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Peak Reduction and Clipping Mitigation by

Compressive Sensing
Ebrahim Al-Safadi and Tareq Al-Naffouri

Abstract

This work establishes the design, analysis, and fine-tuning of a Peak-to-Average-Power-Ratio (PAPR) reducing

system, based on compressed sensing at the receiver of a peak-reducing sparse clipper applied to an OFDM signal at

the transmitter. By exploiting the sparsity of the OFDM signal in the time domain relative to a pre-defined clipping

threshold, the method depends on partially observing the frequency content of extremely simple sparse clippers

to recover the locations, magnitudes, and phases of the clipped coefficients of the peak-reduced signal. We claim

that in the absence of optimization algorithms at the transmitter that confine the frequency support of clippers to a

predefined set of reserved-tones, no other tone-reservation method can reliably recover the original OFDM signal

with such low complexity.

Afterwards we focus on designing different clipping signals that can embed a priori information regarding the

support and phase of the peak-reducing signal to the receiver, followed by modified compressive sensing techniques

for enhanced recovery. This includes data-based weighted ℓ1 minimization for enhanced support recovery and phase-

augmention for homogeneous clippers followed by Bayesian techniques.

We show that using such techniques for a typical OFDM signal of 256 subcarriers and 20% reserved tones, the

PAPR can be reduced by approximately 4.5 dB with a significant increase in capacity compared to a system which

uses all its tones for data transmission and clips to such levels. The design is hence appealing from both capacity

and PAPR reduction aspects.

Index Terms

PAPR reduction, tone reservation techniques, compressive sensing, sparse signal estimation.

I. INTRODUCTION

DESPITE the introduction of Single Carrier Frequency Division Multiple Access (SC-FDMA) into current

multicarrier transmission standards, the success of Orthogonal Frequency Division Multiplexing (OFDM) in

high data rate transmission remains truly remarkable, with no better proof than the fact that variants of the IEEE

802.16 and IEEE 802.18 standards are still emerging [1], [2].

The main problem with OFDM signalling however lies in the high temporal peaks relative to the signal mean,

portrayed in a parameter most commonly referred to as Peak-to-Average-Power-Ratio (PAPR)1. Since an OFDM

signal is typically constructed by the superposition of a large number of modulated subcarriers, its envelope fluctuates

with significant variance, causing the high PAPR. This enforces the use of expensive Power Amplifiers that should

operate linearly over a wide range of signal amplitudes, which also dissipate a lot of energy as well [3].

Due to the monotonically increasing importance of OFDM signals, the problem of high PAPR has received

considerable attention ever since OFDM was adopted in important communication standards (see [4], [5] for an

overview). In the last decade, the problem of high PAPR in OFDM systems has been tackled by a variety of

approaches, including coding techniques [6]–[8], selective mapping [9], [10], partial transmit sequences [11], [12],

constellation expansion (also known as tone injection) [13]–[16], tone-reservation [17]–[19], and companding [25]–

[27] to name a few. Although many of these reduction techniques are brilliant and very effective, the main obstacle

limiting the implementation of most of them is commonly related to high complexity [3].

In this paper we design, fine-tune, implement, and analyze a novel tone-reservation based PAPR reducing system

that makes a radically different utilization of these tones compared to previous techniques. Such a utilization could

The authors are with the Department of Electrical Engineering, King Fahd University of Petroleum & Minerals, Dhahran, KSA e-

mail:alsafadi@kfupm.edu.sa;naffouri@kfupm.edu.sa

1Some authors prefer using “PAR” instead for its simpler pronunciation. The fact remains however, that the problem is in the high frequency

power amplifiers and hence the ratio of powers is the main concern in general.
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not have been practically developed without the implementation of algorithms capable of robust reconstruction from

partial frequency observations. Furthermore, the application we propose completely switches the stage at which sig-

nal processing complexity is required from the transmitter’s side to the receiver’s side of the communication system,

and hence provides an alternate solution to different communication models where the transmitter’s complexity is

a bottleneck.

We wish to establish that to the best of our knowledge this is the first work in the literature where PAPR reduction

is achieved using compressive sensing (CS) [20]. The methods throughout will always assume sparsity of clipping

events relative to a clipping threshold, and use null tones to estimate these events, providing the first application

of the major work of Candes and Tao on recovering sparse signals from highly incomplete frequency information

[31] in this context. As such, we also remove the obstacle faced by all previous tone-reservation-based PAPR

reduction techniques beginning with the pioneering work of Tellado [16], [17] till very recently [21]–[24], all of

which required careful construction of peak-reducing signals at the transmitter in order to keep them orthogonal to

the data signal in the frequency domain.

Afterwards, we branch off to many solutions to enhance the basic algorithm by designing different clipping

techniques at the transmitter, modifying the CS algorithm to make use of a priori support and phase information,

and pursuing Bayesian Estimation techniques for joint support and amplitude estimation at the final stage.

Unless mentioned otherwise, we use lower case letters for (column) vectors and upper case letters for matrices.

Since we will be toggling extensively between the time domain and frequency domain, we will denote by x̌ the

Discrete Fourier Transform (DFT) of x, while we reserve the hat notation x̂ to denote the estimate of x. We use

x(i) to denote a scalar which is the ith coefficient of the vector x, while we reserve the subindex notation in xi to

denote a vector that is the ith column of the matrix X. Furthermore, we denote by xH the Hermitian conjugate of

x.

The vectors we treat throughout are complex in general and of dimensionN . We denote by ‖x‖p =
(

∑N
i=1 |x(i)|p

)1/p

the ℓp-norm of a vector x where p could be an integer or a real number between zero and one. In the special case

where p = 0 the definition is modified to the pseudo-norm ‖x‖0 =
∑N

i=1 q(i), where q(i) = {1 if x(i) 6= 0, and 0
otherwise}.

Although we use the upper case letter F for the Fourier matrix, it will be clear from context when we also use

it to denote the Cumulative Distribution Function (CDF) of a random variable x, Fx(x) and Complementary CDF,

F̄x(x) = 1 − Fx(x). The Probability Density Function (PDF) will then be denoted by fx(x). We use E[xm] to

denote the mth central moment of a random variable x.

II. TRANSCEIVER MODEL

We define the time-domain complex base-band transceiver model as

y(k) =
L−1
∑

ℓ=0

h(ℓ)x(k − ℓ) + z(k), (1)

where {x(k)} and {y(k)} denote the channel scalar input and output, h = (h0, h1, . . . , hL−1) is the impulse

response of the channel, z(k) ∼ CN (0, σ2z ) is AWGN. In matrix form this becomes

y = Hx+ z, (2)

where y and x are the time-domain OFDM receive and transmit signal blocks (after cyclic prefix removal) and

z ∼ CN (0, σ2zI).
By the cyclic prefix, H is a circulant matrix describing the cyclic convolution of the channel impulse response

with the block x and can be decomposed into H = FHDF where F denotes a unitary Discrete Fourier Transform

(DFT) matrix with (k, l) element

[F (k, ℓ)] = N−1/2 e−j2πkℓ/N , k, ℓ ∈ 0, 1, . . . , N − 1

D = diag(ȟ), and ȟ =
√
NFh is the DFT of the channel impulse response.
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III. BASIC PAPR REDUCTION DESIGN

The time-domain OFDM signal x is typically constructed by taking the IDFT of the data vector ď whose entries

are drawn from a generic constellation. Since this signal is of high PAPR, we add a peak-reducing signal c of

arbitrary spectral support at the transmitter and then estimate it and subtract it from the demodulated signal at the

receiver.

