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Abstract

Peak estimation of hybrid systems aims to upper bound extreme values of a state function along
trajectories, where this state function could be different in each subsystem. This finite-dimensional but
nonconvex problem may be lifted into an infinite-dimensional linear program (LP) in occupation measures
with an equal objective under mild finiteness/compactness and smoothness assumptions. This LP may
in turn be approximated by a convergent sequence of upper bounds attained from solutions of Linear
Matrix Inequalities (LMIs) using the Moment-Sum-of-Squares hierarchy. The peak estimation problem
is extended to problems with uncertainty and safety settings, such as measuring the distance of closest
approach between points along hybrid system trajectories and unsafe sets.

1 Introduction

This paper interprets and extends the peak estimation problem to dynamical systems with hybrid behav-
ior. Peak estimation is the analysis problem of finding extremal values of state functions along system
trajectories, such as finding the maximum speed of a craft given a set of initial conditions. A hybrid sys-
tem is a dynamical system that possesses both continuous-time and discrete-time dynamics [1]. Hybrid
systems have a wide array of applications, including walking robots [2], power converters [3], sampled-
data control [4], and systems biology [5]. In this work (extending methods from [6]), the hybrid system
is defined with respect to a series of spaces known as ‘locations’ in which the hybrid trajectory evolves
according to per-location Ordinary Differential Equation (ODE) dynamics. When the hybrid trajectory
encounters a guard surface, it will transition to a (possibly) new location according to a reset map and
continue its ODE evolution. Peak estimation of hybrid systems equips each location with a state func-
tion, and the output of the peak estimation problem is the maximum state function value obtained across
all locations by all hybrid systems trajectories starting from a set of initial conditions in a given time
horizon.

The ODE peak estimation problem is an instance of an input-less Optimal Control Problem (OCP)
with a free terminal time and zero running cost. In the ODE case, such OCPs are finite-dimensional but
generally nonconvex to solve. This difficulty is exacerbated by the addition of hybrid dynamics. In both
cases for a maximization objective, lower bounds on the true peak cost can be computed by approximate
sampling, while upper bounds must be satisfied for all admissible trajectories. The foundational work
in [7] represented ODE OCPs as infinite-dimensional Linear Programs (LPs) in nonnegative Borel Mea-
sures, and gave necessary conditions under which the OCP and its LP outer-approximation have the same
optimal value (no relaxation gap). The LPs in [7] involve terminal measures and occupation measures,
which describe all information needed to reconstruct families of trajectories ODE. The work in [8] treated
the peak estimation problem as an infinite-dimensional LP in measures, and proposed approximations
solved based on successively refined finite-dimensional gridded LPs. In the peak estimation setting, the
necessary conditions for no relaxation gap are mild compactness and Lipschitz regularity requirements.
Another approach to solving infinite-dimensional LPs is through the Moment-Sum of Squares (SOS) hi-
erarchy, which truncates the LPs into Semidefinite Programs (SDPs) of increasing complexity to produce
tightening outer approximations [9, 10]. The SOS side of this hierarchy was used in [11] to solve peak
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estimation problems. Other applications of the Moment-SOS hierarchy in analysis and control of ODEs
includes OCPs [12], reachable set estimation [13], and maximum control invariant set estimation [14].

Measures and the Moment-SOS hierarchy have also been applied to solve problems featuring hybrid
dynamical systems. Instances of these extensions include OCPs [6, 15, 16] and reachable sets [17, 18].
Barrier functions to certify safety of hybrid system trajectories with respect to unsafe sets may also be
found by SOS programming [19].

The contributions of this paper are as follows:

• Application of measure techniques to peak estimation for hybrid systems

• Use of Zeno caps to prevent unbounded executions

• A modular MATLAB framework for posing peak estimation problems for hybrid systems

• Extensions of existing work on peak estimation for uncertainty and safety analysis to hybrid systems

The paper is organized as follows. Section 2 introduces the notation convention and reviews back-
ground information. Section 3 formulates an infinite-dimensional measure program for peak estimation
of hybrid system and its associated Linear Matrix Inequality (LMI) relaxation. Section 4 extends the hy-
brid peak estimation framework to safety analysis and possibly uncertain dynamical systems. Numerical
examples are presented in Section 5. The paper is concluded in Section 6.

2 Preliminaries

LMI Linear Matrix Inequality

LP Linear Program

OCP Optimal Control Problem

ODE Ordinary Differential Equation

PSD Positive Semidefinite

SDP Semidefinite Program

SOS Sum of Squares

2.1 Notation

The set of real numbers is R and of natural numbers is N. The set of polynomials with real coefficients
in indeterminates x is R[x]. Every polynomial g ∈ R[x] may be uniquely expressed as g =

∑
α∈Nn gαx

α

in multi-index notation xα = xα1
1 xα2

2 . . . for some finite number of nonzero coefficients gα. The degree of
a monomial xα is |α| =

∑
i αi, and the degree of a polynomial g is the maximum such |α| where gα 6= 0.

