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Changes in generating electricity — as implied by the EU’s commitments for reducing

CO2 emissions and increasing the share of renewables in its electricity mix — require

that grids become much more flexible than they currently are.

Philip Lowe, Director-General for Energy at the European Commission and Mark van
Stiphout, Member of Cabinet of the Commissioner for Energy at the European

Commission, in: Responsabilité & Environnement (No. 69), 2013

Capacity, dispatchability or other features that may have a value to the power system

are not considered in the current pricing system.

A team comprising individuals from PricewaterhouseCoopers, Potsdam Institute for
Climate Impact Research, International Institute for Applied Systems Analysis and

the European Climate Forum, in: 100% renewable electricity: A roadmap to 2050 for
Europe and North Africa, 2010





SUMMARY

In contemporary societies, industrial processes as well as domestic activities rely to a
large degree on a well-functioning electricity system. This reliance exists both struc-
turally (the system should always be available) and economically (the prices for elec-
tricity affect the costs of operating a business and the costs of living). After many
decades of stability in engineering principles and related economic paradigms, new
developments require us to reconsider how electricity is distributed and paid for.

Two well-known examples of important technological developments in this regard
are decentralised renewable energy generation (e.g. solar and wind power) and elec-
tric vehicles. They promise to be highly useful, for instance because they allow us
to decrease our CO2 emissions and our dependence on energy imports. However, a
widespread introduction of these (and related) technologies requires significant engi-
neering efforts. In particular, two challenges to the management of electricity systems
are of interest to the scope of this dissertation. First, the usage of these technologies
has significant effects on how well (part of) supply and demand can be planned ahead
of time and balanced in real time. Planning and balancing are important activities in
electricity distribution for keeping the number of peaks low (peaks can damage net-
work hardware and lead to high prices). It can become more difficult to plan and bal-
ance in future electricity systems, because supply will partly depend on intermittent
sunshine and wind patterns, and demand will partly depend on dynamic mobility
patterns of electric vehicle drivers. Second, these technologies are often placed in the
lower voltage (LV) tiers of the grid in a decentralised manner, as opposed to conven-
tional energy sources, which are located in higher voltage (HV) tiers in central posi-
tions. This is introducing bi-directional power flows on the grid, and it significantly
increases the number of actors in the electricity systems whose day-to-day decision-
making about consumption and generation (e.g. electric vehicles supplying electricity
back to the network) has significant impacts on the electricity system.

In this dissertation, we look into dynamic pricing and markets in order to achieve
allocations (of electricity and money) which are acceptable in future electricity sys-
tems. Dynamic pricing and markets are concepts that are highly useful to enable ef-
ficient allocations of goods between producers and consumers. Currently, they are
being used to allocate electricity between wholesale traders. In recent years, the roles
of the wholesale producer and the retailer have been unbundled in many countries
of the world, which is often referred to as “market liberalisation”. This is supposed to
increase competition and give end consumers more choice in contracts. Market lib-
eralisation creates opportunities to design markets and dynamic pricing approaches
that can tackle the aforementioned challenges in future electricity systems. However,
they also introduce new challenges themselves, such as the acceptance of price fluc-
tuations by consumers.

The research objective of this dissertation is to develop market mechanisms and
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viii SUMMARY

dynamic pricing strategies which can deal with the challenges mentioned above and
achieve acceptable outcomes. To this end, we formulate three major research ques-
tions:

First, can we design pricing mechanisms for electricity systems that support two
necessary features well, which are not complementary—namely to encourage adapta-
tions in electricity consumption and generation on short notice (by participants who
have this flexibility), but also to enable planning ahead of electricity consumption and
generation (for participants who can make use of planning)?

Second, the smart grid vision (among others) posits that in future electricity sys-
tems, outcomes will be jointly determined by a large number of (possibly) small actors
and allocations will be made more frequently than today. Which pricing mechanisms
do not require high computational capabilities from the participants, limit the expo-
sure of small participants to risk and are able to find allocations fast?

Third, automated grid protection against peaks is a crucial innovation step for net-
work operators, but a costly infrastructure program. Is it possible for smart devices
to combine the objective of protecting network assets (e.g. cables) from overloading
with applying buying and selling strategies in a dynamic pricing environment, such
that the devices can earn back parts of their own costs?

In order to answer the research questions, our methods are as follows: We con-
sider four problems which are likely to occur in future electricity systems and are of
relevance to our research objective. For each problem, we develop an agent-based
model and propose a novel solution. Then, we evaluate our proposed solution using
stochastic computational simulations in parameterised scenarios. We thus make the
following four contributions:

In Chapter 3, we design a market mechanism in which both binding commitments
and optional reserve capacity are explicitly represented in the bid format, which can
facilitate price finding and planning in future electricity systems (and therefore gives
answers to our first research question). We also show that in this mechanism, flexible
consumers are incentivised to offer reserve capacity ahead of time, which we prove for
the case of perfect competition and show in simulations for the case of imperfect com-
petition. We are able to show in a broad range of scenarios that our proposed mech-
anism has no economic drawbacks for participants. Furthermore (giving answers to
our second research question), the mechanism requires less computational capabili-
ties in order to participate in it than a contemporary wholesale electricity market with
comparable features for planning ahead.

In Chapter 4, we consider the complexity of dynamic pricing strategies that retail-
ers could use in future electricity systems (this gives answers to our first, but foremost
to our second research question). We argue that two important features of pricing
strategies are not complementary—namely power peak reduction and comprehen-
sibility of prices—and we propose indicators for the comprehensibility of a pricing
strategy from the perspective of consumers. We thereby add a novel perspective for
the design and evaluation of pricing strategies.

In Chapter 5, we consider dynamic pricing mechanisms where the price is set by
a single seller. In particular, we develop pricing strategies for a seller (a retailer) who
commits to respect an upper limit on its unit prices (this gives answers to both our
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first and second research question). Upper price limits reduce exposure of market
participants to price fluctuations. We show that employing the proposed dynamic
pricing strategies reduces consumption peaks, although their parameters are being
simultaneously optimised for the maximisation of retailer profits.

In Chapter 6, we develop control algorithms for a small storage device which is
connected to a low voltage cable. These algorithms can be used to reach decisions
about when to charge and when to discharge the storage device, in order to protect
the cable from overloading as well as to maximise revenue from buying and selling
(this gives answers to our third research question). We are able to show in compu-
tational simulations that our proposed strategies perform well when compared to an
approximated theoretical lower cost bound. We also demonstrate the positive effects
of one of our proposed strategies in a laboratory setup with real-world cable hardware.

The results obtained in this dissertation advance the state of the art in design-
ing pricing mechanisms and strategies which are useful for many use cases in future
decentralised electricity systems. The contributions made can provide two positive
effects: First, they are able to avoid or reduce unwanted extreme situations, often re-
lated to consumption or production peaks. Second, they are suitable for small actors
who do not have much computation power but still need to participate in future elec-
tricity systems where fast decision making is needed.

Nicolas Höning

Amsterdam, May 2016





SAMENVATTING

In de hedendaagse samenleving zijn zowel industriële processen als huishoudelijke
activiteiten in grote mate afhankelijk van een goed functionerend elektriciteitssys-
teem. Deze afhankelijkheid is zowel structureel (het systeem moet altijd beschikbaar
zijn) als economisch (elektriciteitsprijzen beïnvloeden de kosten van bedrijfsvoering
en van levensonderhoud). Na vele decennia van stabiliteit op het gebied van elektro-
technische principes en de daarmee samenhangende economische paradigma’s stel-
len nieuwe ontwikkelingen ons voor de vraag om opnieuw te bezien hoe elektriciteit
moet worden gedistribueerd en afgerekend.

Twee bekende voorbeelden van belangrijke technologische ontwikkelingen op dit
gebied zijn decentrale opwekking van hernieuwbare energie (bijvoorbeeld zonne- en
windenergie) en elektrische voertuigen. Deze technologieën lijken zeer bruikbaar te
zijn, bijvoorbeeld omdat ze het mogelijk maken om zowel onze CO2-uitstoot als onze
afhankelijkheid van energie-invoer te verminderen. Echter, een algemene invoering
van deze (en verwante) technologieën vereist aanzienlijke technische inspanningen.
Twee uitdagingen voor het beheer van elektriciteitssystemen zijn met name van be-
lang voor het toepassingsgebied van deze dissertatie. Ten eerste heeft het gebruik van
deze technologieën grote gevolgen voor hoe goed vraag en aanbod (deels) van tevo-
ren kunnen worden gepland en uiteindelijk zelfs exact op elkaar kunnen worden afge-
stemd. Plannen en afstemmen zijn in elektriciteitssystemen belangrijk om het aantal
pieken laag te houden (pieken kunnen netwerk-hardware beschadigen en tot hoge
prijzen leiden). In toekomstige elektriciteitssystemen kunnen plannen en afstemmen
moeilijker zijn dan nu, omdat het aanbod mede zal afhangen van fluctuerende zon-
en windpatronen, terwijl de vraag mede zal afhangen van de mobiliteitspatronen van
gebruikers van elektrische voertuigen. Ten tweede worden deze technologieën vaak
decentraal in laagspanningsnetten geplaatst, in tegenstelling tot conventionele ener-
giebronnen, die zich op centrale posities in hoogspanningsnetten bevinden. Dit zal
leiden tot bidirectionele energiestromen in het netwerk, en tot meer actieve gebrui-
kers, waardoor hun dagelijkse besluiten over verbruik en opwek belangrijke effecten
op het elektriciteitssysteem hebben (bijvoorbeeld het terugleveren van energie uit
elektrische voertuigen naar het netwerk).

In dit proefschrift doen we onderzoek naar dynamische prijsvorming en markten,
om aanvaardbare toewijzingen (van elektriciteit en van geld) in toekomstige elektri-
citeitssystemen mogelijk te maken. Dynamische prijsvorming en markten zijn zeer
bruikbare concepten voor een efficiënte toewijzing van goederen tussen producen-
ten en consumenten. Op dit moment worden ze gebruikt om elektriciteit toe te wijzen
tussen groothandelaren in energie. In de afgelopen jaren is de rol van grootschalige
producent en energieleverancier in veel landen van de wereld opgesplitst. Dit wordt
vaak aangeduid als “liberalisering” van de energiemarkt, waarbij wordt verondersteld
dat als gevolg hiervan meer concurrentie zal ontstaan en eindgebruikers meer keuze
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uit contracten zullen hebben. Liberalisering creëert kansen om dynamische prijsvor-
ming en markten te ontwerpen, die de genoemde uitdagingen in toekomstige elek-
triciteitssystemen kunnen aanpakken. Echter, ze introduceren zelf ook nieuwe uitda-
gingen, zoals het aanvaarden van fluctuerende prijzen door de consument.

Het doel van dit promotieonderzoek is om marktmechanismen en dynamische
prijsvormingsstrategieën te ontwikkelen, die een antwoord zijn op bovengenoemde
uitdagingen en die aanvaardbare resultaten bereiken. Daartoe formuleren we drie
onderzoeksvragen:

Ten eerste, kunnen we prijsmechanismen voor elektriciteitssystemen ontwerpen
die twee noodzakelijke maar niet complementaire functies goed ondersteunen—namelijk
het bevorderen van het aanpassen van verbruik en opwek op korte termijn (door deel-
nemers die over deze flexibiliteit beschikken), en het mogeljik maken van vooruit
plannen van elektriciteitsverbruik en opwek (voor deelnemers die van plannen ge-
bruik kunnen maken)?

Ten tweede, de smartgridvisie veronderstelt (onder andere) dat uitkomsten in toe-
komstige elektriciteitssystemen door een groot aantal (eventueel) kleine actoren ge-
zamenlijk bepaald worden en dat energietoewijzingen frequenter plaatsvinden dan
momenteel gebeurt. Welke prijsmechanismen kunnen zonder grote rekenkracht van
deelnemers werken, beperken de risico’s voor kleine deelnemers en zijn in staat om
toewijzingen snel te bepalen?

Ten derde, een geautomatiseerde netwerkbescherming tegen pieken is een cru-
ciale en innovatieve stap voor netbeheerders, maar impliceert ook een kostbaar in-
frastructuurprogramma. Is het voor slimme apparaten mogelijk om het beschermen
van netwerkcomponenten (zoals kabels) tegen overbelasting te combineren met stra-
tegisch inkopen en verkopen van electriciteit tegen dynamische prijzen, zodanig dat
deze apparaten een deel van hun eigen kosten terug kunnen verdienen?

Onze methode om deze onderzoeksvragen te beantwoorden, is als volgt: We be-
schouwen vier problemen die kunnen optreden in toekomstige elektriciteitssystemen
en die van belang zijn voor het doel van ons onderzoek. Voor elk probleem ontwikke-
len we een agentgebaseerd model en stellen we een nieuwe oplossing voor. Daarnaast
evalueren we onze voorgestelde oplossing met behulp van stochastische simulaties in
geparameteriseerde scenario’s. Op deze wijze maken we de volgende vier bijdragen:

In Hoofdstuk 3 ontwerpen we een marktmechanisme voor toekomstige electri-
citeitssystemen waarin zowel bindende toezeggingen als optionele reservecapaciteit
expliciet zijn vertegenwoordigd in de biedwijze. Dit kan de prijsbepaling en de plan-
ning van verbruik en opwek faciliteren (en geeft dus antwoorden op onze eerste on-
derzoeksvraag). We tonen ook aan dat flexibele consumenten in dit mechanisme wor-
den gemotiveerd om reservecapaciteit van tevoren aan te bieden. We bewijzen dit
voor het geval van perfecte concurrentie in de markt en tonen dat met behulp van
simulaties aan voor het geval van imperfecte concurrentie. We laten in een breed
scala aan scenario’s zien dat ons voorgestelde mechanisme geen economische nade-
len heeft voor de deelnemers. Verder vereist het mechanisme minder rekenkracht van
de deelnemers dan een hedendaagse groothandelsmarkt voor elektriciteit die verge-
lijkbare functies voor het vooruit plannen heeft (we geven dus antwoorden op onze
tweede onderzoeksvraag).
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In Hoofdstuk 4 beschouwen we de complexiteit van dynamische prijsvormings-
strategieën die detailhandelaars kunnen gebruiken in toekomstige elektriciteitssyste-
men (dit geeft antwoorden op onze eerste, maar vooral op onze tweede onderzoeks-
vraag). We stellen dat twee belangrijke kenmerken van prijsstrategieën niet comple-
mentair zijn—namelijk het vermogen om stroompieken te verminderen en de mate
van begrijpelijkheid van het tarief—en wij stellen indicatoren voor die de begrijpe-
lijkheid aangeven vanuit het perspectief van de consument. Daarmee voegen we een
nieuw perspectief toe voor het ontwerp en de evaluatie van prijsstrategieën.

In Hoofdstuk 5 beschouwen we dynamische prijsvormingsmechanismen waar de
(dynamische) prijs word gekozen door een enkele verkoper. We ontwikkelen prijs-
strategieën voor een verkoper (een energiebedrijf) die zich verplicht tot een boven-
grens voor de prijs per eenheid (dit geeft antwoorden op zowel onze eerste als tweede
onderzoeksvraag). Prijslimieten beperken de blootstelling van marktdeelnemers aan
prijsfluctuaties. We laten zien dat het gebruik van de voorgestelde strategieën voor
dynamische prijzen het aantal verbruikspieken vermindert, ondanks dat hun para-
meters geoptimaliseerd werden voor winstmaximalisatie van de energiebedrijf.

In Hoofdstuk 6 ontwikkelen we algoritmes voor een klein opslagapparaat dat aan-
gesloten is op een laagspanningskabel (dit geeft antwoorden op onze derde onder-
zoeksvraag). Met hulp van deze algoritmes kan worden besloten wanneer het appa-
raat energie opwekt of teruglevert aan het netwerk, met het doel om zowel de kabel te
beschermen tegen overbelasting als de inkomsten van in- en verkoop van electriciteit
te maximaliseren. Wij laten in simulaties zien dat onze voorgestelde strategieën goed
presteren in vergelijking met een theoretische benadering van de laagste kosten. We
tonen ook de positieve effecten van een van onze voorgestelde strategieën aan in een
laboratoriumexperiment onder gebruik van echte distributiekabels.

De in dit proefschrift beschreven resultaten verbeteren de state-of-the-art in het
ontwerpen van prijsmechanismen en strategieën die nuttig zijn voor vele toepassin-
gen in toekomstige gedecentraliseerde elektriciteitssystemen. De gemaakte bijdragen
kunnen twee positieve effecten tot stand brengen: Ten eerste kunnen ze ongewenste
extreme omstandigheden verminderen, die vaak gerelateerd zijn aan pieken in con-
sumptie of productie. Ten tweede zijn ze geschikt voor kleine actoren die niet veel
rekenkracht ter beschikking hebben, maar wel deel moeten nemen aan toekomstige
elektriciteitssystemen waarin snelle besluitvorming nodig is.

Nicolas Höning

Amsterdam, Mei 2016
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1
INTRODUCTION

1.1. CONTEXT
Almost all economic activities are heavily dependent on the affordable availability of
energy. This dependence has become more significant during the industrialisation in
recent centuries. Since the introduction of mechanisation, energy can be turned into
work more effectively than ever before, using for instance the internal combustion en-
gine. Consequently, the generation and distribution of energy are critical enablers of
technological progress. However, in a state that is usable to humans, such as gasoline
or electricity, energy is a scarce resource. It is therefore crucial that energy is allocated
among demanding actors, using efficient and fair approaches.

The introduction of electricity as an energy carrier revolutionised the distribution
of energy. Electricity has become a ubiquitous energy carrier and is still gaining in us-
age every year. In fact, the European, U.S. and Chinese electrical grids are the biggest
man-made synchronous machines on earth - a feat of 20th century engineering. His-
torically, the growth rate for electricity demand has outstripped that for other energy
carriers.

After many decades of stability in engineering principles and economic paradigms,
the energy system, and with it the electricity system, is entering into a time of change.
We mention several important developments in this context which are relevant for the
purpose of this thesis.

First of all, renewable energy sources are being installed on the electricity grid.
They are expected to represent a significant share of energy sources within a few decades,
but they already begin to have influence on the daily practice of distribution network
operators today. Renewable energy sources are influential for two reasons. The first
reason is their intermittent nature, e.g. sunshine and wind are not completely pre-
dictable. The second reason is the fact that they are often placed in the lower (LV)
tiers of the grid in a decentralised manner, as opposed to conventional energy sources,
which are located in higher (HV) tiers in central positions. This is introducing bi-
directional power flows on the grid.

1
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Second, electricity markets have been liberalised in many countries of the world.
The roles of the wholesale producer and the retailer have been unbundled, which is
supposed to increase competition and give consumers more choice in contracts. One
side effect of liberalisation is the need for more open market designs. Up until recently,
government agencies managed the allocation of electricity generation centrally, in-
volving only a few large producers in clearly defined optimisation procedures which
aimed to minimise the overall costs of generation. Today, many market designs for
the wholesale trade of electricity are being tried out around the world, with varying
degrees of openness, decentralisation and success. For the coming years, most mar-
ket policy designers plan to involve consumers into dynamic markets, as the demand
side is still rather static.

A third development of interest in the context of this thesis is that the demand for
electricity in industrialised countries currently increases every year, by between 0.5
and 1 percent. However, a more significant increase in demand is on the horizon. The
reason for this is that several activities with high energy demands, which were fuelled
by a different energy source until now, are about to utilise electricity as their energy
carrier - a process traditionally referred to as “electrification”. Two examples concern
transportation (electric vehicles) and heating (heat pumps).

Fourth, the IT revolution is coming to the electricity systems, as well. More data
will be available with the ability to measure the load at points of consumption (with
smart meters) and the states of many grid assets (with sensors). The decreasing costs
of computing power make it possible that real-time decisions can be made on site by
intelligent software. Furthermore, the improving availability and bandwidth of net-
work communication make it possible to integrate these local decisions in real-time
mechanisms which allocate electricity among participants. This concept, described
by the automation of both local measurement and local decision-making, is often re-
ferred to as the “smart grid”.

The final relevant recent development concerns households. Today, the set of
households is very homogeneous with respect to consumption behaviour. This might
change, as a significant number of households will be installing heat pumps or use
electric cars over the next decade, while others may even start producing electricity
(becoming so-called “prosumers”). With the introduction of dynamic prices for elec-
tricity, household behaviour will diversify even further, because households will be
able to choose among different economic strategies to manage their energy-related
activities.

1.2. MOTIVATION
In recent decades, the energy system has seen an exceptional level of security of sup-
ply, and therefore any activities which rely on electricity could be planned with high
certainty. In addition, prices have been stable and fair. For most consumers, prices
have been fixed by long-term contracts. Furthermore, prices were roughly equal among
comparable consumers, i.e. among residential consumers as well as among industrial
consumers of comparable size. However, the new developments listed above make it
more difficult to keep security of supply high and prices stable, for three reasons: First,
the changes in supply and demand patterns in the energy system can result in higher
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peaks in network utilisation and novel fluctuations in prices, e.g. because dynamic
pricing contracts specify that prices may increase on short notice during peak hours.
Second, the number of decisions to be made by network operators as well as con-
sumers and suppliers is increasing. The amount of information which is needed to
make informed decisions is increasing, as well. Finally, the number of decision mak-
ers that are influential to the security of supply and price stability is increasing sub-
stantially, based on two trends: Households will become more diverse (as mentioned
above), thus the individual behaviour of some households can have more influence
than the behaviour of other households, both on the security of supply and on the sta-
bility of prices. An example for this is that one household owns an electric car, which
significantly increases its electricity consumption, while his neighbours do not. Fur-
thermore, a novel kind of decision maker enters the energy system - smart software
will be installed at many locations in the grid, for example in network equipment or in
electricity-consuming devices like electric cars. These devices can make autonomous
decisions based on signals or local observations. The introduction of these smart de-
vices can increase overall energy efficiency as well as stability of supply, but the design
of the distributed architecture in which this takes place is crucial.

In order to keep the security of supply high and price fluctuations within accept-
able ranges in these novel circumstances, it is crucial to find suitable methods with
which to allocate electricity among participants. Market mechanisms are very useful
procedures for such allocations. The main objective of a market mechanism usually
is to allocate a good (electricity in our case) to those who want it the most. However,
in a complex setting like electricity systems, a suitable market mechanism will need
to operate with multiple objectives, for instance to protect expensive network assets,
to keep prices stable and to provide some level of fairness.

Furthermore, for a market mechanism to be effective in the settings described
above, it needs to assess the flexibility of participants or of their devices to deviate
from their natural course of action, for example by shifting actions over time. This
flexibility is based on the physical properties of the participant’s circumstances (e.g.
the ramp-up speed of a power plant determines the amount it can supply on short
notice), its ability to plan ahead (e.g. if an electric vehicle which is connected to the
grid has a high likelihood of not being used for driving during the next few hours,
there exists flexibility to charge and discharge the battery in response to market sig-
nals) and finally its willingness to make use of his flexibility in exchange for monetary
compensation. We will provide a more formal definition of flexibility in Chapter 2.

When flexible market participants can be incentivised to offer their flexibility, pos-
itive effects on security of supply and on overall costs can follow. For example, bal-
ancing between supply and demand becomes possible on short notice, congestion
management can increase the lifetime of network equipment by re-routing power or
delaying either generation or consumption, power quality support (e.g. by voltage
regulation) can decrease losses and the likelihood of blackouts and brownouts is low-
ered substantially. The incentives which flexible participants receive (for making their
flexibility available) are paid for by the market participants who demand the flexibility.
For example, the operator of a windmill has demand for flexibility in a specific time
step if the windmill generates less power than it sold (ahead of time) for that time step
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- it thus needs to buy power on short notice to fulfil contractual obligations. Another
example is a distribution system operator who requires short-term protection of net-
work equipment, in order to avoid overloading. This could mean that the operator
would pay consumers (who are flexible to do so and willing to accept his offer) to de-
crease their power consumption during the time of overloading.

However, only with such flexibility present and being offered will incentives from
market mechanisms lead to desired outcomes. Until now, only a few very large actors
are offering their flexibility for economic compensation. These large actors employ
trained traders and sophisticated optimisation programs to plan ahead and design
bids to use in wholesale markets. In future energy systems, we need to enable small
actors who have less sophisticated decision-making capabilities to offer flexibility, as
well. First, they represent large parts of the demand side and if they offer their flexibil-
ity, the average costs of acquiring flexibility in the market should therefore be reduced
for all participants through increased competition. Second, there exist several prob-
lems on the lower levels of the grid (e.g. local congestion problems) which can only be
addressed if price signals can incentivise small participants to adapt their behaviour.

1.3. RESEARCH QUESTIONS
In this thesis, we consider various settings in lower and middle layers of future energy
systems, which are characterised by the trends in supply and demand we discussed
above. We distinguish various problems in these settings and provide novel solutions,
such as mechanisms and strategies. In particular, we outline the following research
questions:

1. Future energy systems will exhibit more intermittent supply and more hetero-
geneous demand, while storage technology will still be expensive. Consequently,
we will require flexible participants and devices to adapt their activities on short
notice, in order to balance supply and demand and to protect assets. Existing
dynamic pricing mechanisms for smart grid settings are able to achieve balanc-
ing of supply and demand by providing monetary benefits for such behaviour.
However, in these mechanisms the ability of both flexible and inflexible partic-
ipants to plan ahead is usually greatly reduced. Can we design pricing mecha-

nisms that enable adaptations by flexible participants on short notice, but still

maintain the ability of participants to plan ahead?

2. Today, participants in dynamic economic allocation mechanisms for electricity
are professional energy traders, who make use of elaborated financial portfolio
management techniques and powerful computation facilities to find the best
strategies. If many more actors are exposed to dynamic prices, then the level
of required sophistication that is needed to take part in pricing mechanisms
should be lowered. Which pricing mechanisms do not require high computa-

tional capabilities from the participants, are able to limit the exposure of small

participants to risk and are able to find allocations fast (suitable for smart grids)?

3. Automated grid protection is a crucial innovation step for network operators,
but a costly infrastructure program. Smart devices can be programmed to per-
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form protective actions, but they can react to dynamic prices as well. Is it possi-

ble for such devices to combine the objective of protecting network assets (e.g. ca-

bles) from overloading with applying buying and selling strategies in a dynamic

pricing environment, such that the devices can earn back parts of their own costs?

1.4. RESEARCH METHODOLOGY
In order to capture enough of the complexity inherent to the problem, this thesis stud-
ies the questions outlined in Section 1.3 with agent-based models of electricity market
settings, which are evaluated in stochastic simulations. We will provide some deeper
background on this technique in Section 2.3. Typically, each contribution chapter
(Chapters 3 through 6) will consist of three main parts.

First, we will design agents as autonomous decision-makers, that are well-suited
to model actors (people, companies, software) in economic allocation mechanisms.
This allows us to implement basic economic goals for market participants, e.g. cost
reduction or profit maximisation. Agents may be equipped with strategies or opti-
misation procedures to respond to a given setting with a behaviour that is likely to
improve their situation.

Second, we will define the protocols of interaction between agents. In this the-
sis, this means to implement a market mechanism which is able to collect informa-
tion from both the supply and the demand side and which responds with an alloca-
tion for all parties. This information will often, but not necessarily, come in the form
of bids, so that the market mechanism represents a one- or two-sided auction. The
contribution we make in order to improve outcomes for a problem setting is either a
novel market mechanism (with accompanying strategies of participants being based
on reasonable assumptions), strategies for existing mechanisms or indicators which
describe how well a given mechanism facilitates strategies of participants.

Third, we evaluate our solutions by measuring economic outcomes, where we
make use of economic paradigms like profits, consumer surplus or market power.
Most of our measurements concern single agents, for instance the profits made by
a bidding agent situated in an electric vehicle or by an electricity retailer company.
Other measurements concern a societal perspective, for instance the uneven distribu-
tion of market power among agents. We evaluate a range of possible what-if scenarios
by employing parameter analysis and Monte-Carlo sampling.

We note that throughout the thesis, multiple perspectives of actors in the energy
system are taken - market designer (Chapter 3), Distribution System Operator (Chap-
ter 6), producer (Chapters 3 and 5), consumer (Chapters 3 and 4), or a prosumer (a
new kind of player in electricity markets who both buys and sells - Chapter 6).

1.5. OUTLINE AND CONTRIBUTIONS
We summarise now how the remainder of this thesis is organised and what contribu-
tions are made. We refer to the research questions which were outlined in Section 1.3.
The chapters with novel scientific contributions (Chapters 3 through 6) can be read
independently. For a recommended instruction for reading (indicating which chap-
ters require the knowledge of which previous content), see the dependency diagram
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in Figure 1.1.

Figure 1.1: Dependency diagram of the chapters of this thesis.

Chapter 2 provides a closer look at the current developments and challenges in en-

ergy systems. We give an overview over existing literature that deals with these devel-
opments and challenges and we provide more insight in the way we address them in
this thesis. This information is beneficial to understand the contributions being made
in the following chapters (each following chapter also contains a discussion of related
work which is specific to the problem being addressed in that chapter). We examine
in Chapter 2 relevant technological trends like renewable energy sources and electrifi-
cation of demand. Then, we outline how this can affect the design of novel electricity
market design mechanisms and the strategies being used in them. We also pay spe-
cial attention to the notion of reserve capacity and define our notion of flexibility in
the context of this thesis. Finally, we go into more detail about our chosen method of
inquiry, agent-based modelling and stochastic simulation.

Chapter 3 proposes and evaluates ABEM, a novel market-mechanism. In order to
reach satisfactory levels of efficiency and reliability in future energy systems, it is cru-
cial to include planning-ahead of the energy-involving activities. Market mechanisms
are a promising approach for large-scale coordination problems about energy supply
and demand, but existing electricity markets either do not involve planning-ahead
sufficiently or require a high level of sophistication and computing power from par-
ticipants, which is not suitable for smart grid settings. We propose a new market
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mechanism for smart grids, ABEM (Ahead- and Balancing Energy Market). ABEM
performs an ahead market and a last-minute balancing market (a so-called “two-
settlement procedure”), where planning-ahead in the ahead market supports both
binding ahead-commitments and reserve capacities in bids (which can be submitted
as price functions). These features of planning-ahead reflect the features in modern
wholesale electricity markets. However, constructing bids in ABEM is straightforward
and fast. We also provide a model of a market with the features mentioned above,
which a strategic agent can use to construct a bid (e.g. in ABEM), using a decision-
theoretic approach.

We evaluate ABEM experimentally in various parameterised scenarios. Using stochas-
tic computational simulations, we show that there are no economic drawbacks for
bidders in ABEM when compared to a benchmark mechanism. For the System Op-
erator, there are several advantages, as well: Excessive market power of suppliers is
reduced (which we show in simulations) and flexible consumers will offer reserve ca-
pacity (which we prove for the case of perfect competition and show in simulations
for the case of imperfect competition).

In this chapter, we provide answers to the first and second research question.

Chapter 4 proposes three indicators for the comprehensibility of dynamic pricing in

retail contracts. The long-term business success of an electricity retailer will in the
future be determined by two novel factors: First, retailers need to avoid or mitigate
consumption peaks by exposing small-scale consumers to dynamic prices, as such
peaks lead to high prices on wholesale markets. Flexibility of consumption is becom-
ing a highly valuable contribution in future energy systems, and dynamic pricing is
one of the most promising means available to retailers in order to realise its poten-
tial. Second, it is important that the dynamic pricing strategy is not too complex - it
should be comprehensible to non-sophisticated consumers and the software agents
they might employ for day-to-day decision-making.

We argue and demonstrate in this chapter that these two factors are not comple-
mentary, and that this development constitutes a novel challenge to systems engi-
neering as well as economics. We propose three novel indicators (Stability, Learn-
ability and Engageability) to measure comprehensibility of pricing dynamics from the
consumer’s point of view. We then demonstrate these indicators in using stochastic
computational simulations, using a parameterisable market model. The indicators
are useful for designers of dynamic pricing mechanisms to understand effects of dif-
ferent contract settings and consumer population composition on the consumer per-
spective. For instance, a rather surprising finding in our model is that there is a limit
to how well price dynamics can be learned from one consumer’s point of view when
populations contain both flexible and inflexible consumers.

In this chapter, we provide answers to the first and second research question.

Chapter 5 proposes a method for finding well-working strategies for dynamic pricing

in retail contracts with upper limits on prices. Like Chapter 4, this chapter investigates
the relation between retailers and electricity consumers, whose relationship is char-
acterised by dynamic prices. However, here the focus is on the decision problem of
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the retailer. Formulating well-working dynamic pricing strategies is an important re-
search topic, to which we introduce the additional challenge of being able to promise
consumers an upper limit on prices. While consumption peaks (with no concurrent
peak in generation) incur significant costs (e.g. because of high wholesale market
prices during peak times or penalties for overheating network assets), promising price
limits will also be crucial for retailers (to attract consumers) as well as regulators (to
protect consumers). However, when designing dynamic pricing strategies, peak re-
duction and price limits can be conflicting goals.

We propose two parametrisable strategies for computing prices dynamically, based
on limited information about the current demand for electricity. We employ an evolu-
tionary algorithm to find well-working parametrisations for a strategy in a given set-
ting (given knowledge about the maximal price and expectations about consumer be-
haviour). These parameterised strategies are then evaluated in multiple what-if sce-
narios, using stochastic computational simulations. First, we show that this approach
is able to find well-working strategies. Furthermore, we show that the peak reduction
potential of dynamic pricing strategies depends on the maximal price. Furthermore,
we show that retailers do not prefer a constant price strategy (which always charges
the maximal price) over our dynamic price strategy. Finally, we show that employing
the proposed dynamic pricing strategies reduces peaks, although their parameters are
being optimised for the maximisation of retailer profits.

In this chapter, we provide answers to the first research question.

Chapter 6 develops algorithms to control the charging and discharging behaviour of

a battery, for the multi-objective challenge to simultaneously protect low voltage hard-

ware and maximise its revenue in a dynamic market. The initial motivation for this
contribution is the fact that the rated capacity of many currently installed low volt-
age cables is too low to withstand the increased usage levels which we can expect in
future settings (concerning both the overall electricity demand from households and
the peaks from intermittent local generation). This can become a problem for the
operators of distribution systems. It is too expensive to replace all cables at once.

We propose to let a battery (e.g. a used electric vehicle battery, which will be avail-
able in large numbers in the near future) protect such a low voltage cable. Because
also used batteries are costly, the battery should, next to performing protective ac-
tions, perform revenue management by buying and selling electricity intelligently. It
can thus partly earn back its acquisition costs.

We design control algorithms for the battery that combine these two objectives
(protection and revenue management) as heuristic strategies. We also model the costs
as a set of linear and integer constraints. Given a heuristic strategy for a given sce-
nario (a strategy describes charging and discharging behaviour of the battery), the
costs which occur when the strategy is applied can be computed with this model. As a
benchmark, we compute a theoretical lower bound for the arising costs with a mixed
integer linear programming solver. The solver optimises an objective function that
is based on the cost model and we give the solver clairvoyant knowledge of future
prices. We evaluate our algorithms in parameterised scenarios, using stochastic com-
putational simulations. We find that our best-performing heuristic strategy, which
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uses expectations of the future to prepare the battery state for periods that are likely
to be overloaded or are of interest for revenue optimisation, performs within 83% of
the approximated theoretical lower bound with clairvoyance.

In this chapter, we provide answers to the third research question.

Chapter 7 concludes the thesis. We first evaluate the methodological approach taken
in this thesis and outline the added value it has brought to it. Then, we revisit the re-
search questions which were outlined in Section 1.3 and evaluate to what extent this
thesis has been able to answer them.

