech-
anism to detect the high intensity fall events, that is, those that arise when the
user stands up and falls either while walking, standing still, running, etc. The
mechanism is based on the partial maximum peak detection method [16], where
the threshold to detect the peaks is automatically determined for each user. In-
terestingly, this new event detection makes use of no user predefined threshold,
which represents a step ahead in the event detection mechanisms in the litera-
ture. We refer to this event detection mechanism as MAX-PEAK. Furthermore,
a set of transformations will be calculated for the windows surrounding the fall
event candidates, and a feed forward Neural Network classifier is used to label
the instances.

The structure of the paper is as follows. The next section deals with the de-
scription of the on-wrist Abbate event detection method and their transforma-
tions. Section 3 details the MAX-PEAK and FSM-MAX-PEAK, together with
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the transformations that are proposed to compute and the modelling method.
Section 4 describes the UMA Fall data set used and the experimentation. Section
5 shows and discusses the obtained results. Finally, conclusions are drawn.

2 The baseline event detection

As propose in [1,15], the on-wrist Abbate is a simple finite state machine (FSM) -
see Figure 1 -. The data gathered from a 3DACC located on the wrist is processed
using a sliding window. A peak detection algorithm is executed based on a pre-
defined threshold th1. When a peak is found, the sliding window data is analyzed
in order to extract several features which finally classify the peak as either FALL
or NOT FALL.

Fig. 1. The on-wrist Abbate FSM. Whenever the acceleration value is higher than a
predefined threshold, the state changes to Post Peak. If no more peaks are detected,
the bouncing timer fires and the state moves to Post Fall, which is supposed to be a
calm period without any other peak. Once this second timer fires, the sliding window,
still located around the last detected peak, is used to compute several transformations
and to classify the sample. Finally, the FSM returns to the initial state.

The Activity Test state computes several transformations in the so called
peak-window, which is determined as follows. Let’s assume that the gravity is

g = 9.8m/s. The magnitude of the acceleration at time t is at=
√
a2tx + a2ty + a2tz

(atx, aty and atz are the acceleration components in each of the axis). A peak
occurs at a peak time (pt) whenever at is higher than th1 = 3 × g and there is
no other acceleration value above that threshold in the period (t − 2500ms; t]
(no other at value higher than th1). The impact end ie denotes the end of
the fall event: it is the last time moment for which the at value is higher than
th2 = 1.5 × g. Finally, the impact start (is) denotes the starting time point
of the fall event, computed as the starting time of a sequence where at <= th3
(th3 = 0.8 × g) is followed by at >= th2. The impact start must belong to the
interval [ie− 1200 ms, peak time]. If no impact end is found, then it is fixed to
peak time plus 1000 ms. If no impact start is found, it is fixed to peak time.

Whenever a fall-like peak is found, the following transformations should be
computed:
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AAMV Average Absolute Acceleration Magnitude Variation computed
as AAMV =

∑ie−1
t=is |at+1 − at|/N , with N the number of samples in the

interval.
IDI Impact Duration Index IDI = impact end− impact start.
MPI Maximum Peak Index MPI = maxt∈[is,ie](at).
MVI Minimum Valley Index MV I = mint∈[is−500,ie](at).
PDI Peak Duration Index PDI = peak end− peak start, being peak start

the time of the last magnitude sample below thPDI = 1.8×g occurred before
pt, and peak end the time of the first magnitude sample below thPDI =
1.8× g occurred after pt.

ARI Activity Ratio Index, calculated as the ratio between the number of
samples that are not in [thARIlow = 0.85× g, thARIIhigh = 1.3× g] and the
total number of samples in the 700 ms interval centered in (is+ ie)/2.

FFI Free Fall Index, the average acceleration magnitude in the interval [tFFI ,
pt]. tFFI is the time between the first acceleration magnitude below thFFI =0.8×
g occurring up to 200 ms before pt; if not found, it is set to pt − 200ms.

SCI Step Count Index, measured as the number of peaks in the interval
[pt− 2200, pt].

The on-wrist Abbate FSM is a very challenging event detection that has been
successfully used in several studies [14,17,18]. However, it has several drawbacks:
the high number of thresholds and the difficulty of the improvements in the fea-
ture set. Concerning the high number of thresholds, the peak detection threshold
is the main one and can be easily tuned. However, there are many more, some
of which are acceleration values and others are time intervals that need to be
set. It would be desirable to obtain an event detection and a feature set of
transformations free of thresholds: that is the main aim of this research.