A nonnegative Borel measure supported in a set X is a function that assigns each element of the
σ-algebra of sets over X with a nonnegative number (the ‘size’ or ‘measure’ of the set). The measure µ
follows the rules µ(∅) = 0 and µ(A∪B) = µ(A) +µ(B) if A∩B = ∅ [20]. The support of a nonnegative
Borel measure is the locus of points x where every open neighborhood N(x) has µ(N(x)) > 0. The set of
all nonnegative Borel measures supported in X is M+(X). The space of continuous functions is C(X),
and a pairing between a nonnegative measure µ ∈ M+(X) and a function f ∈ C(X) may be defined by
Lebesgue integration 〈f, µ〉 =

∫
fdµ =

∫
X
f(x)dµ(x). The set C1(X) ⊂ C(X) is the set of continuous

functions with continuous first derivatives. The indicator function IA of a set A ⊆ X takes on the value
IA(x) = 1 if x ∈ A and IA(x) = 0 otherwise, and satisfies the rule 〈IA, µ〉 = µ(A) for all A ⊆ X. The
mass of a measure µ is µ(X) = 〈1, µ〉, and µ is a probability measure if 〈1, µ〉 = 1. The Dirac delta
δx=x′ ∈ M+(X) is a probability measure supported only at the point x = x′, which follows the pairing
rule 〈f, δx=x′〉 = f(x′) for all test functions f ∈ C(X). A nonnegative Borel measure supported at r
distinct points (atoms) is termed a rank-r atomic measure. Such an atomic measure may be formed by
a conic combination of Dirac deltas. The projection πx : X × Y → X is the map (x, y) 7→ x. Given a
mapping Q : X → Y and a measure µ(x) ∈ M+(X), the pushforward Q#µ(y) is the unique measure
satisfying ∀f ∈ C(Y ) : 〈f(Q(x)), µ(x)〉 = 〈f(y), Q#µ(y)〉.

2.2 Hybrid Systems

The hybrid systems in this paper are posed over a set of L locations. Each location ` = 1..L has state
variables x` contained in the space X` ⊆ Rn` . The subsystems obey nominal locally Lipschitz dynamics
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f` that satisfy

ẋ`(t) = f`(t, x`(t)) ∀` = 1..L. (1)

Available transitions between subsystems may be represented by a directed multigraph. A multigraph
is a graph where pairs of vertices may be connected by multiple distinct edges [21]. Let G = (V, E) be a
multigraph where each of the L vertices of V corresponds to a location. Each edge e ∈ E ⊂ V × V is a
directed arc from a source src(e) to a destination dst(e). Self-loops with src(e) = dst(e) are permitted in
this class of multigraphs. Edges e are associated with a guard Se and a reset map Re. The guard Se is
a subset of Xsrc(e), and the reset map Re : Xsrc(e) → Xdst(e) effects the transition. The hybrid system is
fully encoded by the tuple H = (X, f,G, S,R) with attributes:

X = {X`}L`=1 State Spaces

f = {f`}L`=1 Dynamics

G = (V, E) Transition Multigraph

S = {Se}e∈E Guard Surfaces

R = {Re}e∈E Reset Maps

Execution of a hybrid system with multigraph transitions is based on Algorithm 1 of [17]. An additional
input is a set of Zeno caps {Ne}e∈E which halt trajectory execution if any transition e is traversed at least
Ne times [22]. The output of the following Algorithm 1 is a system trajectory x(t), as well as records
T , C containing information about the times and locations of state transitions respectively.

Algorithm 1 Execution of Hybrid System H
Input

x0 Initial Point
`0 Initial Location
H Hybrid System
T Maximal Time
N Transition Caps

Output
x(t) Trajectory of System
T Time Breaks
C Location Breaks
N Transition Counts

Initialize Trajectory t← 0, `← `0, x(0)← x0

Initialize Traces T ← {0}, C ← {`},N ← {0}e∈E
loop

Follow dynamics x′(s) = f`(t, x(s)) until x(t) reaches a guard or t = T .
if t = T OR 6 ∃Se : x(t) ∈ Se and src(e) = `, OR ∃e : Ne = Ne then

halt
end if
Find a guard Se with x(t) ∈ Se and src(e) = `
Append t to T and dst(e) to C
Increment Ne ← Ne + 1
Transition to `← dst(e), x(t)← Re(x(t))

end loop

The trajectory x(t) is well-defined when the time horizon T and Zeno caps Ne for all e ∈ E are finite
and the guard surfaces Se are codimension-1. The trajectory x(t) induces a function Loc : [0, T ]→ 1..L
which returns the residing location of x(t) at time t. Execution requires the following assumption of
transversality,