1.6. PUBLICATIONS
The chapters of this thesis are based on peer-reviewed publications [50–56, 104], as
follows.

Papers on which the contents of Chapter 3 are based appeared as

• N. Höning, H. Noot and H. La Poutré: “Integrating power and reserve trade
in electricity networks", Proceedings of the 10th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2011), pages 1293-1294,
2011

• N. Höning and H. La Poutré: “Reduction of Market Power and Stabilisation of
Outcomes in a Novel and Simplified Two-Settlement Electricity Market", Pro-
ceedings of IEEE/WIC/ACM International Conference on Intelligent Agent Tech-
nology (IAT 2012), IEEE Computer Society, pages 103-110, 2012

• N. Höning and H. La Poutré: “Flexible Consumers Reserving Electricity and
Offering Profitable Downward Regulation", Proceedings of the Third IEEE PES
Conference On Innovative Smart Grid Technologies (ISGT 2012), IEEE Press, 8
pages, 2012

• N. Höning and H. La Poutré: “An electricity market with fast bidding, planning
and balancing in smart grids", Journal of Multiagent and Grid Systems (10), IOS
Press, pages 137-163, 2014

A paper on which the contents of Chapter 4 are based appeared as

• N. Höning and H. La Poutré: “Designing comprehensible self-organising sys-
tems", Proceedings of the 4th IEEE International Conference on Self-Adaptive
and Self-Organizing Systems (SASO 2010), IEEE Computer Society, pages 233-
242, 2010

A paper on which the contents of Chapter 5 are based appeared as

• N. Höning and H. La Poutré: “Reducing electricity consumption peaks with
parametrised dynamic pricing strategies given maximal unit prices", Proceed-
ings of the Second International Workshop on Intelligent Agent Technology, Power
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Systems and Energy Markets (IATEM 2013), IEEE Computer Society, pages 171-
175, 2013

Papers on which the contents of Chapter 6 are based appeared as

• S. Ramezani, N. Höning and H. La Poutré: “Fast and revenue-oriented protec-
tion of radial LV cables with smart battery operation", Proceedings of the IEEE
Symposium Series on Computational Intelligence (IEEE SSCI), Applications In
Smart Grids (CIASG 2013), IEEE Press, pages 107-114, 2013

• N. Höning, E. De Jong, G. Bloemhof and H. La Poutré: “Thermal Behaviour of
Low Voltage Cables in Smart Grid - Related Environments”, Proceedings. of The
5th IEEE PES Innovative Smart Grid Technologies (ISGT 2014) European Con-
ference, IEEE Press, 8 pages, 2014



2
BACKGROUND

In this chapter, a richer context is provided for the motivation of this thesis, related
work and its nature of inquiry. In the first section, the technological trends in energy
systems in the near future are explained in more detail. These trends include that
both generation and consumption are becoming less predictable and less steerable
and hence make it more difficult to plan the allocation of electricity ahead of time. We
first discuss changes on both the demand and supply side, where the increasing usage
of renewable energy is probably the most important trend. We also give an overview
over the “smart grid” concept and provide a short history of research into intelligent
electricity networks, which already spans more than two decades. The current focus
of this area of research lies on the inclusion of smaller actors in decision-making and
to improve balancing of supply and demand across time, in the face of uncertainty.
During the discussion of a number of trends, we argue how they make it necessary
to increase efforts in the further development of markets for electricity (markets are
mechanisms with which electricity and assorted payments can be allocated among
suppliers and consumers). Finally, we discuss implications of these trends for the
investment planning of networks.

The technological trends discussed in the first section require us to rethink how
electricity can be allocated efficiently and in a fair manner. Therefore, the second sec-
tion highlights the resulting challenges for designing economic mechanisms for the
modern trade of electricity. We begin with a brief classification of market structures
and trends in bid modelling. Next, we review ingredients for economic mechanisms
which enable the trade of flexibility, like dynamic pricing contracts, trading ahead of
time and the allocation of reserve capacity. We then look at a few examples of es-
tablished economic mechanisms and ongoing real-world experiments which include
these ingredients.

The problem settings inquired in this thesis are highly complex and stochastic.
This is due to the physical requirement to keep supply and demand in balance at all
times and (in future energy systems) the combination of intermittent production with
many independent decision makers. Proposed solutions should be tested on models

11
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that can represent this complexity and be validated against several what-if scenarios.
The third section of this chapter therefore introduces our research method of choice,
agent-based simulation, and provides some background concerning its recent scien-
tific development.

2.1. TECHNOLOGICAL TRENDS IN ENERGY SYSTEMS

2.1.A. INCREASING DEMAND FOR ELECTRICITY

In industrialised countries, the demand for electricity increases in a roughly linear
manner, due to economic growth. The European Network of Transmission Operators
currently estimates a yearly increase of around 0.8% [27], a pattern which has been
very stable since the 1950s1. This trend on its own poses a challenge to the planning
and maintenance of electrical grids.

However, several technological innovations introduce novel devices which use elec-
tricity as an energy carrier, where traditionally a different energy carrier was used.
Thus, these innovations lead to an increase in addition to the yearly linear increase
in demand for electricity. A similar non-linear increase happened in the last years of
the 19th century when technology used for lighting (by the invention of the light bulb)
and manufacturing (by the introduction of the electric motor, among others) started
to use electricity. Technology transitions of this kind are often described with the term
“electrification” and usually go along with significant investments in electricity grid
infrastructure, as both average and peak consumption increase.

In this century, we are about to see electrification happening in other fields. The
following few decades might see two particular examples: electric vehicles and heat
pumps. Electric vehicles are expected to be used widely as they do not require oil
and do not pollute cities. They would introduce electricity as an energy carrier for
transportation. Heat pumps, which create temperature differences similar to the way
a fridge works, are expected to become widely used because they make very efficient
use of energy [83]. They would introduce electricity as an energy carrier for heating
and cooling.

The continuous and increasing success of electricity as an energy carrier during
the last 130 years can be explained if we regard the electricity grid as a driver for tech-
nological innovation. One reason for this is that producers of novel energy-consuming
devices can reach millions of possible adopters who already have access to a standard-
ised infrastructure (the electricity grid). A second reason is that the electricity grid is
a shared transport medium for immediate supply and consumption, which enables
grid operators to put those energy sources to use that are most efficient in generating
electricity at any given time.

Of course, the electricity grid does not come for free. Building the electricity grid
and maintaining its high levels of supply quality leads to high infrastructure costs.
A major reason for grid extensions are peaks in consumption or generation. As they
most often result in a high difference between demand and supply, peaks require large

1However, in western economies there has been a unprecedented consecutive interval of five years with no
increases since 2008, due to the economic recession. The future of this trend of slight yearly increases is
therefore not certain at this time of writing.



2.1. TECHNOLOGICAL TRENDS IN ENERGY SYSTEMS

2

13

safety margins in grid design and wear out existing infrastructure. If peaks can be flat-
tened (often referred to as “peak reduction"), otherwise necessary upgrades to net-
work components like cables can be postponed, which can save millions in societal
investments. In addition, consumption peaks often lead to inefficient economic al-
locations, e.g. because expensive peak load power plants have to be employed for
supply during the peak. The flattening of peaks is a major concern in the design of
economic mechanisms for electricity and consequently also in this thesis.

2.1.B. CHANGES ON THE SUPPLY SIDE

FOSSIL ENERGY SOURCES

The generation of energy from fossil fuels (e.g. oil, coal, uranium or gas) has had a
major influence on the industrial development in the last 150 years. Currently, the
developed world gets 80% of its energy from fossil fuels. However, an end of easy
and cheap access to most fossil fuels is foreseeable and energy prices will increase
eventually. In addition, CO2 emissions are becoming a major concern for economic
stability in the future, due to climate change [83].

Both oil and coal have been and will remain very important to the world economy,
but burning them emits a lot of CO2. Nuclear power plants emit little CO2 and can in
principle be fuelled by materials more abundant than uranium, for instance thorium
or spent nuclear fuel. However, new reactor types will need more time and current im-
plementations are not yet convincing most investors and regulators that they provide
reliable service in terms of immediate safety and long-term waste disposal. Gas is a
fossil fuel which is used in power plants that start up fast (unlike coal or nuclear power
plants) and its CO2 emissions are also lower, so it will be an important contribution to
the energy mix.

THE INTRODUCTION OF RENEWABLE ENERGY SOURCES

In the light of the problems with fossil fuel supply, so-called renewable energy is sup-
posed to constitute a greater part of our energy mix in the future and is exhibiting
significant growth rates within the energy mix of many countries over the world2. The
major novel aspects of this generation technology are of both technical and econom-
ical nature.

Technologically, the output of many renewable power generators cannot be steered
like it is possible with generators powered by fossil fuels (their output is of “intermit-
tent” nature) and thus their output does often not align with the demand for power3.
A supply-side response to this problem is that renewable energy sources are accom-
panied with technologies that can stabilise their supply levels, e.g. a base power plant
or energy storage. On the other hand, a demand-side response happens when con-
sumption follows supply, a setting which requires novel solutions for mechanisms to
find allocations of electricity and assorted payments.

The predictability of solar and wind power is of high importance to the successful
integration of renewables. It can vary substantially between locations. For instance,

2Of course, another way to replace fossil fuels is being more efficient while using energy.
3There are many methods of renewable power generation, but two of the most popular methods - solar and

wind - are both of highly intermittent nature.
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the North-African desert provides ample and stable solar radiation and wind blows
stronger and more consistently a few miles off the coast than on shore. While solar
radiation follows predictable patterns over seasons and the time of day, it can vary
a lot due to movements of clouds [105]. Wind throughput can often be forecasted
surprisingly well hours in advance but exhibits small sudden variations [41].

Another technical challenge to the operation of electricity systems is that many
generators of renewable energy are small and will therefore be connected to the grid
in a much more decentralised manner than traditional large-scale generators. In the
traditional model, large generators are connected to the medium or high voltage grids
and electricity is distributed to many small consumers connected to low voltage grids.
When generators are also being connected to the low voltage grids, bi-directional
power flows have to be managed, which adds significant complexity to the problem
of power flow coordination [99].

Economically, renewable energy sources have high investment costs but almost
no marginal (fuel) costs. This has strong effects on electricity prices and on the prof-
itability of investments in electricity generation. If an electricity market is dispatch-
ing generation in the so-called merit order (ranking available sources of electricity in
ascending order of their short-run marginal costs of production, as is the case, for ex-
ample, in Germany), then electricity prices will be very low when a lot of renewable
energy is available [111]. This negatively affects the ability to recover fixed investment
costs of generation plants4.

As was noted earlier, gas is a fossil fuel with low CO2 emissions. It has the ad-
vantage that gas power plants can ramp up quickly and gas would thus be a promis-
ing partner technology for renewable energy sources. However, the effects discussed
above are stalling investments in gas power plants worldwide, so it is crucial to de-
velop market mechanisms that explicitly assign a monetary value to this flexibility.

2.1.C. ADDING INTELLIGENCE TO THE ELECTRICITY GRID

CURRENT ELECTRICITY GRID MANAGEMENT VERSUS THE “SMART GRID” CONCEPT

On the medium and low voltage level of contemporary electricity grids, there is very
little real-time information available, which would be needed in order to operate equip-
ment (e.g. generators or transformers) dynamically. Control signals cannot be sent to
or received from most equipments either. Thus, the capacity requirements for many
assets are estimated before installation and they are usually replaced when they can-
not function any more. This approach leads to inefficiencies, which will become even
more apparent in the dynamic circumstances that are being expected in the com-
ing decades (due to trends on the demand and supply side that are described in Sec-
tions 2.1.a and 2.1.b).

The “smart grid” concept (e.g. [2, 89]) refers to current developmental efforts to
add information technology to the electricity grid. It includes both the collection of
real-time metering data about electricity usage and the introduction of automated
decision-making based on this and other data. These efforts are supposed to increase
fault tolerance and efficiency of network maintenance.

4Owners of solar panels in Germany are protected against this effect by the German Renewable Energy Act,
which increases overall retail prices
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An example for improved automated decision-making is a network switch which
decides automatically to switch off, in order to protect one part of the connected
households from problems in the other part. Furthermore, signals can be sent to
connected devices, which enables real-time price communication to domestic con-
sumers, which in turn allows to involve them in market mechanisms for energy, such
as dynamic retail contracts. This can be crucial to involve small consumers and gen-
erators in peak curtailment (but requires that market mechanisms are designed that
allow the participation of many participants with limited computational capabilities).
Another large efficiency improvement is that smart meters can send usage data auto-
matically to the utilities or retailers, making manual meter readings unnecessary. The
Brattle Group (2009) [32] estimates that the combined advantages of smart meters
EU-wide can outweigh the costs of purchase and installation (which are estimated at
51 billion Euros), if the right regulation is put in place.

Critics of this technology are concerned with privacy (asking where the data might
be sent and whether it is stored) and the possibility to remotely shut off appliances
(a feature which is becoming less and less popular and has been removed from the
specification for smart meters in The Netherlands as of 2013). The roll-out of first-
generation meters has begun in many countries. For instance, the Dutch government
plans to have smart meters installed in 80% of households by 2020.

A SHORT HISTORY OF RESEARCH IN INTELLIGENT ELECTRICITY NETWORKS

The idea that the electricity grid would need to be managed better in order to con-
tinue to provide high levels of service dates back to the 1980s. The motivation was that
the infrastructure was ageing, which increased the number of blackouts. Efficiency of
operation was low, as supply quality was the only major engineering concern. How-
ever, the shrinking national budgets during that decade called for more cost-efficient
approaches, which were supposed to lead to smarter investment strategies than the
approach described in Section 2.1.c. Adding intelligence to the network was regarded
as necessary among experts.

Paul Werbos (2011) [135] divides the last two decades of research and innovation
(in adding intelligence to electricity grids) into four phases. In the first phase, begin-
ning around 1990, investments in infrastructure increased. The grid needed moderni-
sation, so wires and metering hardware moved into the focus. First fundamental re-
search was done into more intelligent ways to address blackouts and efficiency, mostly
by investigating unit commitment problems (the decision problem when which gen-
erator should be turned on, e.g. [91, 96, 107]). Many researchers came to the conclu-
sion that the electricity system is a large-scale non-linear system, and that this com-
plexity needed to be taken into account when modelling the problem.

In the second phase, beginning around 1998, concepts from control theory and
computational intelligence were utilised in order to address the observed non-linearity [3].
In addition, load shifting began to move into the center of attention and with it the first
concepts of dynamic tariffs for domestic consumers, for instance through time-of-
day pricing. Finally, new wholesale market regulations introduced new central roles
for high-level decision makers, such as the Independent System Operator (ISO). The
developments during the second phase opened up a new range of optimisation prob-
lems.
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During the third phase, which began around 2001, the focus lay on solutions for
large-scale, stochastic and global optimisation problems, such as the problems that
were conceived of in the second phase. In particular, agreement formed to maximise
added value of any solution in the optimisation objective, and thus move away from
making stability guarantees. Instead, outages or power quality problems became part
of the optimisation objective. However, this discussion also made it clear that plan-
ning problems in energy systems are inherently multi-objective. In addition, the prob-
lem of formulating strategies for bidders in the recently established wholesale markets
received increased attention (e.g. [19, 79, 140]).

The fourth phase began around 2009, and Werbos identifies two main challenges:
First, the accommodation of large new loads (for example electric vehicles, refer to
Section 2.1.a) and generation facilities (foremost by renewable generation refer to Sec-
tion 2.1.b) into the distribution network. The wide-spread arrival of these new tech-
nologies within the next two decades is by now broadly accepted. Second, better so-
lutions to the balancing challenge are necessary, especially “across time, in the face of
uncertainty”. This involves forecasting, planning and the coordination of this infor-
mation. The reduction of peaks, large differences between demand and supply, takes
over as the main goal of this phase. For this, demand response mechanisms, more
generator ramping capabilities and advances in storage technology are essential.

The main research challenge (which can be addressed by computer science) is,
according to Werbos, to improve the optimisation of peak reduction by employing
intelligent agents in households: “massive load-shifting can be achieved in a system
which allows intelligent agents to be inserted both at the grid level and at the house-
hold level”. Current research focuses on categorising consumption devices according
to the type of flexibility they offer (e.g. curtailable load, shiftable load and storable
load [46] or uncontrollable, shiftable and buffer resources [18]) and then finding well-
working strategies for each type. Meanwhile, acknowledgement is increasing among
smart grid researchers that the goals of individual actors in the energy system do not
always align with the system goals (for example to increase overall efficiency) and
therefore the integration of market mechanisms with distributed intelligence con-
cepts becomes highly relevant.

2.1.D. CHALLENGES TO INFRASTRUCTURE INVESTMENT PLANNING

Network capacity planning, the planning of investments in power networks, has al-
ways been a complicated problem [81, 138]. Assets in electricity grids (like cables,
switches and transformers) have a long estimated lifetime and thus they need to be
robust against a variety of possible future scenarios. An example is to build strong
connections to a certain area because a factory is located there. Should the factory
relocate long before the cable’s lifetime ends, then the investment was misplaced. In
addition, network capacity planning is an inherently multi-objective problem. It deals
with deciding on investments at several locations with various types of network com-
ponents and configurations, as well as different time paths for investing. Important
objectives are optimal network capacity (so that future demand and production of
electricity can be facilitated), minimal total costs and optimal technical performance
of the network (meeting technical requirements with respect to power quality and
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network stability).
The new technical challenges mentioned in Sections 2.1.a and 2.1.b increase the

complexity of this problem. There is currently much diversity in the technologies
available for generation as well as consumption. In addition, there is much uncer-
tainty which technologies will be relevant in a few years from now. Thus, it becomes
more difficult to forecast where significant production and demand will appear. It is
also hard to forecast how and if intermittent energy generation will result in peaks.
Finally, the consequences of the resulting (bi-directional) power flows are not fully
understood. Currently, modern optimisation techniques such as evolutionary algo-
rithms are being developed to tackle these complexities in distribution network plan-
ning (e.g. [45, 80]).

However, the novel possibilities of adding intelligence to devices on the grid (as
proposed in the “smart grid” concept outlined in Section 2.1.c) can actually make the
planning of investments easier, as the installed hardware can now become more flex-
ible and thus robust against many future developments. In addition, market mech-
anisms can be used to charge both suppliers and consumers for their usage of the
electricity grid and return these charges to investors. Proposed mechanisms for this
particular problem are Locational Marginal Pricing (e.g. [78]) and Financial Transmis-
sion Rights (e.g. [64]), but no mechanism for the solution of the cost allocation prob-
lem has of yet been universally agreed upon.

2.2. ECONOMIC MECHANISMS FOR ELECTRICITY
Electricity is a perishable good. Supply and demand in the system have to match in
real time, due to Kirchhoff’s laws. In addition, storing electricity is expensive. Thus, it
becomes an important task in each time step to allocate electricity, meaning to decide
which connections are supplied with how much electricity.

In this thesis, we take the point of view that individual decision-making about
electricity can be organised efficiently via economic mechanisms, for example mar-
kets. The electricity grid provides a common platform, on which short-term relations
between all connected actors can be described by selling and buying. If one actor
increases his supply level (as a seller), he increases the frequency on the shared elec-
tricity network. Consequently, the overall supply available to all actors (who are inter-
ested in buying) increases5. Likewise, if one actor increases his consumption level (as
a buyer), he decreases the frequency on the network and the overall available supply
decreases. Furthermore, the grid is the only economically acceptable method of ex-
changing electricity between actors who are not within immediate proximity (if it has
reached a high connectivity rate and quality of service, as for example in Europe).

5This straightforward relation can become more complicated if cable capacity limits are surpassed.
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The basic function of an economic mechanism for electricity is to allocate elec-
tricity among actors for each delivery time. We define an allocation as follows:

Definition 2.1:
An allocation of electricity assigns, for a given delivery time, to each involved actor a

quantity of electricity to produce or to consume and a payment to receive or to pay

along with this.

Electricity can be traded in different ways and on different levels. We now provide
a short overview. First, electricity can be allocated in long-term forward contracts (for
instance, the length of one year is common), which a system operator typically ne-
gotiates with the operators of large power plants. Furthermore, there usually exists a
wholesale market, which most often operates a day ahead of the time of power flow.
In a wholesale market, large suppliers and consumers submit bids and a market op-
erator finds allocations. Because wholesale markets operate ahead of time, ancillary
service contracts (which describe options on providing supply on short notice) or bal-
ancing markets are needed, in order to equate supply with demand at the time of the
actual power flow. On the retail level, retailers have long-term contracts with small-
scale consumers and engage in forward contracts, wholesale markets and balancing
markets to buy the needed quantities. Retail contracts commonly use fixed, constant
prices, but might in the future also describe tariffs with flexible prices.

In this section, we give more details for both contemporary and innovative meth-
ods to arrive at allocations as defined in Definition 2.1. We first introduce relevant re-
lated work for market design, a field which has a rich history, originally in economics
but nowadays equally also in computer science and electricity engineering. Market
design is concerned with finding allocations, where both the choice of market mech-
anism and the format of bids are crucial. Then, we shift our focus to a crucial chal-
lenge within modern market design for electricity markets - the challenge of finding
adequate monetary compensation for the service of offering flexibility, which is to be
able to adapt supply or consumption levels on short notice.

2.2.A. MARKETS FOR ELECTRICITY
The electricity sector has been liberalised in many countries of the world during the
recent decades, meaning that regulators move system operation tasks which were
previously performed by government agencies to newly formed markets. This phe-
nomenon is not unique to the energy sector, but happened next to the liberalisation
of other business sectors, e.g. tele-communication.

The first core idea of liberalisation in the electricity sector has been to move from
long-term forward contracts to wholesale markets, where large suppliers compete
more often on a regular basis. Another very important idea has been to increase com-
petition among retailers, by enabling contract choice for consumers. Finally, new reg-
ulation unbundles roles, meaning that large companies which previously performed
several roles are being split up. In many countries, the roles of wholesale producer
and retailer have been unbundled. Some countries have also unbundled the role of
network owner and operator.
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As an effect of liberalisation, the role of domestic consumers becomes more ac-
tive. Furthermore, as an effect of technological trends, the role of the producer on
the distribution level is emerging (see Sections 2.1.a and 2.1.b). It becomes necessary
to revisit the design of electricity markets, because interactions between market par-
ticipants happen more frequently, more trade partners and choices in contracts are
available and new roles are created. This section discusses some fundamental prop-
erties of electricity markets6.

BILATERAL AND MEDIATED TRADING

With respect to the trade of electricity, a broad distinction can be made between bi-
lateral and mediated trade. In bilateral trade, buyers and sellers trade with each other
directly. The search for the best party to make trade agreements with can be time-
consuming, and the outcome of price negotiations can be very one-sided due to mar-
ket power. In most countries, the government has therefore taken over the role of a
mediator in electricity trade and independent spot market operators have begun op-
eration during the last decade (e.g. the European Exchange EEX). A market mediator
acts as an intermediate party which collects bids and offers from all other parties and
determines an allocation for each participant.

The two most prominent types of mediated wholesale markets for electricity are
power pools and exchange markets [86, 114]. The main difference between these two
types is that power pools allow for many details to be included in the bids (marginal
costs, as well as technical and contractual characteristics, e.g. ramping up and down
times or so called “must-run” constraints), while exchange markets limit the level
of detail in bids (they require only prices, quantities or functions that map between
prices and quantities). This has consequences for both clearing algorithms and bid-
ding strategies.

When we model a mediated market in this thesis, we model an exchange market.
Exchanges have grown in popularity for the trade of electricity in recent years [114].
First, this is due to a solid foundation of research. Specifically for spot markets for
electricity, Schweppe et al published their seminal work in 1988 [110]. Auctions are
currently also popular for the trade of other goods, both in real-world trade and in
research into other disciplines and thus, experiences from outside the field of elec-
tricity market design can be transferred. A second reason for the success of exchange
markets is that requiring less details (than bids in power pools) eases access and thus
increases competition. Less details in bids can also decrease the time it takes the me-
diator to find allocations, which can be crucial in settings like the ones described by
the “smart grid” concept (see Section 2.1.c).

TYPES OF BID FORMATS IN ELECTRICITY AUCTIONS

The main types of bid formats used in auctions for electricity are described by the
Bertrand model, the Cournot model, and the Supply Function Equilibrium (SFE) model.
In the Bertrand model, sellers set prices and buyers choose quantities at that price.
The Bertrand model works well if there are no capacity limits or transmission costs.

6This discussion is inspired by trends in electricity markets found in Europe as well as the U.S. However,
most points made here apply to electricity markets in general.
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When there are such constraints or costs, prices can rise above the marginal cost and
even fluctuate without end [49]. In the Cournot model, companies compete on the
amount of output they will produce, which they decide on independently of each
other and simultaneously. The Cournot model is a more accurate model for contem-
porary energy markets than the Bertrand model (e.g. [11]). However, studies have
shown that electricity prices often lie between what would be predicted on the basis
of Bertrand and Cournot models. For this reason, supply functions [71] are used more
and more [136].

Supply functions show the prices at which a firm is willing to sell different quanti-
ties of output. They combine Cournot and Bertrand modeling approaches [23], and,
in addition, allow individual characteristics of costs or utility to be expressed in the
function shape. This is a useful property in power markets, as generators sell an inter-
changeable product but total costs of production are usually non-linear. This is due
to portfolios that contain differing generation facilities or to means of generation that
operate more costly under high utilisation. Thus, bids often represent cost profiles
that map a range of unit prices to the amounts of power which the seller is willing to
sell at these prices and times (e.g. the electricity pools modelled in [87, 116] accept
piecewise linear bids or several price blocks).

A second reason to use supply functions is given by Klemperer and Meyer (1989) [71].
They describe how supply functions are useful in multi-unit auctions when market
outcomes are uncertain. In addition, supply functions are considered to increase
competition [114]. It is important to realise that the format of bid functions which
is valid in a given market affects the dispatch, revenue, and profit for generators [16].
Typical choices are quadratic functions and piece-wise linear functions. Neither can
perfectly model true costs, but quadratic bids are used most commonly, as they allow
calculus-based analyses to be performed [16].

2.2.B. ENABLING THE TRADE OF FLEXIBILITY
We have noted earlier (in Sections 2.1.a and 2.1.b) that the difficulty of balancing sup-
ply and demand in electricity systems is expected to increase, due to technological
trends. Consumption peaks as well as the intermittency on the supply side are in-
creasing. To dynamically store and release energy is still not feasible on a large scale
(neither physically nor economically).

In the contemporary discussion of the balancing challenge, the need for flexibil-
ity is often mentioned. Future settings in energy systems require that many alloca-
tions are created or adapted on short notice (close to the time of consumption). While
prices are in principle always negotiable (and thus the willingness of rational actors to
offer flexibility services can be assumed to be present if economic conditions increase
the expected compensation sufficiently), the physical ability to make such allocations
possible is a hard constraint.
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Consequently, we define being flexible (in the context of electricity markets) as
follows:

Definition 2.2:
An actor can offer the service of flexibility if he is physically able of adapting his energy

supply or consumption on short notice, to a level which has not been agreed upon in

an earlier allocation.

For instance, a gas power plant is flexible, as it can start up on short notice. A coal
power plant is inflexible, as it needs hours to adjust its output level. A wind mill is
inflexible, as it depends on the wind speed. In fact, intermittent energy generation
like wind power is partly responsible for the need for more flexibility (from other de-
vices). Thus, as the significance of inflexible participants to the operation of electricity
systems is on the rise, the value that flexible participants offer to the management of
energy systems is increasing.

In their 2030 Framework for climate and energy, the European Union has set the
target of “at least a 27% share of renewable energy consumption"7 overall, which can
of course be much higher during certain times of the day. Van Den Bosch et al (2010) [124]
write that “present policy is to increase to 30% wind and solar energy, which will intro-
duce larger uncertainties and more demanding arrangements for ancillary services.“

Novel economic allocation mechanisms for electricity should be designed such
that the economic value of flexibility can be found and consequently be realised in
financial rewards. Compared to current practice, the competition for flexibility should
increase (many more flexible actors should be enabled to offer it and inflexible actors
should be required to pay for it). Furthermore, prices should be more dynamic and
the demand side needs to be included in such mechanisms on a broader basis.

In this section, we will discuss several ingredients to economic mechanisms which
can enable the trade of flexibility, namely dynamic pricing contracts, trading ahead
of time and the allocation of reserve capacity. We then look at a few implemented
economic mechanisms and ongoing experiments.

FLEXIBLE TARIFFS FOR ELECTRICITY CONSUMPTION

The classical market models mentioned in the previous section mostly describe the
integration of supply-side bidding, because until now the demand side could reason-
ably be assumed to be inflexible to changes in price. This is why today almost all
consumers are subscribed to long-term contracts with fixed prices. Currently, most
market policy designers aim to change this and expose consumers to prices which
change throughout the course of a day. This will require more short-term economic
decision-making from them. Whereas now the quantity which is consumed by do-
mestic households (which represents around 30% of overall consumption) is an ex-
ternal input to the wholesale markets, it will change in reaction to wholesale market
dynamics if domestic consumers are exposed to prices. This is commonly referred to
as “active demand" or “demand response".

7https://web.archive.org/web/20151022194516/http://ec.europa.eu/energy/node/163



2

22 2. BACKGROUND

For most consumers, being exposed to wholesale market dynamics is most likely
to be achievable if they are aggregated by a third party, whose business model is to buy
electricity on the wholesale market on the behalf of their pool of consumers and es-
tablishes tariffs for electricity consumption with them. The role of this aggregator can
be assumed by several parties, for example the operator of a charging station for elec-
tric vehicles. However, traditionally the aggregator role is assumed by the electricity
retailers.

In order to incentivise their consumers to act flexibly, aggregators will have to
move away from the current model of offering consumption contracts with fixed prices
per kilowatt hour. There have been experiments with time-of-use pricing (e.g. [131]),
where prices are defined, ahead of time, for different times of the day. The most known
and technically straightforward example of time-of-use pricing are day/night tariffs,
where simply two electricity meters are operated at the customer’s premises. Another
example is critical peak pricing [120], where a penalty price is applied to some peri-
ods which often exhibit consumption peaks. Dynamic pricing is a form of optimising
revenues for a seller which involves changing the price of goods or services on the
spot, based on current conditions like costs of supply or network states. Tradition-
ally, it involves application areas where the capacity is fixed in the short-term and is
perishable [25], and thus it is a good fit for electricity retail.

The major difference between dynamic pricing and time-of-use pricing is that
dynamic prices are based on real-time information and are announced in real-time,
while time-of-use prices are known in advance. An advantage of real-time informa-
tion being used for pricing is that prices can steer supply and demand more accu-
rately with respect to the system objectives (e.g. peak shaving). A disadvantage is that
consumers can plan better with fixed, pre-announced prices (even if consumers are
fully aware of a dynamic pricing strategy, they might not have all the information that
is used in it). In this regard, we also note that for time-of-use pricing, consumption
peaks have been observed that solely result from shared knowledge about an upcom-
ing change in price. For example, a pre-announced drop in prices at 8:00pm leads to
a consumption peak during 8:00pm and 8:15pm.

For both time-of-use pricing (with more than two prices, where simply two me-
ters can be installed) as well as for dynamic pricing, more communication infrastruc-
ture, e.g. smart meters, are needed. The introduction of consumption contracts with
dynamic pricing will of course also be subject to new regulation in order to achieve
customer protection. For instance, a maximum price might be mandated such that
overall consumption costs will always remain within some bounds.

TRADING AHEAD OF TIME

Currently, most of the electricity that is generated and consumed, is being allocated
ahead of the time of actual power flow (also referred to as “time of delivery”). This
holds for bilateral trade as well as mediated trade. The time difference between al-
location and delivery may vary among market mechanisms between a year to a day
ahead and could, in settings such as the smart grid concept (see Section 2.1.c), be
even shorter.

Allocations made ahead of time (e.g. in a so-called “ahead market”) have been
found to increase competition. For example, Kamat and Oren (2004) [69] find that
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an ahead market decreases market power of generators. Veit, Weidlich, Yao and Oren
(2006) [127] conduct a simulation study in which suppliers improve bids by reinforce-
ment learning. They find that an ahead market lowers prices and their volatility. This
is confirmed in simulations by Bower and Bunn (2000) [14], who credit this to higher
demand elasticity in the ahead-phase. In general, trading ahead facilitates the plan-
ning for all involved participants. Inflexible participants can create demand for flexi-
bility, while flexible participants can prepare to deliver flexibility.

Given the uncertainties inherent to energy systems, however, allocations made
ahead of time will almost never be perfect. Many actors will find that they have to
deviate from the amounts of energy scheduled to them in the allocation made ahead
of time. For example, a retailer might need to buy more power, as the consumers
who have contracts with him consume more than he had estimated. To match supply
and demand close to the time of delivery, at least one more round of allocations (a
“settlement”) has to happen, in which necessary adaptations to the first settlement
can be made. If this settlement is found via a market, that market is often referred
to as “balancing market” or “spot market”. If quantities of electricity are adjusted (for
balancing), then the unit price of electricity might also be adjusted. For instance, the
price for power might increase when the time of delivery comes closer. This allows an
economic system to approach the true value of offering flexibility.

In addition to the objective to even out overall demand and supply on the grid
(which is necessary due to physical laws, such as Kirchhoff’s laws), another objective
of adding a second settlement close to the time of delivery can be to adjust the flows in
the network in order to protect parts of the grid. For example, the second settlement
could relieve certain overheated cables by reducing generation in one location and
increasing it in another.

A market system with two-settlements, an ahead market and a balancing mar-
ket, is commonly referred to as “two-settlement procedure” (e.g. [69, 127]). Of course,
more settlements can happen, when multiple periodic auctions are held (in a “multi-
settlement procedure”) or one continuous auction is open for bids at all times until a
deadline before the time of delivery. A continuous auction clears two bids with each
other whenever possible, while a periodic auction (also called one-shot or clearing
house auction) clears all bids at once (after a given period has passed) simultane-
ously [98].

RESERVE CAPACITY

In order to reach high levels of service quality and efficiency, a system operator should
ensure that those adjustments which are necessary to balance supply and demand or
to protect the grid are physically possible. This is important if there is no resource
(for the purpose at hand) which can be assumed to be limitless on short notice. For
example, in a low voltage setting, one can often assume that the connection to the
medium voltage grid represents a limitless resource. In a microgrid, however, this
assumption can not be made. In addition, such an assurance by the system operator
can be important if there is a limitless resource, but it can be assumed that it will ask
for very high prices. One traditional approach is to ensure that some flexible actors
are able to adapt their pre-planned behaviour on short notice, to some extent that is
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agreed upon ahead of time. Only if such an explicit agreement exists, can the system
operator be certain that adjustments are possible.

The term “reserve capacity” is traditionally used as an umbrella term for several
possible ways to implement this method of trading flexibility [36]. The most-used
implementation is a supplier who reserves spare generation capacity for balancing
out excess demand. The same service (which grid operators call “upward regulation“)
can also be provided by a consumer reducing his consumption. Both solutions work
against too little supply on the grid. On the other hand, a supplier could reduce his
supply or a consumer could consume more than planned on short notice (this service
would be called “downward regulation”), to tackle too much supply on the grid.

Because there is one point in time when reserve capacity is allocated and another
point in time when it may be used for balancing, the use of reserve capacity integrates
well with the two-settlement procedure, which we introduced in this section.

EXAMPLES

In the following, we list three important examples of the trade of flexibility, which are
implemented (or are tested) in real-world settings.

• A traditional model is to allocate flexibility on a contractual basis, such that
the seller is on stand-by for a longer period of time. These so-called “ancil-
lary services” have traditionally been provided through upward regulation by
suppliers, which was accomplished by several layers of services - the fast fre-
quency response (reacts after seconds up until several minutes), the spinning
reserves (reacts between 10 and 30 minutes) and operating reserves (reacts af-
ter 30 minutes). Ancillary services incurred almost the same cost impacts as
transmission in 1998 in the US (12 billion versus 15 billion per year) [48]. The
negotiated prices for providing ancillary services available as options are often
quite high and their execution is not attached to positive incentives for their
providers [123].

• Ancillary services have traditionally been contracts which were negotiated for
longer service durations ahead of time (e.g. a year or a week), but it is not clear
if this is the economically most efficient way to allocate flexibility. Another main
model are periodic auctions, held ahead of time for every upcoming time slot.
Compared to long-term service contracts, these auctions can increase competi-
tion significantly, because all actors can take part whenever they have flexibility
to offer.

We have mentioned several types of auctions which are implemented as whole-
sale markets. Many real-world examples are implemented as two-settlement
procedures (see above, this section) and also make use of reserve capacity (see
above, this section). They add the trade of reserve capacity to their first settle-
ment and then allocate balancing requirements from this reserve capacity in
the second settlement, if necessary (e.g. [87, 116]). However, bidding in these
advanced two-settlement procedures is quite complex.

• Another important model are flexible retail contracts (see above, this section).
Consumers choose a contract from a retailer. If they pick a contract with a dy-
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namic tariff, they assure the retailer some flexibility. When the retailer needs
to balance his portfolio, he increases prices to some extent and lowers his ag-
gregated demand. The differences between the classic ancillary service con-
tracts described above are therefore not only that flexible retail contracts deal
with consumption, but that the price is dynamic. Flexible retail contracts exist
for large industrial consumers, but so far little development has taken place in
the domestic consumer retail market. Several real-world trials have been con-
ducted (e.g. [9, 33]), with mixed results.

2.3. THE STUDY OF COMPLEX SYSTEMS WITH AGENT SIMU-
LATIONS

We outlined in Section 1.3 that we aim in this thesis to develop novel solutions, such as
mechanisms and strategies, for settings in future energy systems, where small actors
will be involved in real-time economic decision-making. Thus, our solutions will have
to be evaluated in an electricity engineering context as well as an economic context.