In what follows, the main condition we impose on c is that it be sparse in time. This is basically the case if we set

a clipping threshold γ on the envelope of the OFDM symbols, or if the transmitter were to clip the highest s peaks.

By the incoherence property of the time-frequency bases [31], this necessarily implies that c is then dense (i.e.

non-sparse) in the frequency domain [40] and such a condition thus cannot be satisfied in methods where the data

and peak-reducing signal must occupy disjoint tones [17]–[19], [21]–[24]. We will denote by Ic = {i : ‖c(i)‖ 6= 0}
the sparse temporal support of c where |Ic| = s = ‖c‖0.

Throughout this work, we will only consider clipping the Nyquist rate samples of the OFDM signal. Such a

restriction is unnecessary as it is irrelevant to the data-augmented CS methods we prescribe, but will otherwise

require more elaborate tools such as recent findings that deal with block sparsity [29], [30], and we are forced to

delay such topics for lack of space. With this in mind, following [57] and [59] we assume the entries of x will be

uncorrelated and that the real and imaginary parts of x are asymptotically Gaussian processes for large N . This

directly implies that the entries of x are independent and that the envelope of x can be modeled as a sequence of

iid Rayleigh random variables with a common CDF F|X|(|x|) and parameter σ|X| which we will use extensively

throughout.

Denoting Ω as the set of frequencies in an OFDM signal of cardinality N , let Ωd ⊂ Ω be the set of frequencies

that are used for data transmission and Ωm = Ω\Ωd the complementary set reserved for measurement tones of

cardinality |Ωm| = m. Note that for compressive sensing purposes, a near optimal strategy is to use a random

assignment of tones for estimating c [32]. 2

The data symbols ďi are drawn from a QAM constellation of size M and are supported by Ωd of cardinality

|Ωd| = N −m = k. Consequently, the transmitted peak-reduced time-domain signal is

x̄ = x+ c = FHSxď+ c (3)

where Sx is an N × k selection matrix containing only one element equal to 1 per column, and with m zero rows.

The columns of Sx index the subcarriers that are used for data transmission in the OFDM system. Similarly, we

denote by Sm the N ×m matrix with a single element equal to 1 per column, that span the orthogonal complement

of the columns of Sx.

Demodulation amounts to computing the DFT

y̌ = Fy = F(Hx̄+ z)

= F(FHDF(FHSxď+ c) + z)

= DSxď+ DFc+ ž (4)

where ž = Fz has the same distribution of z since F is unitary. Assuming the channel is known at the receiver, we

can now estimate c by projecting y̌ onto the orthogonal complement of the signal subspace leaving us with

ý = ST
my̌

= ST
mDFc+ ź

= Ψc+ ź. (5)

Note that ź = ST
mFz is an m× 1 i.i.d Gaussian vector with a covariance matrix Rź = σ2zIm×m.

The observation vector ý is a projection of the sparse N -dimensional peak-reducing signal c onto a basis of

dimension m ≪ N corrupted by ź. To demonstrate how such an N -dimensional vector can be estimated from

m linear measurements, we refer the reader to [31], [32], [37]–[39], [41]–[43], which also investigate theoretical

bounds on m, s, and N for guaranteed recovery under various conditions. Note that in our case, the number

of measurements m is equivalent to the number of reserved tones, while the number of clipped coefficients is

2Based on results in [28] it was found in [20] and [45] that by using difference sets, one is able to boost the performance of the recovery

algorithm and reduce the symbol error rate.
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Fig. 1: Clipping and Tone Reservation

equivalent to s, and hence the amount of clipping should be below certain bounds for reliable recovery given a

fixed number of tones m. However, these generic CS bounds will be significantly relaxed to our advantage in the

second part of the paper when we exploit background information from the data vector x.

Now coming back to our problem, assume the peak reducing signal c is s-sparse in time, given ý in (5), we can

use any compressive sensing technique at the receiver to estimate c. We will follow the main stream CS literature

and use a convex relaxation of an otherwise NP-hard problem [39] such as

min
c∈CN

‖ý −Ψc‖pp + λ‖ c ‖1 (6)

for recovery, where p is either 1 (for basis pursuit [36]) or 2 (for LASSO [54]) and λ is a parameter for adjusting

the sparsity penalty. The resulting solution by compressive sensing alone is an estimate ĉcs of the peak reducing

signal which not only reliably detects the positions of its nonzero entries, but also gives a good approximation to the

corresponding amplitudes. Notice however that the estimation of c is by no means restricted to convex relaxations

such as (6), and any compressive sensing method is valid in general, thus opening the door for many possible

improvements in regard to complexity and efficiency.

Fig. 1 illustrates the main points we’ve described so far, although caution must be taken as the actual OFDM

signal is generally complex.

The block diagram in Fig. 2 stresses that upon observing y, the receiver is confronted with two estimation

problems, the first is the typical estimation of the transmitted (clipped) OFDM signal x̄, and the second is the

estimation of the peak reducing signal c. Although the noise statistics are the same in both cases, the estimation

SNR is nevertheless very different, depending on the clipping procedure. We will hence reserve the SNR notation

for the received signal-to-noise-ratio and denote by CNR the clipper-to-noise-ratio which is defined as

CNR =
E
[‖Ψc‖2]

E [‖ź‖2]

=
E
[‖∑k∈Ic

c(k)ψk‖2
]

σ2z
(7)

and hence depends on the sparsity level ‖c‖0 = |Ic| and the magnitudes of {c(k)}k∈Ic
which are both functions of

the clipping threshold γ. This is the parameter of concern when it comes to compressive sensing in this paper. By

definition, the CNR is typically less than the SNR since the energy of c leaks onto all the subcarriers even though

the CS algorithm only has access to m
N of them, and also since the magnitudes of the nonzero coefficients of c are

practically smaller than those of x.

Note that in using CS our objective is to find the support Ic of the sparse signal and its complex coefficients

{v(k)}k∈Ic
at those locations. We could hence decompose the two problems into c = Scvc and use CS for the first

problem only, giving us Ŝ
(cs)
c based on Î(cs)

c , then refine our coefficient estimate by a more robust technique such
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Fig. 2: Block Diagram of Basic Design

as lease squares after conditioning on the detected support. To do so we define the m× s matrix Φ̂ = ΨŜ
(cs)
c and

refine our amplitude estimate to

v̂(ls|cs)c = (Φ̂HΦ̂)−1Φ̂H ý (8)

in which ĉ(cs,ls) = Ŝ
(cs)
c v̂

(ls|cs)
c follows. This dual approach is necessary in order to approach an oracle receiver that

uses least squares (see the interesting discussion in [42]).

