
Introduction

Blasting is one of the most economical and
energy-efficient methods of rock fragmen-
tation, and is widely used in mining, civil,
construction, and environmental projects
around the world. However, there are several
drawbacks, including (but not limited to)
complaints from nearby residents (Kahriman,
2001), damage to residential structures (Singh
et al., 1997; Gad et al., 2005; Nateghi et al.,
2009), damage to adjacent rock masses and
slopes (Villaescusa et al., 2004; Yi and Lu,
2006; Singh et al., 2005), damage to existing
groundwater conduits, and damage to the
ecology of the nearby area (Khandelwal and
Singh, 2007). The main cause of these
undesirable effects is excessive blast-induced
ground vibrations. Thus, predicting the
adjacent ground vibrations is essential for
safe, environmentally responsible, and
sustainable blasting operations. Ground
vibrations can be defined and measured in
terms of peak particle displacement, velocity,

acceleration, and frequency. The peak particle
velocity (PPV) has been used by many
researchers as a versatile metric for both
predicting and controlling the blast-induced
ground vibrations. There are three major
methods cited in the literature for PPV
prediction, including empirical, theoretical, and
artificial intelligence techniques. 

Conventionally, there are some widely
used empirical predictors for estimation of the
blast-induced ground vibrations. The US
Bureau of Mines proposed the first ground
vibration predictor (Duvall et al., 1959).
Subsequently, other empirical predictors were
proposed (Langefors and Kihlstrom, 1963;
Ambraseys and Hendron, 1968; Ghosh and
Daemen; 1983; Pal Roy, 1993). These methods
consider two main input parameters –
maximum charge used per delay and distance
between the blast face and the monitoring
points. Despite the simplicity and fast
application of these methods, several recent
studies have shown their shortcomings in
rendering acceptable predictions (Khandelwal
and Singh, 2007). More recently, Chen and
Huang (2001) conducted a seismic survey to
predict blast-induced vibrations and PPV
empirically. Ozer et al. (2008) examined the
results of some 500 blasts in a limestone
quarry in Turkey for an experimental analysis
of PPV. Ak et al. (2009) performed a series of
ground vibration tests in a surface mine in
Turkey in order to measure PPV. Aldas (2010)
proposed an empirical relationship between the
explosive charge mass and PPV. Deb and Jha
(2010) examined the effects of surface
blasting on adjacent underground workings,
using PPV measurements. Mesec et al. (2010)
proposed an empirical relationship between
PPV and distance for a series of vibration tests
in some sedimentary rock deposits, comprising
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mainly limestone and dolomite. Nateghi (2011) examined the
effects of different rock formations, different detonators, and
explosives on ground vibrations induced by blasting at a dam
site. 

Generally, empirical methods have two major limitations:
lack of generalizability and limited number of input variables.
Some researchers have proposed theoretical models based on
the physics of blasting. For instance, Sambuelli (2009)
proposed a theoretical model for prediction of PPV on the
basis of some blast design and rock parameters. However,
because of the complicated nature of the blasting process and
its highly nonlinear interaction with the non-homogeneous
and non-isotropic ground, a closed form mathematical model
is almost impossible. Recently, following the rapid growth in
soft computing methods, including artificial intelligence,
several researchers have tried to benefit from these newly
emerging techniques. In this category, artificial neural
networks (ANNs) might be the most widely used method for
prediction of the ground vibrations. ANNs are among the
techniques that map input variables into the output(s). The
technique is capable of handling extremely nonlinear
interactions between different variables through assigning
and adjusting proper weights. However, no functional
relationship is proposed (‘black-box’ modelling). Khandelwal
and Singh (2006) used ANNs for prediction of PPV in a large
mine in India. Iphar et al. (2008) employed an adaptive
neural-fuzzy inference system (ANFIS) for prediction of PPV
in a mine in Turkey. Dehghani and Ataee-pour (2011)
employed ANNs for prediction of PPV in a large open pit
copper mine. Monjezi et al. (2011) used ANNS to predict
blast-induced ground vibrations in an underground project.
Bakhshandeh et al. (2012) used ANNs to adjust burden,
spacing, and total weight of explosive used in order to
minimize PPV. 