The continental European electricity grid is the largest synchronously working
machine in the world [28]. Its operation depends on many independent factors and
technological constraints and to operate it with high security of supply and energy
efficiency is a major engineering challenge. On the other hand, human economies
are commonly counted among the most complex man-made systems [7]. This is due
to the wide range of economic allocation mechanisms within which decision makers
interact, the limitless set of strategies available to them and the many possible inter-
actions that exist between economic decisions and the rest of the physical world.

Thus, to perform scientific research which should lead to novel solutions applied
in both an electricity as well as in an economic context poses a major challenge to
modelling. How can our research into these complex settings lead us to valuable in-
sights? More specifically, we have two decisions to make: What method of modelling
allows us to include sufficiently many details about problem settings but is still use-
ful for the evaluation of solutions? And by what method should we evaluate solutions
in order to generate conclusions? In this thesis, we answer the former question with
agent-based modelling and the latter question with stochastic simulations.

2.3.A. AGENT-BASED MODELLING

Ever since Schelling (1971) [109] demonstrated in his work on segregation that sur-
prising macro-effects can be based on continuous individual decision-making, mod-
elling of systems which include many interactions by using the multi-agent metaphor
has become an important approach within the social sciences. The trend of increas-
ing computation power in recent decades has enforced this approach, as it became
possible to compute many scenarios within acceptable time.

Examples of modern descriptions of agent-based modelling in computer science
are given by Wooldridge (1997) [137] and Jennings (2002) [61]. This type of modelling
employs separated programs called “intelligent agents” to represent autonomous de-
cision makers and their goals in some environment. These agents receive information
about changes to their environment and reach a decision on how to act appropriately
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with respect to their own goals. Agents can complete their objectives while situated in
a dynamic and uncertain environment and can operate within flexible organisational
structures. From a computer theory standpoint, an agent can be seen as a Turing ma-
chine with added ability to perform input and output actions, supporting dynamic
interaction with an environment [133].

A system consisting of several, interacting agents is called a “multi-agent system”.
Agents in multi-agent systems can be heterogeneous, have a complex model of their
environment (including other agents) and make use of a memory about previous in-
teractions with each other. This sets a multi-agent system apart from systems with
simpler components, for example from particle-based models, where particles are in
different states, but commonly act on precisely the same rules, consider only their
own previous state as input and act without (further) memory.

Agent-based modelling is often used in the study of economic systems. Tesfatsion
(2002) [118] makes the case for a new branch of economics called “agent-based com-
putational economics (...), a specialization to economics of the basic complex adap-
tive systems paradigm.” Markets for electricity have been studied with the help of
multi-agent systems by several researchers during the last decades, amongst which
the group of Leigh Tesfatsion herself (e.g [102, 111, 115, 127]). Weidlich and Veit (2008) [134]
have compiled an extensive survey on agent-based models of electricity markets.

2.3.B. COMPUTATIONAL SIMULATIONS
In addition to deductive and inductive reasoning, computational simulation is about
to become a third pillar of the scientific method [82]. For very complex and dynamic
settings like multi-agent systems (see above), where it might be impossible to form
closed-form mathematical expressions of the problem at hand, simulation can even
be the primary method to reach novel insights. Axelrod (2003) [5] calls simulations “an
effective tool for discovering surprising consequences of simple assumptions”. Simu-
lations are also very useful to get insights into different scenarios.

Because of the high uncertainties inherent to the problem and its many degrees
of freedom, we need to design simulations that repeat the same settings many times,
with selected input parameters randomly sampled from statistical distributions. This
method, often referred to as the Monte-Carlo method, allows to interpret results with
statistics, e.g. by reporting the average over a number of repetitions. The design of
stochastic simulations has therefore seen increased attention in recent years (e.g. [65,
72]).
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TWO-SETTLEMENT MARKET

MECHANISM FOR ELECTRICITY

3.1. INTRODUCTION
In future energy systems, novel supply and demand patterns pose novel challenges
for the economic allocation of electricity. Intermittent renewables increase the un-
certainty on the supply side and new consumption technologies, e.g. electric vehi-
cles, enable the demand side to become more flexible. In recent years, centralised
mediated markets for electricity, e.g. auction mechanisms, have been developed and
employed on the wholesale level to increase competition and find better economic
allocations. Another trend to combat these challenges, often referred to as the “smart
grid“, is to delegate more decisions on lower levels of the grid to intelligent software,
which operates production or consumption devices on their owner’s behalf. This can
be especially useful to integrate flexible demand devices.

In a smart grid setting, many actors with limited computational capacities inter-
act. This makes it difficult to re-use market designs which have been developed on
the wholesale level, where only a few big players interact who have many capabilities
to optimise their bidding behaviour. In this chapter, we present and evaluate a novel
market mechanism called ABEM. ABEM is inspired by recent developments in whole-
sale market design for electricity, but is better suited for smaller, non-sophisticated
players. It also addresses some inherent design problems that current implementa-
tions have.

ABEM belongs to an important class of multi-settlement market mechanisms (see
Section 2.2.b). In particular, this class contains two-settlement markets which inte-
grate the trade of reserve capacity and require simultaneous bidding for the two set-
tlements. Several instances of this class are currently implemented as state-of-the-art
mechanisms in wholesale electricity markets. Market mechanisms of this type serve
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several purposes: They facilitate planning by conducting an ahead market (the first
settlement) which results in binding commitments. In addition, they allow adjust-
ments to these commitments in a real-time balancing market (the second settlement).
To improve stability, the first settlement also allocates reserve capacity from flexible
actors, which can be used in the second settlement if needed. However, current im-
plementations of such mechanisms require bidders who want to achieve success in
many different scenarios to conduct complex computations to construct bids. This
can become problematic in smart grid settings. In addition, the two bids (which are
used in the two settlements) contain no explicit relationship to each other and can
not both be price functions. Since both the costs of generating electricity as well as
the utility of consuming it are usually described by bidders on non-linear functions,
this means that these mechanisms restrict the bidders in efficiently expressing their
economic valuation.

ABEM is an abbreviation of “Ahead- and Balancing Electricity Market”. With the
development of ABEM, we address the first two of the research questions we state
in Section 1.3, in that it proposes an effective market mechanism that can deal with
flexibility and uncertainty in supply as well as demand and is also usable for bidders.
The ABEM mechanism has two unique features: First, bids for binding commitments
as well as for reserve capacity are combined into one bid. Second, the bid specifies a
quantitative relationship between binding commitments and reserve capacity.

ABEM provides several main advantages by design: First, the bid optimisation
problem for bidders is reduced in complexity from a two- to a one-dimensional prob-
lem, which significantly reduces the time necessary to compute well-working bids.
Second, bidders can bid price functions to both markets, potentially their true costs
or valuation, which is problematic if two separate bids have to be constructed. Third,
the mechanism provides a guarantee for flexible consumers that offering reserve ca-
pacity increases their overall surplus (if the marginal valuation is submitted as bid).

Evaluating a market mechanism is a complex undertaking, especially if it serves
multiple purposes. This chapter establishes the basic principles of evaluating ABEM.
An important question to investigate is whether it makes economical sense for flexible
market participants to take part in the ABEM mechanism. Another, equally important
question is whether they use the ABEM mechanism as intended, for example whether
they exploit settings in which they possibly have excessively high market power. A
model for investigating these questions should include as many details as needed, but
should also be simple enough to allow conclusions to be drawn. We design a decision-
theoretic model, which allows us to vary market settings and the economic situation
of one bidder taking part in an ABEM mechanism. We model the bidder both as a
flexible supplier and as a flexible consumer. Both are able to provide so-called upward
regulation during the second settlement. The supplier is able to supply more power
and the consumer is able to consume less power than planned. We perform Monte-
Carlo simulations and record the overall outcomes for the bidding agent. We compare
ABEM with a benchmark market mechanism, in which bids are also submitted simul-
taneously and also specify a quantitative relationship between binding commitments
and reserve capacity (as in ABEM), but the bidding for both of these goods happens
via two independent bids.
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In these computational simulations, we are able to answer our questions from
above: From the bidding agent’s perspective, the same levels of overall economic
surplus (on average across all tested settings) can be reached in both ABEM and the
benchmark mechanism. The simulations also confirm that the bidding agent’s bids
are much more efficiently computable if he takes part in ABEM. Furthermore, from
the SO’s perspective, we show experimentally two advantages of ABEM over the bench-
mark mechanism. First, overall prices and the bidder’s market power are reduced in
settings that are highly strategically exploitable by the bidding agent. Second, offered
reserve capacity is made available for balancing at affordable prices, whereas the bid-
ding agent in the benchmark mechanism would often prefer to overprice it, in order
to avoid costs of lost opportunity.

This chapter proceeds as follows. Section 3.2 provides more details about two-
settlement procedures with integrated trade of reserve capacity and simultaneous
bidding. We also review some economical concepts of interest to this work. We give
a problem statement for the design of a relevant market mechanism in Section 3.3.
Section 3.4 introduces the ABEM mechanism - we explain the bid format of ABEM,
provide the market clearing procedure and explain the advantages ABEM has by de-
sign. We then provide a parametrised decision-theoretic market model in Section 3.5,
which a strategic agent can use to model his bid optimisation problem in a two-settlement
procedure of the kind we are interested in. In Section 3.6, we evaluate ABEM experi-
mentally. We simulate participation in an ABEM market for the two types of bidders
we consider in this work (a flexible supplier and a flexible consumer, providing up-
ward regulation) and discuss the results. The final section concludes and discusses
future work.

3.2. BACKGROUND

3.2.A. TWO SETTLEMENT PROCEDURES WITH INTEGRATED TRADE OF RE-
SERVE CAPACITY AND SIMULTANEOUS BIDDING

In this section, we provide background on the subset of market mechanisms we fo-
cus on in this work. As was discussed in Section 3.1, many wholesale electricity mar-
kets operate with a two-settlement procedure, using an ahead market in combina-
tion with a real-time market, in implementations with slightly differing characteris-
tics (e.g. [59, 116]). The term “two-settlement procedure” stems from the Standard
Market Design issued by the Federal Energy Regulation Commission (FERC)[24] in
the U.S.A. In addition, some two-settlement mechanisms (e.g. [87]) also integrate the
trade of reserve capacities. ABEM is a novel market mechanism, which performs a
two-settlement procedure while also integrating the trade of reserve capacity. In this
section, we give more details on the general bidding procedure in these mechanisms
and on procurement of reserve capacity by the System operator (SO). Then, we narrow
down the subset of market mechanisms we consider further by arguing for an impor-
tant design decision - that bids for both settlements are submitted simultaneously.

THE TWO SETTLEMENTS

Two-settlement mechanisms are usually mediated markets. There, the SO acts as a
mediator between all market participants, suppliers as well as consumers. He collects
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their bids and arrives at allocations by a process referred to as “market clearing”, which
accepts a number of bids on both sides. On both the supplier’s and the consumer’s
side, we differentiate between flexible bidders and inflexible bidders.

First settlement - the ahead market First, all bidders submit a bid to buy or sell
some quantity on the ahead market. If their bid gets accepted, they are allocated a
binding commitment to supply or consume at the specified time. To trade in an ahead
market enables participants to plan their activities in an uncertain environment. In
the wholesale market designs mentioned above, the ahead market is traditionally held
one day ahead of time. In more dynamic market settings, e.g. in smart grid settings,
shorter intervals are possible.

In addition to bids for binding commitments, flexible bidders submit a bid to the
ahead market for reserve capacity. An actor who offers reserve capacity describes in
this bid a range of possible deviations from his binding commitment. One deviation
from this range will be allocated in the second settlement. In this work, we consider
the (currently) most prevalent form of reserve capacity, namely the provision of “up-
ward regulation”. This entails the supply of more electricity than was sold in the bind-
ing commitment (here, deviations are possible even if no binding commitment ex-
ists) or the consumption of less energy than was bought in the binding commitment.
“Downward regulation”, i.e. supplying less or consuming more electricity, will be in-
creasingly important in future electricity systems, as well.

The first settlement clears both kinds of bids on the ahead market. For each actor
with an accepted bid, the SO allocates a number of binding commitments and a range
of possible deviations from them as reserve capacity.

Second settlement - the balancing market The bidding for optimal deviations hap-
pens in the second settlement. Here, inflexible actors can buy power on short notice.
They need to make such adjustments to their binding commitments from the first
settlement due to imperfect planning, e.g. because less wind blows than an supplier
forecasted or because the realised aggregated demand of an retailer’s customers is dif-
ferent than projected. Because these needs for adjustments bring the allocation from
the first settlement “out of balance”, the second settlement is often referred to as a
balancing market. Whether these adjustments happen through the provision of extra
supply (by flexible suppliers) or by reduction of consumption (by flexible consumers)
is of no importance to inflexible actors.

To summarise, each unit of electricity that is put to use during the time of con-
sumption has either been traded in the ahead market or was reserved in the ahead
market and has then been traded in the balancing market. Figure 3.1 illustrates the
timeline of the two settlements.

PROCUREMENT OF RESERVE CAPACITY

The SO carries the responsibility to balance supply and demand in real time. To be
sure that this responsibility can be fulfilled, he requires that reserve capacity is allo-
cate from flexible market participants. Only relying on a real-time balancing market
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Figure 3.1: Timeline in a two-settlement procedure with integrated trade of reserve capacity and simulta-
neous bidding.

without reserve capacities could not provide enough certainty that imbalances can be
met. While pricing of activated reserve capacity is often dynamic, the SO has often to
impose his reserve requirements on flexible market participants to procure as much
as reserve capacity as he deems necessary.

Choice of amount - In most real-world markets, the choice how much reserve ca-
pacity is acquired is based on static heuristics. For example, one heuristic is to require
as much reserve capacity as is the capacity of the largest power plant. Another pos-
sibility is to require a certain percentage of historical peak capacity (of a comparable
time slot). The Dutch Transmission System Operator TenneT claims all remaining ca-
pacity of suppliers with binding commitments and an overall capacity of more than
60 MW [116]. The Midwest System Operator (MISO) in the U.S. calculates an over-
all amount from forecasted load [87]. Finally, the SO can also choose the amount of
required reserve capacity by experience.

Procurement - Having chosen a required amount, the SO needs to procure enough
reserve capacity from flexible suppliers and/or flexible consumers. He can negoti-
ate long-term ancillary service contracts or require the actors that are present in the
ahead market to offer reserve capacity by some means. For example, refer to the
method TenneT is employing or consider that the MISO calculates a reserve capacity
obligation for every market participant based on their maximal capacity, which they
have to make available themselves or buy from other participants.

Pricing - In the case of ancillary service contracts, the price paid for the service
of short-term balancing has been fixed beforehand during contract negotiations. On
the other hand, if market participants offer reserve capacity, they can place bids for
its execution during the two-settlement procedure, as described above in this section.
Including the trade of reserve capacity leads to negotiations about the price of balanc-
ing power that happen more frequently and more closely related to the time of power
flow in question. Thus, more relevant information should be available during these
negotiations, which increases competition.

SIMULTANEOUS BIDDING

Although they are, at the time of consumption, delivered together as an indistinguish-
able product, power that was sold as a binding commitment in the ahead market and
balancing power are priced completely independently in current versions of the two-
settlement procedure. An important question for the market design is when to sub-
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mit the bids for each type. Most scientific literature which discusses this issue (e.g.
[63, 139]) favours simultaneous models (submit bids for the first settlement at the
same time as bids for the second settlement) over sequential ones (submit bids for
the second settlement after the first settlement is over), as the re-commitments in the
second auction can lead to inefficient allocations through strategic bidding [48, 95].

For example, Kamat et al. (2002) [68] report that holding back bids in earlier stages
becomes a profitable strategy to increase prices. Vandezande et al. (2010) [126] ob-
serve that often strong incentives exist to not offer reserve capacity on public markets
at all, but rather balance privately owned assets only. An example for a real-world im-
plementation with simultaneous submission of bids is the Midwestern market in the
U.S. [87]. ABEM requires simultaneous submission of bids to the ahead- and balanc-
ing markets1.

3.2.B. ECONOMIC CONCEPTS FOR MODELS WITH STRATEGIC DECISION

MAKERS
In this section, we provide some background on concepts from the economic sci-
ences, which we make use of in this chapter.

MARGINAL VALUES AND SURPLUS

The marginal value for a given quantity denotes the cost of producing the last unit or
the utility of consuming the last unit. It is an important concept used in the economic
analysis of bidding strategies in multi-unit commodity markets with unit prices (like
ABEM). We will now define the marginal value function as the derivative of the total
value function and briefly discuss producer and consumer surplus.

In this work, we assume that the marginal cost function of a supplier is monoton-
ically increasing and that the marginal utility function of consumers is monotonically
decreasing. This follows from the economic assumption that those units which cost
the least to produce are produced first and that each consumed unit will increase util-
ity less than the one which was consumed before it. We also assume these properties
hold for bid functions, which represents that higher prices increase supply and de-
crease demand. We consider only variable costs and do not model fixed costs explic-
itly. This leads us to model producer and consumer surplus (which we define below)
instead of economic, long-term profit.

Producer’s surplus is defined as the revenue that a supplier receives for his deliv-
ered quantity minus the variable costs of producing it (where revenue is defined as
quantity times unit price). Consumer’s surplus is defined as the utility derived from
consuming a quantity of goods (which is the highest value that the consumer is willing
to pay) minus the price he actually paid for it.

Let a bidding agent a represent his total costs, during an interval of time with fixed
length, of generating a quantity q of electricity or, alternatively, his total utility of con-
suming a quantity q of electricity, by a valuation function Va . We assume in this chap-
ter that quadratic functions adequately model non-linear dynamics of cost and util-

1Note that while bid submission is simultaneous, allocation is still sequential - binding commitments are
allocated right after all bids are in, but the allocation for balancing power happens closer to real time,
when the need for balancing power becomes apparent.
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ity, e.g. as advocated for in [16] and modelled in [115]. Va and the marginal valuation
function V ′

a (the derivative of Va) are given by

Va(q) = va q +δa q2

V ′
a(q) = va +2δa q

(3.1)

where va ∈R and δa ∈R are coefficients. Furthermore, δ> 0 for cost functions and
δ< 0 for consumption utility functions. va denotes the value of the first unit in q and
δa denotes (half of) the change in value of every further unit produced or consumed.

The marginal value function V ′
a differs from the average value function V

av g
a , which

is given by

V
av g

a (q) =
Va(q)

q
= va +δa q (3.2)

Selling or buying at average value lets a break even. Selling or buying at marginal
value yields surplus for a. Sellers sell all units but the last above their production costs
(and gain so-called producer surplus) and buyers buy all units but the last below the
utility of consuming them (and gain so-called consumer surplus). This surplus can be
used to cover fixed costs.

OPTIMAL QUANTITIES FOR SUPPLY AND CONSUMPTION

We now present a property of multi-unit commodity markets with unit prices, which
describes the optimal quantity for a bidder to buy or sell. A corollary of this property is
that, in a market with perfect competition, the marginal valuation represents the bid
which maximises surplus. Refer to above for the definitions of the marginal valuation
function V ′

a and producer’s and consumer’s surplus. In the following, we consider
a as a supplier, but the discussed property applies in symmetrical fashion to a as a
consumer.

Let MRa be the marginal revenue function for a (see e.g. [100]). MRa describes
additional revenue generated by selling one more unit. Furthermore, let the market
demand function D describe the price that consumers in the market are willing to pay
per quantity. Under perfect competition, MRa is equal to D , i.e. a’s output level has no
influence on the price he can achieve. Under imperfect competition, e.g. an oligopoly,
the slope of MRa is always higher than the market demand price function [88]. For
illustration of a’s strategic bidding decision, see Figure 3.2.

Economic theory states that, in order to maximise the producer’s surplus, a sup-
plier should aim to sell q units, such that V ′

a(q) = MRa(q). This property holds2 under
a wide variety of market conditions (perfect competition, monopoly, monopolistic
competition, and oligopoly) [17].

Under perfect competition, a would bid his marginal costs in order to maximise
his surplus. Under imperfect competition, e.g. an oligopoly, a would increase his bid
from his marginal costs, in order to realise the surplus-maximising output q , such that
V ′

a(q) = MRa(q) [106]. This behaviour is of course limited by a’s ability to model the

2For cases in which more than one intersection of V ′
a and MRa exist (e.g. with non-linear marginal func-

tions), the second-order condition that the slope of V ′
a is greater than that of MR at their point of inter-

section is needed, as well, in order to maximise surplus.
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Figure 3.2: Illustration of optimal output of a supplier a. The function MCa describes a’s increasing
marginal costs. The marginal revenue function MRa has a higher slope than the market demand func-
tion D , which is the case under imperfect competition. Economic theory states that a aims at selling Q∗,
such that MCa (Q∗) = MRa (Q∗) to maximise his surplus. If he bids MCa , a’s surplus is given by the areas
labelled 1 and 2 (selling QD at price ρD ). Because he bids ba instead (selling Q∗ at price ρ∗), his surplus is
given by the areas labelled 1 and 3.

functions MRa and D appropriately, as well as by the degree of competition (see also
below in this section, where we discuss market power).

To conclude, this section describes a property of multi-unit commodity markets
with unit prices, which states that the optimal quantity of a bidder is given at the value
where the marginal value function equals the marginal revenue function. This allows
to make some assumptions about surplus-maximising behaviour of strategic agents
in such markets, where one should differentiate between settings with perfect and im-
perfect competition. In the former case, bidders should bid their marginal valuation.
We make use of this property in Section 3.4.c, where we describe a property about
bidding behaviour in ABEM, which holds when a is a consumer and bids his marginal
utility, i.e. when he takes part in perfectly competitive market setting. We also in-
vestigate scenarios with imperfect competition for both suppliers and consumers in
ABEM, in the experiments which we describe in Section 3.6.

UNIFORM VERSUS DISCRIMINATIVE PRICING IN AUCTIONS

Two general approaches to pricing in auctions exist [74]. So-called uniform-price auc-
tions (UPA) select only one price for all accepted bids, e.g. all sellers are paid the price
of the highest accepted bid. So-called discriminative pricing auctions (DPA) select
a unique price for each bidder which is based on their bid (they are also referred to
as "pay-as-bid“ auctions). The choice between the two types of auctions has impli-
cations on the strategies which bidders select and research into the different effects
on market outcomes is ongoing. Generally, UPA designs have been found to result
in more efficient allocations, but DPA designs decrease prices and market power (e.g.
[21, 30, 39]).
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Many electricity market designs in the last two decades have used UPA designs.
However, the last decade has also seen some markets in the form of discriminatory
pricing auctions, for example the England and Wales wholesale electricity market in
March 2001. In Section 3.4.b, we present two versions of market clearing in ABEM,
one for a DPA and one for a UPA design.

MARKET POWER

To describe the influence of one actor on the market in the face of competition, economists
use the concept of market power. In current electricity markets, market power is con-
centrated on the supply side. The main reason for this is that demand is currently
inelastic and therefore predictable. Demand is the least elastic when allocation deci-
sions are made close to the time of consumption, and thus it is during balancing when
market power becomes most visible [114].

Market power is defined as “the ability to alter profitably prices away from com-
petitive levels” [85]. Nicolaisen et al. (2001) [93] distinguish structural market power
(which exists in the case where all traders reveal their marginal costs) from strategic
market power (which exists in the case where traders misrepresent marginal costs in
their bids). To tackle this problem, power market designers have been searching for
the best trade-off in bid format design, which allows bidders to freely express their
economic preferences, but also restricts them artificially in order to limit the exer-
cise of market power. For instance, Baldick (2002) [6] mentions that quadratic terms
in the bids could be limited or bids could be required to be consistent across mul-
tiple pricing-periods. The latter method is used in some markets in the U.S.A. (e.g.
[24, 87, 115]). There, one bid in the day-ahead market is used to clear all time slots of
the following day. Another method is to simply limit allowed price ranges [114].

We measure the market power of the flexible supplier in the experiment in Sec-
tion 3.6, where we compute the so-called Lerner index ∈ [0,1], defined by dividing
per-unit surplus by unit price (see Section 3.6.a).

3.3. PROBLEM STATEMENT
In this section, we identify four design challenges inherent to the design of any market
mechanism from the class of market mechanisms we describe in Section 3.2.a. Prob-
lems 3.3.a and 3.3.b stem from the fact that two independent bids are being submitted
simultaneously. Challenge 3.3.c and 3.3.d are important in the design of all market
mechanisms. Each challenge will be referred to in later sections when we show how
ABEM can be a solution for it.

3.3.A. BID OPTIMISATION IS COMPLEX AND DIFFICULT.
Each bidder faces an optimisation problem when constructing bids, which is quite
complex in two-settlement mechanisms with two independent bids. The reason is
that the evaluation of a bid for the binding commitment has to take into account the
effects which this bid has on the performance of all possible bids for reserve capac-
ity, and vice versa. This means that many possible outcomes have to be taken into
account. Thus, the computational effort to compute a well-performing bid can be
substantial.
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In addition, it is difficult to find well-working bids, because a bid in one market
cannot explicitly refer to outcomes in the other market. This can become a problem
considering that offering reserve capacity leads to (lost) opportunity costs (costs when
reserve capacity is not sold during balancing and other opportunities for income from
this capacity have not been pursued). To compensate for opportunity costs in the bid
for binding commitments is difficult because the amount of reserve capacity is un-
known while the bid for binding commitments is formed. Only few proposals to tackle
this problem exist. For example, Virag et al. (2011) [129] propose an iterative market
design, where in each round the market maker proposes two market prices (for bind-
ing commitments and for reserve capacity) and the market participants update the
quantities they would sell or buy at those prices. This runs until conversion, but the
runtime properties of this dynamic method are uncertain. This can become especially
problematic when the time to reach consensus is constrained, for instance in smart
grid settings.

3.3.B. THE BID FORMAT RESTRICTS EFFICIENT EXPRESSION OF ECONOMIC

VALUE.
We laid out in Section 2.2.a that the Bertrand model (bidding only one price for all pos-
sible quantities) is not regarded as the most efficient way to design a power market,
where bidders have non-linear value-functions and uncertainty is high. Ideally, both
the bid to the ahead market as well as the bid to the balancing market should be func-
tions that map prices to quantities. Current market versions work with bid functions
for the ahead market. However, in order to keep the construction of two independent
bids reasonably simple (refer to Challenge 3.3.a), they restrict bids for reserve capacity
to only a constant unit price.

Furthermore, we explained in Section 3.2.b that in competitive settings, the marginal
value function equals the profit-maximising bid. However, if two separate bids are re-
quired by the market mechanism, the marginal value function can not be submitted.

3.3.C. BIDDERS SHOULD BE ECONOMICALLY INCENTIVISED TO USE THE

MECHANISM.
A market mechanism can only be successful if bidders make offers. A very impor-
tant question is therefore whether bidders will use the mechanism. For example, we
can only expect participation if a mechanism is individually rational - it should make
economical sense for bidders to take part in the mechanism, compared to not taking
part in any mechanism at all. We are particularly interested in a question that asks for
more than only individual rationality: Are bidders able to make the same amount of
surplus as in comparable mechanisms? If not, they will probably decide to use other
mechanisms or request that the current mechanism is replaced.

Furthermore, for the scenarios we consider in this work (performance of two-
settlement procedures in future energy settings), another question is of importance in
comparison to other market mechanisms. Offering reserve capacity can create costs
of lost opportunity, if this capacity is not sold. This is especially crucial in market
settings with high uncertainty about market outcomes. How does this affect the bid
optimisation problem of flexible bidders? Will they offer reserve capacity at affordable
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prices, or will they overprice it, in order not to only be active on the ahead market?

3.3.D. IN SOME SETTINGS, SUPPLIERS HAVE EXCESSIVELY MUCH MARKET

POWER.
We discussed the existence of market power in electricity markets in Section 3.2.b,
which is defined as “the ability to alter profitably prices away from competitive lev-
els” [85]. Bidders should have freedom to express their economic preferences, but
in settings that allow a small number of bidders to have excessive market power, the
mechanism’s method to determine prices should limit this ability.

3.4. THE ABEM MECHANISM

3.4.A. BID FORMAT
In this section we define the format in which bids for goods are submitted. Note that
from now on, we denote the ahead market (the first settlement) as “market A” and the
balancing market (the second settlement) as “market B”.

We first define variables for quantities, which are allocated to a as a result of the
allocations in market A and market B , and introduce a ratio between binding com-
mitments and reserve capacity per bidder, which is a crucial property of the ABEM
bid format. Next, we define components of a bid in ABEM, with special attention to
the bid function. Finally, we show how bids which got accepted in market A are put to
use in market B .

ALLOCATION VARIABLES AND THE RATIO BETWEEN BINDING COMMITMENTS AND RE-
SERVE CAPACITY

For each bidding agent a, we denote with Q A
a ≥ 0 the binding commitment, which is

allocated in market A and with QB
a ≥ 0 the usage of reserve capacity which is allocated

in market B . If a is not flexible and thus demanding reserve capacity (in the form
of upward regulation) in market B , QB

a < 0. If a is flexible and thus offering reserve
capacity, QB

a ∈ [0,QR
a ], where we denote with QR

a ≥ 0 the amount of reserve capacity
which a flexible bidding agent a agrees to hold.

When a is a supplier, he supplies Q A
a +QB

a . The maximal amount a could supply
is in this case Qmax

a =Q A
a +QR

a , where 0 ≤Qmax
a ≤QU

a . On the other hand, when a is a
consumer, a consumes Q A

a −QB
a and the maximal amount a could consume is in this

case Qmax
a =Q A

a , where 0 ≤Qmax
a ≤QU

a .
In the remainder of this section, we explain how the reserve capacity QR

a is defined
in relation to Q A

a . Each agent a chooses a ratio r ∈ [0,1] per bid ba,r . With r , the reserve
capacity QR

a can be described as a ratio of the binding commitment Q A
a and is given

by:

QR
a = rQmax

a (3.3)

For the case that a is a supplier, we can compute QR
a = rQ A

a

1−r
by inserting Q A

a +QR
a

for Qmax
a (see above). When a is a consumer, this translates to QR

a = rQ A
a (because

Qmax
a = Q A

a , see also above). Let us consider an example where a submits a bid with
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r = 1
3 . For the case when a is a supplier, QR

a = 1
3Q A

a / 2
3 = Q A

a

2 . When a is a consumer,

then QR
a = Q A

a

3 .
At r = 0, no reserve capacity is offered in market B and a has full certainty how

much he sells or consumes after market A has cleared (Qmax
a = Q A

a ,QR
a = 0). Thus,

inflexible bidding agents submit bids with r = 0 and offer no reserve capacity. For
the special case r = 1, we define that all of a’s capacity up to Qmax

a is flexible to be
allocated as QB

a in market B . Then, if a is a supplier, Q A
a = 0 and Qmax

a =QR
a , and if a

is a consumer, QR
a =Q A

a .

BID COMPONENTS

A bid in ABEM by a bidder a consists of a function ba,r which maps marginal prices to
quantities of power (Q A

a in market A and QB
a in market B). It includes the ratio r (see

Section 3.4.a), which is unique for ba,r . A bid in ABEM also contains lower and upper
quantity limits QL

a ≥ 0 and QU
a ≥ 0, which are unique for a.

We restrict the function in bids to continuous linear functions. This allows for
simpler optimisation during market clearing [16], but limits the ability to represent
non-continuous costs like the costs of starting up or down a generator or switching
from charging to discharging. Thus, ABEM is an exchange market rather than a Pool
market (see Section 2.2.a). Furthermore, exchanges can implement continuous or pe-
riodic auctions [98]. A continuous auction clears two bids with each other whenever
possible, while a periodic auction (also called clearing house auction) clears all bids at
once (after a given period has passed) simultaneously. Periodic auctions are consid-
ered more efficient, as all bids are cleared together. Giving all actors the same amount
of time to compute bids also works towards fairness. In ABEM, periodic auctions are
used.

A bid function ba,r in ABEM defines a positive quantity for each price ρ ≥ 0 and is
given by

ba,r (ρ) = δa(ρ− va) (3.4)

where, if a is a supplier, va denotes the reservation price below which a is not
willing to sell and the slope parameter δa is positive. If a is a consumer, va denotes
the reservation price above which a is not willing to buy and the slope parameter δa is
negative. Besides being constrained by the reservation price va , the set of well-defined
outcomes is further constrained by quantities QL

a and QU
a , so the function ba,r is valid

only for unit prices in the interval [b−1
a,r (QL

a ),b−1
a,r (QU

a )].

BID TRANSLATION FOR MARKET B
After the first settlement (in market A), the SO translates each accepted bid function
ba,r into a new bid function bB

a , which is used on a’s behalf in market B . bB
a is valid

for unit prices in the interval [ρA
ba,r

,ρB
a,max ], where we denote with ρA

ba,r
the unit price

which bid ba,r describes for the quantity Q A
a , which is at the time of translation known

and fixed. Thus, ρA
ba,r

= b−1
a,r (Q A

a ). Furthermore, ρB
a,max = b−1

a,r (Q A
a +QR

a ) if a is a sup-

plier. If a is a consumer, ρB
a,max = b−1

a,r (Q A
a −QR

a ).
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bB
a is formulated in the same ways as ba,r , with va in Equation 3.4 replaced by

ρA
ba,r

. We also introduce a second slope parameter ω. When a is a supplier, ω= 1 and

if a is a consumer, ω=−1. Thus, if a is a supplier, bB
a has the same slope as ba,r and if

a is a consumer, the slope of bB
a is inverted (with respect to the slope of ba,r ), because

a acts as a seller on market B . bB
a is given by:

bB
a (ρ) =ωδa(ρ−ρA

ba,r
) (3.5)

Figure 3.3 illustrates the bid translation. We note that the slope of bB
a is always

positive and that the reserve price of bB
a is ρA

ba,r
. Thus, this translation ensures that

ρB
a , the price a is paid for QB

a , is higher than ρA
a , the price a is paid (when he is a

supplier) or pays (when is a a consumer) for Q A
a :

ρB
a > ρA

a (3.6)

This reflects a relation between ahead- and balancing prices which is recommended
by economic experts. For example, Oren (2000) [95] argues that balancing power is a
good of higher economic quality than day-ahead procurement because of shorter de-
livery time and should be priced higher.

3.4.B. MARKET CLEARING IN ABEM
In this section, we formulate market clearing in ABEM as a constrained optimisation
problem. We first introduce the types of actors and then formulate the two parts of
the optimisation problem - the first part covers the market clearing in market A (for
binding commitments and reserve capacity) and the second part the market clear-
ing in market B (for deviations from binding commitments). Finally, we present two
versions of pricing - uniform pricing (UPA) and discriminative pricing (DPA).

ACTORS AND BIDS

We consider four sets of actors: flexible suppliers F S and flexible consumers FC , as
well as inflexible suppliers I S and inflexible consumers IC . Bidders in F S and FC

can provide upward regulation - they supply more or consume less, respectively, than
was allocated for them as binding commitment in market A. They submit bids with
r ∈ [0,1]. Bidders in I S and IC do not provide upward regulation and thus submit bids
with r = 0. However, they announce extra demand after market A has cleared, be-
cause they supply less or consume more, respectively, than was allocated for them as
binding commitment in market A. As we explained in Section 3.2.a, it is the responsi-
bility of the SO to secure sufficient reserve capacity in market A, in order to supply all
possible extra demand in market B .

For convenience, we consider in this work the case of one submitted bid per bid-
der. In principle, each bidder can submit more than one bid, which increases the
number of market clearings that need to be performed by the SO to find the best clear-
ing solution among all sets of choices of one bid per bidder.
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(a) a is a supplier

(b) a is a consumer

Figure 3.3: Bid translation in ABEM from market A (dashed red) to market B (continuous blue). The part of
the bid function ba,r which is defined for quantities q ∈ [Q A

a ,Q A
a +QR

a ] (if a is a supplier) or quantities q ∈
[Q A

a −QR
a ,Q A

a ] (if a is a consumer) is translated into a new bid function bB
a , which is defined for quantities

q ∈ [0,QR
a ]. If a is a consumer, the slope is multiplied by −1.
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THE CONSTRAINED OPTIMISATION PROBLEM

The optimisation goal of the SO is to solve the so-called economic dispatch problem,
which is to minimise costs of electricity generation. Given all submitted bids (for each
bidder a, the bids ba,r and bB

a ), the goal is to find the prices which minimise the overall
objective function given by:

arg min
P A ,P B

[

∑

a∈F S∪I S

(

Q A
a ρ

A
a +QB

a ρ
B
a

)]

(3.7)

where P A and P B denote the sets of unit prices that all bidders are allocated in
market A and market B , respectively, and ρA

a and ρB
a denote the prices for individual

bidders a. It is implied that for each bidder a, Q A
a = ba,r (ρA

a ) and QB
a = bB

a (ρB
a ).

This optimisation problem cannot be solved during the market clearing in mar-
ket A (the first settlement), because the bids from inflexible actors in I S and IC , in
which they describe their extra demand, are not known yet. The outcomes of mar-
ket B (the second settlement), namely the quantities QB

a and the prices ρB
a , can only

be taken into account once these bids are known. Therefore, we break up this ex-
post optimisation problem into two ex-ante optimisation problems, one that can be
solved during the market clearing for market A and another that can be solved during
the market clearing for market B .