IV. COMPARISON WITH TYPICAL TONE-RESERVATION PAPR REDUCTION TECHNIQUES

The common function of reserved tones in the literature is to act as a frequency support for the peak reducing

signal that is disjoint from the data-carrying tones [17]–[19], [22]–[24]. In other words, for each OFDM signal

a search is conducted for some signal c that will reduce the PAPR while being spectrally confined to a limited

number of tones such that ‖č‖2 − ‖ST
mč‖2 = 0 and hence čH ď = 0. Although many different methods exist to

find such a signal, we only mention the well-known work of Tellado’s [17] for brevity, which requires solving the

convex optimization problem

min
č

t

s.t. ‖x+ FHSč‖2 ≤ t (9)

where č = Fc is nonzero only on Ωc from the definition of S. Clearly, this optimization approach should result in

significantly more PAPR reduction compared to our design, since for the same number of reserved tones m, we

can only clip s < m maximum peaks, whereas by Tellado’s method no such restriction exists.

Most importantly however, the main complexity (i.e. the stage at which the optimization search is performed) in

these techniques is at the transmitter, since the main concern is to find c that will reduce the PAPR while occupying

completely disjoint tones in order to remain discernable at the receiver.

V. ENHANCED PAPR REDUCTION BY DATA-INDUCED WEIGHTED AND PHASE-AUGMENTED ℓ1
MINIMIZATION

So far we were only interested in using compressive sensing in its most abstract form as it applies to our problem.

We assumed, following the general literature on CS, that absolutely no information is known about the locations,

magnitudes, and phases of the sparse signal c, beyond the incomplete frequency observations which we obtained

from the reserved tones Ωc [31], [32]. In other words, the model ý = Ψc+ ź was assumed to exist independently

of the general transceiver model y = Hx̄+ z, even though in reality we know that c is intimately linked to x̄ by

the simple fact that it’s superimposed on x in the time domain.

The upshot of this section is to demonstrate that for optimal PAPR reduction using CS, the estimation of the

clipping signal at the receiver should exploit as much information as possible in both basis representations, which

can be achieved by weighting, constraining, or rotating the frequency-based CS search, based on information we

infer from the data in the time domain.

The difficulty of these problems is strongly related to the way clipping is performed. Although we have full

control in selecting the sparsity level and the clipping magnitudes and phases to best suite our purpose, there can’t

be a clipping technique that optimizes both the support recovery and coefficient estimation, and a compromise must

be made regarding the quality of the two.
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Fig. 3: Peak Suppression Illustrated on the Complex Plane

A. Homogeneous Clipping Techniques

we first begin with defining two simple clipping techniques that do not require any optimization or spectral

confinement, and although we derive their PDFs along other properties, we focus exclusively on deterministic CS

enhancement techniques3, and delay the matter of Bayesian compressive estimation or sensing to the following

section.

1) Peak Suppression to γ (PS): Because clipping is done on the coefficients of x whose envelope exceed γ,

the most natural construction of the clipping signal c would be to basically suppress the magnitudes of the entries

xi : |xi| ≥ γ to γ while preserving their angles, such that |xi + ci| = γ (see Fig. 3). This is commonly expressed

in the literature [58], [60] as

x̄(i) =







γe jθx(i) if |x(i)| > γ,

x(i) otherwise
(10)

Obviously, the PDF of the nonzero coefficients of cps will depend on the PDF of |x|
∣

∣

∣|x| > γ. Hence if we define

the binary set Q to label the mutually exclusive events of clipping or not at a certain index i then

f(|cps|(i)) =
∑

q∈Q

P (|cps(i)| |q)P (q)

= f|X|||X|>γ(|cps(i)| + γ)
(

F̄|X|(γ)
)

+ δ(|cps(i)|)F|X|(γ)

= α−1(γ)
(

F̄|X|(γ)
)

f|X|(|cps(i)| + γ)

· u(|cps(i)|) +F|X|(γ)δ(|cps(i)|) (11)

where u(·) is the unit step function and α(γ) =
∫∞
γ f|X| (|x|) dx is a normalizing constant which depends only on

γ and is required to ensure that
∫∞
0 f|X|||X|>γ (|x|||x| > γ) d|x| = 1. Not surprisingly, this is the most popular soft

clipping scheme due to its simplicity and relatively low spectral distortion.

Two features of this clipping scheme stand out in regard to CS enhancement. The first is that by suppressing all

the data coefficients to a fixed and known threshold value γ, we could actually infer some additional information

regarding possible clipping locations from the distance between the estimated coefficients’ magnitudes and γ. This

clipping scheme can hence provide additional information regarding the support Ic. The second feature is that the

nonzero coefficients of cps are exactly anti-phased with the data coefficients at Ic4, giving us another source of

information regarding the phases θcps(Ic) based on ˆ̄x.

In terms of delectability from standard compressive sensing, however, the method is quite un-satisfying if left

un-enhanced, demanding a higher number of measurements for the same sparsity level and Symbol Error Rate

(SER) compared to other clipping techniques. The main reasons are

3Although the LASSO estimate has a MAP interpretation [54] we don’t assume any prior or statistic is used.
4we will call such signals homogeneous clippers since their phases are aligned with the data.
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Fig. 4: Clipping with Fixed Magnitude ζ

1) Low CNR: The CNR in PS decreases very rapidly with γ. Assuming we neglect the effect of Ψ,

E[‖cps‖2] =
∑

k∈Ic

E
[

|cps(k)|2|
]

= E
[

|cps(k)|2
]

·E[‖c‖0]

=

∫ ∞

∞
|cps(k)|2f(|cps(k)|)d|cps(k)|
· E[‖c‖0]

=

[

α−1(γ)(2σ2|X| + γ2)e
− γ2

2σ2
|X| − γ

]

· E[‖c‖0] (12)

where the average sparsity

E[‖c‖0] = N2
(

F̄|X|(γ)
)2

−N
(

F̄|X|(γ)
)2

+N
(

F̄|X|(γ)
)

is simply the expectation of the Binomial corresponding to the sparsity level. Notice the accumulative effect

of γ on E[‖cps‖2].
2) The vanishing of |cpsmin|: the random magnitudes of cps are drawn from the tail distributions of the data

coefficients, making the limiting distance between the minimum penetrating coefficient and γ approach zero.

This is a critical bottleneck in CS that cannot be completely compensated for by increasing the CNR. Fletcher

et al. [41] and Wainwright [42]–[44] stress this point.