Assumption 1. Let x`(t) be a segment of this trajectory that emerged from a transition (`′, `) at time
t−. For all guards Se with src(e) = ` such that x`(t) ∈ Se, the dynamics vector f(t, x`(t)) possesses a
normal component with respect to the tangent space of Se at x`(t). This implies that the time elapsed
between any two resets is bounded below by some δ > 0.
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2.3 Peak Estimation and Occupation Measures

The ODE (non-hybrid) peak estimation setting involves a trajectory x(t | x0), starting at the initial
point x0 ∈ X0 ⊂ X, and evolving according to dynamics ẋ(t) = f(t, x(t)) in a space X. The program to
find the maximum value of a state function p(x) along trajectories is

P ∗ = sup
t, x0∈X0

p(x(t | x0)), ẋ(t) = f(t, x(t)). (2)

The extremum P ∗ may be bounded through the use of occupation measure relaxations [8]. An
optimal trajectory satisfying P ∗ = p(x∗) = p(x(t∗ | x∗0)) is described by a triple (x∗0, t

∗, x∗) [23]. The
initial probability measure µ0 ∈ M+(X0) is distributed over the set of initial conditions x0 ∼ µ0. The
peak measure µp ∈ M+([0, T ]×X) is a terminal measure with free terminal time. For a stopping time
t∗ and subsets A ⊆ [0, t∗], B ⊆ X, the occupation measure µ ∈M+([0, T ]×X) has a definition [8]

µ(A×B) =

∫
X0

∫ t∗

t=0

I((t, x(t | x0)) ∈ A×B)dt dµ0(x0).

The Lie derivative operator Lf may be defined for all test functions v ∈ C1([0, T ]×X)

Lfv(t, x) = ∂tv(t, x) + f(t, x) · ∇xv(t, x). (3)

The three measures (µ0, µp, µ) are linked by Liouville’s equation for all test functions v

〈v(t, x), µp〉 = 〈v(0, x), µ0〉+ 〈Lfv(t, x), µ〉 (4)

µp = δ0 ⊗ µ0 + L†fµ (5)

Liouville’s equation ensures that initial conditions distributed as µ0 are connected to terminal points
distributed as µp by trajectories following dynamics f . A convex measure relaxation of problem (2) is
[8],

p∗ = sup 〈p(x), µp〉 (6a)

µp = δ0 ⊗ µ0 + L†fµ (6b)

〈1, µ0〉 = 1 (6c)

µ, µp ∈M+([0, T ]×X) (6d)

µ0 ∈M+(X0). (6e)

Constraint (6c) ensures that both µ0 and µp are probability measures with unit mass. The objective
(6a) is the expectation of p(x) with respect to µp. There will be no relaxation gap between problems (2)
and (6c) (P ∗ = p∗) when [0, T ]×X is compact and f is Lipschitz [7, 8, 11]. Program (6e) is a particular
form of the optimal control program from [7] with zero running cost and free terminal time.

3 Peak estimation of hybrid systems

3.1 Peak Program

Let X0 = {X0`} be the set of initial conditions for system trajectories. Each of these system trajectories
lie inside the set X = {X`}.

Each location ` has a state cost p` : X` → R and a set of initial conditions X0` ⊂ X`. Each p` is
either bounded below or constant at −∞, and at least one p` is bounded. The goal of peak estimation
is to find the trajectory x(t) which maximizes the state cost across all trajectories and locations:

P ∗ = sup
t, `0 x0

max
`
p`(x(t | x0)) x(t) ∈ X`

Dynamics follow Algorithm 1 with input (`0, x0,H, T )

x0 ∈ X0`0 . (7)

The optimization variables of (7) are the peak time t, initial location `0, and initial state x0 ∈ X`0 . The
inner maximization runs over all location-objective functions p`.

The following assumptions will be posed on problem (7):
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Assumption 2. The sets [0, T ], X`, X`0 are compact for all ` = 1..L.

Assumption 3. Each function p` is continuous inside X`.

Assumption 4. Each dynamics function f`(t, x`) is Lipschitz over the compact set [0, T ]×X`.
Assumption 5. Trajectories stay in X` for all t ∈ [0, T ] when starting inside X0`.

3.2 Measures for Hybrid Systems

The control and reachability set programs in [17, 18, 24] define measures ρe supported over the guard
M+(Se) for each transition e ∈ E . For subsets A ⊂ [0, T ], Ce ⊂ Se and an initial condition x0, the
counting measure ρe records the number of times the trajectory, starting from location src(e), enters the
patch Ce of the guard Se with

ρe(A× Ce) =

∫
A

card

(
lim
t′→t−

x(t′ | x0) ∈ Ce
)
dt. (8)