Market A In the optimisation problem for the market clearing in market A (for bind-
ing commitments and reserve capacity), the SO minimises the costs which are known
for sure at the time of this market clearing and, to an extent which the SO chooses,
the costs he expects to occur in the market clearing of market B . This optimisation
problem is given by:

argmin
P A

[

∑

a∈F S∪I S

Q A
a ρ

A
a +γE [C B ]

]

(3.8)

where E [X ] denotes the expectation of X , C B denotes costs of using reserve ca-
pacity in market B (C B =

∑F S∪FC
a QB

a ρ
B
a ) and γ ∈ [0,1] is a weight parameter which the

SO can choose. By estimating C B , the SO estimates costs in market B , but does not
include the price set P B as optimisation variables.

If the SO chooses γ= 0, there is no need to estimate C B and the outcomes of mar-
ket B are not considered during the clearing in market A. If he chooses γ> 0 and also
estimates C B close to the actual C B , the SO can improve the solution to the overall
economic dispatch problem in Equation 3.7 by buying more power on market A than
inflexible consumers ordered, in the expectation that some inflexible actors will have
to order more expensive balancing power in market B . This can reduce overall costs
because it holds for each flexible actor a that ρB

a > ρA
a (see Section 3.4.a).

We now list the constraints that every valid solution needs to respect. First, supply
needs to equal demand:

∑

a∈I S

(Q A
a +E [QB

a ])+
∑

a∈F S

(Q A
a +QB

a ) =
∑

a∈IC

(Q A
a +E [QB

a ])+
∑

a∈FC

(Q A
a −QB

a ) (3.9)
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If the SO chooses γ= 0, the SO does not need to consider (expectations of) QB
a and

this constraint can be simplified to:

∑

a∈F S∪I S

Q A
a =

∑

a∈FC∪IC

Q A
a (3.10)

Furthermore, the SO needs to make sure that each supplier a will stay within his
capacity constraints:

qL
a ≤Q A

a ≤QU
a (1− ra) (3.11)

where ra is the ratio between binding commitment and reserve capacity (see Sec-
tion 3.4.a) from a’s bid. Similarly, each consumer a needs to stay within his capacity
constraints:

qL
a +Q A

a ra ≤Q A
a ≤QU

a (3.12)

Flexible suppliers and consumers are allocated reserve capacity QR
a , as described

in Section 3.4.a. The overall reserve capacity needs to be at least as high as QR , the
overall reserve capacity, which is determined by the SO (see Section 3.2.a). Hence, we
add the final constraint

∑

a∈F S∪FC

QR
a ≥QR (3.13)

We could have used = instead of ≥, but this is not necessary, as the cost optimisa-
tion is ensured by minimising costs of supply.

Market B In the optimisation problem for the market clearing in market B , the SO
minimises the costs for the use of reserve capacity. Before market B is cleared, inflex-
ible actors a ∈ I S ∪ IC announce their extra demand QB

a (flexible actors do not need
to do that). The SO translates each accepted bid ba,r from flexible actors (submit-
ted during the first settlement in market A) into a bid bB

a (to be used in market B), as
described in Section 3.4.a. These translated bids are used to minimise the objective
function given by

argmin
P B

[

∑

a∈F S∪FC

QB
a ρ

B
a

]

(3.14)

The only constraint to this optimisation requires that all supply equals all demand:

∑

a∈I S

(Q A
a −QB

a )+
∑

a∈F S

(Q A
a +QB

a ) =
∑

a∈IC

(Q A
a +QB

a )+
∑

a∈FC

(Q A
a −QB

a ) (3.15)
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UNIFORM AND DISCRIMINATIVE PRICING

In Section 3.2.b, we discussed uniform pricing auctions (UPA) and discriminative pric-
ing auctions (DPA). Here, we discuss market clearing in more detail, for multi-unit
auctions and specifically for ABEM.

If a UPA design approach to market clearing is used, then the price sets P A and P B

contain the same prices ρA
a and ρB

a for all actors a. In each of the two markets, the
SO adds up (with respect to quantities) all supply functions to one aggregated supply
function S. In market A, these are the functions ba,r per bidder a ∈ F S ∪ I S and in
market B , these are the functions bB

a per bidder a ∈ F S ∪FC . The SO also adds up all
demand functions to one aggregated demand function D . In market A, these are the
functions ba,r per bidder a ∈ FC ∪ IC and in market B , these are the functions bB

a per
bidder a ∈ I S ∪ IC .

In both markets, the price ρ for which S(ρ) = D(ρ) is the uniform clearing price.
Each actor a buys or sells the quantity which can be looked up on his relevant bid
function (ba,r or bB

a , see above) at price ρ. Should that quantity be lower than 0, a

sells nothing. Should that quantity be higher than a maximal limit Qmax
a for this bid,

a sells Qmax
a at price ρ.

Sandholm and Suri (2002) [108] showed that finding ρ is not computationally ex-
pensive and always possible, under two conditions. First, all supply functions need
to be monotonically increasing and all demand bids need to be monotonically de-
creasing, which is a condition that the bid functions we describe in Section 3.4.a fulfil.
Second, the bid functions should either be linear or piecewise linear. We deal with
linear functions, so this condition is fulfilled, as well (capacity constraints like we de-
scribed in Constraints 3.11 and 3.12 are also used in [108]). However, Constraint 3.13
may render the solution at price ρ invalid. The SO can request that actors with flexi-
bility submit at least one bid with the value for r larger than some minimal rm which
the SO chooses.

Finding prices in a DPA approach is computationally more elaborate, as there is
now a distinct price per bidder a in both P A and P B . However, in [108] it is also shown
that the problem of finding optimal discriminatory prices in a two-sided auction with
both supply and demand curves for multiple indistinguishable units can be formu-
lated as a convex quadratic program with linear constraints. The solution to such a
program can be found in polynomial time using general techniques, e.g. with the
technique described in [42]. The only condition is that curves are linear, which is given
in our context, see Section 3.4.a. All the constraints we formulated in Section 3.4.b are
linear. As described for the UPA clearing, Constraint 3.13 can make some solutions
invalid and the SO might need to request that some bids with minimal values of r are
submitted.

3.4.C. ADVANTAGES BY DESIGN

This section describes three advantages which ABEM has by design. In Section 3.3,
we listed design challenges, which we refer to here. Following this section, Section 3.6
describes advantages & disadvantages experimentally.
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The complexity of bid construction is reduced. In the ABEM mechanism, bidders
only submit one bid, whereas other comparable mechanisms (see Section 3.2.a) re-
quire the submission of two separate bids, one for binding commitments and one
for reserve capacity. This is made possible by the bid translation, described in Sec-
tion 3.4.a. Thus, the design challenge described in 3.3.a is tackled in the design of
the ABEM mechanism. We will show concrete examples of the bidder’s optimisation
problem in our decision-theoretic experiments later on, where the simplification of
the objective function becomes apparent formally.

Bidders can bid price functions to both markets, potentially their marginal costs
or valuation. In ABEM, the function which is submitted to market A is resubmitted
to market B . The knowledge of the allocation in market A is used in the translation
process (see Section 3.4.a). This means that a price function is used in both markets,
rather than a constant price in market B (which is the case in some real-world versions
of comparable mechanisms).

Being able to submit only one price function also enables bidders to submit their
marginal cost or utility function as bid, which is not feasible in mechanisms which
require the submission of two independent bids. This addresses the design challenge
described in 3.3.b. The expression of the valuation is of course limited by our formal
definition of price functions in Section 3.4.a. For example, costs of ramping up or
down and switching costs can not be expressed, which has little effect on some flexible
technologies (e.g. batteries) and more effect on others (e.g. coal power plants).

Flexible consumers are guaranteed that offering reserve capacity increases their
overall utility. Flexible actors should be incentivised to offer reserve capacity. We
will show the following proposition holds:

Proposition 3.1:
For a flexible consumer, offering reserve capacity is guaranteed to be profitable, if he

submits his marginal utility function.

We refer to Appendix 3.A for the proof. The intuition is that buying Q A
a and then

selling QB
a is better for A’s utility than both only buying Q A

a and only buying Q A
a −QB

a

in market A. The first reason for this is that the more a buys in market A, the more the
price per unit bought decreases (because the slope of ba,r is decreasing). The second
reason is that it is profitable to resell a unit in market B which was bought in market
A, because ρB

a > ρA
a , a property of ABEM we established in Section 3.4.a. Thereby, we

partly address the design challenge described in 3.3.c.
Proposition 3.1 is an important baseline result, especially for markets with high

levels of competition (refer to Section 3.2.b). However, we are not able to make a sim-
ilar claim about a flexible supplier. Let us assume that a has no choice which bid
function ba,r to submit (i.e. submitting his marginal costs is one possible scenario
given this assumption). Then, a prefers to sell a quantity q on market A over selling q

partly on market A and partly on market B . Let ρA
a denote the price a is paid for Q A

a

(ba,r (ρA
a ) =Q A

a ) and let ρB
a denote the price a is paid for QB

a in market B (bB
a (ρB

a ) =QB
a ).
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Given the way bids in ABEM are translated between market A and market B , ρB
a is also

the price a would be paid in the case where he sells all of Q A
a +QB

a already in market A

(ba,r (ρB
a ) =Q A

a +QB
a )). The difference in a’s profits if he sells either Q A

a +QB
a on market

A or if he first sells Q A
a on market A and then QB

a on market B is Q A
a (ρB

a −ρA
a ). Because

ρB
a > ρA

a (see above), a clearly prefers the first option.

This shows that flexible suppliers cannot be guaranteed that offering reserve ca-
pacity increases their profits. Offering reserve capacity can, however, be profitable in
many market settings and a will have to consider this possibility when constructing
his bid.

3.5. A DECISION-THEORETIC MARKET APPROACH FOR AGENTS
In this section, we develop a market model that a bidding agent can use to model
his perspective in a two-settlement market with integrated trade of reserve capacity
and simultaneous bidding. It includes all other actors in aggregated mathematical
functions and is formulated for a discriminatory auction design (refer to Sections 3.2.b
and 3.4.b). It is fully parametrised, most importantly with respect to the uncertainty
a has about market outcomes. We also provide the bid optimisation problem a faces,
given this model, for the case where the choice which value to use for r is fixed.

This market model can be used to implement a strategic agent. In this chapter, we
will make use of it in Section 3.6, where we model a as a flexible supplier as well as a
flexible consumer and perform various experimental simulations.

3.5.A. AGGREGATION OF OTHER ACTORS

The bidding behaviour of all other market participants besides a is modelled as parametrised
functions. For brevity of this market model, these functions are aggregated on both
demand and supply side. Aggregating actors in this way is based on the assumption
that the average behaviour is sufficiently predictable. Good predictions can be made
either when the number of actors is high or individual decision-making of a smaller
group of actors can be estimated (for instance by experience).

Following [100], an aggregated bid function is the sum of curves of individual bid
functions. Let D(ρ) → R be an aggregated demand function and S(ρ) → R an aggre-
gated supply function for unit prices ρ. We will use D , S and their parameters with the
superscripts A for market A and B for market B . If needed for clarification, we might
use the subscript −a to denote explicitly that the function does not include a. D and S

for markets A and B are given by

D A(ρ) :=
[

D A
max −αAρ

]

≥0

S A(ρ) :=
[

βA(ρ−ρA
mi n)

]

≥0

(3.16)

DB (ρ) :=
[

DB
max −αBρ

]

≥0

SB (ρ) :=
[

βB (ρ−ρB
mi n)

]

≥0

(3.17)
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where [X ]≥0 denotes the maximum of X and 0, D A
max ,DB

max are constants denot-
ing the maximal demand, ρA

mi n
,ρB

mi n
are constants denoting the minimal unit offer

price and αA ,αB as well as βA ,βB ∈ [0,1] are slope parameters.

We thus have eight parameters to describe this market model. Some relations be-
tween parameters, however, might be assumed. For example, DB

max is probably re-
lated to D A

max , ρB
mi n

is probably not lower than ρA
mi n

and the slopes of these accumu-
lated functions can probably assumed not to change significantly between market A

and market B . We will make specific assumptions for such relations when we make
use of this market model in experiments.

3.5.B. RESIDUAL FUNCTIONS

Given D A ,DB ,S A and SB , we model the residual functions that a faces in markets A

and B . In economic theory, residual supply is the full market supply minus the quan-
tity bought by other actors at each unit price ρ and residual demand is the full market
demand minus the quantity supplied by other actors at each unit price ρ. Follow-
ing [100], Equation 3.18 first shows the residual demand function D A

r es (for when a

is a supplier) and then the residual supply function S A
r es (for when a is a consumer).

Finally, the residual demand function DB
r es is shown, which a faces in market B .

D A
r es (ρ) = D A(ρ)−S A

−a(ρ)

S A
r es (ρ) = S A(ρ)−D A

−a(ρ)

DB
r es (ρ) = DB (ρ)−SB

−a(ρ)

(3.18)

3.5.C. MARKET CLEARING

We can now discuss how supply and demand bids are cleared in our decision-theoretic
market model representation. The prices ρA

a and ρB
a , which allocate from a the quan-

tities Q A
a and QB

a , respectively, are found at the intersection of a’s bid with the residual
functions. Similar to Equation 3.18, Equation 3.19 first shows clearing in market A,
for the two cases of a being a supplier or a consumer, and then clearing in market B ,
where a acts as a supplier:

Q A
a = D A

r es (ρA
a ) = ba,r (ρA

a )

Q A
a = S A

r es (ρA
a ) = ba,r (ρA

a )

QB
a = DB

r es (ρB
a ) = bB

a (ρB
a )

(3.19)

3.5.D. UNCERTAINTY

a approximates the residual supply and demand functions D A
r es (if a is a supplier),

S A
r es (if a is a consumer) and DB

r es (in both cases) with some uncertainty. We model
this by noise parameters k A and kB , with which we multiply the minimal price of
suppliers in S A

−a and SB
−a (refer to Equations (3.16) and (3.17)). Functions D A

r es , S A
r es

and S A
−a prescribe an additional parameter k A and functions DB

r es and SB
−a prescribe

an additional parameter kB . S A
−a and SB

−a are then given by:
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Table 3.1: Summary of market parameters - we use superscripts A or B to denote usage in market A or B ,
respectively.

Parameter Description

Dmax maximal demand of demand functions D A
−a and DB

α slope of demand functions
ρmi n min. price of supply functions S A

−a and SB
−a

β slope of supply functions
k noise parameter

S A
−a(ρ,k A) =βA(ρ−ρA

mi nk A)

SB
−a(ρ,kB ) =βB (ρ−ρB

mi nkB )
(3.20)

For the likelihood of individual value of k A and kB , a needs to model two proba-
bility distributions pr ob A : R→ [0,1] and pr obB : R→ [0,1], respectively.

3.5.E. SURPLUS FUNCTIONS FOR AGENT A AS FLEXIBLE SUPPLIER AND CON-
SUMER

We now model surplus functions for a, given market outcomes. Refer to Section 3.2.b
for a definition of surplus with marginal bid functions. Section 3.5.f uses these func-
tions to formulate the bid optimisation problem for this model.

a as a flexible supplier: The surplus in each market (refer to Section 3.2.b) is the
revenues minus the total variable costs of generation. In market A, revenues are Q A

a ∗
ρA

a and the total costs of producing Q A
a are given by Va(Q A

a ). In market B , revenues
are QB

a ∗ρA
a and the total costs of generating QB

a are the costs for generating the last
QB

a units in Q A
a +QB

a . Therefore, we introduce a total cost function V B
a for QB

a that
calculates the costs on Va(Q A

a +QB
a ) for QB

a ∈ [0,QR
a ]. V B

a is given by:

V B
a (Q A

a ,QB
a ) =Va(Q A

a +QB
a )−Va(Q A

a )

= (va +2δaQ A
a )QB

a +δa(QB
a )2

(3.21)

Then, the surplus functions are given by:

sur plus A
a (ba,r ,k A) = ρA

a Q A
a −Va(Q A

a )

sur plusB
a (bB

a ,ba,r ,kB ) = ρB
a QB

a −V B
a (Q A

a ,QB
a )

(3.22)

where bB
a is either the result of the translation of bid function ba,r for market B in

the ABEM mechanism (see Section 3.4.a) or the price ρB
a , chosen by a in the BENCH

mechanism (see Section 3.6.a). Q A
a and ρA

a , as well as QB
a and ρB

a , are determined
through market clearing (see Section 3.4.b), and thus ba,r and k A , as well as bB

a and
kB , are implicit in the right-hand formulae. Note that sur plusB

a is coupled to the
results of market A (and thus needs to consider ba,r ), as Q A

a is used in V B
a as well as in

the determination of QR
a .
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a as a flexible consumer: a’s overall utility Ua is the valuation of the electricity he
actually consumes, minus the price he pays for his initial allocation in market A, plus
revenues through providing reserve capacity in market B . Ua is given by:

Ua =Va(Q A
a −QB

a )−Q A
a ρ

A
a +QB

a ρ
B
a (3.23)

For sur plus A
a , we consider a’s valuation of consuming Q A

a and the costs of buy-
ing Q A

a . For sur plusB
a , we consider the economic reward for reducing demand and

subtract the costs of a’s provision of reserve capacity by the (lost) utility of the last QB
a

units in Q A
a . We model this lost utility via the function V B

a , which is given by:

V B
a (QB

a ,Q A
a ) =Va(Q A

a )−Va(Q A
a −QB

a ) (3.24)

Then, the surplus functions are given by:

sur plus A
a (ba,r ,k A) =Va(Q A

a )−Q A
a ρ

A
a

sur plusB
a (bB

a ,ba,r ,kB ) =QB
a ρ

B
a −V B

a (QB
a ,Q A

a )
(3.25)

3.5.F. THE BID OPTIMISATION PROBLEM
As we explain in Section 3.2.b, a has a positive surplus (considering only variable costs
and utilities) when selling or buying a quantity q at his marginal value V ′

a(q). However,
a maximises his surplus when his production or consumption q is such that V ′

a(q) =
MRa(q), where MRa is the marginal revenue function for a (see Section 3.2.b). The
surplus maximisation problem for a is given by:

arg max
ba,r ,bB

a

[

∫k A
max

k A=k A
mi n

pr ob A(k A)∗
(

sur plus A
a (ba,r ,k A)

+
∫kB

max

kB=kB
mi n

pr obB (kB )∗ sur plusB
a (bB

a ,ba,r ,kB ) dkB

)

dk A
]

(3.26)

Note that in the ABEM mechanism, bB
a is not a choice to be made by a, but is

translated from ba,r and therefore the optimisation problem is considerably reduced
in complexity, when compared to a mechanism where bids ba,r and bB

a are indepen-
dent (this addresses the problem we discuss in Section 3.3.a).

3.6. EXPERIMENTS
In this section, we describe two experiments, in which we model a as a flexible sup-
plier and a flexible consumer. a uses the decision-theoretic approach we laid out
in the previous section and we model the market accordingly in a stochastic two-
settlement model. Section 3.6.a introduces some necessary modelling concepts, most
importantly the benchmark mechanism BENCH. We also show how a constructs bid
functions mathematically and explain how we measure market power when a is a
supplier. Section 3.6.b then explains the experimental setup. We discuss results in
Section 3.6.c.
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3.6.A. EXPERIMENT MODELS

THE BENCHMARK MECHANISM BENCH
We model a benchmark mechanism (which we will refer to as BENCH from now on)
for a to take part in, which is modelled in resemblance to existing real-world imple-
mentations of electricity markets (e.g. [87] or [116]). Like ABEM, the BENCH mecha-
nism is a two-settlement mechanism with integration of the trade of reserve capacity
and simultaneous bidding. Unlike ABEM, BENCH requires from a two separate bids
to market A and market B .

Furthermore, BENCH also requires from a a price function ba,r as bid to market
A (like ABEM), but only allows bB

a , the bid to market B to represent a constant price
ρB

a (unlike ABEM). In both mechanisms, the reserve capacity QR
a is determined by a

bid parameter, and the allocation in market A, as described in Section 3.4.a. Figure 3.4
illustrates the bids to BENCH for both cases (a representing a supplier or a consumer).

(a) a is a supplier

(b) a is a consumer

Figure 3.4: Bids in the BENCH format. Bid ba,r to market A (dashed red) is a function and the bid ρB
a to

market B (continuous blue) is a constant price. Note that ρB
a is independent from the bid ba,r , besides

being constrained in quantity by QR
a . For bids in ABEM, see Figure 3.3.

Both the ABEM and the BENCH mechanism can be used for a within the market
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model described in Section 3.5, without changes to the modelling of other actors.

TRANSLATION OF a ’S VALUATION OF ELECTRICITY INTO BIDS

We now show how the bidder agent a translates V ′
a , his marginal value function for

electricity (refer to Section 3.2.b) into a bid function to either the ABEM or BENCH
mechanism. We also show how a can alter this bid function for surplus optimisation.

Bid functions in both the ABEM and the BENCH mechanism map unit prices to
quantities (see Section 3.4.a). The bid of marginal valuation, bmar

a , is therefore given
by the inverse of V ′

a :

bmar
a (ρ) =V ′

a
−1(ρ) =

1

2δa
(ρ− va) (3.27)

In order to construct a bid that maximises his surplus, a can submit a bid that devi-
ates from bmar

a - in particular, a could deviate from both his va and δa values. For sim-
plicity, we fix δa and restrict a to adapt only the parameter va . In [6], this restriction
of the function parametrisation in a market mechanism is called “c-parametrisation"
(because they used “C " as a parameter name where we use “va") and previous litera-
ture in which this restriction was also used is described. In a bid ba,r , we denote the
adapted va as v∗

a . ba,r is given by:

ba,r (ρ) =
1

2δa
(ρ− v∗

a ) (3.28)

In the BENCH mechanism, a has, next to v∗
a , also to choose ρB

a , his constant price
bid for balancing power (see Section 3.6.a).

MARKET POWER OF a AS A FLEXIBLE SUPPLIER

We measure a’s market power by calculating the Lerner index ∈ [0,1], defined by divid-
ing per-unit profits by unit price. As the index is defined for a monopolist, we multiply
it by a’s market share to compute the Lerner index for an oligopoly [114]:

ler ner (Q A
a ,QB

a ) =
ρa(Q A

a ,QB
a )− cost s

av g
a (Q A

a ,QB
a )

ρa(Q A
a ,QB

a )
sa(Q A

a ,QB
a ) (3.29)

where ρa denotes the average unit price which a earns when selling the quantities
Q A

a and QB
a , cost s

av g
a is the average production costs per unit and sa is a’s market

share. In our case:

ρa(Q A
a ,QB

a ) =
Q A

a ρ
A
a +QB

a ρ
B
a

Q A
a +QB

a

cost s
av g
a (Q A

a ,QB
a ) =

cost s
f ul l
a (Q A

a +QB
a )

Q A
a +QB

a

sa(Q A
a ,QB

a ) =
Q A

a +QB
a

Q A
a +Q A

−a +QB
−a +QB

a

(3.30)

where cost s
f ul l
a denotes the full production cost function of a and Q A

−a denotes
the amount which all suppliers but a sold in market A (when a is a supplier) or the



3.6. EXPERIMENTS

3

51

amount which all consumers bought (when a is a consumer) in market A. QB
−a de-

notes the amount which all suppliers but a sold in market B .
Note that this way of modelling market power works well for a supplier, but is not

defined for the perspective of a flexible consumer who also acts as a supplier in market
B . We will thus use it only for the use case of modelling a flexible supplier.

3.6.B. EXPERIMENT SETUP

MARKET SCENARIOS

In this section, we model two market scenarios for our experiments. They describe
two important market configurations which are relevant to the future of energy sys-
tems. We explain how we find values for all relevant market parameters which were
introduced in Section 3.5 (refer to Table 3.1).

The values we choose for both scenarios are based on realistic settings from a
wholesale power market simulation study by Sun & Tesfatsion (2007) [115]. In addi-
tion, we use a survey report by Lafferty at al (2001) [76] that aggregates several demand
responsiveness studies, in order to model the slope of the demand functions.

Oligopolistic market scenario First, we define an oligopolistic market scenario, which
could for instance resemble the situation in a microgrid. Both microgrids and whole-
sale markets resemble oligopolistic markets, because they are dominated by a small
number of players.

Supply side in market A - In [115], several generators and a generic buyer pro-
file are modelled for a simulation of 24 hours. From this study, we model an average
generator g and the sum of aggregated demand. Our chosen settings correspond to
hour 8am in [115]. We chose that hour as it is similar to most other hours and not an
outlier. As was noted earlier, our experiments perform a one-shot auction. Note also
that, because we use settings from a wholesale market study, the prices in our model
are in $/MWh. However, the general findings of this model can also hold for markets
which trade kWh, as we only use settings to model relative quantities and slopes of
cost functions.

The average generator g has a maximal production of QU
g = 300 units, a minimum

unit cost vg = 18.8 and δg , the slope parameter of g ’s marginal cost function, is given
by δg = 0.008. The model in [115] includes five generators. Thus, to arrive at the
average slope of S A , we multiply the slope of g ’s marginal costs by five: βA = 5

2δg
.

When we model a as a supplier, then S A
−a , the aggregated function without a, has the

slope βA = 4
2δg

. Finally, we assume that the minimal unit price of S A
−a is 10% higher

than g ’s minimal unit costs: ρA
mi n

= 1.1vg .
Demand side in market A - The sum of the demand of all buyers in [115] is 900, or

3QU
g . We set D A

max = 3QU
g (1− rm). All studies in [76] measured the price elasticity of

demand, which denotes the percentage change in quantity demanded in response to
a one percent change in price. [76] distinguishes between “long-run” and “short-run”
demand. At the time when he considers the price, a consumer with long-term de-
mand has more time until the time of consumption than a consumer with short-term
demand. Thus, having short-term demand allows for less substitution of demanded
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power with any alternative (e.g. shifting demand to a later time), similar to the sit-
uation in a balancing market. The survey reports price elasticities between 0.7 and
2.1 for “long-run” scenarios (which we use for market A) and between 0.03 and 0.5 in
“short-run” scenarios (which we use for market B). We take αA = 1.0 and αB = 0.2.

Coupling of market B - Two parameters of market B are determined by the out-
come of market A: the minimum price ρB

mi n
and the maximal reserve capacity DB

max .

ρB
mi n

is determined as the price at which demand and supply in market A (without a

taken into account) intersect (D A
−a(ρB

mi n
) = S A

−a(ρB
mi n

)). We assume that DB
max is re-

lated to demand in market A via a ratio rm , such that DB
max = rmQ A

C

1−rm
, where Q A

C denotes
the sum of all binding commitments of consumers in market A (without a taken into
account, if he is a consumer).

Reserve capacity - The SO needs to allocate sufficient reserve capacity from all
market participants in market A, such that QR ≥ DB

max . For this, he might approxi-
mate rm from experience (refer to Section 3.2.a for a discussion of current practice).
We assume he is successful in this. For the purposes of this decision-theoretic model,
we need to decide which level of reserve capacity agent a bids on3, i.e. which r is set
in his bid ba,r . For the simplicity of our setup, we assume that the SO can approximate
rm perfectly and requires a to use rm in his bid ba,r with r = rm . This modeling choice
assumes that r is technically feasible with the generation or consumption devices that
a has. We will use two values for r , 0.1 and 0.3 (see our method description below).
While the smaller value of r = 0.1 should be feasible with almost all devices, the higher
value of r = 0.3 is mainly possible with devices that have little costs of switching be-
tween states, e.g. batteries. Of course, a more detailed model would assume that
bidders have individual preferences which values for r they prefer, e.g. based on their
devices or previous history. In such a market clearing mechanism, bidders can submit
several bids with different values for r . We discuss this possibility in Section 3.4.b and
also propose it for future work (see Section 3.7).

Competitive market scenario We also design a second scenario (using the oligopolis-
tic scenario as a starting point), in which we model two trends that are considered
very important for smart grids. First, we make the scenario more competitive: we
increase both the number of suppliers and demand responsiveness tenfold (which
affects αA and βA). Second, we add demand (e.g. to model increasing market pene-
tration of electric vehicles and heat pumps) by doubling the overall demand for elec-
tricity (which affects D A

max ).

Table 3.2 lists all default parameter values for the two scenarios. Note that the
parameters for market B depend on the parameters of market A.

SETTINGS FOR BIDDING AGENT a

In order to model a as a flexible supplier, we parametrise a as an average generator,
according to [115] (we discuss our concept of an average generator in this context
below). We set va = vg , δa = δg and QU

a =QU
g .

3All inflexible actors use r = 0 in their bids. As all market participants other than a are modelled by uncon-
strained functions, we do not need to decide which values of r the flexible participants bid.
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Table 3.2: Default settings for parameters in the oligopolistic and competitive scenario.

Name oligopolistic scenario competitive scenario

D A
max 3QU

g (1− rm) 6QU
g (1− rm)

αA 1.0 10.0
ρA

mi n
1.1vg 1.1vg

βA 5
2δg

50
2δg

DB
max

rmQ A

1−rm

rmQ A

1−rm

αB αA

5
αA

5
ρB

mi n
ρA
−a ρA

−a

βB βA βA

rm 0.1 or 0.3 0.1 or 0.3

We model a as a flexible consumer in the following way: His maximum capacity is
QU

a =QU
g , same as for our average generator g . For the slope of the valuation function

of a flexible consumer, literature does not provide us with helpful pointers. For this
work, we choose δa =−0.008, mirroring δg , the slope of the cost function of g . Finally,
we aim at modeling a’s utility function Va such that a’s valuation is close to the mar-
ket valuation and set va = ρAB

−a ∗1.1. ρAB
−a is the average price over markets A and B ,

under given parameter settings, if a is not present. The multiplication by 1.1 roughly
compensates for the slope δa .

METHOD

In the experiments, we evaluate both the oligopolistic and the competitive market
scenario using a Monte-Carlo simulation. We now describe the generation of specific
parameter settings, the method of sampling traces in them, and which steps bidding
agent a follows to find optimal bid parameters.

Parameter settings - We create several relevant settings in both market scenarios
by varying the value of one parameter a a time, where the other parameters remain
at the default setting from Table 3.2. In both scenarios, φ ∈ [0,3] (φ is the uncer-
tainty scaling parameter and will be explained below), ρA

mi n
∈ [ 2

3 vg , 3
2 vg ] and D A

max ∈
[ 2

3 D A,base
max , 3

2 D A,base
max ], where D A,base

max denotes the default setting for D A
max from Ta-

ble 3.2. Note that ρB
mi n

and DB
max are formulated in relation to ρA

mi n
and D A

max , re-
spectively. Finally, we run simulations with rm = 0.1, which is a reserve level observed
often in current markets, as well as rm = 0.3, a setting that is not unrealistic in the
market scenarios we can expect in the upcoming 10 years, at least for the actors that
can offer significant reserve power (for example if they operate batteries or gas power
plants).

Sampling - We sample the outcomes for each setting 100 times. Each sample con-
tains a new pair of the noise parameters k A and kB , which influence the position of
the residual functions that a faces with respect to quantity (see Section 3.5.d). Each
pair is generated by the Mersenne twister pseudo-random number generation algo-
rithm. We assume that the two probability distribution functions pr ob A and pr obB
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are independent from one another. Also, we assume they model normal distributions
and we thus have to make two choices: how to set means and standard deviations for
the distribution functions of both k A and kB . First, we set both means to 1, which is
the value for which there is no noise, compare Equation 3.20. Second, we define the
standard deviations s A and sB such that the position of the residual function for a in
the given market is changed by a certain amount (the amount is specific to the market
setting). We explain this definition using kB in market B as an example. At a noise
value of kB = 1, no noise is present. Residual demand is not willing to buy from a

above the price ρB
−a (DB

r es (ρB
−a ,1) = 0). We define sB such that DB

r es (ρB
mi n

,1−3sB ) = 0.

Thus, a value of kB = 1−3sB repositions DB
r es downwards along the quantity axis such

that residual demand is not willing to buy from a above the price ρB
mi n

. Finally, in
order to model varying degrees of noise, we create additional parametrised settings,
where we vary s A and sB . To create these settings, we multiply both s A and sB with a
scaling parameter φ ∈ [0,3] (in default settings, φ= 1).

Finding optimal bid parameters - in Section 3.6.a, we describe that bidding agent
a has to optimise one (in the ABEM mechanism) or two (in the BENCH mechanism)
bid parameters. He does this in two steps. First, a performs a brute-force search on
parameter settings for his bid(s). a evaluates 100 evenly-spaced values for v∗

a (in his
bid to market A) in the range [va ,ρA

max ] when a is a supplier or [ρA
mi n

, va] when a is
a consumer. Furthermore, when participating in the BENCH market, a evaluates, for
each of the 100 values he evaluated for v∗

a , 100 evenly-spaced values for ρB
a (his bid to

market B) in the range [p A
mi n

,ρB
max ]. Here lies the main difference in the time it takes

to compute a bid with optimal expected value. In our experiments, optimising a bid
in the ABEM mechanism took around a minute, while optimising bids to the BENCH
mechanism took up to around one hour on a standard desktop PC.

The second step of the bid optimisation is to refine the best solution from the
brute-force search. Starting with the most promising bid(s) found so far (with respect
to his expected surplus), a applies a downhill simplex algorithm [92] to maximise the
expected surplus further.

During the evaluation of each value setting, a sets k A
mi n

= 1−3s A , k A
max = 1+3s A ,

kB
mi n

= 1−3sB and kB
max = 1+3sB (refer to Equation 3.26).

3.6.C. RESULTS AND DISCUSSION
Let us first note that a first important difference between ABEM and the BENCH mech-
anism is the time it took us to compute bids with optimal expected values (see previ-
ous section). Bids for us in ABEM were computed much faster. We now pay attention
to economical outcomes.

AGENT a AS A FLEXIBLE SUPPLIER

We begin with confirming that, for several general economic properties, the market
model behaves as expected in reality. First, a has positive surplus in both mechanisms
and across all settings. a’s surplus also correlates with settings like one would expect.
It is positively correlated to changes in δa , D A

max and ρA
mi n

and negatively correlated to

rm ,αA and βA . Second, a’s presence increases competition as he can offer electricity
below market price. We simulated the markets without a (thus decreasing the number
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of suppliers by one). As should be expected, the aggregated unit price (the sum of
all sold units in both markets divided by the sum of money paid by consumers) is
significantly higher in these settings than it is with a’s presence. Finally, in comparison
to the oligopolistic scenario, the competitive scenario has a lower aggregated market
price, as well as lower market power and surplus for a.

We now turn to two important observations, concerning notable differences or
similarities in outcomes when a takes part in either the ABEM or the BENCH mecha-
nism:

Observation 1: Agent a reaches comparable surplus in both mechanisms across a
wide range of market conditions, but shows different bidding behaviour. The out-
comes for a are different, between both mechanisms, in terms of quantities a sup-
plies and prices a is paid. The differences are most prominent in market B and we
now note two notable ones. First, the results for a in market B vary mostly in price
in ABEM, while in BENCH, they vary mostly in quantity (see Figure 3.5 for two exam-
ples). Second, a in the BENCH mechanism does not sell any QB

a in settings with high
uncertainty (φ> 1.5), because he charges a price that is too high for the market.

However, a’s surplus does not differ significantly4 across all settings when we let a

take part in the ABEM or BENCH mechanism. The only exceptions are in the oligopolis-
tic scenario when the setting has high values for D A

max (where a has higher surplus in
ABEM) or in both scenarios when the setting has high values for ρA

mi n
(where a has

higher surplus in BENCH).

Observation 2: The ABEM mechanism substantially reduces market prices and
market power in exploitable settings. In the default settings, market power measure-
ments for agent a in the ABEM and BENCH mechanism show no significant differ-
ences. The biggest opportunities for a to exercise market power exist in settings with
larger values for ρA

mi n
, because then the difference between offer prices of S−a and

a’s costs is high and a can thus increase his surplus. The settings in which ρA
mi n

≥ 24
show by far the highest aggregated market prices, as well as market power and surplus
for a. In these settings, a exploits this opportunity less when he uses the ABEM mech-
anism (see Figure 3.6 for an example). The differences in a’s market power between
the ABEM and the BENCH mechanism in these settings are significant, with the ex-
ception of the oligopolistic scenario where rm = 0.1. This observation also aligns with
some differences in surplus which we reported in observation 1 (in settings with high
values for ρA

mi n
).