2) Digital-Magnitude Clipping (DMC): In order to avoid the problems of the previous clipping technique,

we could increment the magnitudes of cps by some constant until we’re satisfied with the CNR and |cpsmin|. This

however still leaves us with the burden of estimating the random magnitudes while destroying the enhanced support

detection property of peak suppression. Instead, consider inverting the procedure from suppressing to a fixed value

γ, to suppressing by a fixed value ζ . 5

Now that {|c(k)|}k∈Ic
= ζ , we’ve decreased the degrees of freedom of c to Ic and θc only. Furthermore, such

a clipping scheme preserves the anti-phase property as well, thus possibly reducing the problem to that of support

detection. 6

More generally, we could suppress the high peaks of x by a finite set of magnitudes {ζ0, ζ1, . . . , ζℓ} ∈ Zℓ, hence

the attribute of Digital Magnitude Clipping (or simply Digital Clipping for short), although we will only focus here

on the binary magnitude space |c| ∈ {0, ζ}.

Following the same procedure in finding (11), and by noting the interesting relation ‖c‖p = ζ‖c‖1/p

0 , p = 1, 2, ..,
the PDF of the clipping signal’s envelope is basically

f
(

|c|dm(i)
)

=
(

F̄|X|(γ)
)

δ (|c| − ζ) +F|X|(γ)δ (|c|) . (13)

5Quite expectedly, in [41] it was shown that, with no modification or realization to this additional structure, a compressive estimation

algorithm works best when all the nonzero coefficients in c are equal in magnitude.
6In the case of digital clipping with phase augmentation, the problem can also be recast as that of detecting a point on a sparse lattice,

and a regularized sphere decoding algorithm could be used [46]–[48].
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The PDF of a coefficient’s magnitude has been reduced to a Bernoulli random variable with probability of success
(

F̄|X|(γ)
)

. Furthermore, the two clipping methods PS and DMC achieve the same CNR when

ζ =

√

α−1(γ)
(

2σ2|X| + γ2
)

eγ
2/2σ2

|X| − γ. (14)

There is a conflicting interest in deciding the value of ζ . On one hand, the more we increase it the higher the

CNR and the easier the support detection becomes, but on the other, the overall error of the system dramatically

increases in case of faulty support detection. Furthermore, oversampling at the subsequent stage of transmission

becomes more complex in this latter case.

Nevertheless, we should at least set a lower bound on its value to ensure that all clipped coefficients will always

end up with magnitudes equivalent to or bellow the desired clipping threshold γ, depending on the envelopes

maximum order statistic. Afterwards, we should be very conservative in increasing ζ

B. Externally Weighted ℓ1 Minimization

If by some prior information we have a better picture regarding the support Ic beyond the Bernoulli process

assumption, we can modify the LASSO in (6) by penalizing disfavored locations so that

ĉ = argmin ‖ý −Ψc‖22 + λ‖wT c‖1, (15)

where w is a weighting vector imposed on the ℓ1 penalty term based on this prior information. In the literature, the

source of w is from previous runs of the CS algorithm itself [34] [55], where the hope is that with each iteration

more confidence will exist in Î(k+1)
c based on, for instance [34],

w(i)(k+1) ∝
[

|ĉ(i)(k)cs |+ ǫ
]−1

i = 1, 2, . . . , N (16)

where ǫ > 0 is a small stabilizing parameter. We will refer to this procedure as internally weighted ℓ1 minimization.

Repeating the CS algorithm is computationally expensive, and the process is sensitive to the quality of the first

unguided CS estimate. Instead, we would rather use a one-shot weighting scheme that minimally increases the

complexity of an ordinary LASSO. Fortunately, this could be done if we had an external source of information

based on the data vector ˆ̄x.

Recall the discussion in V-A1 regarding embedded information on the support Ic in peak suppression. The idea

is that we expect the coefficients of ˆ̄x whose magnitudes are close to γ to be more probable clipping locations

compared to ones that are not. Consequently, we can define a weighting vector wps based on the distance

d(i) = ||ˆ̄x(i)| − γ|, i = 1, 2, . . . , N (17)

and use it in (15). Another data-based weighting scheme would be the posterior probability of not having a clip

(q = 0) given the observation (17), such that less likely clipping locations are more severely penalized by having

a higher such posterior probability

w(i)ps = Pr (q = 0 | d(i)) (18)

=
Pr(d(i)|q = 0)Pr(q = 0)
∑

q∈Q Pr(d(i)|q) Pr(q)

=
f|X̂|(γ − d(i))F|X|(γ)

f|X̂|(γ − d(i))F|X|(γ) + f|E|(d(i))F̄|X|(γ)

where f|E| is the density function corresponding to the estimation error of the data envelope |x̂|(i), which is the sole

reason d(i)>0 when conditioned on clipping x(i). Using least squares to recover x(i), we assume its error to be

Gaussian and hence f|E| and f|X̂| = f|X+E| to be Rayleigh with parameters σ|E| and σ|X+E| =
[

2−1(σ2X + σ2E)
]1/2

,

respectively. Defining η(γ) = 1− e−γ2/σ2
X , this becomes

w(i)ps =
♦e♣

♦e♣ +△e♠ (19)

=







♦
♦+△e♠−♣ ; if |♣| > |♠|,
♦e♣−♠

♦e♣−♠+△ if |♠| > |♣|
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where

♦ =
2η(γ)(γ − d(i))

σ2X + σ2E
, ♣ =

(γ − d(i))2

σ2X + σ2E

△ =
2(1 − η(γ))d(i)

σ2E
, ♠ =

d(i)2

σ2E
.

The second part of (19) is a necessary manipulation for numerical stability.

Notice also that what helps in suppressing only to γ here is that we have a probabilistic means to cast out most

of the possible false positives. Had we suppressed the magnitudes to the envelope mean for instance, E[|x(i)|],
the procedure above would favor many locations as clipping positions by the fact that |ˆ̄x| − E[|x(i)|] is small.

Nonetheless, misleading bias to certain locations as candidates for clipping positions due to their coefficient’s

natural proximity to γ can never be completely eliminated, even at infinite CNR.

C. Phase-Augmented CS for Homogenous Clippers

In the case of homogenous clipping, θc(Ic) = θx̄(Ic) at the transmitter, and consequently the CS algorithm should

have access to additional information regarding the phases of the nonzero coefficients. The problem however is that

we only have an estimate θˆ̄x(Ic) at the receiver, and the extent to which CS can benefit from this property depends

on how good the estimate ˆ̄x is in general. To this end, we will only consider the SNR as the parameter to which

we judge the quality of the data estimate.

Recall the discussion following Fig. 2 regarding the CNR and SNR, and consider the effect of gradually increasing

ζ which we defined in V-A2. Notice that when ζ = 0, the γ-penetrating coefficient attains its maximum SNR, then

as we increase ζ the CNR increases as ζ2E [‖c‖0] while the SNR decreases by ζ (2E[|x|] − ζ). Consequently, the

CNR will be larger than the SNR in the locations where (E [‖c‖0]− 1) ζ2 + 2E [|x|] ζ −E
[|x|2] > 0. Fortunately

practical values of ζ relative to E [|x|] fall outside this region, and we would normally expect to gain information

regarding θc from ˆ̄x that is more reliable than information from CS alone.