The support vector machine (SVM) is a relatively new
computational learning method for solving classification and
nonlinear function estimation, which is based on statistical
learning theory. The SVM has been adopted rapidly by many
researchers in different fields of geology, geotechnical, and
environmental engineering (Brenning 2005; Yu et al., 2006;
Samui 2008; Mountrakis et al., 2011; Dindarloo, 2014).
Experimental results have revealed the superior performance of
SVMs with respect to other techniques. The reasons behind the
successful performance of SVMs, compared to other powerful
approaches like ANNs, are twofold. Firstly, rather than being
based on empirical risk minimization (ERM) as ANNs, which
only minimizes the training errors, a SVM makes use of
structural risk minimization (SRM), which seeks to minimize
an upper bound on the generalization error. Secondly, finding
a SVM solution corresponds to dealing with a convex quadratic
optimization problem. Thus, the Karush-Kuhn-Tucker (KKT)
statements determine the necessary and sufficient conditions
for a global optimum (Scholkoff and Smola 2002). For ANNs,
however, it is not guaranteed that even a well-selected
optimization algorithm will achieve the global minimum in
finite computation time (Moura et al., 2011).

In this study, the SVM was used for analysis of the blast-
induced ground vibration by prediction of PPV. A large iron
ore mine in Iran was selected as a case study. After obtaining
different input variables, a SVM model was constructed and
tested. 

Methods

Developed by Boser, Guyon, and Vapnik (Boser, Guyon, and
Vapnik, 1992; Vapnik, 1995, 1998), support vector machine
(SVM) is a relatively new computational learning method for
solving classification and nonlinear function estimation,
which is based on statistical learning theory. SVM is based on
Vapnik-Chervonenkis theory (VC theory), which recently
emerged as a general mathematical framework for estimating
(learning) dependencies from finite samples. This theory
combines fundamental concepts and principles related to
learning, well-defined formulation, and self-consistent
mathematical theory. Moreover, the conceptual framework of
VC theory can be used for improved understanding of various
learning methods developed in statistics, neural networks,
fuzzy systems, signal processing, etc. (Widodo and Yang,
2007).

LIBSVM is a library of SVM algorithms (Chang and Lin,
2011) that was used along with Rapidminer, a data mining
(DM) software package (Hofmann and Klinkenberg, 2013).
The theory of SVM regression, used in LIBSVM, is presented
in the following section.

Support vector regression

Consider a set of training points, {(x1, z1), . . . , (xL, zL)},
where xi ∈ Rn is a feature vector and zi ∈ RL is the target
output. Under given parameters C > 0 and ∈ > 0, the standard
form of the support vector regression (SVR) (Equation [1])
with constraints (Equations [2]-[4]) are as follows (Chang
and Lin, 2011):

[1]

subject to

[2]

[3]

[4]
The dual problem (Equation [5]) is

[5]

subject to constraints (Equations [6]-[7])

[6]

[7]

where

[8]

After solving Equation [5], the approximate function is:

▲
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[9]

The nomenclature is presented in Table I. For more
detailed information about the theory and applications of
SVR, see Burges (1998), Müller et al. (2001), Hsu and Lin
(2002), Chapelle et al. (2002), and Smola and Scholkoff
(2004).

Case study

Golegohar iron ore mine is located in southern Iran, 50 km
from Sirjan, in the southwest of Kerman Province. This iron
ore complex includes six known orebodies and is one of the
largest producers and exporters of iron concentrate in the
country. Mining is by open pit methods, and the measured
and indicated reserves of over 1.1 billion tons of ore. The
Golegohar deposits are situated in a metamorphic complex of
probable Paleozoic age with a northwest-southeast trend,
known as the Sanandaj-Sirjan zone, which is parallel to the
Zagros thrust belt on the southwest and is bounded on the
northeast by the Urmieh-Dukhtar volcanic belt (Moxham and
McKee, 1990). The deposits are considered to be of
sedimentary or volcano-sedimentary origin, laid down in
deltaic or near-shore environments that resulted in abrupt
lateral and vertical changes in the sedimentary facies.
Subsequent deep burial, folding, metamorphism, and erosion
left a group of folded or down-faulted magnetite-rich deposits
as elongated remnants of an iron formation that originally
had a broader, perhaps more continuous extent. The mine’s
metamorphic rocks consist mostly of gneiss, mica schist,
amphibolite, quartz schist, marble, dolomite, and calcite
(Karimi Nasab et al., 2011). Figure 1 illustrates one of the
operating pits. The geometry and slope stability factors of the
mine are summarized in Table II.