Specifically, a in ABEM is lowering the price ρA
a on market A, and as a result the

aggregated market prices are lower than in the BENCH mechanism. Note that the
most quantity is sold on market A and thus lowering ρA

a has a strong effect. See Fig-
ure 3.6a for the most substantial case, where the presence of a when using the ABEM
mechanism has an impact on aggregated market prices which is up to 2.7 times larger
as when a takes part in the BENCH mechanism. The results also show a clear reduc-
tion in market power. In the default settings (ρA

mi n
= 20.68), a has the same market

4We performed Student’s T-Tests and tested for p ≤ 0.01.
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(a) oligopolistic scenario, rm = 0.3

(b) competitive scenario, rm = 0.3

Figure 3.5: Sampled outcomes for a in default settings
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(a) Aggregated unit prices across both markets.

(b) Market power of a.

Figure 3.6: Effects of increasing prices of a’s competition in the competitive scenario, rm = 0.3. Results
shown with +

−1 standard deviation.
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power in both mechanisms. However, in settings with ρA
mi n

≥ 24, a gains substantially
less market power with respect to the default setting when taking part in the ABEM
mechanism and therefore has less market power than when taking part in the BENCH
mechanism. See Figure 3.6b for the most substantial case, where a has up to 11% less
market power in the ABEM mechanism.

Discussion: First, the mechanisms ABEM and BENCH prescribe different bid for-
mats for market B . This leads to different bidding behaviour by a in both markets
(see observation 1). In market B , agent a in BENCH bids a constant price ρB

a and thus
the results differ only along the quantity axis (for QB

a ). Agent a in ABEM, on the other
hand, bids a supply function to market B , and thus results for both QB

a and ρB
a differ

(depending on δa , the slope of a’s bid).
Most important, however, is the confirmation that a reaches the same level of sur-

plus in ABEM and in BENCH. This shows that using ABEM is economically as reward-
ing as our benchmark mechanism BENCH, by which we address the design challenge
we describe in Section 3.3.c. The observation that a in the BENCH mechanism does
not sell any QB

a in settings with high uncertainty is more prevalent when a is a flexible
consumer, so we will discuss this behaviour in Section 3.6.c.

We now turn to observation 2 and discuss bidding behaviour under exploitable
market settings (here modelled by large values for ρA

mi n
). In most settings we simu-

lated, multiple near-optimal combinations of quantities and prices exist. Though bids
in the ABEM mechanism are less flexible than in the BENCH mechanism (because
only one bid function can be submitted), a is likely to find a bid ba,r that realises one
of them, as is evident in the good performance across all settings (see observation 1).
However, the market settings in question (with ρA

mi n
≥ 24) are so favourable for a that

he can sell all capacity on both markets (Q A
a =QU

a (1− rm) and QB
a =QR

a ). This means
that there exists only one pair of optimal quantities (because bid functions are mono-
tonically increasing) and the optimisation problem is reduced to finding the optimal
prices for this pair of quantities.

However, in the ABEM mechanism the following restriction is in place: Let the
quantity Q A

a be fixed. Then, the distance between bids ba,r and bB
a with regard to

the price is fixed as well (because the minimum price of bB
a is v∗

a + 2δaQ A
a ). Thus,

in ABEM it becomes highly unlikely that a can bid optimal prices in both markets in
this situation. We conclude that in conditions with excessive market power for a, the
ABEM mechanism restricts a from realising the full potential market power. In effect,
a in the ABEM mechanism lowers bid ba,r substantially, in order to not overprice on
market B . This result addresses the design challenge we describe in Section 3.3.d. It
makes the ABEM mechanism appealing to market makers, as it protects vulnerable
consumers from unnecessarily high prices.

AGENT a AS A FLEXIBLE CONSUMER

As we do in Section 3.6.c, we begin by validating the market model for several impor-
tant properties: a’s overall surplus is positive in both mechanisms across all settings
and, in comparison to the oligopolistic scenario, the competitive scenario has lower
market prices and a lower surplus for a. We now discuss two major observations,
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where observation 1 is similar to observation 1 in Section 3.6.c.

(a) Effects on ρA
a

(b) Effects on ρB
a

Figure 3.7: Effects of increasing uncertainty on prices for a (oligopolistic scenario, rm = 0.3). The dotted
line shows the default setting φ= 1.

Observation 1: Agent a reaches comparable surplus in both mechanisms across a
wide range of market conditions, but shows different bidding behaviour. The out-
comes for a show distinct patterns between both mechanisms, most prominently in
market B . If a sells electricity in both markets, this resembles outcomes we showed in
Figure 3.5 and described in Section 3.6.c. However, in many settings, a in the BENCH
mechanism sells no QB

a at all (see observation 2 for more details on this).
Despite such differences in market outcomes, a’s surplus does not differ signifi-

cantly5 across all settings when we let a take part in the ABEM or BENCH mechanism.
This observation is present in all our parametrised market settings, with the only ex-
ception for low values ofρA

mi n
(where a has higher surplus in the BENCH mechanism).

5We performed Student’s T-Tests and tested for p ≤ 0.01.
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Observation 2: Agent a offers and sells reserve capacity at affordable prices in the
ABEM mechanism, but not in the BENCH mechanism. In the ABEM mechanism, a

consistently sells balancing power across most market settings, at prices which inflex-
ible actors are willing to pay. a in BENCH, however, will in many settings bid a price
ρB

a which is too high in the given market setting. As a consequence, he sells, when
compared to the ABEM mechanism, very little QB

a or even none at all. In fact, a in
BENCH only sells QB

a in the oligopolistic scenario, when rm = 0.3, neither ρA
mi n

nor

D A
max are low and φ is not high. Figures 3.7 and 3.8 illustrate what is happening when

the uncertainty parameter φ (a’s uncertainty about market outcomes increases with
φ, refer to Section 3.6.b) is varied. a in the BENCH mechanism increases the price ρB

a

and sells less QB
a when φ > 1. At the same time, he decreases the price on market A

and thus buys Q A
a cheaper than a in ABEM.

(a) Effects on Q A
a

(b) Effects on QB
a

Figure 3.8: Effects of increasing uncertainty on quantities for a (oligopolistic scenario, rm = 0.3). The dotted
line shows the default setting φ= 1.
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Discussion: The fact that agent a reaches comparable surplus in both mechanisms
(see observation 1) confirms observation 1 in our first experiment (see Section 3.6.c)
where a is a flexible supplier and the same discussion applies here. The only exception
is given in settings with low values for ρA

mi n
. We will discuss this exception in our

discussion of observation 2.

Observation 2 describes that a in BENCH is only in a few settings willing to offer
his reserve capacity at prices which are acceptable to inflexible actors in market B

(and thus does not sell QB
a in other settings). This observation addresses the design

challenge we describe in Section 3.3.c and makes the ABEM mechanism attractive to
market operators.

Agent a in BENCH does offer and sell QB
a at affordable prices in the default settings

of the oligopolistic scenario. In the remainder of this section, we will discuss the three
settings noted in observation 2 (low values for ρA

mi n
, low values for D A

max , high values

for φ), which lead a in BENCH to overprice QB
a in the oligopolistic scenario and also

explain why he does not sell QB
a at all in the competitive scenario. Keep in mind,

however, that settings with low values for ρA
mi n

are the only ones where surplus for
a differs significantly between the ABEM and BENCH mechanisms (see observation
1). In all other settings, the difference from a’s point of view is merely one of bidding
strategy choices, which a makes, not of financial outcomes for a. This is significant for
the design challenge we defined in Section 3.3.c, which requires that bidders should
be able to make the same amount of surplus as in comparable mechanisms.

In general, a in BENCH behaves as observation 2 describes, in order to avoid costs
of lost opportunity (see Section 3.3.c). In particular, there are two reasons these costs
exists. First, if a is uncertain about market outcomes, the financial risk of buying elec-
tricity in market A with the goal of offering it as reserve capacity in market B becomes
too high for him when he bids a constant price ρB

a (as prescribed by the BENCH mech-
anism). Second, in some settings, a in the BENCH mechanism can buy electricity at a
very low price ρA

a in market A and the price difference between ρA
a and possible prices

ρB
a in market B is not attractive enough. We now begin by discussing settings where

the latter reason for not selling ρB
a holds.

In settings with low values for ρA
mi n

, supply prices are low in market A and thus

an opportunity exists for buyers to raise their surplus considerably. a buys Q A
a far

under his reserve price va . In the BENCH mechanism, a does not need to sell any
QB

a (he can overprice, as observation 2 describes), while a in the ABEM mechanism
is required to sell QB

a at a price related to the price he paid for Q A
a . Settings with low

values for D A
max are similar - Q A

a can be bought cheaply in market A (in this case,
because there is little competition from other buyers) and a in BENCH prefers not to
offer it in market B at the prices he could achieve there. Finally, in the competitive

scenario, the number of suppliers is increased tenfold, which decreases prices in both
markets. As a consequence, buying on market A becomes more attractive and selling
on market B becomes less attractive, which leads to a in BENCH to not sell QB

a .

We now turn to settings with high values for φ, in other words, with high uncer-
tainty a has about market outcomes. In the BENCH mechanism, both the bid to mar-
ket B (ρB

a ) and the residual demand function for balancing power (DB
r es ) react only

very little to changes in price: The former is a constant price, and the latter has a low
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slope. The intersection of both varies strongly along the quantity axis. Figure 3.8b)
illustrates this. Consider for example the default setting, where φ = 1 (a base level of
noise exists) and a still sells QB

a in BENCH. This variation of possible quantities for
a means that, in the BENCH mechanism, a is facing a higher risk than in the ABEM
mechanism, if he follows the strategy of increasing his bid to market A (i.e. to pay a
higher price for Q A

a ), in order to be able to offer reserve capacity QR
a and sell QB

a . The
negative outcome a risks in this case is that he might sell too little or no QB

a due to
noise in market B . This would strongly lower a’s overall surplus. Therefore, a low-
ers his bid ba,r to market A, in order to optimise surplus there, and overprices his bid
price ρB

a in market B , in order not having to sell any QB
a .

This is not the case in the ABEM mechanism. Here, a submits a positively-sloped
bid function to market B , which reduces variation along the quantity axis. This re-
sult relates to the original paper about supply function equilibria by Klemperer and
Meyer (1989) [71], where the authors note that, when faced with exogenous uncer-
tainty about residual demand, "a supply function provides valuable flexibility, be-
cause it can be chosen to coincide with the set of optimal price-quantity pairs“. By
using supply functions in market B rather than a constant price (a Bertrand model),
the ABEM mechanism provides a solution to the design challenge we defined in Sec-
tion 3.3.b.

3.7. CONCLUSIONS
Future energy systems will contain many dynamic patterns on both the supply and
demand side. To allow for stable operation, market mechanisms are needed that allow
for planning by making binding commitments ahead of time. In addition, they should
trade reserve capacity, such that flexible actors are explicitly involved in the System
Operator’s challenge to balance out supply and demand in real time.

Existing versions of such mechanisms can be found on the level of wholesale mar-
kets. However, it is hard for bidders taking part in them to compute well-performing
bids, both because it takes much computational effort and because their bid repre-
sentation restrict efficient expression of economic value. This problem is highly rele-
vant in so-called “smart grid” settings, where numerous computers make automated
decisions for supplying or consuming energy on behalf of their owners situated on
lower levels of the grid. In addition, it is uncertain whether bidders will use an exist-
ing mechanism as intended. First, bidders should be able to achieve sufficient sur-
plus, when compared to other mechanisms. Second, flexible bidders should choose
to offer reserve capacity at affordable prices. Finally, all mechanisms in energy sys-
tems face the problem that suppliers have excessive market power in certain market
settings.

In this chapter, we propose and evaluate ABEM. ABEM is a novel two-settlement
market mechanism which includes the trade of reserve capacity. To the best of our
knowledge, no market mechanisms with these capabilities have been proposed so far,
which are also suitable for small-scale and non-sophisticated actors, like for instance
in smart grid settings. For bidders, ABEM allows for quick construction of bids and
we show experimentally that there are no economic drawbacks when compared to
a benchmark mechanism. For the System Operator, there are several advantages, as
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well: Excessive market power of suppliers is reduced (which we show in computa-
tional simulations) and flexible consumers will offer reserve capacity (which we prove
for the case of perfect competition and show in simulations for the case of imperfect
competition, where the flexible consumer needs to choose a profit-maximising bid
strategically).

Future work could evaluate the ABEM mechanism in a setting with more than one
strategic bidding agent. By including the decision-making of multiple actors, the so-
cial efficiency improvements can be studied in more detail. In addition, it can be use-
ful to allow bidders to bid on several reserve ratios r at the same time, with several
bids to the same market mechanism. This would enable the SO to increase market
efficiency by increasing the number of alternative market clearing solutions. The de-
sign challenge here is to allow bidders some freedom on their choice of values for r ,
but also to give the SO a way to ensure that he will be able to allocate sufficient re-
serve capacity. The explicit notion of r which ABEM prescribes is a good foundation
for solving this problem, as opposed to the static heuristics which are in use today.

3.A. APPENDIX: PROOF THAT OFFERING RESERVE CAPACITY

INCREASES THE UTILITY OF A FLEXIBLE CONSUMER
In this section, we provide a proof that for a flexible consumer a, offering reserve ca-
pacity is guaranteed to be profitable, if he submits his marginal utility function. As a
benchmark, we consider a as an inflexible consumer, who buys Q A

a and does not sell
anything on market B . His surplus SU R

′
a is given by:

SU R
′
a =

∫Q A
a

q=0

(

ρa(q)−ρA
a

)

d q (3.31)

where ρa(q) = b−1
a,r (q) denotes the unit price at which a’s bid ba,r describes the

quantity q .
Now we consider the case in which a is flexible and active on market B , selling any

QB
a ∈ [0,QR

a ] at price ρB
a . Let us denote a’s utility in this case by U

′
a . We calculate U

′
a

by subtracting from SU R
′
a the loss of utility for selling QB

a less than Q A
a and adding the

revenues from selling QB
a . For illustration, Figure 3.9 shows in a grey area both the

lost utility (on the right) and the revenues from selling QB
a (on the left). U

′
a is given by:

U
′
a = SU R

′
a −

∫Q A
a

q=Q A
a −QB

a

ρa(q) d q +QB
a ρ

B
a

= SU R
′
a +

∫QB
a

q=0

(

−ρa(q +Q A
a −QB

a )+ρB
a

)

d q

(3.32)

U
′
a is guaranteed to be larger than SU R

′
a , if we can show that ρa(q+Q A

a −QB
a ) ≤ ρB

a

for all q ∈ [0,QB
a ]. This is the case, because ρa(0+Q A

a −QB
a ) = ρB

a and the slope of ba,r

is negative.
Finally, we can now show that the ABEM bid mechanism guarantees that offering

reserve capacity increases a’s utility, compared with an inflexible consumer that buys
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Figure 3.9: a’s bid ba,r and the residual functions S A
r es and DB

r es . The dotted part of bid ba is translated into
bid bB

a . Q A
a and QB

a are determined by intersection of ba,r with S A
r es and DB

r es .

the same amount of electricity. As a benchmark, let us again assume that a is inflexible
and offers nothing to market B (and thus QR

a = 0). Here, we assume that a buys exactly
Q A

a −QB
a in market A. We denote the surplus for a in this case by SU R∗

a , given by:

SU R∗
a =

∫Q A
a −QB

a

q=0

(

ρa(q)−ρB
a

)

d q (3.33)

where in this example, ρB
a = ρa(Q A

a −QB
a ) denotes the price a pays for Q A

a −QB
a on

market A (refer also to Figure 3.9).
Let us now consider that a acts as a flexible consumer and offers QR

a on market
B . To make this case comparable to our benchmark case (which led to SU R∗

a ), we
assume that a first buys Q A

a and then sells QB
a ∈ [0,QR

a ]. This leaves a with Q A
a −QB

a for
his own usage, just as in the benchmark case. We denote the utility a has in this case
with U∗

a . There are two differences in U∗
a with respect to SU R∗

a : First, a pays a lower
unit price for his consumption of Q A

a −QB
a , namely ρA

a instead of ρB
a , and if the price

difference of ρB
a −ρA

a is positive, a’s utility will increase. Second, a sells QB
a instead of

consuming it himself, and thus adds U
′
a −SU R

′
a to his utility (see above). U∗

a is given
by:

U∗
a = SU R∗

a + (ρB
a −ρA

a )(Q A
a −QB

a )+U
′
a −SU R

′
a (3.34)

We have shown above that U
′
a − SU R

′
a is positive. We now show that also (ρB

a −
ρA

a )(Q A
a −QB

a ) is positive. This is the case because Q A
a −QB

a ≥ 0 and ρB
a ≥ ρA

a (see Sec-
tion 3.4.a).
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THE PERSPECTIVE OF

NON-SOPHISTICATED CONSUMERS

IN FLEXIBLE RETAIL CONTRACTS

4.1. INTRODUCTION
Most electricity consumers are small-scale households, who currently have long-term
contracts with electricity retailers. These contracts prescribe a constant unit price
per consumed kWh (see also our discussion of current retail contract models in Sec-
tion 2.2.b). As a result, retailers completely shield their consumers from the risk of
price dynamics on the wholesale markets. This situation will probably change in the
near future. Retailers will begin to expose their consumers to wholesale price dynam-
ics, as both supply and demand become more volatile and less predictable (we discuss
these trends in Section 2.1). Flexibility of consumption is becoming a valuable contri-
bution in future energy systems, and dynamic pricing is needed to realise its potential.

In this chapter, we propose novel indicators to evaluate the perspective of flexi-
ble as well as inflexible consumers for settings in which electricity retailers use novel
retail contracts which allow them to use dynamic pricing. Our analysis for this pur-
pose is positioned in economics and market design, and we use agent-based mod-
elling to demonstrate the indicators in a future electricity retail setting. The proposed
indicators measure comprehensibility of a pricing system from the standpoint of one
consumer, thus the resolution of the consumer model is no limiting factor for their us-
age. By taking averages of the measured indicator values across the whole population
or across selected groups of participants, statements can be made about the pricing
system as a whole. This kind of analysis is useful for designers of dynamic pricing sys-
tems, where the strategic choice of pricing strategy and the response of consumers to
it is crucial to the objectives of the designer.

Flexible consumers (who are flexible to changes in prices) exist in today’s electric-
ity systems, but they mostly represent large facilities (e.g. an aluminium-producing
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factory). In so-called smart grid settings, many consumers, for example domestic
households, can be expected to be small and non-sophisticated, i.e. they do not pos-
sess elaborate strategic intelligence to optimise their behaviour when facing dynamic
prices. In future settings, consumers might employ decision-making software to gov-
ern their devices on their behalf. However, we should not expect that this software
has large amounts of computational power nor should it be assumed that it uses an
algorithm which is fine-tuned to the market situation it is operating in. Finally, we
should also expect that, at least for a considerable amount of time, many consumers
will remain inflexible with respect to prices, out of necessity or indifference, and make
no use of software to optimise decisions.

A short description of a likely future setting is thus as follows. Retailers will offer
contracts with dynamic pricing. In effect, a retailer sets up and mediates a local mar-
ket, in which he acts as a monopolistic supplier and the consumers with whom who
he has contracts represent the buyers. Using this definition of the relation between
a retailer and his consumers, this chapter views the business strategy challenge for
the retailer as a market design problem. He has to decide which contract settings to
offer and which pricing strategy to use in real time to arrive from wholesale market
prices (where he has to buy electricity) to prices for consumers. Furthermore, we can
expect that contracts restrict the range in which prices can vary, as a consequence of
regulation for consumer protection or as a marketing strategy to attract consumers.
Finally, consumer populations will likely be mixed, with one part of the population
being flexible and the other part being inflexible. It is unclear how decision-making
will develop. Current research investigates how humans react to dynamic pricing, but
probably most consumers will employ automated software to decide on their behalf,
which probably differs in the decision-making with respect to a human.

To the best of our knowledge, a setting in which contracts allow prices to vary
within pre-defined bounds and where consumer populations contain both flexible
and inflexible consumers, has not been explored in detail in scientific modelling so
far.

The long-term success of an electricity retailer will in the future be determined
by two novel factors: First, retailers need to avoid or mitigate consumption peaks,
as they lead to high prices on wholesale markets. Dynamic pricing can incentivise

consumers to avoid or delay consumption during peaks. Second, it is important that
the pricing strategy is not too complex. The price dynamics should be comprehensible

to non-sophisticated consumers and to software agents they employ. Consumers want
to make informed decisions whether to sign a retailer contract and software needs
to make local consumption decisions based on the dynamic prices. Both of these
reasons are important to reduce customer retention.

These two factors are not complementary, however, as we will show in this chap-
ter. The price with the lowest complexity is a constant price, as in today’s retail con-
tracts. If, however, prices become dynamic, they become more difficult to compre-
hend, which increases the effort necessary to participate in the retailer’s market and
to objectively compare the contract to the contracts of other retailers. In effect, the
retailer faces a trade-off when he designs his contracts and pricing strategy.

With the contributions of this chapter, we address the second research question of
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this thesis (which we stated in the introduction, see Section 1.3). This research ques-
tion states the need for simple, fast and fair mechanisms, involving non-sophisticated
actors. We propose novel indicators to measure comprehensibility of pricing dynam-
ics from the consumer’s point of view. We then demonstrate these indicators in a
stochastic market model, using Monte Carlo simulations. Note that in Chapter 5, we
will address a similar setting, but concentrate on the dynamic pricing strategy of the
retailer. In particular, this chapter proceeds as follows.

In Section 4.2, we will motivate why we believe retailers should put more focus on
the consumer’s point of view, compare our approach with other modern approaches
to market design and provide some discussion about complexity in markets and its
visibility to market participants. Section 4.3 formulates the problem statement for this
chapter. Then, in Section 4.4, we define our concept of Comprehensibility. We pro-
pose three dimensions of Comprehensibility, which we formulate as straightforward
and generic statistical indicators: Stability (the variance in prices over time), Learn-

ability (correlations between prices and other observable information) and Engage-

ability (correlation between changes in price and demand response by consumers). In
Section 4.5, we describe the model of a basic example market, in which a retailer has
contracts for dynamic pricing (with upper and lower price limits) with a population
of non-sophisticated consumers (who are either flexible or inflexible). We perform
stochastic Monte-Carlo simulations in Section 4.6, where we evaluate several scenar-
ios. We vary the maximal price deviation in contracts (to give more or less space for
the retailer to adapt prices) and the ratio of flexible consumers in the population.

In Section 4.7, we demonstrate the dynamics in this model and then show that
the Comprehensibility indicators are useful to understand effects of different contract
settings and consumer population composition on the consumer perspective. In par-
ticular, we can demonstrate two properties of our model. First, designing dynamic

pricing retail contracts for both stable and engageable prices is a trade-off problem.
Second, there is a limit to how well a consumer can learn price dynamics when popu-

lations are mixed. Finally, section 4.8 concludes and discusses future work.

4.2. CONSUMERS AND COMPLEXITY IN MARKET DESIGN
In this chapter, we propose a novel way to analyse the contract settings and dynamic
pricing strategy of a retailer and this section provides some background for this pur-
pose. In the previous section, we viewed the retailer’s decisions in this respect as a
market design problem (for a local market, in which the retailer sets some boundary
rules in contracts and then acts as a monopolist supplier for consumers in his own
market, as long as they maintain a contract with him). Consequently, this section
looks at the background from a market theory standpoint.

We first argue that consumer behaviour is an essential ingredient to the success of
the retailer’s strategy. It is important to design the local market such that flexible con-
sumers can react to price dynamics (despite the complexity inherent to the market)
and that few consumers leave the market (i.e. do not leave to join another retailer).
We then briefly review methods of market analysis from the field of mechanism de-
sign, which are available to designers of markets and bidding strategies. There are,
to the best of our knowledge, no methods of analysis that focus on the complexity of
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the decision problem from the point of view of the electricity consumer in a modern
energy system. There are, however, several discussions of the general amount of com-
plexity in markets and how much of this complexity should be shown to consumers.
We review this discussion at the end of this section.

4.2.A. DECISION-MAKING CAPABILITIES OF NON-SOPHISTICATED MAR-
KET PARTICIPANTS

When dynamic pricing is used in future retail markets for electricity, it is essential for
retailers that non-sophisticated consumers can comprehend the pricing dynamics.
We mentioned this already in Section 4.1. In particular, consumers will more often
than today compare retail contracts with one another. In order to make informed de-
cisions, it is necessary for them to comprehend the pricing dynamics. Consumers will
probably let software agents react to prices in real time on their behalf. We can assume
that these software solutions will not be high end, customised solutions, but need to
operate with limited computational capabilities and that their decision-making pro-
cesses will probably not be fine-tuned to the contract and pricing strategy of a specific
retailer.

Thus, the real-time strategies of consumers should form an essential considera-
tion during the design of the retailer’s contract offerings and pricing strategy. In litera-
ture about market design, not many considerations of such interdependence between
market operator and market participants exist. One example from economic litera-
ture is the property of markets called “Dynamic Efficiency” (e.g. [1]), which denotes
how well a market policy prepares its participants for possible future states, rather
than (statically) optimising the present.

Another interesting viewpoint comes from system theory. Several authors have
paid attention to systems which depend on the actions of their users. Users make their
decisions in autonomous fashion, but the system depends on these decisions to ful-
fil its objectives. In our case, the retailer depends on decisions of flexible consumers.
They can lower their electricity consumption during peak load times, which is im-
portant for the retailer’s objectives. However, the retailer can only indirectly control
the actions of flexible consumers by contract settings and his pricing strategy. Such
systems have been described with the term “socio-technological system” [26] or “co-
constructive systems” [60]. Kroes et al (2006) [75] state that in socio-technical systems
“agents within the system, who perform a sub-function, may change or redesign the
system ’from within’. In other words, the (re)design of the system no longer takes place
from a central point outside the system, as is the case in traditional engineering, but
becomes decentralized”.

Recently, there is more and more research from the field of human-computer-
interaction (HCI) to study how users respond to and interact with complex autonomous
systems. For example, Cramer (2010) [20] conducts usability experiments with hu-
man subjects to study their response to autonomous and adaptive systems which
have some inherent complexity. Semi-automated decision making in complex en-
vironments is a relatively new field in HCI, which combines the fields of computer
science and psychology. For instance, Hindriks et al (2008) [47] propose a decision
support system (the “pocket negotiator”) for humans to use in negotiations.
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However, in this work we focus on ways to evaluate how automated decision-
making fares in a given situation. Here, the field of Decision Theory (e.g. [35]) can be
useful. It is concerned with the question how better decision making can be enabled
for actors in complex, uncertain and inter-temporal environments. For instance, given
a market mechanism, Decision Theory can be used by bidders to model automated
bidding strategies that are likely to maximise their revenues.

4.2.B. RELATION OF THIS WORK TO MARKET MECHANISM DESIGN

In order to react to prices in accordance with the retailer’s objectives, consumers have
to be offered the correct incentives. Much work to analyse incentives in economic
mechanisms has been done in the field of mechanism design (e.g. [57]). The basic
idea of mechanism design theory is that an incentive-compatible mechanism receives
truthful reports about utilities from market participants, because, given that mecha-
nism, truthfulness is their optimal strategy. This result is often achieved by side pay-
ments or discounts. However, mechanism design has to make strong assumptions
(e.g. market participants are rational, their utilities are known to them, no budget
constraints for payments, no consideration for repeated interactions).

The main purpose of mechanism design is to choose a market mechanism. This
is not the focus of this chapter, as we aim at evaluating existing mechanisms. Further-
more, the assumption that their utility function is known to consumers can often not
be supported in reality. The utility which non-sophisticated consumers derive from
their consumption of electricity is not very well researched. One reason for this is that
electricity is an economic good that is always complementary to the achievement of
some other activity (i.e. consuming electricity has no utility in itself). Finally, retail
pricing strategies often use uniform pricing, i.e. side payments to achieve incentive
compatibility might not always be possible.

During the last decade, the field of algorithmic mechanism design [94] has devel-
oped analysis techniques within traditional mechanism design. This development
has been inspired by the disciplines of discrete mathematics and theoretical com-
puter science. Algorithmic mechanism design aims to design mechanisms and to
arrive at statements about them, regarding the computational feasibility of comput-
ing outcomes. To this end, it conducts a worst case analysis and uses approximation
algorithms to evaluate computational efficiency. This is ongoing work, as the com-
putational feasibility of algorithms in some domains is still unclear (e.g. [77, 113]).
Algorithmic mechanism design is a useful tool for some economic settings (see for
example Singer (2001) [113], who shows a class of problems for which mechanism de-
sign can approximate solutions in polynomial time and also avoid overpayments). In
this chapter, we are also interested in the computational feasibility of using a market
mechanism, but rather from the market participant’s point of view (specifically, their
algorithmic challenge to take part successfully), not from the market operator’s point
of view.

4.2.C. HIDDEN COMPLEXITY IN MEDIATED MARKETS

Markets are complex systems. One way to describe the complexity in a market is to de-
scribe the amount of information that is contained in prices. For example, Bonanno
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et al (2001) [10] describe three levels of complexity that are useful for the statistical
interpretation of financial time series. Such interpretation requires advanced intelli-
gence, both if humans compare markets with each other or software makes real-time
decisions in reaction to price dynamics. In settings where, as in this chapter, most
market participants can be assumed to be non-sophisticated, it is necessary to take a
closer look at complexity in markets.

Complexity makes it difficult for market participants to properly plan their actions.
Complexity also increases the differences between sophisticated and non-sophisticated
participants in their abilities to optimise their outcomes. In recent years, arguments
have been made that there is a complexity constraint (e.g. [34, 101]), in that strate-
gies of participants can only handle a limited amount of complexity in the market. If
a market is saturated with complexity in this regard, strategies of consumers will be-
come less effective and they might leave the market (in our case, this means they leave
the local market which the retailer runs, by cancelling their contract).

On the other hand, complexity is also viewed as necessary for the long-term suc-
cess of a market. Potts (2001) [101] argues that some amount of structural complexity
is needed in an economic system, such that the possible allocations enable market
participants to adapt to a current state and also to prepare for an uncertain future.

Most of the economic literature agrees that the inherent complexity in markets is
not visible to all market participants. The “efficient-market hypothesis” claims that
the information in prices reflects the true value of products. However, there is grow-
ing evidence against the hypothesis in its strong form (e.g. [62]), which claims that
prices reflect even private information. As an example, consider mediated markets
(see Section 2.2.a) like auctions or the local retailer markets, which we focus on in
this chapter. Market participants (i.e. bidders, consumers, etc) only interact with one
central mediator, e.g. an auctioneer or the retailer. They might not know how the
mediator computes prices (e.g. a retailer does not publish his pricing strategy). More
important, however, is that market prices are always to some degree based on the ac-
tivities of other market participants (e.g. other consumers), who act autonomously.
The goals, constraints and contracts of these other market participants are private in-
formation, and also their behaviour, such as bids or consumption, is often not visible
to other participants. Finally, various other systemic features (e.g. transaction costs)
prevent hidden information from being represented in prices.

Designers of market mechanisms face a trade-off situation between making the
decisions of participants easier (by hiding the complexity from them) and enabling
them to make more informative decisions (by showing them much available informa-
tion and enabling more complex bids). As markets are employed for more and more
use cases, often involving non-sophisticated users and automated decision making,
it becomes more and more important to make the right choice for the given market
setting.

It appears that market design researchers are not in agreement how to handle
this trade-off. Many lean towards either of the two extremes. For instance, Pagano
and Roell [97] state that transparency about prices decreases trading costs and con-
clude “that if policy makers want to reduce trading costs for uninformed traders, they
should publicly disseminate order flow information as promptly as possible”. They
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claim that their findings “may also help to understand why lately dealer markets are
under increasing pressure from the more transparent automated auction systems.”
On the other hand, some researchers in computational economics want to hide as
much complexity as possible from actors, in order to decrease the barrier of partic-
ipation. For instance, Seuken et al. (2010) [112] advocate “Hidden Market Design",
which hides complexities and semantic aspects from the user. Teschner and Wein-
hardt (2012) [117] claim that “one reason for market failure is the inherent complexity
excluding non-sophisticated users.”

4.3. PROBLEM STATEMENT
In this section, we summarise the problem this chapter is addressing. In Section 4.1,
we outlined the upcoming challenges for the business models of future electricity re-
tailers. In order to compete with other retailers, retailers will have to offer dynamic
pricing contracts and operate pricing strategies. This makes them designers and op-
erators of local markets, where a retailer acts as a monopolistic supplier to the con-
sumers (as long as they maintain a contract with him). The contracts describe some
market rules for allowed price ranges. Consumers can not be expected to own sophis-
ticated decision-making facilities, and the consumer population can have any mix of
inflexible and flexible consumers. Furthermore, we discussed in Section 4.2 that com-
prehensibility (from a consumer’s point of view) should be an integral concern when
analysing local retail markets. Finally, we argued that markets are complex systems
and that decision-makers can have limited capacity to deal with the inherent com-
plexity.

However, if comprehending the price dynamics is too complex for non-sophisticated
humans or decision-making software which acts on their behalf, the quality of their
decisions suffers. To design for comprehensibility constitutes a trade-off, as we de-
scribed in Section 4.2.c. On the one hand, the information contained in prices should
be reliable and not too complex; on the other hand it should enable understanding
and the forming of informed decisions, using simple, non-sophisticated techniques.
A comprehensible market reduces the overhead costs that arise by using it.

The point of view that comprehensibility is important to the success of markets is
gaining support (see Section 4.2.c). However, few proposals exist how comprehensi-
bility can be formalised and measured, such that it can become a relevant feature of
the market analysis. We propose a three-fold view on comprehensibility in markets.
Consumers want stable prices with small volatility. In their new role (representing
so-called “active demand”), they also want to be able to learn patterns and they want
to know that their actions will be rewarded (i.e. being flexible lowers costs). These
goals might not be completely compatible with each other. For example, constant
(completely stable) prices contain few patterns that could be learned.

There is a need for standardised indicators to make markets with dynamic pricing
comparable to each other, with respect to comprehensibility. Such comprehensibility
indicators would formalise a universal set of interests inherent to most consumers
who are interested in reducing their overhead costs of taking part in the market. This
is commonly not captured by objective measures such as average costs of contracts.
If the indicators are used in market analysis, the applicability of automated bidding
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strategies can become more comparable between markets, which could be useful for
the development of general-purpose bidding algorithms. In effect, the retailer can
design his contracts and pricing strategy such that he attracts consumers, benefits
from consumer flexibility and decreases customer retention.

Most market settings are too complex for a full description and analysis of all in-
teractions to be feasible. Also, markets will differ among each other in several aspects.
For these indicators to be applicable to different market designs and to enable com-
parison among them, they should be of general nature and make use of information
which is available in most markets. For example, prices are signals of scarcity in all
markets and can therefore serve as information in the indicators. Furthermore, the
information used in the indicators, e.g. prices and quantities that consumers con-
sume, should be accessible to the market operator who computes them.

4.4. COMPREHENSIBILITY INDICATORS TO ANALYSE THE PER-
SPECTIVE OF CONSUMERS ON PRICE DYNAMICS

We propose three comprehensibility indicators which are formulated for one con-
sumer at a time. For simplicity of this work, we begin by measuring indicators one
day at a time. In general, all indicators are an interpretation of the market prices an-
nounced to the consumer. We conclude this section by proposing three methods of
evaluating the indicators in an aggregated manner, i.e. collecting the average values
for all consumers or groups of consumers, in order to evaluate the pricing system as a
whole.

4.4.A. PRELIMINARY CONCEPTS
We make use of two well-known statistical measurements for series of data measure-
ments. The first one is variance, given by

vP =
1

T −1

T
∑

t=1

(

ρt − ρ̄
)2

(4.1)

where P is the series of prices (e.g. all prices during one day), T is the length of the
series, ρt ∈ P denotes an individual price at time t and ρ is the population mean over
all prices in P . vP ≥ 0, where high values indicate that prices are spread out far from
the mean and from each other. The magnitude of variance depends on the values in
the series (the square root of variance is called the standard deviation).

The second measurement is the sample Pearson correlation coefficient, which
computes the correlation between two measurement series X and Y . It is given by:

rX ,Y =
1

T −1

T
∑

t=1
(

x t − x̄

sX
)(

y t − ȳ

sY
) (4.2)

where sX =p
vX and sY =p

vY are sample standard deviations. Note that rX ,Y ∈
[−1,1], where rX ,Y > 0 means that the series are positively correlated (values change
together and in the same direction), and rX ,Y < 0 means that the series are negatively
correlated (values change together, but in different directions). rX ,Y = 0 does not allow
to make any such statement.
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4.4.B. STABILITY

One aspect of comprehensibility is Stability. A market which exhibits low variance
in price series is more reliable for consumers and thus the resources needed to par-
ticipate in it can be reduced (or be put to use less frequently). Of course, Stability
usually works against some desirable attributes of dynamic pricing in markets, such
as responsiveness to price differences.