3 A new fall detection approach

3.1 The event detection stage

For the purpose of detecting peaks in the 3DACC magnitude, the first stage is
to smooth the signal using a sliding window sized 1

4FREQ, with FREQ being
the sampling frequency. Afterwards, we apply the S1 transformation proposed
in [16]. For the current problem, the S4 and S5 were too complex for a smart-
watch and need too wide windows of data in order to estimate the entropy. From
the remaining transformations, we chose S1 because its simplicity and similar
performance among all of them. The Eq. 1 defines the calculation of S1, where
k is the predefined number of samples and t is the current sample timestamp.
It is worth noticing that, although we analyze the window [at−2k−1, at] at time
t, the peak candidate is at−k, the center of the interval. The S1 transformation
represents a scaling of the TS, which makes the peak detection easier using a
predefined threshold α.

S1(t) =
1

2
× {maxt−k−1i=t−2kai +maxti=t−k+1ai} (1)
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The algorithm for detecting peaks is straightforward: a peak occurs in time
t if the value St is higher than α and is the highest in its 2k neighbourhood.
In the original report, all the parameters (k, α) where carefully determined for
each problem in order to optimize the peak detection.

The use of predefined threshold is just what is trying to be avoided; therefore,
in this research we define simple heuristics to automatically determine them. On
the one hand, the value of k is defined with the sampling frequency (the number
of samples per second). On the second hand, we define the α threshold as follows.
We have walking as the reference activity, so the current user u needs to normally
walk during a short period. The mean µu

w and the standard deviation σu
w for

this period are calculated. We also compute the values of S1 for this walking
period, calculating its mean (µu

wS1
) and standard deviation (σu

wS1
). The TS is

then normalized with these statistics; the threshold is set to α = 3σu
wS1

, which
means (for a normal distribution) that a high value that is statistically the upper
limit for S1 when walking is a peak candidate. With these settings the S1 is
automatically set according to the current device and the user performance.
From now on, we refer to this solution as MAX-PEAK.

3.2 The new set of transformations

Whenever a high intensity fall occurs there are three main parts: the activity
being carried ordinarily before the fall event, the fall itself that we identify as a
peak and what happens next. Because there are no public data set of real falls
for healthy participants, we are not able to say accurately what happens after
a fall: we can make the hypothesis that what happens after a fall is a period
of relative calm, without special activity, perhaps some erratic movements of
the hands. Therefore, we will divide the [at−2k−1, at] window in two: before
IB = [at−2k−1, at−k−1] and after IA = [at−k+1, at] the peak. For each of these
sub-intervals we propose to compute the following transformations:

AAMV Average Absolute Acceleration Magnitude Variation computed
as AAMV =

∑e−1
t=s |at+1 − at|/N , with N the number of samples in the in-

terval [s, e].
E Energy of the Acceleration Magnitude E =

∑e
t=s a

2
t/N

Mean Mean Activity the mean of the acceleration magnitude in the interval
[s, e].

SD Standard Deviation of the acceleration magnitude in the interval [s, e].

Therefore, we have 4 transformations for each of the two intervals (a total of
8 transformations); none of which relies on thresholds of any kind. All of these
transformations are well known in the context of Human Activity Recognition
and Fall Detection.

4 Experimental design

The publicly available simulated falls UMA Fall data set [3] is used in this
study. This data set includes several activities, transitions and simulated falls
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regarding up to 17 participants. There is no fixed number of repetitions of each
activity or simulated fall. Each participant used several 3DACC, specially one
on a wrist; the sampling frequency was 20 Hz. Altogether, 208 TS are simulated
falls, belonging to lateral, forward or backward falls, out of the 531 TS that are
available in this data set.

The experimentation is divided in two main parts: the first part is devoted
to compare the event detection methods, while the second one aims to evaluate
the fall detection algorithm using the feature subset proposed in the previous
section.

The comparison of the event detection evaluates both methods (the on-wrist
Abbate and the MAX-PEAK) for each participant in the UMA Fall data set.
We use the well-known counters True Positive -TP-, True Negative -TN-, False
Positive -FP- and False Negative -FN- to evaluate the performance of the event
detection methods. These counters are updated according to whether the peaks
are detected or not in each TS. Additionally, for every peak the 4 features for
each k-length sub-interval are calculated and stored for later used. For now on,
this second data set is referred as 4x2TRNS.

For the second part of the experimentation, the 4x2TRNS data set is scaled
to the interval [0.0, 1.0]. Then, this scaled data set is used to train and test a
two classes feed forward Neural Network (NN) (using only the non-fall data) and
also a two classes feed forward NN for each type of fall (lateral L-NN, forward
F-NN and backward fall B-NN). The train part includes all the instances but
those generated for the current participant u; these instances are used for testing.
The sensitivity and specificity of the results for all the participants will be used
to measure the performance of the method. For each of the classifiers the best
parameter subset will be found using 300 iterations.