This fact encourages us to absorb, and perhaps even replace altogether, as much information as possible regarding

θc from the estimated data vector ˆ̄x. Assume first that we know the vector θc, we could then merge this information

into the CS algorithm by expressing the clipping signal as c = Θc|c| such that

c =















e jθc(1) 0 0 0

0 e jθc(2) 0 0

0 0
. . . 0

0 0 0 e jθc(N)















·















|c(1)|
|c(2)|

...

|c(N)|















,

(20)

which could be directly fused into the measurement matrix Ψ, thus transforming our model from ý = Ψc + ź to

ý = ΨΘc|c|+ ź where

ΨΘc =









| | |
e jθc(1)ψ1 e jθc(2)ψ2 . . . e jθc(N)ψN

| | |









has now realigned the phases of the coefficients sought and reduced the problem to estimating a real sparse vector,

with only the locations and magnitudes of the nonzero coefficients of c to be found. In the case of digital clipping,

we can then force the magnitudes to the nearest alphabets as well. In any case, with Θc unknown prior to CS, we

will instead use Θˆ̄x − 2πIN×N to augment the CS algorithm. This could be done in two ways:

1) Sense then Rotate (StR): Use the standard CS or weighted CS algorithms used so far to regain ĉNoPA =
argc∈CN min{‖ý − Ψc‖22 + λ‖c‖1} where PA stands for Phase Augmentation, extract the locations and

magnitudes of the nonzero coefficients from ĉ, and then rotate them according to the corresponding estimated

directions in ˆ̄x. i.e.
{

ĉ StR(i)
}

i∈Îc

=
{

| ĉNoPA(i)| ej(θˆ̄x(i)−2π)
}

i∈Îc

(21)
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2) Rotate then Sense (RtS): In this case supply the CS algorithm with the phase information from ˆ̄x as described

above. This rotation prior to compressive sensing recasts the problem as an estimation of a real vector with

2m real observations. Defining Ψ̃c = ΨΘc, we’re left with the following model

ỹ =

[

ℜý
ℑý

]

=

[

ℜΨ̃c

ℑΨ̃c

]

· |c|+
[

ℜź
ℑź

]

(22)

for which we use the following program to recover c

ĉRtS = arg| c |∈RN min
{

‖ỹ − Ψ̃ˆ̄x | c | ‖22 + λ‖c‖1
}

(23)

where Ψ̃ˆ̄x = Ψ(Θˆ̄x − 2πIN×N ). Notice that, similar to (21) one could also replace the phases of ĉRtS with
{

ej(θˆ̄x(i)−2π)
}

i∈Îc

after (23) but we have not observed any significant improvement in doing so.

VI. BAYESIAN ESTIMATION OF SPARSE CLIPPING SIGNALS

To take into account the statistical information at hand, we could simply modify the dual stage estimate in (8) to

a linear minimum mean-square (LMMSE) estimate of the amplitudes vc conditioned on the support estimate Îcs
c

v̂lmmse|Îcs
c

c = σ2vcΦ̂
H
(

σ2vcΦ̂Φ̂
H + σ2zI

)−1 (

ý − Φ̂Evc

)

.

This should clearly improve upon the least square estimate (8) in case the distribution of vc is Gaussian, but will

not be able to invoke any statistical information into the support estimate. Using a Maximum a Posteriori (MAP)

estimate ĉ = argmaxP (ý|c)P (c) generally leads to non-convex optimization problems in sparse models, and we

refer instead to an MMSE estimate. First define J |I| as the Hamming vector of length N and Hamming weight |I|
with active coefficients according to the support set I . Then marginalizing on all such possible vectors we obtain

ĉMMSE = E [ c | ý ]

=
2N
∑

i=1

E [ c | ý, Ji]P (ý|Ji)P (Ji) (24)

with dropping off P (ý) in (24) due to its independence of i. The estimate is a weighted sum of conditional

expectations, and the formal (exact) approach requires computing 2N terms which is a formidable task for large N .

To limit the search space, the key is to truncate the summation index to a much smaller subset of support vectors

J∗. As such, the weights {P (Jk|ý)}k∈J∗ will not sum up to unity, and we will need to mitigate this by normalizing

the truncated weighted sum by the sum of weights W =
∑

k∈J∗ P (ý|Jk)P (Jk), hence reducing (24) to

ĉMMSE ≈ 1

W
∑

k∈J∗

E [ c | ý, Jk]P (ý|Jk)P (Jk). (25)

In effect, estimating c in an MMSE criterion boils down to appropriately selecting J∗ and evaluating the terms

P (Jk), P (ý|Jk), and E [ c | ý, Jk] ,∀Jk ∈ J∗, which are in increasing complexity in the order we’ve just mentioned.

When using peak suppression to γ, the receiver is given a vague picture of where clipping has occurred based

on the affinity of ˆ̄x to γ. Consequently, by sorting the magnitudes of the weighting vector w↓ in (17) in ascending

order, the probability of the true support coinciding with the first β elements in arg{w↓} will increase rapidly with

β. Fig. 5 shows a Monte Carlo simulation of this probability at different clipping thresholds. For instance, this

implies that given a clipping threshold of γ = 2σ|X|, one could exclude 70% of the N indices as having too low a

probability of corresponding to a clipping location, thus reducing the possible candidates from 2N to 2β Hamming

vectors.

Given this reduced set J{k:k≤β} of vectors, we adopt a search over it by latching a vector of unity Hamming

weight based on (25), and then proceed in a greedy fashion similar to Larsson [49] and Schniter [50], [51] until a

maximum sparsity level smax is reached. This will preserve the quality of the greedy estimate using Fast Bayesian

Matching Pursuit (FBMP) in [50] while reducing the number of executions of (25) by

100

(

1− β(1 + ρ · smax)− ρ·smax(smax+1)
2

N(1 + ρ · smax)− ρ·smax(smax+1)
2

)

%

where ρ is the number of tested candidates for each Hamming weight. This would correspond to a reduction of

60− 80% of executions with our practical parameters, and we will henceforth refer to this procedure as β-FBMP.
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VII. PERFORMANCE ANALYSIS AND SIMULATIONS

For our simulation purposes we considered an OFDM signal of N = 256 subcarriers of which m = 0.2N
are randomly dispersed measurement tones. The data coefficients were generated from a QAM constellation of

size M = 32. The Rayleigh fading channel model was of 32 taps, operating at a 30 dB SNR environment. The

performance parameters we considered were the SER, the relative temporal complexity, the PAPR reduction ability,

and the capacity.

Our primary objective was to test the SER variation with the clipping threshold γ for a clipped OFDM signal

that used our different adaptations of CS algorithms and clipping techniques. Observed as a variable, the clipping

threshold in particular is of central importance due to its critical effect on both CS generic performance and the

PAPR reduction. Decreasing γ significantly reduces the PAPR but also implies a nonlinear increase in the average

sparsity level that the estimation algorithms must tolerate. It also has a positive counter effect on CS performance

as well since it increases the CNR, making the overall behavior of SER(γ) difficult to predict.