The mass of the counting measure ρe is the expected number of times a trajectory will traverse the
transition with arc e. In a Zeno execution of transition e, the mass 〈1, ρe〉 will be unbounded, and
constraints such as 〈1, ρe〉 ≤ Ne may be imposed to cap the maximum number of transitions on arc
e. Let X0` ⊆ X` be a set of initial conditions defined on each space X` in X. A distribution of
initial conditions over each location is µ0` ∈ M+(X0`) for ` = 1..L. Let T < ∞ be a final time, and
µp` ∈ M+([0, T ] × X`) be peak measures supported over each location-space. Trajectories following
dynamics x′(t) = f`(t, x(t)) in each space X` are tracked by occupation measures M+([0, T ] × X`).
Counting measures ρe ∈ M+(Se) are set up over all guards to handle state transitions. The Liouville
equation with guard measures holding for all test functions v` ∈ C1([0, T ]×X`) and locations ` = 1..L is

µp` = δ0 ⊗ µ0` + L†f`µ` (9)

+
∑

src(e)=`Re#ρe −
∑

dst(e)=` ρe.

For a location ` and edge e with src(e) = `, the pushforward term Re# in (9) should be understood as

〈v`, Re#ρe〉 = 〈v`(t, Re(x`)), ρe〉. (10)

The mass of the peak measure µp` is equal to the mass of the initial measure µ0` plus the net flux due
to state transitions.

3.3 Measure Program

Problem (7) may be relaxed through an infinite-dimensional linear program in occupation measures. The
measures µ0` are distributions of initial conditions, and ρe are transition counting measures, just as in
the Liouville equation (9). The peak measures µp` are final measures with free terminal time between
t ∈ [0, T ]. The measure program in terms of (µ0, µp, µ, ρ) for hybrid peak estimation (where ∀` and ∀e
may be expanded to ∀` = 1..L and ∀e ∈ E) is

p∗ = sup
∑L
`=1〈p`, µp`〉 (11a)

µp` = δ0 ⊗ µ0` + L†f`µ` ∀` (11b)

+
∑

dst(e)=`Re#ρe −
∑

src(e)=` ρe∑L
`=1〈1, µ0`〉 = 1 (11c)

〈1, ρe〉 ≤ Ne ∀e (11d)

µ`, µp` ∈M+([0, T ]×X`) ∀` (11e)

µ0` ∈M+(X0`) ∀` (11f)

ρe ∈M+(Se) ∀e. (11g)

Theorem 6. Solutions to (11) and (7) satisfy p∗ ≥ P ∗

Proof. Let (x(t | x0, `0), T , C) be a trajectory from the execution of Algorithm 1 that stops at time
t∗ ∈ [0, T ], and Loc(t) be the function returning the residing location of x(t) at time t. This trajectory
may be described by a tuple (`0, x0, t

∗). Measures ∀` : µ0`, µp`, µ` and ∀e : ρe that are feasible solutions
to constraints (11b)-(11g) may be formed from the trajectory x(t). The initial measure µ0` is δx=x0 for
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` = `0 and is the zero measure for ` 6= `0. The peak measure µp` is δt=t∗ ⊗ δx=x(t∗|x0,`0) for ` = Loc(t∗)
and is also the zero measure for all other `. Let T` be the set T` = {t | t ∈ [0, t∗p],Loc(t) = `} of
times where x(t) is in location `. Each relaxed occupation measure µ` may respectively be set to the
occupation measure of t 7→ (t, x(t | x0, `0)) in the times t ∈ T`. If the transition with edge e ∈ E is
traversed Ne times along the trajectory x(t) at points {(tei , xei )}Nei=1 for xei ∈ Xsrc(e), the guard measure

ρe may be defined as ρe =
∑Ne
i=1 δt=tei ⊗ δx=xei . The objective p∗ is an upper bound on P ∗ because a set

of measures (µ0`, µp`, µ`, ρe) constructed from every trajectory x(t) satisfy the constraints of (11) with
objective P ∗.

Remark 1. Setting a peak objective to p`(x) = −∞ is equivalent to constraining µp` to the zero
measure, because trajectories to maximize p(x) will not terminate in location `. Likewise, a measure
µ0` ∈M+(X0`) where X0` = ∅ is the zero measure.

Theorem 7. All measures involved in a solution to (11) are bounded.

Proof. Sufficient conditions for a measure to be bounded are that its mass is finite and its support is
compact. This setting satisfies the compact support requirement.

Given that all measures (µ0, µp, µ, ρ) are nonnegative, their masses will also be nonnegative numbers.
The mass of the transition measures ρ are upper bounded by the Zeno constraints (11d) under the
assumption that all Ne are finite. Constraint (11f) upper bounds each mass 〈1, µ0`〉. For each location
`, choosing a test function v`(t, x`) = 1 for Liouville equation (11b) yields

〈1, µp`〉 = 〈1, µ0`〉+
∑

dst(e)=`〈1, ρe〉 −
∑

src(e)=`〈1, ρe〉. (12)

Every term on the right-hand side of (12) is finite and 〈1, µp`〉 ≥ 0 by measure nonnegativity, so each
peak measure µp` has bounded mass. Utilizing a test function of v`(t, x`) = t with Lf`t = 1 results in

〈t, µp`〉 = 〈1, µ`〉+
∑

dst(e)=`〈t, ρe〉 −
∑

src(e)=`〈t, ρe〉. (13)

The terms 〈t, µp`〉, 〈t, ρe〉 are all finite due to bounded masses and compact support, so the occupation
measures µ` also have finite mass and are bounded.