We measure Stability with the standard deviation (which is the square root of vari-
ance), such that the values are given in the same units as the price data. Furthermore,
we want Stability to be high when variance is low, thus we multiply the standard de-
viation in the series of prices by −1 (and let the Stability indicator report values ≤ 0,
where 0 indicates maximal Stability). Our Stability indicator is given by:

St abi l i t y =−1 ·
p

vP (4.3)

where vP is the variance (see Equation 4.1) in the series of prices P which were
billed to consumers.

4.4.C. LEARNABILITY

It is important that smart software can detect recurring patterns in price data, e.g.
by machine learning techniques. We propose a second indicator, Learnability, which
measures how well the likelihood of transitions between prices can be learned by a
consumer. Specifically, the indicator measures how well an algorithm can be expected
to perform a simple linear regression on behalf of the consumer, given previous series
of prices and other observable information.

The term learnability is also used in several other contexts. For instance, it is also
used in computational linguistics with respect to languages. The indicator discussed
here is more similar to the concept of learnability in computational learning theory
(e.g. [70]), where the term denotes the mathematical analysis of machine learning. A
well-known theory in computational learning theory is Probably Approximately Cor-
rect (PAC) learning [121], with which the complexity of a wide range of learning tasks
can be described, e.g. concept learning or classification. However, we are (for this
indicator) interested in a specific learning task, namely how well one continuous vari-
able (prices) can be forecasted, given one other continuous, so-called “explanatory”,
variable. In machine learning, this class of problems can be solved by so-called sim-
ple linear regression and the relation between the two series of data is modelled with
a correlation coefficient.

For our use case this means that, in order to predict the likelihood of the next price
transition, the consumer needs to correlate price series with series of other informa-
tion that is available to him. For example, a consumer in a market in which power is
predominantly generated from solar panels could learn patterns by correlating sun-
shine intensity with prices. However, Learnability can be quite low in some markets
due to their inherent hidden complexity, which we discussed in Section 4.2.c.

Learnability, as an indicator how likely a simple linear regression is to succeed, is
thus formulated as a correlation coefficient (see Section 4.4.a) and is given by:
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Lear nabi l i t y =
1

T −1

T
∑

t=1
(
ρt − ρ̄

sP
)(
ιt − ῑ

sΥ
) (4.4)

where ρt denotes a price at time t in the series of prices P , and ρ̄ is the mean price
in P . ιt ∈Υ denotes the value at time t from the series of information Υ which is used
to correlate prices with (e.g. sunshine intensity). ῑ denotes the average value in Υ.

4.4.D. ENGAGEABILITY
Engageability measures how well the market price dynamics incentivise consumers
to react to them. The market design should encourage consumer reactions which
help the operator reach his objectives and discouraging those that do not. This also
works towards the reduction of customer retention in future markets for electricity,
as flexible consumers might come to expect Engageability, in order to monetise their
flexibility.

To measure Engageability for a time step t , we assume that there exists a way to
quantify a consumer reaction as the difference between his initial intention for t (to
consume a certain quantity) and his actual consumption during t . Likewise, we also
assume there exists a way to quantify a price change as the difference between an
initially assumed price for t and the actual price for t . In the following, we will first
formulate the indicator and then discuss possible ways to quantify initially intended
consumption and initially assumed prices.

Engageability assesses whether the reactions from consumers correspond to changes
in price. More formally, Engageability measures how much a change△q t

c in behaviour
of consumer c for time step t relates to the change △ρt in price. Then, Engageability
can be formulated as a correlation coefficient:

Eng ag eabi l i t y =
1

T −1

T
∑

t=1
(
△ρt −△̄ρ

sP△
)(
△q t

c − ¯△q t
c

sQ△
c

) (4.5)

where △ρt denotes changes in price (e.g. ρt
i ni t

−ρt , where ρt
i ni t

is an initially as-
sumed price for t and ρt is the actual price). We denote with P△ the series of price
changes for all t and with △̄ρ the mean value in P△. △q t

c denotes a consumption
change by consumer c (e.g. q t

c,i ni t
− q t

c , where q t
c,i ni t

is the initially intended con-

sumption by c during t and q t
c is his actual consumption). We denote with Q△ the

series of quantity changes for all t and with △̄q the mean value in Q△
c .

Quantifying the initial values qc,i ni t and ρt
i ni t

is crucial to make statements about
the value of flexibility in a system and whether it is priced correctly. In a market sys-
tem without explicit announcements of such initial values, expected values can be
used which are based on experience (e.g. ρt

i ni t
is the usual price during t on previ-

ous comparable days). However, such assumptions are inexact. Another alternative
are market designs in which these initial values are made explicit. The model we use
in this chapter (see Section 4.5 for details) follows this approach. In this market de-
sign, the retailer lets consumers know about a price peak in an upcoming time step t

(based on the aggregated consumption which consumers announced as their inten-
tion for this time step). In response to this price announcement, flexible consumers
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consume less than they intended. Then, the amount of demand that one consumer
refrains from during t denotes the consumption change △q t

c and the price reduction
(per unit) during t denotes the price change △ρt .

4.4.E. EVALUATION

An evaluation of the indicators can take place on data that is collected in a real-world
market setting or from a computational simulation. As we noted above, the indicators
are formulated for one consumer at a time. In order to evaluate the pricing system
as a whole, it is useful to be able to evaluate the indicators in an aggregated manner,
i.e. collecting the average values for all consumers or groups of consumers. For any
indicator I, we thus compute

IC =
1

|C |
∑

c∈C

Ic

where Ic is the indicator value for one consumer c, and C denotes a class of con-
sumers, e.g. all flexible consumers or the whole population of consumers. In the fol-
lowing, we propose three methods of evaluating aggregated outcomes:

• System configuration analysis: It is important to see how the indicators respond
to different market settings. Therefore, some important parameters to the mar-
ket should be systematically changed, if possible, to evaluate the average effects
on the indicators across all consumers.

• Pareto front analysis: As we stated before, the objectives expressed by the in-
dicators are not necessarily compatible with each other. For the comparison
of market designs in multi-objective optimisation problems like these, pareto
fronts can be a meaningful tool to study how much the objectives compete with
each other. Pareto fronts allow us to state if the outcome for an indicator could
be increased under a different market setting without decreasing the outcome
for another indicator in the process. If this is possible, the new configuration
"pareto-dominates“ the current one.

• Inner-consumer-group analysis: Not all consumers are alike. In order to take
this fact into account, one should compare the outcomes for one indicator for
distinct groups of the consumer population with each other.

4.5. PROBLEM MODEL
In this section, we model a stylised market example. Consumers continuously con-
sume electricity and pay for it according to dynamic retail contracts. The retailer buys
electricity for the consumers from the wholesale market and calculates a uniform unit
price in order to recoup his costs. Consumers can be either inflexible, meaning that
they do not react to prices (they consume in each time step what they intended to
consume) or flexible, meaning that they react to high prices by delaying demand to a
time with lower prices.
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4.5.A. AGENT INTERACTIONS
There are C consumers c. Each consumer c has a demand profile dc , which indicates
his original intent (independent of his expectations of costs and not adapted by previ-
ous delays of consumptions) to consume an amount of electricity d t

c in 96 time steps
t ∈ T . Each time step lasts 15 minutes. The retailer has a contract with each con-
sumer. A contract specifies a minimum price ρmi n per kWh and the maximal price
deviation factor δ> 1 (the maximal unit price is ρmi n ·δ). We assume in this work that
all consumers have the same contract. See Figure 4.1 for an overview of the involved
agents.

To match the consumer demand for the current time step, the retailer buys the
needed amount of electricity from the wholesale market. To model the wholesale mar-
ket and the retailer’s interaction with it, we use the pricing function ρt

w . ρt
w maps the

aggregated demand of all consumers (in kWh) to a unit price on the wholesale market
(in e), which the retailer has to pay when the consumers demand this amount. We
assume ρt

w is known to the retailer. When we refer to the wholesale market price at
time step t , we use ρt

w as a shorthand for ρt
w (d t ), where d t is the aggregated demand

of all consumers.

Figure 4.1: Agents and their interactions

The retailer finds prices to bill consumers as follows. At some agreed time t − x,
all consumers announce their intended consumption to the retailer, based on which
the retailer computes an expected unit price ρt

e . At this point in time, flexible con-
sumers have time to adjust their consumption plans for t if they find the price es-
timation too high. Shortly before t , all consumers again announce their intended
consumption for t to the retailer. Based on this second announcement, the retailer
computes an actual unit price ρt . Consumers are ensured that both ρt

e and ρt re-
main within [ρmi n ,ρmi n ·δ]. To ensure that the actual unit price ρt will not be higher
than the expected unit price ρt

e , consumers are not allowed to consume more than
the amount they announced as intended consumption. We assume that the final an-
nounced amount is equal to the actual consumption during t by the consumer1.

4.5.B. PRICE CALCULATIONS BY THE RETAILER
We now turn to the method which the retailer uses to compute uniform unit prices
for electricity consumption. He uses this method both to compute the expected unit

1In a more elaborated model, consumers might use more than they announced, for which the retailer would
bill them at a unit price higher than the regular unit price for t . If they use less, they have no advantage
anyway, as the unit price for t was based on higher estimations.
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price and the actual unit price. We assume the retailer needs to cover costs in addition
to the costs of buying on the wholesale market, for instance administration and adver-
tising. We model this by an overhead factor H > 1, by which we multiply the wholesale
market costs. Thus, the retailer’s target earnings per kWh (to cover his expenses) are
ρt

w · H ·C . The retailer offers contracts to consumers which allow him to adapt the
price he charges for each time step t . Every time step t , the retailer bills all consumers
with a uniform unit price ρt (per consumed kWh), where ρt ≥ ρmi n and ρt <= ρmi n ·δ
(where δ > 1). Equation 4.6 shows in detail how ρt is computed. In Section 4.6, we
illustrate an example, see Figure 4.3.

ρt = max(ρmi n ,mi n(ρmi n ·δ,ρt
w ·H)) (4.6)

4.5.C. BEHAVIOUR OF FLEXIBLE CONSUMERS

We call consumers inflexible who will never change their demand in response to ρt
e .

Other consumers, who we call flexible, can delay consumption to a later time. They
make the decision to delay if they deem ρt

e too high.
However, we do not assume that demand can disappear completely. A flexible

consumer c will delay φ% of d t
c (his demand in time step t ) to the night if

ρt
e

ρmi n
> γ

(demand, and thus prices, can be expected to be low during the night in the consump-
tion profiles we simulate, which are based on recent realistic data, see Section 4.6 for
details). Thus, the parameter γ determines the price above which consumers deem
ρt

e as high enough to delay their consumption, and the parameter φ determines how
much of their current consumption they delay. The full amount that a flexible con-
sumer delays in one day is spread out evenly over the hours from 00:30am to 06:00am
of the following day. We thus assume that it is physically possible for φ% of demand
of flexible consumers to be postponed on short notice. Furthermore, we assume for
the simplicity of the model (preventing the so-called “bullwhip effect”) that flexible
consumers do not perform delays in response to high prices during the night.

Algorithm 4.1 explains how the model proceeds in detail. In addition, Table 4.1
lists the relevant model parameters.

The retailer announces an expected uniform unit price, based on the intentions of
all consumers. Possible deviations from this price are bound by the retail contract (be-
tween ρmi n and ρmi n ·δ). These intended states (demand d t

c per consumer) and the
possible price deviations (from the expected unit price ρt

e ) are known only when the
consumers have announced their intended consumption and the retailer has com-
puted ρt

e , see lines 2-3 in Algorithm 4.1. Flexible consumers can reduce their demand
(if they choose to), which can lead to a price reduction. This happens in lines 4-9.

4.6. EXPERIMENTAL SIMULATIONS
In this section, we perform computational experiments. We begin by describing the
experimental setup, with which we model several scenarios for our Monte-Carlo sim-
ulations. Then, we explain results in two steps. We first present several outcomes
from the perspective of both retailer and consumers over time, in order to illustrate
the model dynamics to the reader and to illustrate that important model properties
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Algorithm 4.1 Demand negotiations

1: while t < r unti me do
2: Consumers announce their intended consumption for t to the retailer.
3: The retailer computes and announces the expected unit price ρt

e .
4: for all c do
5: if c is flexible and

ρt
e

ρmi n
≥ γ then

6: c delays φ% of d t
c to the night

7: end if
8: end for
9: Consumers announce their updated intended consumption for t to the retailer.

10: The retailer calculates ρt and bills consumers.
11: Consumers consume according to their most recent announcement during t .
12: t ← t +1
13: end while

Table 4.1: Summary of model parameters

Parameter Description

C number of consumers
T number of time steps
ρt

w wholesale supply unit price for time step t

ρt uniform retail unit price for time step t

ρmi n minimum unit price in contracts
γ consumer price limit factor
δ max. price deviation factor (max. price is ρmi n ·δ)

d t
c intended demand of consumer c during time step t

φ percent of delayable demand (for flexible consumers)
H retailer overhead cost factor

behave according to our expectations. We then evaluate the Engageability indicators
we proposed in Section 4.4.

4.6.A. SETUP

In this section, we provide details on our choices for household demand, wholesale
market pricing, retail contract settings and the consumer population composition.
The flexibility of prices in contracts and the consumer population composition are
systematically varied to create experimental settings.

In our experimental model, there are 24 consumers. To model their consumption
profiles, we make use of domestic household demand profiles2 which are based on
historical consumption data and have been provided by the Flemish energy regulator
VREG to serve as an expectation for the year 2014. From this set, we have removed

2https://web.archive.org/web/20140707232324/http://www.vreg.be/sites/default/files/uploads/slp_2014.xls
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weekends. Two examples of such demand profiles over the course of one day are
shown in Figure 4.2, with two peaks, one in the morning and one in the evening. In our
system, the consumption profile for a consumer c, dc , corresponds to the forecasted
average profile d for a simulated day (where d was taken from the VREG dataset, see
above), but with individual noise added to each time step (the noise is uniformly dis-
tributed within the range [−7.5%∗d t ,7.5%∗d t ] around each consumption value d t

at time t ). Furthermore, we parametrise the delay decisions of flexible consumers by
setting γ= 1.1 and φ= 30.

(a) July 1st, 2014 (b) December 1st, 2014

Figure 4.2: The average expected consumer demand profile of two days in 2014

Wholesale market prices are modelled by a function ρt
w (see Section 4.5). Our

implementation of ρt
w is inspired by wholesale day-ahead market data from the APX

energy exchange3 in the Netherlands from 2002-2013. The wholesale price per unit
increases with average demand q , because generators get allocated to satisfy demand
in order of ascending costs per generated unit. A positive slope has the effect that the
unit price (and thus the average costs of all consumers) is high during time steps with
high overall consumption.

However, the price dynamics in future energy systems can be expected to differ
from the dynamics contained in the APX data: prices in our model are allocated much
closer to the time of consumption than prices in a day-ahead market, the consump-
tion in future energy systems is likely to be less predictable than today, and the supply
during consumption peaks will be more costly in the future than today. Thus, we make
two adjustments to the function which is given by the APX data. First, we multiply the
slope of the historic APX supply curve by five. Second, we model a peak penalty which
the retailer has to pay (e.g. for activation of balancing reserves) if q > 0.25 kWh, where
q is the average demand of his consumers. Note that we use 15 minute time steps -
the threshold would be 1 kWh if the time step length were 60 minutes. ρt

w is given by:

ρt
w (q) =

{

0.019+0.6q if q ≤ 0.25 kWh
0.019+0.6q +0.01 otherwise.

(4.7)

3http://www.apxgroup.com/market-results/apx-power-nl/dashboard/
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Figure 4.3: Illustration of the retailer’s pricing model

For the retailer, we set the cost overhead factor H = 2 and choose ρmi n =0.06e as
the minimum price in his contracts. Figure 4.3 shows the resulting target retail price
per kWh, which is bound from below by ρmi n and from above by ρmi n ·δ (in the Figure,
δ= 1.3). To create experimental settings, we vary δ ∈ [1.0,1.075,1.15,1.225,1.3].

For the composition of the consumer population, we vary C f , the number of flex-
ible consumers, ∈ {1,6,12,18,23} (out of 24 consumers overall).

By varying δ and C f as described above, we thus create 5∗ 5 = 25 settings. Per
setting, we conduct 10 stochastic runs. In each run, we randomly select one day to
start with and simulate 30 consecutive days (if December 31 is passed, we continue
with January 1).

4.6.B. MEASURING THE INDICATORS

We now describe what data series are used to compute the indicators we propose in
Section 4.4. We compute the indicators at the end of each simulated day, so all data
series have a length of 96 time steps.

To measure Stability, we set the price series P to the uniform unit prices the con-
sumers are billed. For Learnability, we set the price series P to the unit prices the
retailer assessed in the beginning of a time step (ρt

e ). We set Υ to the consumption
values in the original demand profile of the consumer, on which the price expectation
is (partly) based. For Engageability, we set P△ to the series of ρt

e −ρt . Furthermore,
we set Q△ to the series of the quantities of electricity which the consumer delayed in
each considered time step.
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4.7. RESULTS AND DISCUSSION
This section presents results. We first present insights into the model dynamics of
quantities, prices and accumulated monetary accounts. Then, we look at the Com-
prehensibility indicator results, where we make use of the evaluation methods we laid
out in Section 4.4.e. If not stated otherwise, we take all measurements once per simu-
lated day and report the averages.

4.7.A. ILLUSTRATION OF MODEL DYNAMICS
In this section, we illustrate the inner workings of our dynamic pricing model. The
goal of this illustration is to increase understanding of the inner workings, which can
be of help to interpret the indicator analysis results, which are presented in the next
section. Although the model might seem not very intricate, the resulting dynamics are
more complex than one would initially expect.

We use example settings for this illustration, where δ = 1.3 (maximal flexibility in
pricing) and only one (C f = 1) or all but one (C f = 23) consumers were flexible. Results
from this example are averaged over 10 stochastic runs.

Figures 4.4(a) and 4.4(b) show the detailed dynamics (one tick on the x-axis per
time step of 15 minutes) of demand d t

c and retail prices ρt , respectively, over a course
of five days. In the case where C f = 1, all but one consumers are inflexible and thus
demand spikes are high, which also leads to higher retail price peaks (given that the
wholesale price function is positively sloped and we modelled a peak penalty, see Sec-
tion 4.6.a). The case where C f = 23 demonstrates how flexible consumers spread their
demand and thus partly avoid price peaks. However, this increases prices during the
night.

Figures 4.4(c) and 4.4(d) show accumulated monetary accounts of consumers and
retailer, respectively. Both show averages from the simulations which run 25 experi-
mental settings with 10 stochastic runs (each running for 30 days). In Figure 4.4(c),
it can be seen that inflexible and flexible consumers are financially almost equally
well-off after 30 days. Only when there are few flexible consumers (low values for C f ),
are inflexible consumers notably worse off. The accounts of both groups are similar
because the price reductions achieved through the actions of flexible consumer are
beneficial to all consumers, as prices are uniform. In addition, the price during the
night is (in the settings we evaluate) above ρmi n , so flexible consumers increase the
price during the night by delaying parts of their demand there (this effect is visible in
Figure 4.4(b)). Accounts of both groups decrease with increasing values of δ (because
the retailer exposes them to wholesale price dynamics).

In Figure 4.4(d), we show the retailers’ financial account under dynamic pricing
(DP), for the two scenarios with C f = 1 and C f = 23. It can be seen that the retailer
has the same average account in both scenarios. This is because he saves peak costs
when many consumers are flexible, but on the other hand, he makes profits during
the night in settings with many inflexible consumers (because they consume so little
electricity that he can buy it at a price ρt

w < ρmi n).
For reference, we also show in Figure 4.4(d) the retailer account if he charges con-

stant prices (CP), once for the minimum price ρmi n and once for the maximal price
allowed by the contracts, ρmi n ·δ. This shows that our scenario setup allows the re-
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Figure 4.4: Model dynamics of quantities, prices and accumulated monetary accounts. Values are averages
across all consumers, for two different scenarios (four in Figure 4.4(d).)

tailer to roughly break even with dynamic pricing, other than the CP scenarios with
the minimum price (where he makes high losses) and the maximal price (where he
has high profits, but probably increases customer retention and makes losses in the
long run). DP scenarios also lead to less noise in outcomes than CP scenarios.

4.7.B. COMPREHENSIBILITY INDICATOR ANALYSIS

In this section, we use the indicators we described in Section 4.4 to evaluate the com-
prehensibility in the dynamic pricing model described in Section 4.5. We demon-
strate the usage of the indicators and are in the end able to draw some conclusions
about dynamic pricing systems with mixed populations. The analysis shows that sev-
eral properties of a complex dynamic pricing system can be analysed with the help
of the indicators and the concept of comprehensibility from a consumer standpoint
becomes more clear.
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SYSTEM CONFIGURATION ANALYSIS

Figures 4.5(a) and 4.5(b) demonstrate the illustrative results which the indicators make
possible: Stability and Engageability are influenced by both δ and C f . Retail prices are
fixed and thus maximally stable when δ (the maximal price deviation factor) is 1.0.
With higher values for δ, they can fluctuate and thus Stability decreases. Regarding
different settings for C f , Stability is slightly lower in settings where the population has
a majority of inflexible consumers.

Engageability is zero if δ ≤ γ, because flexible consumers do not delay demand
during peaks to the night when the price is lower than ρmi n ∗γ (γ is the price devia-
tion factor, which flexible consumers use to decide whether to delay consumption). If
δ > γ, Engageability increases proportional to C f . This is because the retailer uses a
uniform price for all consumers. The more consumers are flexible (with higher values
for C f ), the larger will be the price difference they can achieve.

The Learnability indicator (not plotted) has high values throughout all scenarios,
with the exception of scenarios withδ= 0, where Learnability is zero. This is a straight-
forward result, given the economic assumptions we used. All consumer profiles fol-
low similar patterns, so when prices can vary to some degree, they are correlated to
consumer’s demand profiles throughout the day. This indicator might become more
informative if a consumer population is modelled which contains consumer profiles
of various kinds, e.g. with electric vehicle or heat pump owners present.

PARETO FRONT ANALYSIS

In order to investigate trade-offs between indicators, we plot pareto fronts. A planner
of our example market could make use of such trade-offs for design decisions. As
indicators should ideally be maximised, it is desirable to look for solutions which are
situated towards the right (on the x-axis) and towards the top (on the y-axis). As is to be
expected, a pareto front, and thus a design trade-off, is visible between Engageability

and Stability (see Figure 4.5(c)). However, the trade-off given in our model seems
acceptable: settings can be changed for increasing Engageability (e.g. by increasing
the share of flexible consumers, see the System configuration analysis above), without
decreasing Stability significantly. As an indication, the outcome outlined in blue has
δ = 1.15 and C f = 23. The pareto plots involving Learnability are not of interest (in
our model), as the Learnability indicator has similar values across almost all settings
(refer to the System configuration analysis above).

INNER-CONSUMER-GROUP ANALYSIS

In order to get more insight into the Learnability indicator, we now look at the Learn-
ability for flexible and inflexible consumers distinctively. We are interested in how
much Learnability differs among them and how much the Learnability for each group
changes if the ratio between the groups in the population is varied. Note that in
our model, neither flexible nor inflexible consumers conduct any learning. How-
ever, Learnability indicates how well consumers understand their current situation
and whether they have the opportunity to implement strategies which are based on
learning. For this analysis, we fixed δ= 1.3. Figure 4.5(d) shows that both flexible and

inflexible consumers perceive the highest Learnability of the pricing system when they

are among consumers that behave just like them. This result shows the kind of deeper
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insight which becomes possible with the indicators. It can be explained as a conse-
quence of the retailers method of billing all consumers with a uniform price, without
regard to their contribution in delaying demand.

4.8. CONCLUSIONS
In this chapter, we have described a challenge to the design of retail electricity mar-
kets. In future settings, retailers will offer dynamic pricing contracts in order to expose
flexible consumers to price dynamics on the wholesale markets. These contracts will
bound the range within which prices can vary. Retailers should expect consumers
that are non-sophisticated in their decision-making. Furthermore, populations can
be mixed, by which we mean that they can contain both flexible and inflexible con-
sumers. We state that, given the complexity inherent to such economic settings, the
comprehensibility from the consumers’ point of view is crucial to a retailer’s business
strategy.

We offer three quality indicators for Comprehensibility: Stability, Learnability and
Engageability. We propose ways of computing the indicators using basic statistic mea-
sures. These indicators measure comprehensibility from the standpoint of one con-
sumer, thus the resolution of the consumer model is no limiting factor for their usage.
By taking averages of the measured indicator values across the whole population or
across selected groups of participants, the indicators can be useful tools for designers
of electronic markets to evaluate their system, e.g. for designers of retail contracts. We
conduct simulations in a retail market model with dynamic pricing and mixed popu-
lations in order to demonstrate their evaluation.

The results are helpful to demonstrate two properties of the dynamic pricing sys-
tem we model. First, as can be expected, designing dynamic pricing retail contracts for

both stable and engaging prices can be a trade-off. If prices can vary a lot, they are not
stable. But only if prices vary, flexible consumers get incentives to make use of their
flexibility, which flattens peaks. Second, we found that there is a limit to how well a

consumer can learn price dynamics when populations are mixed. If other consumers
behave differently, price dynamics makes less sense to them. For instance, if a flexible
consumer is adapting, but no one else is, his influence on the uniform price is small.

In future work, the models of consumers could be more differentiated, in order to
gain more insight into the usefulness of the indicators when they are used to make
statements about groups of market participants (as we did to some degree in Sec-
tion 4.7). For instance, as we already mentioned in Section 4.7.b, consumer demand
profiles could be modelled for different types of consumers. Furthermore, our classi-
fication between flexible and inflexible consumers could become more fine-grained,
e.g. by introducing a degree of flexibility or by devising a set of strategies that con-
sumers use to react to prices.

In addition, indicators could be enhanced for comparison between days. For in-
stance, it could be helpful to measure Learnability by comparing the current time se-
ries with a time series of previous days.

Finally, a promising route of further investigation would be to model an expanded
setting in which several retailers compete with each other for consumers, who con-
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tinuously decide which contract they could switch to. In such a setting, it could be
studied if and how the Comprehensibility indicators are aligned with the long-term
success of retailer strategies.
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DYNAMIC RETAIL PRICING

STRATEGIES FOR PEAK REDUCTION

GIVEN MAXIMAL UNIT PRICES

5.1. INTRODUCTION
By employing dynamic pricing (DP) towards end consumers, electricity consumption
can be distributed more evenly across time. This can shave consumption peaks, and
thereby avoid high costs and CO2 emissions. We already discussed dynamic pricing
for electricity in smart grids in Section 2.2.b and we also mentioned the potentials
of peak reduction in Section 2.1.a. In addition, we have paid close attention to the
decision problem of consumers in Chapter 4. However, the implementation of this
approach not only requires consumers who react to price changes, but also intelligent
strategies for sellers to select prices.

This chapter considers the important topic of pricing electricity dynamically for
end consumers (with the goal to reduce consumption peaks), where the focus lays on
the selection of effective pricing strategies. This task is typically given for electricity re-
tailers, who buy on the wholesale markets and sell to consumers who have contracts
with them. In future smart grid settings, this task may also be given for other actors,
e.g. a smart energy management system in a large office building, which aims to re-
duce local peak consumption by dynamic pricing. However, in this chapter, we will
use the term “retailer”.

We propose two model-based parameterised strategies for dynamic pricing. The
parameters describe how a uniform unit price for each time step is computed as a re-
sponse to the state of currently ongoing tasks of consumers. To employ such a strategy,
the retailer needs a model of consumers and limited real-time knowledge. We show
how sets of parameters which can be expected to perform well in a given scenario
can be obtained from the large space of possible parameterisations through offline
optimisation.

87
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In both Chapter 4 and this chapter, we are interested in the effectiveness of dy-
namic pricing when the range of possible prices is constrained. Being able to promise
an upper bound on prices is of interest to both retailers (to attract consumers) and
government policy (to protect consumers). Then again, limiting the possible range
of prices reduces the effectiveness of dynamic pricing. Thus, we are dealing with a
trade-off in this problem of selecting pricing strategies. To the best of our knowledge,
we are the first to introduce a maximal price into dynamic pricing problems for energy
in smart grids.

For the evaluation of our proposed strategies, the effect of parameter sets needs
to be computed based on a multi-agent model. The retailer’s objective is to maximise
profits, while he also has to pay penalties for consumption peaks. Consumers can
buy energy per time step and have stochastically arriving jobs with a deadline (e.g. to
charge a car or to run some factory equipment). They decide in which time steps to
buy electricity, in order to minimise their expected costs and satisfy their deadlines.
Similar to Chapter 4, consumers differ in their flexibility to react to prices on short
notice.

This setup represents a stochastic and decentralised online scheduling problem
under scarcity conditions. Dynamic pricing serves as the means to achieve good global
outcomes when consumers can make scheduling decisions autonomously. Scarcity is
given because peaks are costly and consumers have to respect deadlines for their jobs.
Furthermore, as discussed earlier, a maximal price introduces a limit to the effective-
ness of dynamic pricing solutions to minimise peak penalties for the retailer. Finding
good dynamic pricing strategies for this problem is a complex task.

Retailers could use our approach to find a pricing strategy, along with a maximal
price, with which they can expect to achieve some profit margin and also promise
their consumers that prices will only vary to some extent (in order to set themselves
apart from other retailers). Regulators could use the approach to mandate a maximal
price, in order to protect consumers, while being able to argue to retailers that the
price range should suffice to operate profitably.

This chapter contributes to the state of the art in the following ways. After Sec-
tion 5.2 discusses related work, Section 5.3 offers a formalised model for the distributed
online scheduling problem described above, which includes the novel aspect of a
maximal price. In Section 5.4, we propose two novel, parametrisable strategies to set
prices dynamically, based on available real-time knowledge about running jobs. In
this work, we compute parameter sets which perform well for the retailer, through of-
fline optimisation, for which we use a model of decision-making of consumers and an
evolutionary algorithm. In Section 5.5, we perform computational experiments with
simulated scenarios. We show the peak reduction effects of the dynamic pricing (DP)
strategies with max. prices. Furthermore, we show that lowering the maximal price
also lowers the peak reduction potential of dynamic pricing. We also show that a con-
stant price (CP) strategy is not preferable over our (DP) strategies for the retailer (in
terms of expected profits). Finally, we show that peaks are being reduced if the re-
tailer employs our DP approach, even if he used profit maximisation as an objective
to parameterise his pricing strategy.
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5.2. OPTIMISATION OF SCHEDULING WITH DYNAMIC PRIC-
ING

In this section, we provide some background for the approach taken in this chapter.
Because we model the consumer demand as a distributed scheduling problem, we
briefly visit the rich history of scheduling in the energy domain. We pay special atten-
tion to scheduling via dynamic pricing. Finally, we introduce the technique of offline
optimisation of online scheduling problems and our optimisation method of choice
for the problem in this chapter.

5.2.A. SCHEDULING IN THE ENERGY DOMAIN

In this chapter, we consider consumer demand with a view that is slightly different
from the previous chapter. Here, consumers not only have time-dependent demand,
but their demand is modelled in the form of jobs, which have a deadline. In between
their arrival and their deadline, jobs can be run when the consumer chooses to. This
part of our model therefore falls into the domain of scheduling. Scheduling is a pro-
cess that is used to make the decision when to commit one or more limited resources
to one or more tasks. In the energy domain, scheduling has traditionally involved
power generators, as consumption was less in the focus of optimisation in energy sys-
tems.

Yamin (2004) [141] provides a review of traditional approaches to the schedul-
ing of generators. He distinguishes between two paradigms. The first paradigm is
security-constrained unit commitment (SCUC), where a system operator plans gen-
erator schedules such that forecasted demand is met, system constraints are satisfied
in real time and operating costs are minimised. The second paradigm is price-based
unit commitment (PBUC), which arose with the advent of markets in energy systems.
The common feature of PBUC systems is (according to Yamin) decentralised com-
petitive bidding. While security has to be maintained by contracts (similar to SCUC
systems) or balancing markets, meeting demand and minimising costs are, in PBUC
systems, achieved by the market mechanism, which determines the schedule based
on bids.

Yamin (2004) also provides an overview over the many different optimisation meth-
ods which have been employed to find good solutions for generator scheduling since
the 1960s. The range of methods covers early techniques like integer or linear pro-
gramming (e.g. [38]) and lagrangian relaxation (e.g. [90]), as well as later techniques
for more complex problems, e.g. particle swarm optimisation [4] or genetic algo-
rithms [96]. The complexity in the problem of scheduling generators increases with
the amount and the nature of constraints. For instance, traditional generators do not
only have variable costs (e.g. fuel input), but also fixed costs that are influenced by the
schedule (e.g. ramping up and down has costs). Ramping up and down also requires
a certain amount of time, which adds hard constraints to the scheduling problem.
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5.2.B. DECENTRALISED SCHEDULING OF CONSUMPTION WITH DYNAMIC

PRICING

If we model a scheduling problem for consumers, we also find various constraints. For
instance, consumers have costs of delaying or interrupting their jobs. As the tasks that
consumers perform with the help of electricity are more diverse than the traditional
methods of electricity generation, it is not as straightforward to describe such con-
straints for the scheduling of consumption. Often, surveys are the only tool available.
For example, Bertazzi et al (2005) [8] report, from a survey among consumers in Italy,
the estimated direct costs of interruptions in electricity supply. The consumers were
inquired about their willingness to accept (WTA) a specific compensation for service
failures and their willingness to pay (WTP) a higher regular fee to increase the service
quality. The authors concluded that WTA is higher than WTP.

PBUC systems (see Section 5.2.a) can use dynamic pricing instead of markets. In
this case there is no bidding or market clearing. Instead, the system operator employs
a pricing strategy, to which local decision-makers react. The scheduling is still a de-
centralised process, as consumers decide when to buy based on the current price. We
have discussed dynamic pricing in previous chapters 2 and 4. In short, dynamic pric-
ing selects prices on short notice, based on conditions found in the current situation.

In this chapter, the operator of a dynamic pricing system selects a pricing strategy
offline (before the fact), which determines his prices online (while time progresses)
automatically. A pricing strategy is a function or an algorithm, which maps conditions
of the environment to a price for the current time step. For example, a mathematical
function can be used to translate a numerical representation of the conditions in the
environment to a price. A more powerful approach to model more complex func-
tions are pricing algorithms. A robust example for such an algorithm is the derivative
follower algorithm (e.g. [22, 43]), which changes the price in the same direction (in-
creasing or decreasing) as long as the revenue keeps increasing, otherwise it changes
the direction. However, the complexity of analysing outcomes also increases substan-
tially if an algorithm is used. In addition, in the case that the pricing strategy should
be communicated to consumers, most algorithms are less likely to be understood well
by consumers than a mathematical function with a simple form (e.g. linear, quadratic
or exponential) 1.

The design of well-working pricing strategies for scheduling in complex settings
(like the one we describe in this chapter) is often a hard problem. It is possible that a
pricing strategy which simply defines a constant price turns out to be a profit-maximising
strategy [37] (although not necessarily a good solution to the scheduling problem). We
will use a constant price as a benchmark in our simulations.

OFFLINE OPTIMISATION OF ONLINE SCHEDULING PROBLEMS

For complex domains, scheduling strategies (e.g. dynamic pricing strategies) can be
optimised offline when a proper model is used. For instance, an algorithm might
be parametrised and the offline optimisation selects values for the parameters which

1This aspect of understandability of a pricing strategy complements the concept we used in Chapter 4,
where the understandability of actual price series was studied, rather than the strategy itself.
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perform well on a problem model. In stochastic settings, it then makes sense to evalu-
ate parameter value combinations in a Monte-Carlo simulation of the model (a Monte-
Carlo simulation means to evaluate the same solution parameters multiple times,
where selected input parameters to the model are randomly sampled from statisti-
cal distributions, see Section 2.3). Online, the parametrised scheduling strategy then
can make choices quickly and without much computational overhead. Examples of
this approach can be found in Vermeulen et al (2009) [128] and Hutzschenreuter et al.
(2009) [58] for the application to hospital scheduling or in Ramezani et al (2011) [103]
for general research into revenue management.

We also employ this approach for the complex setting of decentralised scheduling
of energy consumption. We define pricing strategies for the retailer to use, for which
we need to identify suitable parametrisations (which can be expected to perform well)
from a value space with several dimensions. To this end, we have chosen to use evolu-
tionary algorithms (EAs). In particular, we use Estimation-of-Distribution Algorithms
(EDAs). EDAs are a type of EA but differ from conventional EAs in that they generate
new solutions by estimating a probability distribution in the solution space from the
last generation, from which then new solutions are drawn via random sampling. One
of the advantages of EDAs over other EAs is that they can achieve good performance
with little custom configuration.

5.3. MODEL
This section describes our problem model. First, we provide an outline. Then, we give
details on the task of the retailer and describe consumers and their jobs. Finally, we
outline a greedy algorithm to model the purchasing decisions of consumers.