Furthermore, when testing the precise performance of an algorithm we used the Normalized Mean Square Error

NMSE = E

[

(c− ĉ)2

‖c‖22

]

to ensure that error decrease was not simply due to a decrease in the number of estimated variables.

Fig. 6 shows the SER for Peak Suppressing clippers in V-A1 after QAM decoding (FSx)
†(ˆ̄xls + ĉ(ps)) as

the clipping threshold is varied. The methods tested were the reduced search space greedy method (β-FBMP), the

LASSO, the Phase-Augmented LASSO (PAL) using (23), the data-based Weighted LASSO (WL), and the Weighted

Phase-Augmented LASSO (WPAL). These were compared against two performance bounds: the lower bound of not

estimating c, and the upper bound of an oracle receiver that knows the support Ic, and simply uses least squares to

estimate the coefficients’ amplitudes. Interestingly, combining the support and phase augmentation techniques into

the LASSO enables it to perform very close to the support oracle, and even beat it at low clipping thresholds where

s > 0.55m since it has additional information regarding the coefficients’ phases. Furthermore, weighting alone is

more effective then phase-augmentation, although both significantly improve the performance of the LASSO.
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To see the effect of varying the magnitude of active coefficients in digital clipping of section V-A2 we plotted

the NMSE vs ζ in Fig. 7. This avoids a biased evaluation due to increased CNR with ζ . The results imply that

embedding the phase information into the LASSO in (23) is much more effective than rotating the estimate after

compressed sensing in (21). It also shows that the former method is considerably close to a phase oracle that uses

the same technique for practical values of ζ relative to σ|X|. However, as expected they eventually deviate as we

increase ζ since this corresponds to decreasing the SNR and hence the accuracy of the phase information induced

from the data vector estimate θˆ̄x. Fig. 8 implies that forcing the magnitudes of the estimates in (21) and (23) is

generally ineffective except in the very sparse cases for the former. The overall result on the SER is portrayed in

Fig. 9 at a fixed ζ = 0.8σ|X|.

Complexity-wise, we neglect mentioning implementation and orders of complexity since they match those of

standard algorithms we’ve built on and that are well documented in the CS literature (e.g. [39], [50], [53]). Instead

we investigate the practical aspect of the relative time required to execute the major techniques proposed in the
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Fig. 9: SER of Digital Clipping with ζ = 0.8σ|X| vs γ
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paper compared to Tellado’s primary tone-reservation algorithm using the same generic CVX software [52].7 As

such we collected the random execution times for 2000 runs of each, normalized them by the maximum execution

time among all, and plotted their CCDF. Fig. 10 depicts the results. Roughly speaking, the methods stemming from

the LASSO required less then 12% of the time required to execute Tellado’s primary QCQP algorithm on average,

while the β-FBMP required less than 2% of the time.

A major advantage of clipping to a fixed threshold is that, unlike tone-reservation methods such as [17], [22]

the dynamic range, maximum power, and PAPR of the transmitted signal are fixed. The distribution of PAPR

reduction, 10 log10

(

Pmax

γ2

)

, would simply follow from the distribution of the maximum squared coefficient in x

(refer to [57]–[59] for relevant analysis) which we plot in Fig. 11. The fixed maximum power followed from the

clipping threshold that corresponded to a SER of 10−2 for the different techniques in this work.

TABLE I: Summary of Results

Tolerable γ Avg. PAPR Red. (dB) % Exec. Time

DC (RtS) 2.40 ·σ|X| 3.19 11.06%

β-FBMP 2.26 ·σ|X| 3.71 1.6%

LASSO 2.25 ·σ|X| 3.75 12.3%

WPAL 2.02 ·σ|X| 4.68 13.9%

Tellado - 4.37 100%

The most fundamental parameter of interest given a desired clipping threshold is the channel capacity [17], [60]

C =
N
∑

k=1

log2

(

1 +
|D(k, k)|2σ2x(k)

σ2z(k)

)

,

and we will thus consider two systems. The first system S1 clips all coefficients above γ and does not reserve tones

to estimate the clipping signal c, resulting in a higher clipping noise over all N tones while retaining all of them

for data transmission. The second system S2 reserves m tones to estimate c, thus reducing the SER degradation

while also reducing the data tones by m.

The justification then depends very much on the variances of the clipping noise {σ2c (k; γ)}k∈Ωd
with and without

estimation at the receiver. Furthermore, if the threshold γ is sufficiently low relative to σ|X| (e.g. E [‖c‖0 ; γ] = 10%
of N ), the clipping noise on each tone will be the result of a reasonably large summation of scaled coefficients of

c in the time domain, and so will the distribution of the priors in (11) converge to a Gaussian. With this theoretical

justification aided by extensive simulations, we will assume for simplicity that the distortion on each carrier follows

a Gaussian with a common variance σ2c . However, caution must be taken when comparing this parameter for the

two systems. The reason is that S1 has more data energy than S2 by using all N tones, and will thus have a higher

distortion variance at the same clipping level γ, i.e. σ2c ||Ωd|=N > σ2c ||Ωd|=N−m. Consequently, the capacity of the

7With the only exception being Schniter’s Greedy algorithm when evaluating β-FBMP.
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Fig. 12: Capacity per transmitted tone at different clipping thresholds

first system (after dropping the tone index) will be

C1 = N log2

(

1 +
|D|2σ2x ||Ωd|=N

|D|2σ2c ||Ωd|=N + σ2z

)

(26)

while the capacity of the second will be

C2 = (N −m) log2

(

1 +
|D|2σ2x ||Ωd|=N−m

|D|2σ2(c−ĉ)||Ωd|=N−m + σ2z

)

(27)

The use of reserved tones for CS is then justified if C2 > C1, i.e. when

σ2(c−ĉ)||Ωd|=N−m <
σ2x ||Ωd|=N−m

[

1 +
|D|2σ2

x ||Ωd|=N

|D|2σ2
c ||Ωd|=N

+σ2
z

]
N

N−m − 1

− σ2z
|D|2 (28)

It would be very interesting to observe how this parameter behaves as a function of the clipping threshold γ as

both the distortion σ2c and the quality of the estimate σ̂2c nonlinearly counteract each other. Fig. 12 shows such

results upon 1000 runs at each γ for estimating σ2c and σ2(c−ĉ). The results show that by reserving 20% of the tones

for data-based weighted and phase-augmented LASSO the capacity of such a system can significantly outperform

the naive system which uses all the tones for data transmission. What’s more, the capacity associated with this

technique behaves in a convex fashion so that by reducing the capacity by less then 1 bit per second per transmitted

tone, the clipping threshold can be dramatically reduced from γ = 2.5σ|X| to γ = 2σ|X|. Unlike the semi-linear

relation of S1 with γ, such behavior offers a very tempting compromise between capacity and peak-reduction.

Using the typical LASSO at such conditions is effective at clipping thresholds reaching as low as 1.9σ|X| which

is impressive.