Theorem 8. The objectives in (7) and (11) will satisfy p∗ = P ∗ when [0, T ] ×
∏
`X` is compact, each

f` is Lipschitz, and p∗ is bounded above.

Proof. This statement may be proved by extending arguments from [6]. Theorem 17 of [6] states there is
no relaxation gap in measure LPs of an optimal control program with appropriate assumptions, extending
the ODE result of [7]. Free final time is already accounted for in [6] by reference to Remark 2.1 of [12].
The ODE problem in [7] can handle initial conditions lying in a set X0, so the method in [6] can similarly
work with sets of initial conditions {X0`}L`=1 as demonstrated by [15]. The work in [15] has ‘switching’
costs (possibly differing running and terminal costs in each location), which is realized by the costs p`.
The final modification between this work and [6] is that problem (7) has finite Zeno caps Ne, while
Assumption 3 of [6] forbids Zeno trajectories. The allowance for free terminal time permits consequence
4 of Theorem 12 of [6] to read that there exists a constant C such that

∑
e〈1, ρe〉 ≤

∑
eNe = C. The

three modifications of [6] (free terminal time, multiple initial conditions, Zeno caps) are all cleared, so
p∗ = P ∗ under the compactness and Lipschitz assumptions.

3.4 Function Program

The measure program (11) is dual to an infinite-dimensional linear program in continuous functions. The

Lagrangian L of problem (11) with dual variables v` ∈ C1([0, T ]×X`), γ ∈ R, α ∈ R|E|+ is

L =
∑L
`=1〈p`, µp`〉+ 〈v`(t, x), δ0 ⊗ µ0` + L†f`µ`〉 (14)

+ 〈v`(t, x),
∑

dst(e)=`Re#ρe −
∑

src(e)=` ρe − µp`〉

+ γ(1−
∑L
`=1〈1, µ0`〉) +

∑
e∈E αe(Ne − 〈1, ρe〉).
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The dual function program of (11) is

d∗ = inf
γ,α,v

sup
µ0`,µp`,µ`,ρe

L

d∗ = inf
γ∈R, α∈R|E|+

γ +
∑
e∈E Neαe (15a)

∀` : ∀x` ∈ X0` :

γ ≥ v`(0, x`) (15b)

∀` : ∀(t, x`) ∈ [0, T ]×X` :

0 ≥ Lf`v`(t, x`) (15c)

∀e : ∀(t, xsrc(e)) ∈ [0, T ]×Xsrc(e) :

vsrc(e)(t, xsrc(e))− vdst(e)(t, Re(xsrc(e))) ≥ −αe (15d)

∀` : ∀(t, x`) ∈ [0, T ]×X` :

v`(t, x`) ≥ p`(x`) (15e)

∀` : v`(t, x`) ∈ C1([0, T ]×X`). (15f)

The dual variables v` are auxiliary functions that decrease along trajectories (15c) and along transi-
tions (15d). The auxiliary functions upper bound the location-costs by (15e). The dual variable αe will
be zero if transition e is traveled at most Ne − 1 times (complementary slackness of (11g)).

Theorem 9. Programs (11) and (15) will possess equal objectives p∗ = d∗ when each X` is compact and
(T,Ne) are each finite.

Proof. p∗ = d∗ : Strong duality follows by arguments from Theorem 2.6 of [10], specifically from bound-
edness of measures (Theorem 7) and compactness (Assumption A2).

3.5 Linear Matrix Inequality Program

The Moment-SOS hierarchy is a method to produce upper bounds to measure LPs by a sequence of
Linear Matrix Inequalities (LMIs) of increasing size [9]. Let X ∈ Rn be a basic semialgebraic set
X = {x | gi(x) ≥ 0, i = 1..Nc}, which is the locus of a finite number of finite-degree polynomial inequality
constraints. An α-moment of a measure µ ∈M+(X) for α ∈ Nn, β ∈ N is ya = 〈xα, µ〉. To each moment
sequence y, there is an associated Riesz linear functional Ly acting as Ly[

∑
α,β cαβx

α]→
∑
α cαyα.

Assume that each polynomial gi(x) =
∑
γ giγx

γ in the definition of X has a finite degree di. If
the set X satisfies an Archimedean condition (all compact sets may be made Archimedean by adding a
redundant ball constraint) [25], then necessary and sufficient conditions for the sequence y of putative
moments (pseudo-moments) up to degree 2d to be moments of a measure µ ∈ M+(X) are that the
following matrices indexed by monomials α, β ∈ Nn are Positive Semidefinite (PSD):

Md(y)αβ = yα+β , Md−di(giy)αβ =
∑
γ giγyα+β+γ . (16)

The measure µ is referred to as the representing measure of the pseudo-moments y. The symbol Md(Xy)
will denote a block-diagonal matrix formed by the matrices in (16).