5.3.A. OUTLINE

Several consumer agents c ∈C are consumers of electricity who each have one electricity-
consuming job to run. Each job has a distinct arrival time and a deadline. After its ar-
rival, it can be delayed by starting later than planned or by interrupting its execution
(thus, we assume interruptable loads in this model - applicable examples for this are
electric car charging or heating/cooling).

We measure performance over one day at a time, and thus consider a set of days
D ∈ T . Each day is partitioned into time steps t ∈ N of 15 minutes, so one day has
24∗4 = 96 time steps.

The retailer buys electricity at current wholesale market prices ρt
w and has to pay

penalties if peaks occur. He sets uniform unit prices ρt for each time step. Given ρt ,
the consumers decide before each time step whether to purchase electricity at priceρt

for their job. If a consumer c decides not to buy, his job is delayed, which is unwanted,
as consumers would prefer to finish their job as fast as possible. We assume that all
jobs have to be supplied with energy until they are done and that supply is limitless.

5.3.B. THE RETAILER

The retailer sells electricity to consumers, which he buys on the wholesale market at
the unit price ρt

w . For each time step t , the retailer announces a unit price ρt for the
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Figure 5.1: Agents and their interactions

supply of electricity. We assume that unit prices are bound by the maximal unit price
ρmax . The goal of the retailer is to minimise his costs of daily operation (for which he
needs a well-working pricing function, see Section 5.4).

We assume for simplicity of our mechanism that ρt
w , the unit price on the whole-

sale market for time step t , is constant, so we can from now on refer to it asρw . We also
assume that consumers cannot switch to a competitor, so the retailer acts as a monop-
olist towards the consumers who have a contract with him. With these assumptions,
we can focus on the problem of peak pricing in this chapter.

Considering ρw and the state of the jobs of consumers, the retailer decides on a
unit price ρt . The actual supply which the retailer has to buy on the wholesale market
for time step t follows from consumer purchasing decisions which are in turn based
on the state of their job at time t and the announced price ρt . We denote this supply
by q(t ,ρt ).

5.3.C. PEAKS
Let Qmax be the maximal capacity above which the aggregate consumption is con-
sidered a peak in our model2. The retailer is aware of a cost function peak(t ,ρt ) ∈ R,
which calculates the magnitude of a consumption peak in time step t . We model peak

for simplicity of this work as a linear function of overloading above Qmax . It is given
by

peak(t ,ρt ) =
{

q(t ,ρt )−Qmax if q(t ,ρt )−Qmax > 0

0 otherwise
(5.1)

We assume that the retailer has to pay for those costs that are caused by peaks. We
discussed in Section 2.1.a that the prevention of consumption peaks is crucial for sev-
eral reasons. For instance, if the consumers share the same infrastructure, cables and
transformer may overheat if all jobs are supplied right away, reducing their lifetime.
Consumption peaks also lead to higher supply costs, i.e. on the wholesale market.

5.3.D. THE CONSUMERS
We model a population of consumer agents c ∈C (we denote the size of the population
with |C |), who all have one energy-consuming job, e.g. charging the battery of an

2In today’s reality, there exists a second threshold Qcut > Qmax , above which supply has to be cut off. In
this case, high penalties have to be paid for every household that was cut off. We assume that Qcut is not
breached in our scenarios.
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electric vehicle or heating up a house. They aim to minimise the costs of running
their job. Consumers differ among each other in two aspects: the arrival times of their
jobs and their reluctance to react to a price difference, i.e. to shift job execution away
from the earliest possible slots (which they would do in order to achieve lower unit
prices in later slots). This reluctance can take many forms. We model it as a general
delay cost δc ∈ [0,δmax ] per consumer c for the purpose of this work, which is applied
for each delayed time step.

JOBS

The number of time steps for which all jobs need to be supplied in order to be finished
is denoted as W . Because each consumer agent c ∈C has exactly one job, we will use
the subscript c when we denote unique properties of the consumer’s job. Each job can
start after a unique arrival time t s

c , and t e
c = t s

c +L is the job’s mandatory deadline, the
time step at which it has to be finished. Thus, L ≥ W is the maximal number of time
steps available to finish a job. Consequently, we constrain arrival times t s

c ∈ [0,96−L].
Arrival times t s

c are drawn anew every day from a Gaussian probability function. This
probability function is used for all jobs and remains the same over all days D ∈ T . The
retailer only learns about the job of consumer c at time t s

c . Figure 5.2 illustrates a job
which is supplied without delay and one with one delay in the supply.

(a)

(b)

Figure 5.2: A job without and with delays.

If a consumer c supplies his job with energy in time step t (and buys the necessary
electricity from the retailer), we denote this by Q t

c = 1; if he does not supply his job,
we denote this by Q t

c = 0. For simplicity of our mechanism, we make the assumption
that if a job is supplied during time step t , it requires and receives the exact, constant
input of 1 kW for the duration of t (thus, c consumes 0.25 kWh per 15-minute time
step). We thus assume that physically, both consumption and supply can, within one
time step, happen constant over time.

To describe the state of c’s job in a time step t , we denote with r mng (c, t ) ∈N the
amount of electricity which c still needs to buy before time step t begins. The function
r mng subtracts the supply already bought before t from the overall needed supply for
the job and is given by

r mng (c, t ) =W −
t−1
∑

i=t s
c

Q i
c (5.2)
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If t +r mng (c, t ) < t e
c , then c has flexibility of when to buy electricity: c can choose

not to supply the job for up to t e
c − t − r mng (c, t ) time steps by delaying to supply

it. Note that all jobs have (the same) flexibility on arrival, as for all c, it holds that
t e

c − t s
c = L and r mng (c, t s

c ) =W .
Furthermore, we use the function dl yd(c, t ) ∈ {0,1} to denote whether c is not

supplying an active job during t . The function dl yd is given by:

dl yd(c, t ) =
{

1 if t > t s
c ∧ r mng (c, t ) > 0∧Q t

c = 0

0 otherwise
(5.3)

THE CONSUMER’S COST MINIMISATION PROBLEM

Each consumer c needs to make an informed decision in a rational manner whether
to buy or not in each time step t if their job is active (i.e., if t ∈ [t s

c , t e
c ]). For this, he

needs some kind of expectation over future costs. In this section, we provide a simple
algorithm for c to approximate an estimation of these costs and thus model consumer
behaviour.

The cost minimisation problem faced by a consumer c in each time step t is given
by:

argmin
Q t

c

[

Q t
cρ

t +dl yd(c, t )δc+EC (c, t ,Q t
c )

]

s.t . Q t
c ∈ {0,1}

Q t
c = 1 if t + r mng (c, t ) ≥ t e

c

(5.4)

where EC is a function which c uses to estimate costs in future time steps i ∈ [t +
1, t e

c ], given Q t
c .

An important criteria to choose the algorithm which implements EC is that it can
be performed in polynomial time, in order to keep the computation time in the sim-
ulation within acceptable bounds. This allows our optimisation method to perform
many evaluations of solutions in acceptable time. We therefore provide a greedy algo-
rithm (see Algorithm 5.1), i.e. consumer c only delays in a step if this decision appears
already profitable immediately, given the next step. This assumes c to be a myopi-
cally optimising consumer, i.e. c only considers limited horizons in order to make
decisions.

Furthermore, we assume that consumers learn which prices are to be expected in
the upcoming time steps based on experience in previous days. Algorithm 5.1 can
make use of ~ρE , a vector of expected prices. ~ρE contains, for each time slot of the
current day, a weighted running average3 of the prices that have been announced in
previous days for this time slot. We denote with ρi

e ∈~ρE the unit price that c expects in
time step i . The outcomes of the state functions r mng and dl yd for any future time

steps i > t are based on purchasing decisions Q
j
c which c made in time steps j ∈ [t s

c , t ]
and which the algorithm is assuming to be made for time steps j ∈ [t +1, i −1].

3A weighted running average is defined such that prices from more recent days have a higher weight in the
average than prices from less recent days. It is recomputed daily, always taking the same number of recent
days into account.
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Algorithm 5.1 For a given t , estimate EC t
c , the costs of completing the job of customer

c in future time steps > t .

EC t
c = 0

for all i ∈ [t +1, t e
c ] do

if r mng (c, i ) > 0 and t s
c ≤ i ≤ t e

c then // If the job needs supply ...
if i + r mng (c, i ) ≥ t e

c // and if no time is left ...
or ρi

e < dl yd(c, i )δc +ρi+1
e then // or waiting is more expensive:

EC t
c +=ρi

e // Buy now.
else

EC t
c +=dl yd(c, i )δc // Otherwise, buy later.

end if
end if

end for

Table 5.1: Summary of model variables

Variable Description

t current time step
L length of time window for a job

W workload of a job
δc delay costs of consumer c

Q t
c if Q t

c = 1, c consumes 1 kW during time step t ,
otherwise Q t

c = 0
ρw wholesale market price
ρt local unit price in time step t

ρmax maximal unit price for consumers

5.4. MODEL-BASED STRATEGIES FOR DYNAMIC PRICING
In this section, we propose two strategies for dynamic pricing (DP). The strategies
are a mathematical function, mapping a state of consumer’s jobs to a unit price. They
are parameterised by a vector~x, which is optimised offline (considering the consumer
model) and the maximal unit price ρmax . We discuss the important design choices we
made, formulate the strategies mathematically and introduce two possible objective
functions, which the retailer could use in order to find well-working parameter sets.

5.4.A. DESIGN CHOICES
This work deals with uniform prices, i.e. a unit price is set for a following time step t

which is valid for all consumers. Furthermore, we make two design choices:

1. Dynamic pricing: The price in each time step is a function of the state of active
jobs (only jobs with t s

c ≤ t ≤ t e
c are known to the retailer). We suppose the retailer

can assess how much work each active jobs still has to do and knows the job
deadline.
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2. Offline optimisation: Given that finding successful parameter sets is hard in a
complex setting like this, we optimise the parametrisation of strategies offline.
A parameter set, once chosen, is employed by the retailer unchanged for a num-
ber of days (until he updates his model of consumers or the maximal price and
re-optimises the parametrisation).

5.4.B. MATHEMATICAL FORMULATION OF STRATEGIES
We are interested in formulating pricing strategies which compute prices online (per
time step t ) without the need for extensive computation, using only a stylised mathe-
matical function (as opposed to an algorithm, refer to Section 5.2.b).

Our strategies for pricing electricity are characterised by what we refer to as a pa-
rameter set in this chapter. A parameter set consists of a parameter vector ~x, which
is used to determine price responses, and a maximal price ρmax . A pricing strategy
DP~x,ρmax

(ωt ) ∈ R computes the price ρt for the current time step t , given a state of
the environment ωt . The environment in this case refers to the consumers. We will
describe both DP~x,ρmax

and ωt in more detail below.
The DP pricing strategies should achieve good results (over a range of days D ∈ T )

on an objective function O of the retailer. The optimisation problem needs to find
well-working parametrisation (values for~x and ρmax ). Its general form is given by:

arg min
~x,ρmax

∑

D∈T

O(D,~x,ρmax ) (5.5)

We now provide more details on the DP strategies. First, DP~x,ρmax
is given by:

ρt = DP~x,ρmax
(ωt ) = mi n(ρmax ,Λ~x (ωt )) (5.6)

where Λ~x (ωt ) ∈R is a stylised mathematical function to compute a price. We pro-
pose two implementations for Λ~x , thus two strategies. The first models quadratic

functions (denoted by Λ
quad

~x
) and the second models exponential functions (denoted

by Λ
exp

~x
):

Λ
quad

~x
(ωt ) = x0 +x1ω

t + (x2ω
t )2

Λ
exp

~x
(ωt ) = x0 + (x1ω

t )x2
(5.7)

where the parametrisation vector is ~x = {x0, x1, x2}. We denote our two strategies

by DP-Q ∈R (which uses Λ
quad

~x
; DP-Q is an abbreviation for DP-Q~x,ρmax

) and DP-E ∈R

(which uses Λ
exp

~x
; DP-E is an abbreviation for DP-E~x,ρmax

).
Finally, the state descriptor ωt is an approximation of the likelihood of consumers

with active jobs to buy electricity in t , given the state of their job. ωt is given by:

ωt =
∑

c∈C

r mng (c, t )

t e
c − t

(5.8)

The term r mng (c,t )
t e

c −t
is initially W

L
for all jobs and can increase up to 1 if c has no

more time to delay his job. Thus, ωt ∈ [0, |C |].
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As we noted above, the parameter set {~x,ρmax } is optimised offline, using an accu-
rate model of the population, which includes the buying strategy of consumers (see
Algorithm 5.1), the statistical distribution of values for arrival times t s

c and delay costs
δc (see Section 5.3). We note, however, that ωt does not include values of δc , which
is private information. Thus, in the online setting, the retailer uses only the pricing
strategies and does not need to know actual values for δc .

Figure 5.3 illustrates the problem space betweenωt (the input to the dynamic pric-
ing problem) and ρt (the output of the problem). The figure also shows a few example
instances of pricing strategies.

Figure 5.3: Problem space for determining a dynamic price ρt from the current state of consumers ωt . The
black lines represent graphical examples of pricing strategy instances, where the dotted parts are outside
the restricted pricing range (which is depicted with grey background).

5.4.C. OBJECTIVE FUNCTIONS
There are two possible implementations for the objective function O. First, we are
interested in reducing peaks by dynamic pricing. We would thus aim to minimise:

OPK (D,~x,ρmax ) =
∑

t∈D

peak(t ,ρt ) (5.9)

where D denotes one full day, the peak function was introduced in 5.1 and~x and
ρmax are implicit in the unit price ρt (see Equation 5.6). Alternatively, we can max-
imise the profit of the retailer. We would thus aim to maximise:

OPR (D,~x,ρmax ) =
∑

t∈D

∑

c∈C

Q t
c (ρt −ρw )−

∑

t∈D

φ ·peak(t ,ρt ) (5.10)

where Q t
c is derived by the consumers solving their purchasing decision problem
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Table 5.2: Experimental settings

Parameter Description Setting

|C | number of consumer agents 20
T number of days 20
L length of time window for a job 8 (2 hours)

W workload of a job 4 (1 hour)
ρw wholesale market price 0.1e / kWh

Qmax peak threshold {8,4,2}
δmax max. delay cost factor per delayed time step 0.05e/15 min

Jmean , Jstd mean and st. dev. of t s
c (job arrival time) 20, 2

outlined in Equation 5.4 and φ is a multiplication parameter, used to compute the
true costs to the retailer, which are caused by peaks.

5.5. SIMULATIONS
This section describes computational experiments. We first describe our choices for
general parameter settings and three scenarios, which differ in Qmax (the available ca-
pacity below which aggregated supply is not considered a peak). We then explain how
we find well-working parameterisations. In order to evaluate the effectiveness of our
chosen method of optimisation, we compare its results to the results of a brute-force
approach to finding well-working parameterisations. Then, we discuss what could be
meaningful benchmark values for our objective functions, which is of interest to in-
terpret results. Finally, we discuss the results of our dynamic pricing (DP) strategies
against a constant pricing (CP) strategy.

5.5.A. SCENARIOS

In all three scenarios, we model a setting of 20 consumers, which we run for 20 days.
Consumers need four time steps (of 15 minutes) to complete their job (because the
supply is assumed to be constantly 1 kW, each job requires 1 kWh in total) and has
two hours (8 time steps) to complete the job. The wholesale market price for 1 kWh
is assumed to be 0.1e (recall from Section 5.3 that we assume a constant price for
simplicity of our mechanism - we chose for the higher end from APX UK4 wholesale
market traces from 2012, where prices ranged from 0.04e to 0.1e). Thus the price
for one time step is ρw =0.025e. Each customers reluctance to react to a price differ-
ence, i.e. to shift job execution away from the earliest possible slots (δc ), is drawn from
a uniform distribution in [0e, 0.05e]. Recall that we model one job per customer. So,
in order to keep the problem concise, we focus on the late afternoon/evening con-
sumption peak in our simulations for the simulation of a day. Job starting times are
drawn from a normal distribution with mean 20 (i.e. the mean is set to time step num-
ber 20 of each day, which is the time step with duration from 5:00pm to 5:15pm) and a

4http://www.apxgroup.com/market-results/apx-power-uk/dashboard/
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standard deviation of 2 (i.e. 30 minutes). The detailed parameter settings can also be
read from Table 5.2.

We now propose a simple indicatorβ, which describes the scenario-specific scarcity
of the cable capacity. In this context, we refer to an allocation as the act of supplying
1kW of electricity to one consumer for the duration of one 15-minute time step. We
describe β as the ratio between the number of allocations which are needed to run
all jobs and the maximal number of allocations that are available in the scheduling
problem without causing peaks. Based on our formalisation for β, we will choose
three scenarios based on three different values for Qmax ).

Specifically, the number of needed allocations is given by:

|C | ·W (5.11)

Furthermore, we set the number of available allocations to an optimistic approxi-
mation based on the time that jobs are active. Our approximation is given by:

Qmax (6 · Jstd +L) (5.12)

6 · Jstd is the length of a time window which includes 99.7% of the distribution of
job starting times. We add one job length L, so that 6 · Jstd +L denotes our approxima-
tion of the length of a time window in which jobs are active, even if the starting time of
some jobs might be three standard deviations after the mean starting time. Then, we
multiply this approximation by the peak threshold Qmax . Thus, the scarcity indicator
β is given by:

β=
needed

available
=

|C | ·W
Qmax (6 · Jstd +L)

(5.13)

When we insert values from Table 5.2 into Equation 5.13, we arrive at β= 4
Qmax

. If
β= 1 (and thus Qmax = 4), the available time steps could in most cases suffice to solve
the allocation problem without causing peaks, given that the needed redistribution of
consumption and, if necessary, job starting times, were achievable. We note that the
normal distribution of job starting times and delay costs limit the solvability of this
problem (more details are given in Section 5.5.b). However, the given formulation of
β allows us to anchor a scenario at a solvable setting. If β is increased (and thus Qmax

is lowered), the resulting scenario has more scarcity than the scenario with β= 1. If β
is decreased (and thus Qmax is increased), the resulting scenario has less scarcity than
the scenario with β= 1.

We run three scenarios, with β ∈ {0.5,1,1.5}, thus Qmax ∈ {8,4,2}.

5.5.B. SETUP

OPTIMISATION OF PARAMETERS

We now explain how we find promising parameter sets (values for {~x,ρmax }). The
following is conducted for both dynamic pricing strategies DP-Q and DP-E (which we
introduced in Section 5.4).

In each scenario (see Section 5.5.a), we optimise two problems, each of which uses
one of the two objective functions we described in Section 5.4.c. One population is
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optimised for OPK (peak reduction, see Equation 5.9), the second for OPR (profit max-
imisation for the retailer, see Equation 5.10).

We use an evolutionary algorithm (EA) to evolve populations of parameter sets,
from which the retailer can choose one to employ. In principle, well-working values
for ~x can be found with a single-objective EA (where the objective function is either
OPK or OPR ) when ρmax is fixed (for instance for the case where ρmax is known, or
when the retailer repeats the optimisation for several values for ρmax ). In this work,
we use the minimisation of ρmax as an additional objective, so that we avoid having to
repeat the optimisation process and also are not restricted by our choices of specific
values for ρmax (as the EA will explore the space of possible values).

We use the iMAMaLGaM-X+ algorithm (which is an abbreviation for “incremen-
tal Adaptive Maximum-Likelihood Gaussian Model miXture +"), a version of EDAs
(see Section 5.2.b) for multi-objective problems (e.g. [12, 13]), for which EAs have
shown to be highly effective (e.g. [15, 31]). Like any optimisation technique for multi-
objective problems, iMAMaLGaM-X+ builds a pareto front of solutions. The pareto
front built by a multi-objective optimiser shows for any solution if the outcome for
one objective could be increased (by choosing a different solution) without decreas-
ing the outcome for another objective. If this is possible, the new solution ”pareto-
dominates“ the current one.

iMAMaLGaM-X+ estimates the distribution of the fitness function incrementally,
over multiple generations, effectively reducing the population size required to per-
form this task. Furthermore, it clusters the current population of solutions, which
spreads the search intensity along the Pareto front in an effective manner. Finally,
iMAMaLGaM-X+ runs, in parallel, an instance of the single-objective optimisation al-
gorithm iAMaLGaM for each objective, in order to arrive at robust results for the edges
of the pareto front. These single-objective results are used within the overall search
process of iMAMaLGaM-X+.

We parametrise iMAMaLGaM-X+ according to guidelines from literature [12], among
others population size and maximum number of subsequent generations without an
improvement. We run each market in each scenario for 1500 generations. The com-
putation time to evolve 1500 generations on each of these problems was around 48
hours on a 16-core PC with a 2.26 GHz processor (iMAMaLGaM-X+ is able to evaluate
solutions in parallel across all available CPUs). We used 5 clusters of solution popula-
tions (which the algorithm uses to model the pareto front, see above). Values in~x are
constrained to [0,5]. We thus maintain that price functions are positively sloped, i.e.
ρt positively correlates with ωt . ρmax is constrained in [0, 0.75e].

For all optimisations performed, we use the population (of evolved parameter
sets) from the 1500th generation as the final outcome and we report as results the
values obtained by evaluating this population again on the model in Section 5.3, in-
dependently from the optimisation procedure. We average outcomes over ten runs of
T days on the model per parameter set, where δc and t s

c values are drawn anew be-
fore the start of each run. These ten runs are always (for every evaluated parameter
set) performed with the same set of ten seeds, which are used to initiate the random
number generator.

Finally, outcomes are averaged over the last T
2 days of a simulation, to account for
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warm-up effects. As a result, we report for both DP-Q and DP-E the results given by:

∑T
D=T /2 OPK (D,~x,ρmax )

T −T /2

when OPK is the objective function, and the results given by:

∑T
D=T /2 OPR (D,~x,ρmax )

T −T /2

when OPR is the objective function.

A BRUTE-FORCE BENCHMARK FOR THE OPTIMISATION METHOD

It is crucial to evaluate whether the EA optimisation is a suitable method to find good
solutions. We preform a brute-force approach on one scenario (β = 1, thus Qmax =
4) with 600,000 randomly generated parameter sets. We also evaluate these param-
eter sets on the model in Section 5.3. We were interested in comparing the best-
performing parameter sets from the brute-force approach with the performance of
the final population of parameter sets which had been optimised by the EA for the
strategy DP-Q, using OPK as the objective function (for peak minimisation). Figure 5.4
shows that the results from the dynamic pricing optimisation are at least as good as
the results from the brute-force analysis, when plotting the results for average peaks
per day on the y-axis as discussed in Section 5.5.b. In particular, we can also see that
only few parameter sets of the brute-force approach are close to the pareto front which
is formed by parameter sets optimised with DP-Q. This indicates that this optimisa-
tion problem is indeed hard, from a computational perspective.

BENCHMARK FOR THE OBJECTIVE FUNCTIONS

We are interested in benchmark values for evaluating the performance of our dynamic
pricing strategies, for both objective functions OPK and OPR (see Section 5.4.c).

As benchmark for OPK (for the peak reduction potential), an optimal lower bound
of peaks would be useful, but the computational effort to compute this lower bound
is high. For every time step, each consumer has

( L
W

)

possible schedules. An indication
of the size of the search space, i.e. the number of possible combination of all possible
schedules of consumers across the running time of our simulation, is given by:

T ·96

(

L

W

)|C |

= 20 ·96

(

8

4

)20

(5.14)

However, the DP-Q strategy (and probably also the DP-E strategy) can serve as a
good approximation, as we showed in the brute-force simulation (see Section 5.5.b).

As a benchmark for OPR (profit maximisation for the retailer), we implement a
simple constant-price strategy (CP). When he uses CP, the retailer always chargesρmax :

C Pρmax (ωt ) : ρmax (5.15)

Among all possible constant prices, ρmax is a reasonable choice, as the amount
of peaks will be the same, no matter what constant price is used. This is because
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Figure 5.4: Peak costs of brute-force analysis against EA optimisation of dynamic pricing (DP-Q), when
optimised for peak reduction.

there are no price differences, and consumers will all supply their jobs directly upon
arrival, in order to avoid delay costs. This also means that the peaks caused by the CP
strategy can be considered a practical upper benchmark for peaks5. Note that the DP
strategies can also model the CP strategy, as the mathematical formalisations allow to
charge any constant price, as well.

5.5.C. RESULTS

PROFITS

Figure 5.5 shows the average daily profits (as defined by objective function OPR ) of the
retailer for different values of the maximal unit price ρmax . We compare profits which
the CP strategy makes (we used 16 values for ρmax , chosen with equal distance from
the range [0, 0.75e]) with profits made by the DP-Q and DP-E strategies (which have
been optimised for profit maximisation (OPR ) and are thus labelled DP-Q-PR and DP-
E-PR in the figure). φ (the multiplication parameter to determine the impact of peaks
on costs for the retailer) was set to 1. Each subfigure shows results for CP and either
one of the DP strategies. Furthermore, all three scarcity scenarios (values for β) are

5Theoretically, more peaks than produced with a CP strategy might be possible, by setting prices that can
make consumers consume during peaks. We do not allow this in our simulation, as values in ~x are con-
strained to be positive.
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(a) Using DP-Q (quadratic pricing functions)

(b) Using DP-E (exponential pricing functions)

Figure 5.5: Average daily profits of the retailer against maximal prices ρmax when employing the CP strategy
or the DP strategies (optimised for retailer profits). For orientation, the wholesale unit price per 15-minute
time step (

ρw
4 ) is displayed on the x-axis.

plotted per subfigure. The resulting patterns, which we discuss below, are similar in
all three scarcity scenarios. There is no significant difference in the results of the DP-Q
and DP-E strategies.
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In both cases, profits increase with ρmax . From the results, it is possible to esti-
mate the value for ρmax , below which the retailer should expect to be making losses.
For very small values of ρmax (when there is little room for dynamic pricing), the level
of profits of the CP strategy and the DP strategies are comparable. In these settings,
profits for the retailer are negative, as the costs incurred by peaks are higher than rev-
enues made by selling electricity. For higher values of ρmax , the DP strategies gener-
ate higher profits than the CP strategy, as they can lower unit prices in peak times,
whereby more peak costs are saved than revenue is lost (we will discuss reduction of
peak costs in more detail in the next section).

PEAKS

In Figure 5.6, we show the average occurrences of peaks per day (as defined by ob-
jective function OPK ), when the retailer uses the CP or DP strategies. Again, each
subfigure shows one of the two DP strategies and includes the three scarcity scenar-
ios (values for β). We compare peaks incurred by the CP strategy with peaks incurred
by DP strategies, which have been optimised for peak minimisation (for the objec-
tive function OPK , and thus we label them DP-Q-PK and DP-E-PK). In addition, we
now include peaks incurred by DP strategies which have been optimised for profit
maximisation (for the objective function OPR , and thus we label them DP-Q-PR and
DP-E-PR), where φ was again set to 1.

First, we can again conclude that there is no significant difference in the results
when either the DP-Q or DP-E strategy is used.

Second, when considering the results of the DP strategies optimised for peak re-
duction (DP-Q-PK and DP-E-PK), the peak reduction potential of the DP strategies
is clearly visible as a pareto front. There is a trade-off between the price range in
which DP strategies can operate (limited by ρmax ) and the peak reduction that can
be achieved. If ρmax ≤ 0.1e and is approaching 0, the possibilities for the retailer to
reduce peaks decrease, as there is too little room to affect consumer choices with dif-
ferences in prices6. If ρmax ≥ 0.1e, the slope of the pareto front is low, as the peak
reduction potential does not increase much further. We can also observe from Fig-
ure 5.6 that the percentage of peaks that either DP strategy (having been optimised for
peak minimisation) can avoid increases when the scenario has lower scarcity (lower
values of β, and thus higher peak thresholds Qmax ).

Third, DP strategies which have been optimised for profit maximisation (OPR )
achieve much fewer peak than the CP strategy. Thus, we can conclude that if the
retailer optimises dynamic pricing strategies to maximise profits, peak reduction
still occurs, as avoiding peak costs is an important part of how the retailer max-
imises profits. As is expected, even fewer peaks are recorded with DP strategies which
have been optimised for peak minimisation (OPK ).

THE INFLUENCE OF PEAK COSTS

An important parameter for the difference in peaks which are achieved under the two
optimisation objectives is φ, the weighting parameter for the impact of peaks on costs
for the retailer. φ affects how much the retailer considers peak reduction a priority

6Note that the wholesale unit price to supply one job in one time step of 15 minutes is
ρw

4 = 0.025e.
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(a) Using DP-Q (quadratic pricing functions)

(b) Using DP-E (exponential pricing functions)

Figure 5.6: Average daily peaks against maximal prices ρmax , when employing the CP strategy or the DP
strategy, optimised for profit-maximisation (DP-Q-PR, DP-E-PR) or peak-reduction (DP-Q-PK, DP-E-PK).
For orientation, the wholesale unit price per 15-minute time step (

ρw
4 ) is displayed on the x-axis.

when choosing a profit-maximising strategy. So far, we have used φ = 1. This means
that we have so far assumed that the peak costs which the retailer has to pay amount
to the accumulated magnitude of peaks (refer to Section 5.3.c). In this section, we
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investigate outcomes for different values for φ, in order to demonstrate its effect.

It is straightforward to assume that, if φ = ∞ (peaks cause infinitely high costs),
a profit-oriented retailer would make peak reduction its sole objective, which would
lead to strategies similar to DP-Q-PK and DP-E-PK. Furthermore, one would assume
that if φ= 0 (peaks cause no costs for the retailer), a profit-oriented retailer would use
the CP strategy and always charge ρmax .

Figure 5.7: Average daily peaks given different values of φ, for β = 1 and the strategy DP-Q, being used for
profit maximisation

To evaluate the effect of φ, we run simulations (for one scenario, in which β = 1)
of the DP-Q strategy. Parameter sets are optimised for profit maximisation (OPR ), but
we report the amount of average peaks (we thus label the graphs DP-Q-PR, as we do
for the same approach in Figure 5.6). We use values for φ ∈ {0,0.1,0.5,1,1.5}.

The results in Figure 5.7 assert our initial assumptions about high and low val-
ues for φ. First, for both φ = 1 and φ = 1.5, the average peaks per day (y-axis) plot-
ted against maximal unit prices (x-axis) describe a pareto front and these two pareto
fronts are very similar. We showed in Section 5.5.b that this outcome appears to ap-
proximate a lower benchmark for average peaks per day. Second, for φ = 0, the aver-
age peaks per day are constant with respect to ρmax and roughly similar to the average
peaks per day incurred by the CP strategy in this scenario (compare with the graph la-
belled “CP β = 1” in Figure 5.6). As we argued before, the level of average peaks per
day incurred by the CP strategy can be assumed to be representative for an upper
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scenario-specific benchmark.
For φ ∈ {0.1,0.5}, average peaks stabilise at an intermediate level when ρmax ≥ 0.3.

This level (at around 35) probably is a scenario-specific plateau between lower and
upper benchmarks for average peaks per day. For φ = 0.5 we see an additional ef-
fect: For values of ρmax < 0.3, average peaks are below 35, often close to the lower
benchmark. In these settings for φ, the retailer finds it profitable to avoid peaks. With
ρmax ≥ 0.3, it is more profitable to always charge constant prices and accept all even-
tual peak costs.

5.6. CONCLUSIONS
Dynamic pricing is an important tool for reducing peaks in future electricity grids,
where scheduling decisions are made online by independent actors and retailers face
high costs during consumption peaks. Retailers for electricity need to choose pricing
strategies, which dynamically create incentives for consumers to delay their demand
during peaks. Furthermore, mandating an upper constraint on unit prices is an im-
portant ingredient for consumer protection.

In this chapter, we offer a formalised model for such a distributed online schedul-
ing problem and propose two meta-strategies for dynamic pricing. We show how to
find suitable strategies through offline optimisation, for which we use an evolutionary
algorithm. We show in computational simulations that both quadratic as well as ex-
ponential pricing functions can be parameterised by offline optimisation to perform
well. This holds with respect to both the objective to reduce peaks and the objective to
maximise profits of the retailer. In computational simulations, we demonstrate that
the peak reduction potential of dynamic pricing strategies depends on the maximal
price. Furthermore, we show that retailers do not prefer a constant price (CP) strategy
over our proposed dynamic pricing (DP) strategies. Finally, we show that employing
the proposed dynamic pricing strategies reduces peaks, even if they are optimised for
the maximisation of retailer profits.

In future work, the model could be made more realistic (but also more complex)
by letting the wholesale unit price ρw vary or by requiring the retailer to plan ahead,
which adds the challenge to balance his announced consumption with his actual con-
sumption. Finally, the fairness of dynamic pricing strategies can be formulated as an
additional objective. One approach to implement fairness could be to offer electricity
for several consecutive time steps at a constant unit price, which would improve the
ability of less flexible consumers to plan ahead.
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OPERATING A SMALL-SCALE

BATTERY IN A LOW VOLTAGE

NEIGHBOURHOOD FOR ASSET

PROTECTION AND REVENUE

MANAGEMENT

6.1. INTRODUCTION
The use of electricity as an energy carrier is still increasing in importance, in particular
in domestic settings. A new generation of powerful appliances is being connected to
our power grids in the upcoming decade. These appliances often have stronger con-
sumption needs than traditional appliances (e.g. electric vehicles (EVs)) or they even
supply power to the grid (e.g. solar panels). This trend can be expected to threaten
network assets (such as cables) on the low voltage level (LV) much earlier than on
medium or high voltage levels1. Consequently, distribution network operators (DSOs)
face the necessity of huge investments. Finding solutions that can prolong the life of
these assets, even if only for a few years, can result in significant cost reductions.

In particular, damage to LV infrastructure happens because too much aggregated
load or generation can surpass the maximum capacity of assets. LV cables connect
domestic households to the electricity grid and their capacity has not been designed
to accommodate the novel household appliances mentioned above. Violations of net-
work asset capacity constraints, e.g. by overloading, can reduce the expected lifetime
of these assets through overheating of the material. During the ongoing transition to a

1A topic of discussion in industry at the moment, e.g. http://www.technologyreview.com/news/518066/could-
electric-cars-threaten-the-grid/
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next-generation energy system, it is crucial that our current energy infrastructure re-
mains able to support stable operations. However, major updates of network assets in
order to tackle problems like the ones above are very expensive. A recent report sug-
gests that asset investment costs of up to 800 million EUR might be necessary within
the next 35 years to only accommodate EVs in The Netherlands [130]. With the arrival
of such devices in the distribution grid, DSOs thus face large investments over the
next one or two decades. The direct need for these investments could, given that no
capacity for asset protection is in place, occur in a short period of three to five years.
Dynamic and cost-efficient solutions like the one proposed in this chapter can enable
DSOs to react fast to overloading challenges, as well as flatten out the investments
across a longer time span, which is crucial for the financial health of DSOs.

Electricity storage provides flexibility of operation and can thus perform LV net-
work support functions, such as the protection of assets. In this work, we develop
the idea of using batteries to protect low voltage network cables. Local storage solu-
tions like batteries can postpone expensive major grid updates, but it is challenging
to operate batteries successfully in a setting as described above. One reason for this
difficulty is that the domestic LV setting is a multi-actor environment, where future
activities and prices are uncertain. Another reason is given by physical limitations,
e.g. the battery’s maximal charging rate and energy capacity place unique constraints
on the problem to design effective control strategies for battery operation.

A control strategy represents a recipe which the agent that controls a device can
use to achieve his goal under uncertain conditions. In this chapter, we represent con-
trol strategies in algorithmic form. By applying a strategy, a software agent controlling
a battery can compute actions for each time step (where an action consists of either
charging or discharging the battery by some amount). The design of strategies for
these control agents begins with choosing appropriate objectives. We identify two
important objectives for future settings. A multi-objective approach enables control
strategies to be more effective in reducing costs, but further increases the challenge to
design well-working strategies. So, the first objective for the efficient operation of bat-
teries is to protect network assets from overloading. For this, computational strategies
need to optimise charging and discharging schedules of the batteries, given limited
knowledge about future states of the network. These strategies need to enable agents
to compute actions for the upcoming time step fast (i.e. within a few seconds). We
tackle this problem by formulating robust heuristic strategies, which can be installed
by the DSO or by a battery operator who is paid by the DSO for protection services2

and controls one (or more) batteries in a low-voltage neighbourhood. The second ob-

jective for battery operation is to maximise revenues from buying and selling electric-
ity. This is relevant because batteries have high fixed costs. Given a real-time market
for electricity, the purchase costs of the batteries can partly be recovered. In addi-
tion, if batteries adapt their charging and discharging activity to market prices, their
activity is likely to have a positive effect on the balancing challenge of the whole grid.