Fig. 13 implies that increasing the SNR is much more rewarding for S2 compared to S1 which we test at a fixed

clipping threshold of 2.3σ|X|. The reason is that eliminating σ2z has no effect on σ2c and the capacity of the naive
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system saturates after an SNR of 35 dB. On the other hand, decreasing the noise level improves the CS estimate

and hence has a dual effect in increasing the capacity, leading to the semi-linear relation with the SNR.

VIII. CONCLUSION

In this work we have established the new general concept of clipping mitigation (and hence PAPR reduction) in

OFDM using compressive sensing techniques. The general framework stressed the use of reserved subcarriers to

compressively estimate the locations and amplitudes of the clipped portions of a transmitted OFDM signal at the

receiver, instead of using them at the transmitter as a spectral support for optimized peak reducing signals in the

time domain. Consequently, the method interchanges the stage at which signal processing complexity is required

compared to the previous techniques, hence introducing a real solution to communication systems that use OFDM

signals at the physical layer and require minimal complexity at the transmitter.

The other major contribution is demonstrating how by a marginal increase in complexity one can augment the

standard ℓ1 minimization of CS by extracting information regarding clipping locations, magnitudes, and phases

from the data, and hence enable the system to estimate sparse clippers far beyond the recoverability conditions

of CS (e.g. sparsity levels above 55% of m). Such augmentation was shown to significantly boost the overall

system’s capacity at low clipping thresholds and thus suggests a very appealing compromise between capacity and

peak-reduction.

REFERENCES

[1] J. G. Andrews, A. Ghosh, R. Muhamed, Fundamentals of WiMAX: Understanding Broadband Wireless Networking, Prentice Hall, part

of the Prentice Hall Communications Engineering and Emerging Technologies Series, 2007.

[2] T. Jiang, W. Xiang, H. H. Chen, and Q. Ni, “Multicast broadcasting services support in OFDMA-based WiMAX systems,” IEEE Commun.
Mag., vol. 45, no. 8, pp. 7886, Aug. 2007.

[3] S. Litsyn, Peak Power Control in Multicarrier Communications, Cambridge University Press, 1st edition, Jan. 2007.

[4] T. Jiang and Y. Wu, “An Overview: Peak-to-Average Power Ratio Reduction Techniques for OFDM Signals,” IEEE Trans. Broadcast.,
vol. 54, no. 2, June 2008.

[5] S. H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Pers.
Commun., vol. 12, no. 2, pp. 5665, Apr. 2005.

[6] K. Sathananthan, C. Tellambura, “Coding to reduce both PAR and PICR of an OFDM signal,” IEEE Commun. Lett., vol.6, no.8, pp.

316-318, Aug 2002.

[7] J. A. Davis and J. Jedwab, “Peak-to-Mean Power Control in OFDM, Golay Complementary Sequences, and Reed-Muller Codes,” IEEE
Trans. on Inf. Theory, vol.45, No.7, Nov. 1999.

[8] T. Jiang and G. X. Zhu, “Complement Block Coding For Reduction in Peak-To-Average Power Ratio of OFDM Signals,” IEEE Commun.
Mag., vol. 43, no. 9, pp. 1722, Sept. 2005.

[9] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the Peak-To-Average Power Ratio of Multicarrier Modulation by Selected

Mapping,” Electronics Letters, vol. 32, no. 22, pp. 2056-2057, 1996.

[10] A. Ghassemi and T. A. Gulliver, “A Low Complexity Selective Mapping OFDM using Multiple IFFT Stages,” International Journal
of Communication Networks and Distributed Systems, vol. 1, Issue 2, Sep. 2008.

[11] S. H. Muller and J. B. Huber, “OFDM with Reduced Peak-to-Average Power Ratio by Optimum Combination of Partial Transmit

Sequences, Electronic Letters, vol. 33, no. 5, pp. 20562057, Feb. 1997.

[12] A. Alavi, C. Tellambura, and I. Fair, “PAPR Reduction Of OFDM Signals using Partial Transmit Sequence: An Optimal Approach

using Sphere Decoding,” IEEE Commun. Lett., vol. 9, no. 11, pp. 982984, Nov. 2005.



16

[13] Y. J. Kou, W. S. Lu, and A. Antoniou, “A New Peak-To-Average Power-Ratio Reduction Algorithm For OFDM Systems via Constellation

Extension,” IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 18231832, May 2007.

[14] M. Malkin, B. Krongold, and J. M. Cioffi, “Optimal Constellation Distortion For PAR Reduction In OFDM Systems,” PIMRC 2008,
IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008.

[15] B. Crongold and D. Jones, “PAR Reduction in OFDM via Active Constellation Extension”, IEEE Trans. Broadcast., vol.49, iss.3,

September 2003.

[16] J. Tellado and J. M. Cioffi, “Peak Power Reduction for Multicarrier Transmission”, IEEE Globecom 99, Rio de Janeiro, Brazil, Dec.

5-9, 1999.

[17] J. Tellado, Multicarrier Modulation with Low PAR Applications to DSL and Wireless, Kluwer Academic Publishers, Norwell 2000.

[18] N. Andgart et al., “Designing Tone Reservation PAR Reduction,” EURASIP J. Appl. Signal Process., vol. 2006, pp 82-82, 2006.

[19] B.S. Krongold and D.L. Jones, “An Active-Set Approach for OFDM PAR Reduction via Tone Reservation,” IEEE Trans. Signal Process.,
vol.52, no.2, pp. 495-509, Feb. 2004.

[20] E. B. Al-Safadi and T. Y. Al-Naffouri, “On Reducing the Complexity of Tone Reservation Based PAPR Reduction Schemes by

Compressive Sensing,” IEEE Globecom ’09, Honolulu HI, Nov. 2009.

[21] J. C. Chen and C. P. Li, “ Tone Reservation Using Near-Optimal Peak Reduction Tone Set Selection Algorithm for PAPR Reduction

in OFDM Systems,” IEEE Signal Process. Lett. vol. 17 no. 11 pp. 933-936, Nov. 2010.

[22] J. Ilic and T. Strohmer, “PAPR Reduction in OFDM using Kashin’s Representation,” IEEE 10th Workshop on Signal Process. Advances
in Wireless Commun., pp.444-448, Perugia, Italy, June 2009.

[23] Fei Shao et al., “SOCP Approach for PAPR Reduction Using Tone Reservation for the Future DVB-T/H Standards,” Multi-Carrier
Systems & amp Solutions, Springer Netherlands, 2009.

[24] S. Janaaththanan, “A Gradient Based Algorithm for PAPR Reduction of OFDM using Tone Reservation Technique,” IEEE Veh. Tech.
Conf., pp. 2977-2980, Singapore, May 2008.

[25] T. Jiang, W. D. Xiang, P. C. Richardson, D. M. Qu, and G. X. Zhu, “On the Nonlinear Companding Transform for Reduction in PAPR

of MCM signals,” IEEE Trans. Wireless Commun., vol. 6, no. 6, pp. 20172021, Jun. 2007.