5 Obtained results and discussion

Results obtained from the first part of the experimentation, regarding with the
comparison of the two methods for detecting falls, are shown in Table 1. As
mentioned before, neither the number of TS nor the number of falls for each
participant are the same, which in practice will mean that the FP and FN have
to be examined in relative terms.

From the very first peek, it can be clearly seen that the MAX-PEAK method
is able to detect much more falls (the number of FN is almost naught). Actually,
29.774% of the fall TS result in FN with on-wrist Abbate while MAX-PEAK
only lacks in 0.672% FN. Something to emphasise is that standard deviation
of the distribution of FN referred to the participants is much more bigger in
the case of on-wrist Abbate than for the MAX-PEAK method (0.3351 against
0.0190). This difference highlights that not only on-wrist Abbate suffers from a
higher FN rate but it also does it more irregularly.

On the other hand, when talking about FP there is also a clear difference
between both methods and, on the contrary, MAX-PEAK has a higher FP rate
compared to on-wrist Abbate. Indeed, the MAX-PEAK has an overall ratio of
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76.480% of FP whereas on-wrist Abbate’s ratios is just 9.310%. This is due to the
fact that Abbate’s method includes a finite state machine which allows filtering
the peaks that do not belong to a real fall. For instance, in walking TS there
some strong peaks can be found (see Figure 2), but they are usually very close
to each other: a finite state machine surely will help to remove those peaks that
cannot logically be a fall (for example those pairs of peaks that are closer than
two seconds as it is physically impossible to fall two times in such a short period
of time). The implementation of a finite state machine for MAX-PEAK is left
for further work and research.

Fig. 2. One of the walking TS graph for participant 1. The red points are the detected
peaks, while the blue vertical lines splits in 2-second intervals.

The results obtained from classifying the extracted 4x2TRN data set and the
4 models (NN, L-NN, F-NN and B-NN) are shown in Table 2. The values NA
in that Table are due to the fact that several participants did not perform the
corresponding type of simulated fall. For instance, participant 5 did not simulate
lateral falls, while participant 7 did not simulate any type of fall. The 4x2TRN
data set is highly unbalanced (more than 10 Not Fall instances for each Fall one);
therefore, a balancing method was used. More specifically, the SMOTE method
[6] was used, proposing 500 samples from each class. Nevertheless, the results
are highly unsatisfactory as long as the Specificity is negligible in all the cases.
Seems that the models are almost always proposing falls for each peak.

Clearly, this part of the proposal needs further attention and improvement.
Firstly, the 4 features might not be representative, perhaps it would be more
interesting to introduce more features (such as the Signal Magnitude Area [19]).
Moreover, it might be interesting to label the post-peak interval with an activity
level (high, medium or low) and use this label as an input to the final classifier.
Additionally, mainly if the number of transformations gets increased, Principal
Component Analysis should be performed first to select the most interesting and
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Table 1. Event detection results for each participant.

on-wrist Abbate MAX-PEAK
Pid TN FP FN TP TN FP FN TP

1 16 2 5 15 7 11 0 20
2 15 3 2 10 7 11 0 12
3 17 2 2 16 5 14 0 18
4 18 3 7 10 4 17 1 16
5 15 0 0 6 5 10 0 6
6 4 0 2 4 0 4 0 6
7 20 2 0 0 2 20 0 0
8 16 3 0 0 3 16 0 0
9 16 2 2 16 5 13 0 18
10 19 2 0 0 7 14 0 0
11 19 0 1 0 4 15 0 1
12 22 1 9 0 0 23 0 9
13 7 0 5 7 4 3 0 12
14 5 0 0 6 1 4 0 6
15 9 1 8 3 3 7 0 11
16 56 8 5 51 8 56 0 56
17 12 6 8 10 3 15 1 17

Total 286 35 56 154 68 253 2 208

representative axis. However, we haven’t introduced all these issues in this study
because we need to introduce the finite state machine in the event detection first.
All of the proposals are left to future work.

6 Conclusions

This research analyzes an improvement in the peak detection when studying fall
detection systems. More specifically, the developed method for detecting peaks
amplifies the signal and uses the statistics values to automatically set the firing
threshold, adapted to the current user. To our knowledge, this is the first study
that proposes an event detection method that automatically adapts to the user
behaviour. The results from the experimentation show that the peak detection
clearly outperforms the base line method, but suffers of a high percentage of
peaks from ADLs. Nevertheless, the automatically threshold set up works ex-
tremely well in adapting to each participant. The modeling part still needs more
refinements and improvements, which are left to future work.