Parameter selection

Rock mass, blast pattern and explosives, and distance from
the face are the three major parameters in blast-induced
ground vibrations, and hence the measured PPV. The
dominant rock types at Golegohar include amphibolite schist,
quartz schist, chlorite schist, haematite, and magnetite.
Density (t/m3), Young’s modulus (Gpa), uniaxial
compression strength (Mpa), and tensile strength (Mpa) of
representative samples of all the rock types were measured in
the rock and soil mechanics laboratory at the mine site 
(Table IIIa). The major discontinuities have a significant
influence on blast wave propagation in the rock mass. The
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Table I

SVR notations

b Intercept

C A parameter representing the compromise between

machine capacity and training error

w Weight vector

ϕ Mapping function

α Function parameter

Q Regression function

β,β* Slack variables

K Kernel function

l Number of observations

Table II

Geometric parameters of pit No.1, Golegohar.

Final wall slopes in ore and waste 45 degrees

Slopes in overburden 38 degrees

Safety bench height 30 m

Safety bench width 10 m

Safety bench slope 65 degrees

Working bench height 15 m

Figure 1 – Open pit mining at Golegohar (CNES/Astrium image on Google Earth, 29°05’15.21” N and 55° 19’ 03.24” E.  Retrieved 3 April 2015)
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spacing, dip, and direction of the two major joint sets are
presented in Table IIIb (Dindarloo et al., 2015). The second
group of important parameters is related to the drilling
pattern and explosives used. A typical production, buffer, and
pre-split pattern are illustrated in Figure 2. The main
explosive is ANFO, and a blast delay of 15–75 ms between
rows is used. The descriptive statistics of the pattern
geometry, including burden, spacing, hole depth to burden
ratio, specific charge, and stemming are presented in 
Table IV. Thus, the 12 input variables include: density,
Young’s modulus, uniaxial compression strength, tensile
strength, joint spacing, burden, spacing, hole depth to burden

ratio, specific charge, stemming, delay per row, and distance
between the measurement point and the blasting face. Since
the main charge for all holes was ANFO, the parameter for
type of explosive was omitted, as it was the same for all tests.

Results and discussions

One hundred and twenty experiments were conducted at
different distances, 15 m to 7500 m, from the blasting faces.
The PPV was measured using the procedures described by
Dowding (1992). One hundred data-sets, including the 12
input variables and one output (PPV), were used in the SVR
model. The results of 20 randomly selected experiments were

▲
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Table III

Mechanica l and physical properties. (a) Intact rock, (b) discontinuities

Petrology: (a) Intact rocks

Item Amphibolite schist Quartz schist Chlorite schist Haematite Magnetite

Density (t/m3) Mean 2.81 2.69 2.84 4.02 4.41

Range 2.76-3.02 2.63-2.84 2.76-2.95 3.65-4.35 4.15-4.62

Young’s modulus (Gpa) Mean 34.8 52.7 37.6 29.7 42.6

Range 19.6-47.1 18.6-77.3 15.7-40.3 14.9-41.2 33-55.9

Uniaxial compressive strength (Mpa) Mean 42.8 112.5 105.9 66.8 121.4

Range 18.6-77.3 35.2-176.2 33.7-155.1 30.8-114.8 35.2-176.2

Tensile strength (Mpa) Mean 15.4 7.54 13.47 6.95 9.24

Range 12.1-17.8 6.99-9.42 8.24-18.42 4.63-10.52 5.5-14.62

(b) Discontinuities

Major joints Spacing (m) Dip (degree) Direction

Set 1 1.1 45 Northeast-

southwest

Set 2 0.8 75 North-south

Figure 2 – Blast pattern (red: pre-splitting hole, yellow: ANFO, brown: stemming/crushed rock, white: no stemming/charging). Distances are in metres, and

angles in degrees



used for model testing. Figure 3 depicts a scattergram of the
predicted SVR versus the measured PPVs for the 20 testing
data-sets. The coefficient of determination (Equation [10]),
root mean squared error (RMSE, Equation [11]), and mean
absolute percentage error (MAPE, Equation [12]) were used
as the statistical metrics for evaluation of the SVR model
(Table V). The obtained R2 value of 0.99 shows a very good
correlation between the predicted and measured PPVs. The
obtained MAPE value of less than 10% demonstrates the
high accuracy and applicability of the method in PPV
estimation, using the 12 input variables.