[26] T. Jiang, W. Yao, P. Guo, Y. Song, and D. Qu, “Two novel nonlinear companding schemes with iterative receiver to reduce PAPR in

multicarrier modulation systems,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 268273, Mar. 2006.

[27] Tao Jiang, Yang Yang and Yong-Hua Song, “Exponential Companding technique for PAPR reduction in OFDM Systems”, IEEE Trans.
Inf. Theory, vol. 51, no. 2, pp. 244 - 248, June 2005.

[28] P. Xia, S. Zhou, and G.B Giannakis, “Achieving the Welch Bound with Difference Sets,” IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing, March 2005.

[29] M. Stojnic et al., “On the Reconstruction of Block-Sparse Signals with an Optimal Number of Measurements,” IEEE Trans. on Signal
Process., vol. 57 no. 8 pp. 3075-3085, 2009.

[30] Y. C. Eldar and H. Bölcskei, “Block-Sparsity: Coherence and Efficient Recovery,” in Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing, pp.2885-2888, 2009.

[31] E. J. Candes, J. Romberg and T. Tao. “Robust Uncertainty Principles: Exact Signal Reconstruction From Highly Incomplete Frequency

Information,” IEEE Trans. Inf. Theory, vol. 52 pp. 489-509, 2004.

[32] E. J. Candes, T. Tao. “Near-optimal signal recovery from random projections:universal encoding strategies?,” IEEE Trans. Inf. Theory,

vol. 52 pp. 5406-5425, Dec. 2006.

[33] E. J. Candes, J. Romberg and T. Tao. “Stable signal recovery from incomplete and inaccurate measurements,” Comm. Pure Appl. Math.,
vol. 59 pp. 1207-1223, 2005.

[34] E. J. Candes, M. Wakin, and S. Boyd, “Enhancing sparsity by reweighted ℓ1 minimization,” J. Fourier Anal. Appl., vol. 14, no. 5, pp.

877.905, 2008.

[35] E. J. Candes and Yaniv Plan, “Near-Ideal Model Selection by ℓ1 Minimization,” Preprint, 2007.

[36] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic Decomposition by Basis Pursuit,” SIAM J. Sci. Comput. vol. 20, Issue 1, pp.

33-61 (1998).

[37] D. Donoho, “Compressed Sensing,” IEEE Trans. Inf. Theory, vol. 52(4), pp. 1289 - 1306, April 2006.

[38] J. A. Tropp, A. C. Gilbert “Signal Recovery from Random Measurements via Orthogonal Matching Pursuit,” IEEE Trans. Inf. Theory,

vol. 53, no. 12, pp. 4655 - 4666, Dec. 2007.

[39] J. A. Tropp, “Just relax: Convex programming methods for identifying sparse signals,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp.

1030 - 1051, Mar. 2006.

[40] J. A. Tropp, “On the Linear Independence of Spikes and Sines,” J. Fourier Anal. Appl., vol. 14, pp. 838 - 858, 2008.

[41] A.K. Fletcher, S. Rangan, and V. Goyal. “Necessary and Sufficient Conditions on Sparsity Pattern Recovery,” IEEE Trans. Inf. Theory,

vol. 55, num. 12 pp. 5758 - 5772, Nov 2009.

[42] M. J. Wainwright. “Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using ℓ1-Constrained Quadratic Programming

(Lasso),” IEEE Trans. Inf. Theory, vol. 55, no. 5, May 2009.

[43] W. Wang, M. J. Wainwright, and K. Ramchandran “Information-theoretic limits on sparse signal recovery: Dense versus sparse

measurement matrices,” Technical Report, Dept. of Statistics, UC Berekely, May 2008.

[44] M. J. Wainwright, “Information-theoretic limitations on sparsity recovery in the high-dimensional and noisy setting,” IEEE Trans. Inf.
Theory, vol. 55:5728–5741, December 2009.

[45] G. Caire, T.Y. Al-Naffouri, and A.K. Narayanan, “Impulse Noise Cancellation in OFDM: an application of compressed sensing,” IEEE
Int. Symp. on Info. Theory, July 2008.

[46] T. Cui and C. Tellambura, “An Efficient Generalized Sphere Decoder for Rank-Deficient MIMO Systems,” IEEE Commun. Lett., vol.

9, no. 5, pp. 423-425, May 2005.

[47] Zhi Tian, Geert Leus, Vincenzo Lottici, “Detection of sparse signals under finite-alphabet constraints,” in Proc. IEEE Int. Conf. on
Acoust., Speech and Signal Process., 2009 pp.2349-2352.



17

[48] H. Zhu and G. B. Giannakis “Sparsity-Embracing Multiuser Detection for CDMA Systems with Low Activity Factor,” in Proc. IEEE
Int. Symp. Inf. Theory, Seoul, Korea, June 28-July 3, 2009.

[49] E. G. Larsson and Y. Seln, “Linear Regression With a Sparse Parameter Vector”, IEEE Trans. Signal Process., vol. 55, no. 2, February

2007.

[50] P. Schniter, L.C. Potter, and Ziniel, J., “Fast Bayesian Matching Pursuit: Model Uncertainty and Paramter Estimation for Sparse Linear

Models,” submitted to IEEE Trans. Inf. Theory.

[51] P. Schniter, L.C. Potter, and Ziniel, J., “Fast bayesian matching pursuit,” Workshop on Inf. Theory and Applicat. (ITA), La Jolla, CA,

January 2008.

[52] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming (web page and software).

http://stanford.edu/ boyd/cvx, February 2009.

[53] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

[54] R. Tibshirani, “Regression Shrinkage and Selection via the LASSO,” J. of the Roy. Stat. Soc., Series B, vol. 58, no. 1, pp. 267-288,

1996.

[55] D. Wipf and S. Nagarajan, “Iterative Reweighted ℓ1 and ℓ2 Methods for Finding Sparse Solutions,” Submitted, 2009.

[56] D. Wipf and S. Nagarajan, “A New View of Automatic Relevance Determination”, Advances in Neural Inf. Process. Syst., vol. 20, pp.

1625.1632, 2008.

[57] H. Ochiai, H. Imai, “On the Distribution of the Peak-to-Average Power Ratio in OFDM Signals,” IEEE Trans. Commun, vol.49, no.2,

pp.282-289, Feb 2001.

[58] A.R.S, Bahai, M. Singh, A.J. Goldsmith, B.R. Saltzberg, “A New Approach For Evaluating Clipping Distortion In Multicarrier Systems”,

IEEE J. Sel. Areas Commun., vol.20, no.5, pp.1037-1046, June 2002.

[59] S. Wei, D.L. Goeckel, and P.E. Kelly, “A Modern Extreme Value Theory Approach to Calculating the Distribution of the Peak-to-Average

Power Ratio in OFDM Systems,” in Proc. IEEE Int. Conf. on Commun., vol.3, pp. 1686-1690, 2002

[60] F. Peng and W. E. Ryan, “On the Capacity of Clipped OFDM Channels,” in Proc. IEEE Int. Symp. Inf. Theory, Seattle, WA, July 2006,

pp. 1866 - 1870.