Future work includes developing a finite state machine for the peak detection
that filters the successive peaks within two or three seconds and evaluating with
several public FD data sets. Moreover, several transformations should extend
the 4x2TRN data set for each interval, Principal Component Analysis will be
applied before classifying and also a new stage to label the post-peak interval
with the level of activity. Introducing Autoencoders and Deep Learning is also
part of future work.
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Table 2. Results for the classification task: Sens and Spec stand for Sensitivity and
Specificity. The NA stands for Not Available: for these participants there were no
simulated falls; therefore, both the TP and FN have a value of 0 and, hence, the
Sensitivity is not computed.

NN L-NN F-NN B-NN
Sens Spec Sens Spec Sens Spec Sens Spec

1 1.0000 0.2710 1.0000 0.0935 1.0000 0.1402 1.0000 0.1308
2 1.0000 0.4343 1.0000 0.0859 1.0000 0.3939 1.0000 0.0657
3 1.0000 0.3571 1.0000 0.0476 1.0000 0.0655 1.0000 0.1548
4 1.0000 0.4688 1.0000 0.0573 1.0000 0.1042 1.0000 0.2552
5 1.0000 0.4386 NA 0.2632 NA 0.4211 1.0000 0.2895
6 1.0000 0.2308 1.0000 0.0000 1.0000 0.3077 1.0000 0.0769
7 NA 0.4388 NA 0.1939 NA 0.1429 NA 0.0612
8 NA 0.5223 NA 0.1401 NA 0.0382 NA 0.2102
9 1.0000 0.4670 1.0000 0.3208 1.0000 0.1934 1.0000 0.0660
10 NA 0.3505 NA 0.1959 NA 0.2887 NA 0.1237
11 1.0000 0.3597 NA 0.4029 NA 0.0935 NA 0.2014
12 1.0000 0.4171 1.0000 0.1991 1.0000 0.1137 1.0000 0.1659
13 1.0000 0.5970 1.0000 0.7761 1.0000 0.5224 1.0000 0.4179
14 1.0000 0.1250 1.0000 0.3750 1.0000 0.2500 1.0000 0.1250
15 1.0000 0.4731 1.0000 0.2688 1.0000 0.3118 1.0000 0.3548
16 1.0000 0.3888 1.0000 0.1367 1.0000 0.0148 1.0000 0.1779
17 1.0000 0.2756 1.0000 0.0321 1.0000 0.0577 1.0000 0.0962
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4. Casilari-Pérez, E., Garćıa-Lagos, F.: A comprehensive study on the use of artificial
neural networks in wearable fall detection systems. Expert Systems with Applica-
tions 138 (2019). https://doi.org/doi:/10.1016/j.eswa.2019.07.028

5. Chaudhuri, S., Thompson, H., Demiris, G.: Fall detection devices and their use
with older adults. Journal of Geriatric Physical Therapy 37, 178–196 (2014)

6. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic mi-
nority over-sampling technique. Journal of artificial intelligence research pp. 321–
357 (2002)

7. Delahoz, Y.S., Labrador, M.A.: Survey on fall detection and fall preven-
tion using wearable and external sensors. Sensors 14(10), 19806–19842 (2014).
https://doi.org/doi:10.3390/s141019806

8. Fang, Y.C., Dzeng, R.J.: A smartphone-based detection of fall portents for con-
struction workers. Procedia Eng. 85, 147–156 (2014)



10 Mario Villar and Jose R. Villar

9. Fang, Y.C., Dzeng, R.J.: Accelerometer-based fall-portent detection algorithm for
construction tiling operation. Autom. Constr. 84, 214–230 (2017)

10. Hakim, A., Huq, M.S., Shanta, S., Ibrahim, B.: Smartphone based data mining for
fall detection: Analysis and design. Procedia Computer Science 105, 46–51 (2017).
https://doi.org/doi:/10.1016/j.procs.2017.01.188

11. Huynh, Q.T., Nguyen, U.D., Irazabal, L.B., Ghassemian, N., Tran, B.Q.: Opti-
mization of an acc. and gyro.-based fall det. algorithm. Journal of Sensors (2015)

12. Igual, R., Medrano, C., Plaza, I.: Challenges, issues and trends in fall detection
systems. BioMedical Engineering OnLine 12(66) (2013)

13. Kangas, M., Konttila, A., Lindgren, P., Winblad, I., Jämsaä, T.: Comparison of
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