The basic semialgebraic sets containing measures in (11) are

∀` : X` = {x` | g`i(x`) ≥ 0 | i = 1..N `
c}

∀` : X0` = {x` | g0`i(x`) ≥ 0 | i = 1..N0`
c } (17)

∀e : Se = {xsrc(e) | gei(xsrc(e)) ≥ 0 | i = 1..Ne
c }.

Polynomials g`i(x), g0`i(x`), gei(xsrc(e)) have finite degrees d`i, d0`i, dei respectively for each i, `, e
as appropriate. Let (y0`,yp`,y`, re) be pseudo-moments of the measures (µ0`, µp`, µp, ρe). The Liouville
equation (11b) may be expressed as a collection of affine constraints in the pseudo-moments. Substituting
the test function v(t, x`) = xα` t

β into (11b) yields a relation for each α ∈ Nn` , β ∈ N, ` ∈ 1..L:

0 = −〈xα` tβ , µp`〉+ 〈xα` tβ , δt=0 ⊗ µ0`〉+ 〈Lf`x
α
` t
β , µ`〉

+
∑

dst(e)=`〈Re(x`)
αtβ , ρe〉 −

∑
src(e)=`〈x

α
` t
β , ρe〉. (18)

The expression Liou`αβ(y0`,yp`,y`, rE`) = 0 may be defined to abbreviate the affine constraint in pseudo-
moments induced by (18), where E` = {e ∈ E | src(e) = ` or dst(e) = `} is the set of arcs including
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location `. For a constant degree d ∈ N, define the quantities d′` = d + ddegf`/2e − 1 and ke = degRe.
The degree-d LMI relaxation of (11) with variables (y0`,yp`,y`, re) is

p∗d =max
∑
`

∑
α p`αy

p`
α (19a)∑

` y
0`
0 = 1 (19b)

∀` : α ∈ Nn` , β ∈ N, |α|+ |β| ≤ 2d

Liou`αβ(y0`,yp`,y`, rE`) = 0 by (18) (19c)

∀e : ye0 ≤ Ne (19d)

∀` : Md(X
0`y0`), Md([0, T ]×X`yp`), Md′

`
([0, T ]×X`y`) � 0 (19e)

∀e : Mkede(Ser
e) � 0. (19f)

The affine constraints (19c)-(19d) implement a truncation of constraints (11d)-(11d) in terms of finite-
length pseudo-moments. Constraints (19e)-(19f) ensure that there exist representing measures for the
pseudo-moments. Solutions to the SDP generated from the LMI (19) by raising the degree d will form a
chain of upper bounds p∗d ≥ p∗d+1 ≥ . . . ≥ p∗.
Theorem 10. The sequence of upper bounds will satisfy limd→∞ p

∗
d = P ∗ when ∀` = 1..L : [0, T ] ×X`

and X0` are Archimedean, f`(t, x) are polynomial, and ∀e : Ne are finite.

Proof. The upper bound sequence will converge to p∗ when all sets are Archimedean, there exists an
interior point to constraints (11b)-(11g), and all measures (µ0`, µp`, µ`, ρe) have bounded moments ([10],
Theorem 5 of [26] and Theorem 4.4 of [9]).

Let x0 be an initial point starting in some nonempty location X`. The set of measures where µ0` =
δx=x0 , µp` = δt=0 ⊗ δx=x0 and all other measures are the zero measure is an interior point to (11b)-
(11g) (trajectory starting at x0 with zero elapsed time). Given that each [0, T ] × X` is compact, it is
sufficient that all measures have bounded masses in order for the measures to have bounded moments.
The masses of ρe are each upper bounded by the finite quantity Ne by constraint (11g), and the sum
of the masses of µ0` are upper bounded by 1 through (11c). The sum of constraint (11b) with test
function v` = 1 along all ` is

∑L
`=1〈1, µp`〉 =

∑L
`=1〈1, µ0`〉 = 1, so each mass of µp` is finite. Lastly,

the use of a test function of v` = t on each Liouville equation in (11b) yields the finite expression
〈1, µ`〉 = 〈t, µp〉−

∑
dst(e)=`〈t, ρe〉+

∑
src(e)=`〈t, ρe〉. The sequence of upper bounds will therefore converge

to p∗ as d→∞ with p∗ = P ∗ from Theorem 8.

The sizes of the moment matrices in problem (19) are listed in Table 1. The computational complexity
of numerical SDP solvers scale in a polynomial manner with the size of the largest PSD matrix [12]. These
PSD matrix sizes may be reduced if extant structure such as symmetry, quotient, or sparsity structure
is present in (11).