[10]

[11]

[12]

where
ymeas and ypred are the observed and predicted values,
respectively
ymeas and ypred and are mean observed and predicted
values, respectively.

Sensitivity analysis

In order to analyse the effect of each individual variable on the
SVM prediction accuracy, a sensitivity analysis was performed.

The optimized SVM parameters were kept the same for twelve
sensitivity analysis runs. In each run, one of the input
variables was omitted and its effect on prediction accuracy was
examined. The results showed that omission of distance,
specific charge, delay per row, and joints spacing had the
highest negative effects on SVM predictions. Hence the method
is more sensitive to these variables. The results of sensitivity
analysis for other variables are shown in Figure 4.

Comparison with traditional methods

The partial least-square regression (PLSR) method is mainly
used for modelling linear regression between multiple
dependent variables and multiple independent variables. An
advantage of this method over linear and nonlinear multiple
regressions is that PLSR combines the basic functions of
regressing models, principal component analysis, and
canonical correlation analysis (Zhang et al., 2009). In
addition, PLSR avoids the harmful effect of multi-collinearity
and regressing when the number of observations is less than
the number of variables. In the context of linear MR, the
least-squares solution for Equation [13] is given by 
Equation [14].

Peak particle velocity prediction using support vector machines

The Journal of The Southern African Institute of Mining and Metallurgy VOLUME 115                                       JULY  2015 641 ▲

Table V

Statistics of SVM in PPV prediction

R2 MAPE (%) RMSE (mm/s)

0.99 8.5 3.45

Figure 4 – Sensitivity analysis

Table IV

Descriptive statistics of the collected data.

No Parameter Symbol Unit Min. Max. Mean DS

1 Burden B metre 3.83 5.88 4.81 0.68

2 Spacing S metre 4.37 7.11 6.14 0.91

3 Hole depth – H/B 2.04 4.44 3.40 0.62

burden ratio

4 Stemming ST metre 3.86 7.95 5.19 0.79

5 Powder factor PF kg/t 0.21 0.47 0.32 0.07

Figure 3 – SVM predicted vs. measured PPV (mm/s)
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Y = XB + ε [13]

B = (XTX)–1XTY [14]

Often, the problem is that XTX is singular, either because
the number of variables (columns) in X exceeds the number
of objects (rows), or because of collinearities. PLSR
circumvents this by decomposing X into orthogonal scores
(T) and loadings (P) (Mevik and Wehrens, 2007):

X = TP [15]

Furthemore, PLSR regresses Y, not on X, but on the first
α columns of the scores. The goal of PLSR is to incorporate
information on both X and Y in the definition of the scores
and loadings. The scores and loadings are chosen in such a
way to describe as much as possible of the covariance
between X and Y.

The result of the prediction of PPV by the PSLR technique
is illustrated in Figure 5. Statistics of the predictions, for the
same testing data-set as SVM, are summarized in Table VI.
The R2 value in PLSR decreased to 94% (i.e., the PLSR can
model 94% of the variability in PPV based on the 12
independent variables). Furthermore, both the obtained
RMSE and MAPE values in PLSR (see Table VI) were poorer
than the SVM (see Table V). 

Conclusions

Blast-induced ground vibration control is a major challenge
in construction projects that employ blasting. Peak particle
velocity (PPV) is a widely used metric for evaluation of the
magnitude and severity of the possible inconvenience to
people and damage to adjacent structures and the
environment. This study demonstrates that the support vector
machine (SVM) approach is a versatile tool for prediction of
PPV based on the 12 input variables used. The very high
accuracy of prediction and fast computation are the two major
advantages of the method. Results of the sensitivity analysis
demonstrated the considerable effect of distance, specific
charge, delay per row, and joint spacing on PPV. Thus, in
specific instances where the level of PPV is higher than a pre-
specified threshold, appropriate remedies can be applied.
Modification of the specific charge and the amount of delay
per row are expected to have direct effects on PPV reduction.
Although the SVM was used in a large surface mining case
study, it is applicable to all other surface blasting projects
with a similar procedure.
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