Table 1: Sizes of moment matrices in LMI (19)

Moment Md(y
0`) Md(y

p`) Md′`
(y`) Mdke(r

e)

Size
(
n`+d

d

) (
1+n`+d

d

) (1+n`+d′`
d′`

) (
1+n`+ked

ked

)
Remark 2. Guards with codimension-1 sets Se may replace their PSD localizing constraints with linear
equality constraints or quotient ring reductions in re.

Remark 3. Algorithm 1 of [23] may be used to attempt extraction of near-optimal trajectories if the
moment matrices ∀` : Md(y

0`),Md(y
p`) are low-rank.

4 Extensions

This section details extensions to the previously presented peak estimation framework for hybrid systems.
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4.1 Safety

This section verifies safety of hybrid system trajectories with respect to a group of unsafe sets, based on
prior (ODE) work in [27]. Let Xu` = {x` | p`i(x`) ≥ 0, i = 1..Nu} be an unsafe basic semialgebraic set
for each location ` = 1..L.

Letting c`(x`, y`) be a distance function (cost) with a point-unsafe-set distance

c`(x`;Xu`) = inf
y`∈Xu`

c`(x`, y`), (20)

the distance estimation problem for hybrid systems is

Q∗ = inf
`′∈1..Nu,t∈[0,T ],`0,x0

c(x(t | x0);Xu`′ )

Dynamics follow Algorithm 1 with input (`0, x0,H, T )

x0 ∈ X0`.

Following the procedure from [27], a joint-measure η`(x`, y`) ∈M+(X`×Xu`) is added for each unsafe
set. The distance objective in (21) is replaced with an equivalent expectation over the joint probability
measure 〈c`(x`, y`), η`〉.

The measure program for distance estimation with variables (µp`, µ0`, µ`, η`, ρe) is

q∗ = inf
∑L
`=1〈c`(x`, y`), η`〉 (21a)

π
x`
# η` = π

x`
# µp` ∀` (21b)

Constraints (11b)-(11d) (21c)

Variables from (11e)-(11g) (21d)

∀` : η`(x`, y`) ∈M+(X` ×Xu`). (21e)

4.2 Uncertainty

Peak estimation for hybrid systems may be applied to systems with uncertainty, extending the ODE
case in [28]. Let W` ⊂ RNw` be a compact set of time-dependent disturbances for each location. Each
location obeys dynamics ẋ` = f(t, x`(t), w`(t)), ∀t, ` : w`(t) ∈W`, in which there is no prior assumption
of continuity on the process w(·). The uncertainty act as adversarial optimal controls attempting to raise
the peak functions (p`).

Uncertainty in this manner may be realized by adjusting the Liouville equation in (11b) and occu-
pation measure definitions in (11e) (where w`(t) acts as a Young measure/relaxed control [29]) as in

µp` = δ0 ⊗ µ0` + πtx#L†f`µ` ∀` (22a)

+
∑

dst(e)=`Re#ρe −
∑

src(e)=` ρe

µ` ∈M+([0, T ]×X` ×W`) ∀`. (22b)

A particular form of time-dependent uncertainty is switching/polytopic structure. If the system model
is ẋ` =

∑Ns
k wk`fk`(t, x) for Ns switching modes and wk` ≥ 0,

∑
k wk` = 1, then the Liouville equation

in (22) may be expressed for occupation measures µk` ∈M+([0, T ]×X) as

µp` = δ0 ⊗ µ0` +
∑Ns
k L

†
fk`
µk` ∀` (23a)

+
∑

dst(e)=`Re#ρe −
∑

src(e)=` ρe

µ` ∈M+([0, T ]×X`) ∀`. (23b)

Time-independent uncertainty restricted to a compact set Θ ⊂ RNθ may also be added by adjoining
to dynamics a new state ẋ` = f(t, x`(t), θ, w`(t)), θ̇ = 0. This new state θ is preserved between transition
jumps, inducing lifted reset maps R̃s→t(xs, θ) = (R(xt), θ).

5 Numerical Examples

Experiments are available at https://github.com/Jarmill/hybrid_peak_est, and were written in MAT-
LAB 2021a. Dependencies include Gloptipoly3 [30], Yalmip interface [31], and Mosek [32]. All experi-
ments were run on an 2.30 GHz Intel i9 CPU with 64.0 GB of RAM.
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5.1 Two-Mode

This system is a modification of Example 2 of [19] to ensure improved numerical conditioning. The two
locations correspond to modes of ‘No Control’ (` = 1) and ‘Control’ (` = 2) with dynamics

f1(t, x) = [x2;−x1 + x3;x1 + (1 + x3)2(2x2 + 3x3)]

f2(t, x) = [x2;−x1 + x3;−x1 − (2x2 + 3x3)]. (24a)

5.1.1 Two-Mode: Standard

Trajectories start in the initial set X01 = {x | ‖x‖22 = 0.22} (X02 = ∅), and evolve for a time horizon of
T = 20. The transition edges are E = {(1, 2), (2, 1)} with guard surfaces

S(1,2) = {x | x21/4 + x22 + x23 = 1.52} (25)

S(2,1) = {x | x21 + x22 + x23 = 0.22},

and each transition has a trivial reset map Re(x) = x. The Zeno caps used in simulation were N(1,2) =
N(2,1) = 5 with total spaces of X1 = X2 = [−1.5, 1.5]3. Figure 1 plots system trajectories in location
1 (left) and 2 (right), starting from the initial set X0 (gray region). The peak estimation task for
this system is to upper bound extreme values of p2(x) = x21 along system trajectories (p1(x) = −∞).
Solving the SDP generated from LMI (19) at orders 1-5 produces the sequence of upper bounds, p∗1:5 =
[2.250, 0.6514, 0.4643, 0.4076, 0.3958].

Figure 1: Deterministic Two-Mode Bound of x2
1 ≤ 0.3958 = p∗5

5.1.2 Two-Mode: Distance Estimation

Distance estimation is conducted for the deterministic two-mode system (24) with respect to the half-
sphere unsafe set

Xu = {x | 0.42 ≥ (x1 + 0.5)2 + (x2 + 0.5)2 + (x3 − 0.5)2, x3 ≥ 0.5}. (26)

The distance penalty c(x, y) = ‖x− y‖22 is used in locations ` = 1, 2 with the unsafe set Xu. SDP lower
bounds for the distance min` miny∈Xu‖x` − y‖22 (via (21)) are p∗1:5 = [0, 0, 0, 2.799× 10−3, 7.942× 10−3].
The output of distance estimation is plotted in Figure 2. The solid red half-sphere is the set Xu, and
the corona surrounding Xu is the set of all points with an L2 distance at most 0.0891 =

√
p∗5 away from

Xu.
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Figure 2: Deterministic Two-Mode Distance Bound of miny∈Xu‖x− y‖2 ≤ 0.0891 =
√
p∗5

5.1.3 Two-Mode: Uncertainty

Time-dependent uncertainty may be added to dynamics in (24) by defining a process w(t) ∈ [−1, 1] under
the dynamics f̃`(t, x) = f`(t, x) + [0; 0;w]. The SDP bounds for x21 when w is realized as switching-type
uncertainty is p∗1:5 = [2.250, 1.4029, 1.0350, 0.9790, 0.9660]. System trajectories and the order-5 bound of
this noisy system are plotted in Figure 3.

Figure 3: Noisy Two-Mode Bound of x2
1 ≤ 0.9660 = p∗5
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5.2 Right-Left Wrap

This example has a single location X = [−1, 1]2 with nontrivial reset maps. The dynamics in the single
location are

ẋ =

[
−x2 + x1 ∗ x2 + 0.5
−x2 − x1 + x31

]
. (27)

System (27) has a stable equilibrium point at (−0.8128, 0.2758) and a saddle point at (−0.4288, 0.3499).
The following right→top and left→bottom transitions are defined with Zeno caps of N = 5

Sright→top = {x | x1 = 1, x2 ∈ [−1, 1]} Rright→top = [x2, x1]T (28)

Sleft→bottom = {x | x1 = −1, x2 ∈ [−1, 1]} Rleft→bottom = [1− x2, x1]T .

The set X is invariant under these state transitions. A peak estimation task to maximize p(x) =
−(x1 + 0.5)2 + (x2 + 0.5)2 is defined on system dynamics (27) starting from the initial set X0 = {x |
0.22 = (x1 − 0.5)2 + (x2 + 0.3)2} for a T = 5 time horizon. SDP upper bounds for this objective are
p∗1:6 = [0, 0,−0.3644,−0.5259,−0.5659,−0.5721].

Figure 4 plots the ODE system dynamics in (27). Figure 4b plots hybrid system dynamics in cyan,
starting from the black-circle X0. The p∗6 bound is indicated in the red circle of radius

√
−p∗6 = 0.7564,

in which no considered hybrid system trajectory is contained.

(a) System dynamics in (27) (b) Bound of p∗6 = −0.5721

Figure 4: Peak Estimation of Right-Left Wrap Dynamics (27) and (28)

6 Conclusion

An existing peak estimation framework for ODE systems was extended in this paper to hybrid systems.
A hierarchy of SDPs result in a (convergent) decreasing sequence of upper bounds to the true peak
value. Extensions to the hybrid peak estimation framework, such as bounding the distance to unsafe
sets [27] and estimation of systems with uncertainty [28], can be accomplished by modifying equations
in the LP. Future work includes performing peak-minimizing (L1-optimal) control of hybrid systems
[33], data-driven peak estimation of hybrid systems [34], applying numerical techniques to perform peak
estimation on more complicated systems (e.g., rigid body dynamics in robotics), and generalizing analysis
of deterministic hybrid dynamics to Markov Decision Processes.
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