We also address the issue of high fixed costs for batteries in another way. We pur-

2In several countries, e.g. in The Netherlands, DSOs are not allowed to buy or sell energy at the time of writ-
ing, but problem settings as the one discussed in this chapter are raising concerns about this constraint
amongst regulators.
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posely model a small-scale battery, because these batteries can be expected to be-
come more affordable: the second-life market for EV batteries is expected to form an
integral part of the EV product life cycle. At the beginning of its second life, a battery
can still have "up to 70 percent capacity remaining after 10 years of use in an automo-
tive application“3. Small-scale batteries are also easy to replace without interruptions
to electricity supply.

This chapter proceeds as follows. Section 6.2 discusses the expected challenge of
low voltage grid protection and gives a brief overview of related work on battery oper-
ation in electricity grids. Section 6.3 then describes the model of the relevant parts of
the low-voltage network and the domestic households. We formulate cost functions
and provide a mixed integer linear program which can be used to compute the of-
fline theoretical optimum, or a close approximation of it, given advance knowledge of
household activity before the fact. In Section 6.4, we propose two heuristic real-time
battery control strategies, H1 and H2. With these strategies, control agents can com-
pute actions very fast, which is crucial in the electricity domain. While H1 reacts to
current conditions, H2 plans real-time and ahead, based on (uncertain) expectations
about price developments and household behaviour. In Section 6.5, we assess the
performance of our control strategies in stochastic simulations. We model two what-
if scenarios of low-voltage neighbourhoods, where consumption and generation ac-
tivity leads to overloading of the cable and a dynamic price for electricity is available
to the local actors. We assume, however, that households are not adapting their be-
haviour in real-time based on price information. The results of the simulations enable
us to compare the effects of the solutions of H1 and H2 to the effects given in the cases
of having no battery or having a battery which pre-computes actions for the upcom-
ing day with the mixed integer linear program mentioned above. In the latter case, we
use two fictitious settings - we assume the control agent has either perfect knowledge
of future events (during the upcoming day) or has only expectations available. We find
that the H2 strategy performs within 83% of the approximated upper bound which is
computed with the assumption of perfect advance knowledge. Finally, in Section 6.6,
we also describe laboratory experiments where we could show that even a battery
with small capacity can make a significant contribution to avoiding overheating if it
employs our H2 strategy. 4

6.2. BACKGROUND

In this section, we describe some related work which is of relevance to this chapter.
We discuss advantages of storage technology in future energy systems and then pay
special attention to the challenge of protecting assets in distribution networks.

3https://web.archive.org/web/20160420093755/
http://www.abb.nl/cawp/seitp202/a2b2d2aff96520bec1257989004e62ae.aspx

4The author of this thesis collaborated in equal parts with Sara Ramezani on the design of the heuristic
algorithms and the computational experiments. He is mainly responsible for the implementation of the
models, algorithm and experiments. Sara Ramezani is mainly responsible for the mathematical problem
model. The laboratory experiments are the sole responsibility of the author of this thesis.
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6.2.A. THE ROLE OF STORAGE TECHNOLOGY IN FUTURE ENERGY SYSTEMS

Recent years have seen increased attention to energy storage technology, which can
deal with many contemporary and future challenges on the electricity grid. One ex-
ample is how batteries can buffer the output of intermittent renewable energy gen-
eration, a topic which has (mostly for batteries with large capacity) received a lot of
attention in the last decade (e.g. [29, 73]). Of course, storage is flexible in charging as
well as discharging, so also the reduction of consumption peaks is an important appli-
cation. On the other hand, we are interested in small-scale batteries. In regions or set-
tings where intermittent local energy generation or the activity of novel consumption
devices cause operational problems, such small-capacity batteries can reduce local
generation or consumption peaks. Thus, electricity storage (i.e. batteries) is a tech-
nology which complements other technologies, that are considered primary drivers
in our energy systems, such as solar cells, wind turbines, heat pumps and electric ve-
hicles.

Manz et al (2012) [84] provide a comprehensive list of other advantages of stor-
age technology, namely revenue management (monetising the differences between
on- and off-peak prices by purchasing and selling), equipment capacity (relieve tem-
porary overload conditions), line congestion (resolving transmission constraints) and
frequency regulation (keeping system frequency in safe ranges). In this chapter, we
consider two of these advantages explicitly, namely revenue management and equip-
ment capacity. In the advantages listed in [84], the usefulness of storage for buffering
intermittent generation or reduction of consumption peaks is implicitly reflected. If
generation or consumption peaks occur on the global grid level, market prices are
very high or very low and intelligent storage control strategies would react to this fact
by charging or discharging energy, if possible, in the course of revenue management.
If these peaks occur locally, they are the reason why the local equipment needs local
protection from overloading and thus the local battery control strategy reacts to these
peaks as well, if possible.

The operation of batteries on lower levels of the grid has only recently begun to
attract attention. A notable area of application are electric vehicles (EVs), which are
expected to represent higher shares of the car fleet in upcoming years. Most work in
this field has discussed decentralised mechanisms of scheduling the charging of fleets
of EVs (e.g. Vandael et al (2011) [125], Gerding et al (2011) [40], Kahlen et al (2014) [67]).
Furthermore, Vytelingum et al (2010) have studied the effect of large-scale penetration
of batteries for smart home management on the overall grid [132]. Finally, there is a
growing body of work dealing with algorithms for the control of batteries in an eco-
nomic context. For example, Grillo et al (2012) [44] propose a dynamic programming
algorithm for a battery that is coupled to a windmill in a distribution network and
exploits the differences between on- and off-peak prices, given an optimisation time
horizon. Valogianni et al (2014) [122] propose an algorithm which plans EV charg-
ing for a week ahead and accounts for the preferences of the car owner by applying
Reinforcement Learning.
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6.2.B. PROTECTION OF ASSETS IN DISTRIBUTION NETWORKS

This chapter looks into the interplay of storage with a rather novel and important
technological challenge. This challenge relates to the possible advantage of storage
technologies which is described by Manz et al (2012) [84] as “equipment capacity" (re-
lieving temporary overload conditions, see above) and has not yet received much at-
tention from researchers. Electrical engineers have only recently begun to model the
problem of increased expected activity on low voltage levels, where cables have not
been designed for this novel usage. For example, Trichakis et al (2008) [119] provide
methods to predict the technical impacts of small-scale generators on low-voltage
networks.

Kadurek et al. (2011) [66] describe this challenge for the operation of low voltage
cables in more detail, highlighting that conventional protection schemes will not be
able to tackle overloading. They note that different segments of a cable can be in
different states and that only a more sophisticated measuring infrastructure (e.g. by
smart meters) can allow the DSO to identify the critical segments and in which state
they exactly are. They thus make the case for a novel use case for sensory data, in
which intelligent actions based on these data are of high societal benefit (because
the lifetime of an expensive underground cable can be prolonged). Their proposed
protection scheme operates in two phases, where the first phase assumes some (to
be further determined) method of preventive action and the second phase involves
protection (disconnection of customers).

To the best of our knowledge, this chapter is the first work which includes this pro-
tection challenge explicitly in the objective function and also offers a dedicated solu-
tion. Referring to the work by Kadurek et al we described above, we concentrate on the
preventive action in this chapter, which they had stated as future research challenge.

6.3. MODEL
This section describes our modelling of network assets (batteries and cables). We also
formalise the offline optimisation problem as a mixed integer linear program.

A short overview of the involved components is as follows: We consider a street
with a radial low-voltage (LV) cable, with a battery at the end. This location was cho-
sen because the battery’s charging and discharging activity affects all of the cable in
front of it. We model time as a finite number of time steps t = 1,2, . . . ,T and are in-
terested in how the batteries’ charging and discharging actions in each time step can
reduce the costs associated with overloading of the network assets.

6.3.A. THE BATTERY

The capacity of the battery is B and it can be charged at a rate of at most Rc or dis-
charged at a rate of at most Rd units of energy per time unit. The battery has an effi-
ciency factor α: for every unit the battery is charged with, it can only discharge α units
(α ∈ [0,1]) at a later time. We denote the actual rate at which the battery is charged in
time t as ct and the actual rate it is discharged dt , where ct ,dt ∈R

+
0 , so 0 ≤ ct ≤ Rc and

0 ≤ dt ≤ Rd . In practice, the battery can either be charged or discharged in each time
step. So at time t , the battery is charged ct units if ct > 0 and discharged dt units if
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dt > 0. We thus assume that in all time steps t , ct ·dt = 05.
Finally, we designate by bt the level of charge present in the battery at the begin-

ning of time step t , so 0 ≤ bt ≤ B . We also assume that the charge level of the battery
is already b1 at the beginning of the first time step (for some b1 ≥ 0).

6.3.B. THE CABLE
The cable has a sequence of N consuming and producing households attributed to
it. The maximum power capacity of the cable is C ∈ R

+. The cable is radial - one end
is connected to the grid (which provides all consumed power that is not generated
locally and also consumes all locally generated power that is not locally consumed),
and the other end of the cable is not. The battery is located at the end of the cable
which is not connected to the grid, and all the households are in between the battery
and the transformer. The cable is divided into a number of segments, each segment
is between two consecutive households, or has an household on one side and the
substation or the battery on the other.

We represent the power flow on the cable using real numbers. The flow on each
cable segment is given by the aggregated demand and supply (by households or the
battery) on the segments it services, i.e. the segments between it and the end of the
cable. It is thus represented by a positive number if there is more demand than supply
on these serviced segments, and by a negative number if there is more supply than
demand. So in any time step, if a household or the battery starts to consume one kW
of power more, the power flow in all segments located before it (i.e. between it and
the transformer) will increase by 1. By the generation of one kW (or by the battery dis-
charging one kW), power flow in all segments before it decreases by 1. See Figure 6.1
for an illustration.

Figure 6.1: Example problem when in a non-overloaded time step and without battery activity.

To model the overloading problem in a given time step t , we are only interested
in the load on the most overloaded segment. Given the above mathematical formula-
tion of power flow, we call the flow of the segment on the cable with the lowest flow

f low
t and the flow of the segment with the highest flow f

hi g h
t . Note that both f low

t

and f
hi g h

t are computed by a linear program, given the demand and supply of the
households and the battery activity.

If f l ow
t < −C or f

hi g h
t > C , then the cable is overloaded in time t . The amount of

5Note that this assumption does not introduce any constraints on solutions. A theoretical solution where
both ct > 0 and dt > 0 has less revenue than a solution with the same net flow but where either ct = 0 or
dt = 0. This is because a factor of α of the energy is lost by storing it on the battery and then discharging.
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overload is then max( f
hi g h

t −C ,− f low
t −C ). The battery may be able to “resolve” an

overloaded time step by charging when the overloaded segments have negative flow
and discharging when the overloaded segments have positive flow. By “resolving”, we
mean that this results in a configuration that is not overloaded any more. See Figures
6.2 and 6.3 for examples of overloaded time steps resulting, respectively, from excess
consumption and production, and how the battery can resolve them.

Figure 6.2: Example of resolving overload from excess consumption. Top: An overloaded time step, result-
ing from excess consumption. Bottom: The battery discharges 2 units of energy to resolve the overloaded
time step.

Figure 6.3: Example of resolving overload from excess production. Top: An overloaded time step, resulting
from excess production. Bottom: The battery charges 4 units of energy to resolve the overloaded time step.

Note that it is not always possible to completely resolve an overloaded time step
using a battery, no matter how much charge or capacity the battery has. For instance,
it is not possible to resolve an overload if there are both overloaded segments with a
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positive flow and overloaded segments with a negative flow, since resolving one will
intensify the other. Furthermore, it is also not possible to resolve an overloaded time
step if the amount of overload is more than the cable capacity, or more than what
would result in an overload in the opposite direction.

6.3.C. OVERLOAD COST FUNCTIONS
In this section, we consider the damage, in economical terms, which a time step with
overloading causes to the cable. There is currently no consensus among engineering
experts about a standard cost function that represents economic losses experienced
by overheating a cable. However, it is commonly agreed that some are more realistic
than others. A useful assumption is that the cable is damaged most when it is being
overheated for long periods of time, so consecutively overloaded intervals result in the
most damage. We use this assumption to construct the following cost function v for
each time step t :

v(xt ,kt ) =
{

ω · (cO)kt xt ≥C

0 otherwise.
(6.1)

In this function, xt = max(| f hi g h
t + ct −dt |, | − f low

t − ct +dt |), i.e. the maximum
amount of flow in the cable at time step t . Furthermore, kt denotes how many consec-
utive time steps the cable has been overloaded at time t , i.e. kt = l s.t. (xt−l ≤C )∧∀ j =
0, . . . , l −1 : [xt− j > C ]. Furthermore, cO > 1 is a constant coefficient used to compute
the cost of consecutive overloads. cO is larger than one to reflect that in a consecu-
tive set of overloaded time steps, each time step becomes more costly than the last.
Finally, ω is a weight to scale the costs of cable overheating.

6.3.D. THE OFFLINE OPTIMISATION PROBLEM
The offline optimisation solution aims to find the amounts that the battery should be
charged and discharged in all time steps (which we model with the solution variables
ct and dt , see Section 6.3.a), such as to minimise overall costs. Costs represent wear-
out of the cable, as described by Equation 6.1. The revenues made by the battery
through buying and selling electricity are subtracted from the costs. For this offline
problem formulation, we assume (for all time steps t of the day in question) perfect

foresight of household activity, and thus of f l ow
t and f

hi g h
t , because they are easily

computed from household activity (see Section 6.3.b). Furthermore, we assume the
possibility for the battery to buy and sell electricity at a unit price ρt , which can also
perfectly be foreseen. This problem can be formulated as:

min
ct ,dt

T
∑

t=1
v(xt ,kt )−

T
∑

t=1
ρt (dt − ct )

such that: ∀ t ∈ {1, . . . ,T } :

0 ≤ ct ≤ Rc , 0 ≤ dt ≤ Rd

0 ≤ b1 +
t

∑

j=1
(αc j −d j ) ≤ B
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For more information on the internal variables xt and kt , see Section 6.3.c. Note
that because of the exponential factor in the cost function v and the structure of kt ,
this problem is difficult to compute as a closed function. However, we can formulate
a mixed integer linear program (MILP) that computes the optimal solution, assuming
at most K consecutive overloaded time steps for a given constant K . The MILP yields
an approximation to the solution if this is not the case. In order to obtain this MILP,
we reformulate the optimisation problem as follows:

min
ct ,dt

T
∑

t=1
vt −

T
∑

t=1
ρt (dt − ct )

such that ∀t ∈ {1, . . . ,T },k ∈ {1, . . . ,K }:

xt >= 0

xt >= f
hi g h

t + ct −dt , xt >=− f l ow
t − ct +dt

xt >=− f
hi g h

t − ct +dt , xt >= f l ow
t + ct −dt

0 ≤ ct ≤ Rc , 0 ≤ dt ≤ Rd

0 ≤ b1 +
t

∑

j=1
(αc j −d j ) ≤ B

vt ≥ ek ×Ok
t

Ok
t ∈ {0,1}, O1

t ≥ (xt −C )/(M axx −C )

and ∀t ∈ {2, . . . ,T } ∧∀k ∈ {2, . . . ,K }:

Ok
t ≥Ok−1

t−1 +O1
t −1.5

Where ek =ω(cO)k and M axx is a constant number that is larger than all flows we
are dealing with. Also, vt is a variable inspired by v(xt ,kt ) and Ok

t is a binary variable

that specifies whether t is at least the kth consecutive overloaded time step; it is equal
to 1 if it is, and equal to zero otherwise.

6.4. HEURISTICS
In this section we present two heuristic strategies for solving the online problem (de-
ciding which charging or discharging action to take for the current time step). Both
make two general assumptions about overloaded time steps, namely that avoiding
overloading takes precedence (also over revenue optimization) and that resolving over-
loading as much as possible is worthwhile (even if the cable would still be overloaded
during this time step). With these assumptions, we are able to create algorithms which
are robust and offer the assurance to never increase an overload, a property that does
not necessarily hold for the solutions which are computed by the mixed integer linear
program defined in Section 6.3.d. Furthermore, the two algorithms we present in this
section have a low computation time. The first strategy, H1, is purely reactive and does
not rely on expectations of future household behaviour or prices. H1 involves only
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rule-based decisions concerning the current time step. The second strategy, H2, uses
such expectations to prepare for future overloads as well as to maximise its revenue.
H2 will make at most two iterations through the remaining time steps to compute a
solution for the current time step.

The algorithms make use of the decision function over l oaded : N→ {tr ue, f al se},
which is comparable to O1

t in the model (see Section 6.3.d) or the truth value of the

statement max( f
hi g h

t , | f low
t |) > C . The function computes whether the cable (in its

current state as a result of the behaviour of households) would be in an overloaded
condition for the time step given as argument (assuming no action of the battery).

6.4.A. STRATEGY H1
Our first heuristic strategy, H1, is designed for robustness only and therefore does not
base its decisions on the current price. It also does not use information on expecta-
tions of future developments (neither household behaviour nor prices). Algorithm 6.1
describes H1 in detail.

The basic idea of this heuristic algorithm is that if the current time step is over-
loaded, H1 resolves it as much as is feasible given the battery charge level and charge
and discharge rates. If the interval is not overloaded, H1 always tries to bring the
charge in the battery to half of its capacity, in order to be prepared to resolve both
overloaded intervals that call for charging and overloaded intervals that call for dis-
charging as much as possible (assuming the control agent does not know which one
of these events is more likely than the other).

In more detail, the first objective of the H1 strategy is to always contribute to re-
solving overloaded time steps, as far as possible. The battery will attempt to con-
tribute an action in the direction opposite to the highest power flow (e.g. it charges
when the highest flow on the cable is caused by local generation). The maximally pos-
sible contribution to the opposite of the highest power flow is computed in line 2 of
Algorithm 6.1. This contribution is limited by the highest flow which already exists on
the cable in this direction (e.g. when the battery resolves overload by charging, its pos-
sibilities for doing so are limited by the existing charging activity of households). The

battery can at most contribute ( f
hi g h

t + f low
t )/2, because contributing more would in-

crease the overload in the opposite direction of the original overload6. For example, if

C = 10, f
hi g h

t = 13 and f low
t = −9, then xt = 3 (for the definition of xt , the maximum

absolute amount of flow on the cable, see Section 6.3.c). If the battery discharges any
amount ∈ [−2,0], xt decreases. For example, if At = −2 = (13− 9)/− 2, then xt = 1,

because the highest flow on the cable is now equal to f
hi g h

t − 2 = 11. With At < −2
however, xt would increase again because the battery discharge leads to the lowest
flow on the cable being equal to f low

t + At < −11. Finally, in lines 3 through 7, H1

makes sure that the contribution to resolve overloading is only as high as necessary
when taking the cable capacity C into consideration.

In all non-overloaded time steps, the H1 strategy aims to adjust its current charge
level, bt , towards half of its maximum charge level ( B

2 ), see line 9. In line 11, α, the
efficiency factor of the battery is taken into account, in order to reach the target level

6 f
hi g h
t and f low

t denote the highest and lowest flow on the cable, respectively, during t , see Section 6.3.b
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(note that α is only applied during charging in our model, see Section 6.3). Lines 13
and 14 make sure that this action does not lead to overloading.

Each chosen action is, of course, restricted by the maximal charging rates Rc and
Rd (see line 16), the available space in the battery when charging (capacity B minus
level bt , see lines 17 through 19) and the available level bt when discharging (see line
20).

Algorithm 6.1 Strategy H1(t ) computes an action At for the battery in time step t .

1: if overloaded(t) then // The cable is overheating:

2: At ← ( f
hi g h

t + f low
t )/−2 // Maximal contribution to opposite of highest flow

3: if f
hi g h

t ≥ | f l ow
t | then

4: At ← max(At ,C − f
hi g h

t ) // Discharge only as much as necessary; At ≤ 0
5: else
6: At ← min(At ,−C − f low

t ) // Charge only as much as necessary; At ≥ 0
7: end if
8: else // The cable is not overheating:
9: At ← B

2 −bt // Go towards half charge
10: if At > 0 then // If charging, adjust At for efficiency losses
11: At ← At ∗ 1

α
12: end if
13: if At >C − f

hi g h
t then // Limit At to avoid overheating

14: At ←C − f
hi g h

t

15: end if
16: if At <−C − f l ow

t then
17: At ←−C − f low

t

18: end if
19: At ← max(At ,−C − f low

t )
20: end if
21: At ← min(max(At ,Rd ),Rc ) // Limit At w.r.t. max. charge rates
22: if At > 0 and αAt > B −bt then
23: At ← B −bt // If charging, limit At w.r.t. battery capacity
24: end if
25: if At < 0 and At <−bt then
26: At ←−bt // If discharging, limit At w.r.t. existing charge
27: end if
28: return At
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6.4.B. STRATEGY H2

Our second heuristic strategy, H2, also (like H1) computes a battery action for the cur-
rent time step t . However, H2 differs from H1 in that it plans ahead and adds revenue
maximisation from buying and selling as a second objective next to cable protection.
To take future steps into account is crucial for a storage control problem due to the
limited capacity of the device, which should be put to the most optimal use under
uncertainty about future events. However, it is challenging to devise storage control
problems which are able to plan ahead and have a low computation time, as well. The
schedule which H2 creates is influenced by thresholds for hardware (the rated cable
capacity C and the battery capacity B , maximal charging rates Rc and Rd and effi-
ciency α, see Section 6.3), but also by a price threshold ρa , which denotes the average
expected unit price for the current month. Algorithm 6.2 describes H2 in detail.

In short, H2 works as follows. If the current time step is overloaded, the situation
is handled according to strategy H1. Otherwise, H2 creates a schedule for charging
and discharging actions during the remainder of the day. The creation of this sched-
ule proceeds in two phases. In the first phase, H2 plans a protective action if the time
step is expected to be overloaded (according to H1), but otherwise H2 plans an action
with profit maximisation in mind (by buying at low prices and selling at high prices).
In the second phase, H2 adjusts the schedule from the first phase to stay within bat-
tery constraints and to avoid negative effects of the planned actions, with respect to
future cable overloading. The steps in which these adjustments are made are chosen
such that the profit maximisation effects from the first phase are preserved, as far as
possible.

We will now explain strategy H2 in more detail. In the first phase, H2 plans an
initial action for each time step t ∈ T : If the cable is overloaded during t , H2 plans to
resolve the overload (lines 3-6), exactly in the way that H1 deals with overloads, with
one difference: H2 assumes in this first phase that the battery capacity B is infinite. If,
on the other hand, there is no overload during t , the default action is to sell or buy in
order to maximise revenues (lines 8-14). H2 plans to buy if ρe

t , the expected unit price
for t, is lower than ρa . Accordingly, H2 plans to sell if ρe

t is higher than ρa . To speed
up computation, no interaction between time steps is considered in the first phase.

In the second phase, H2 aims to adjust the schedule with consideration of inter-
action between time steps. The goals of these adjustments are to achieve feasibility
(with respect to the battery capacity limits [0,B ], in lines 18-25) and to avoid negative
effects of the battery actions on overloading (lines 26-36). These adjustments have
to be accomplished by an advanced computational procedure. However, to keep the
time complexity of the algorithm within acceptable bounds, adjustments only consist
in reducing actions which were planned in the first phase, e.g. to buy less or to sell less
than planned.
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Algorithm 6.2 Strategy H2 computes an action At for the current time step t (as de-
scribed in Section 6.4.b). bi denotes the charge at time i and is given by the sum of
actions up until and including step i (see Algorithm 6.3). ρa is the expected average
unit price of the simulated day and ρe

t is the expected unit price for time step t . We
denote as I an “interval”, a sequence of steps. We also denote with I f i r st the first and
with Il ast the last step in I . Algorithm 6.4 describes the reduction of actions from the
first phase.

1: for all t ∈ T do // First phase: initial schedule
2: if overloaded(t ) then
3: At ← compute Ai according to strategy H1 (Algorithm 6.1)
4: if t is current time step then
5: stop // No need to plan ahead
6: end if
7: else
8: At ← 0
9: if ρe

t > pa then
10: At ←−mi n(Rd ,C + f low

t ) // Sell at high prices
11: end if
12: if ρe

t < pa then

13: At ← mi n(Rc ,C − f
hi g h

t ) // Buy at low prices
14: end if
15: end if
16: end for
17: Compute all uniform intervals with maximal length I = [I f i r st , · · · , Il ast ], such that

18:

[

[∀i∈I over l oaded(i )]∨[∀i∈I¬over l oaded(i )]
]

∧
[

[∀i∈Iρ
e
i
> pa]∨[∀i∈Iρ

e
i
≤ pa]

]

19: for all uniform intervals I do // Second phase: Adjust initial schedule
20: if not overloaded(I f i r st ) then
21: if AI f i r st

> 0 and bIl ast
> B then // Buying planned in I , final charge > B :

22: Reduce(bIl ast
−B , I ) // Reduce buying in I

23: end if
24: if AI f i r st

< 0 and bIl ast
< 0 then // Selling planned in I , final charge < 0:

25: Reduce(bIl ast
, I ) // Reduce selling in I

26: end if
27: end if
28: H ← the uniform interval preceding I (if it exists, otherwise stop)
29: if overloaded(I f i r st ) and not overloaded(H f i r st ) then
30: PI ← bIl ast

−bHl ast
// PI is the cumulative result of planned actions in I

31: if PI < 0 and bHl ast
<−PI then // Not enough energy in battery

32: // for the planned discharge in I

33: Reduce(bHl ast
+PI , H) // Reduce selling in H by bHl ast

−−PI

34: end if
35: if PI > 0 and bHl ast

+PI > B then // Actions in I would exceed
36: // the battery capacity B .
37: Reduce(bHl ast

+PI −B , H) // Reduce buying in H by bHl ast
−−PI −B

38: end if
39: end if // Note: Reduce decides to reduce selling or buying by the sign of r

40: end for
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Adjustments in the second phase are applied on “uniform intervals”. A uniform
interval I is a sequence of time steps which is defined by three conditions: First, the
steps in I are expected (given the expectations used by H2) to be all overloaded or all
non-overloaded. Second, the steps in an interval have an expected unit price either all
below or all above ρa (and thus H2’s initial schedule from the first phase plans for the
non-overloaded steps in the uniform interval to either all buy or all sell). The third and
last condition is that I is maximal according to the previous two conditions. H2 plans
adjustments on non-overloaded uniform intervals, as the actions during overloaded
uniform intervals can be expected to be guided by the need for cable protection. Each
non-overloaded uniform interval is adjusted if the battery capacity is expected to be
violated by the planned battery actions during the uniform interval (recall that the
first phase did assume that the battery capacity is infinite). Furthermore, H2 plans
adjustments to those non-overloaded uniform intervals which precede an overloaded
uniform interval. Reducing planned actions during the non-overloaded uniform in-
terval can be useful to avoid negative effects for the overloaded uniform interval.

H2 uses the function Reduce(r, I ) for reductions on the initial actions planned
in the first phase (see Algorithm 6.4). Reduce takes as arguments r , the amount of
reduction, and I , the uniform interval during which the reduction of r is needed. First,
the steps in I are sorted by their expected unit price - in descending order if buying
is being reduced and in increasing order if selling is being reduced. Then, H2 begins
reducing actions Ai for all i ∈ I . Action Ai is reduced to max(0, Ai − r ) if buying is
being reduced and to mi n(0, Ai + r ) if selling is being reduced. The reduction which
took place on Ai is subtracted from r and then Reduce moves on action A j , which is
the next action in the ordering, or stops if r = 0.

Algorithm 6.3 Compute bi , the battery level at time step i (after action Ai took place).
According to our model (see Section 6.3), we take into account the battery efficiency
α when the battery is charged. Note that if j > t (t being the current time step), then
A j describes a planned action.

1: bi ← 0
2: for all j ∈ [0, i ] do
3: if A j > 0 then
4: bi ← bi +α · A j

5: else
6: bi ← bi + A j

7: end if
8: end for

6.5. COMPUTATIONAL SIMULATIONS

In this section, we perform computational experiments, which we performed to eval-
uate the H1 and H2 strategies in several stochastic what-if scenarios. We first describe
the experimental setup. Then, we discuss the results.
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Algorithm 6.4 The Reduce algorithm computes absolute reductions on the initial ac-
tions planned in the first phase. Reduce takes as arguments r , the amount of reduc-
tion, and I , the interval during which the reduction of r is needed. If the initial plan
from the first phase is to buy during I , then r is increased, such that r = r

α , since in
our model a reduction by one unit affects the battery level by only α units.

1: if r > 0 then // Buying is planned and should be reduced
2: r ← r

α
3: sort steps i ∈ I by ρt

e , descending
4: else // Selling is planned and should be reduced
5: sort steps i ∈ I by ρt

e , ascending
6: end if
7: for all i ∈ I do
8: A

or i g

i
← Ai

9: if r > 0 then // Note: Ai ≥ 0
10: Ai ← max(0, Ai − r )
11: r ← r − (A

or i g

i
− Ai )

12: else // Note: Ai ≤ 0
13: Ai ← mi n(0, Ai − r )
14: r ← r + (A

or i g

i
− Ai ) // Note: as r < 0, its absolute value is reduced

15: end if
16: if r = 0 then
17: stop
18: end if
19: end for

6.5.A. SETUP
We construct two scenarios. In each scenario, we systematically vary ω, the weight of
costs in the evaluation of the battery performance. The detailed settings can also be
read from Table 6.1 7.

Network element specifications
The cable settings which we modelled in the simulations are inspired by settings

that are common in Europe, but most of these also apply to grids in other parts of the
world. We assume an LV feeder that can carry a current of 200 Ampere (I ) and that has
a potential difference of 230 Volt (V ). The capacity for power P is given by P = V ∗ I ,
so we assume a value of 46kW for the cable capacity C . On each of the three phases,
20 households are equally distributed. We consider one phase on the feeder, and thus
the number of households, N , is 20, of which we model 10 as identical consumers and
10 as identical generators8.

To model the connected customers, we base values on currently common settings,
but also extrapolate to future settings with more devices (which could pose problems

7We made the code we use to run the simulations available online at
https://github.com/nhoening/battery-heuristics

8Households being identical keeps our model simple and has no large drawbacks with respect to this work,
because here we are only interested in their cumulative effect with respect to the cable segment with the
highest power flow.
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for LV cables). The maximal demand of a consumer household, Dmax , is assumed to
be 4kWh per hour. In addition, we assume that consumers own electric vehicles, the
batteries of which are being charged by up to 1kWh per hour, between 7pm and 7am.
If a household produces electricity, we assume a maximally possible supply Smax of
5kW, assuming that such a household has installed a common photovoltaic array of
20x250W9. In our scenarios, the PV cells produce electricity only during 12am and
4pm, which we assume to be strong sunlight hours, but during this time they produce
constantly at maximum capacity (thus, in each of these hours they produce 5kWh).

Furthermore, we assume that the battery capacity B is 31kWh. The maximum
charging rate Rc is 5kW and the maximum discharging rate Rd is 5kW, as well10. These
values are inspired from specifications of the EV battery of the Coda electric car which
was brought to market in 201211. We also assume that the battery has an efficiency
factor α of 0.8 (only 80% of charged electricity can be discharged due to conversion
losses).

For the simplicity of our mechanism, we will in this work assume that the power
flows remain constant over the duration of one time step (we use time steps of 30 min-
utes length). We also do not consider reactive power or losses by distributing power
over distances. We have chosen for the time step length of 30 minutes because we
use real-world price data from the UK wholesale market (see below) from 2012, which
is given in half hour intervals. A more realistic setting for a future smart grid setting
might be 15 minutes or even 5 minutes. As a consequence of the step length being
half an hour, only half of the energy (of consumption or generation) that we have de-
scribed above in kWh will get delivered per time step in our model. For instance, in our
model each array of solar panels (installed by one household) produces only 2.5kWh
of energy in each of the 16 half-hour time steps between 12am and 4pm.12

We model two ways of placing consumers and producers along the cable (here, we
describe placement from the perspective of the substation). The first option is that
they are situated alternately along the cable, beginning with a consumer. This is the
most optimistic setup for the magnitude of possible overloading. The other option is
the most pessimistic one, meaning that first all consumers are situated on the cable
next to each other, followed by all generators, who are situated next to each other, as
well.

Economic assumptions about demand
In order to model realistic pricing dynamics, we obtained half-hour spot market

prices from the UK wholesale power market13 for the first ten months of 2012 (exam-
ple traces for May 2012 are shown in Figure 6.4). We removed weekend days from the
data (leaving us with 219 days), in order to ease predictions for algorithms that have to

9compare https://web.archive.org/web/20150228223707/http://www.eurosolar.com.au/5-kw-solar-
system/

10Modern EV batteries usually are able to discharge much faster but in this work we are interested in the
basic principle of the algorithm.

11see http://en.wikipedia.org/wiki/Coda_(electric_car)
12Of course, the instantaneous power output at any given moment (given in kW) remains unchanged, be-

cause x kW of continuous instantaneous power output are required to produce 1
2 x kWh in only half an

hour.
13http://www.apxgroup.com/market-results/apx-power-uk/dashboard/
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Figure 6.4: Retail market prices (inspired by APX wholesale prices for the UK) for all weekdays in May 2012.
"May-AVG“ denotes the average price during these days.

work with expected prices. In order to enable algorithms to make use of price expec-
tations, we computed an average price profile for each month, which is the average of
the price profiles of all days in that month. Making good predictions is not the focus
of this work and the above preprocessing seems reasonable for investigating the ef-
fectiveness of planning ahead. The wholesale market prices in this data set lie roughly
in the range between 0.03 to 0.07 £/kWh. We multiplied these wholesale prices by 3 1

3
to arrive at a price range that reflects prices on contemporary retail markets. Our re-
sulting prices lie roughly in the range between 0.10 and 0.23 £/kWh. Those prices are
appropriate for the UK and Europe in general14.

Consumers in our model behave uniformly. We assume they do not have the pos-
sibility and/or interest to adapt their behaviour based on the market price, but instead
act according to their needs. We assume that they act in accordance with the major-
ity of other consumers in the market. Furthermore, we assume that the aggregated
behaviour of the majority of consumers in a market determines the dynamic retail
market price ρt . Thus, ρt is high when the consumers in our model consume the
most of their energy and ρt is low when they consume only little energy. In order to
determine the demand of one household in our model, we model a stylised demand
function d with the market price ρt as argument. Because d is based on the assump-
tion that high prices are correlated with high demand, its price elasticity15 is positive.

14compare http://www.parliament.uk/briefing-papers/SN04153.pdf
15Price elasticity describes the percentage change in quantity demanded in response to a one percent

change in price.
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Table 6.1: Default settings

Parameter Definition value(s)

T (half-hour) time steps 48
C cable capacity 46kW
N number of customers on cable 20
B battery capacity 31kWh

Rc ,Rd max. (dis)charging rates 5kW
α efficiency factor 0.8
γ slope of demand functions 0.5

Dmax maximal demand 5.0kWh (7pm to 7am)
per consumer per step 4.0kWh otherwise

Smax maximal supply 5kWh (12am to 4pm)
ω weight of cost-consideration .05, .2, .5, 1, 2
ch cost factor for consecutive over-

heating
1.2

The demand function d is given below (where we assume that the maximal price ρmax

occurs at maximal quantity Dmax , where ρmax is the maximal price from our data set,
i.e. d(ρmax ) = Dmax ).

d(ρt ) = (Dmax −γρmax )+γρt (6.2)

Besides household demand, two more relevant parameters for the wholesale price
come to mind: (flexible) consumers adapting their behaviour based on prices and
balancing needs based on volatile generation on the overall grid. Both would have
increased the complexity in our model significantly. While the presence of flexible
consumers probably would decrease the battery’s profit margins, it might also consti-
tute a scenario in which a battery is not needed in the first place. Volatile generation
influencing wholesale prices can be both positive or negative for battery profits, de-
pending on the local situation and the differences between local conditions for gener-
ation (e.g. the weather) and the conditions for the rest of the grid. This would require
further research.

Scenarios
We create two scenarios, one with optimistic placement of customers and one

where placement is pessimistic. Each scenario is evaluated for the duration of one
day, so T = 48. We initially drew a random set of 20 daily price series from our set of
219 non-weekend days in our 2012 UK power market price series (see Section 6.5.a).
Each scenario is simulated 20 times, using the same 20 randomly drawn days from
this set. Furthermore, we evaluate five strategies in each scenario: The first strategy is
to use no battery at all (None). Furthermore, we employ the optimal offline solution
(see Section 6.3) with either clairvoyant knowledge about future prices (LP-ActPrice)
or knowledge of the expected prices (LP-ExpPrices). Finally, we test the two heuristic
strategies proposed in Section 6.4, H1 and H2. All strategies that work on expected
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prices have the ability to calculate f +
t and f −

t when given a price pt (that is, they are
equipped with a model of locations and behaviours of the households on the street).

The series of expected prices (which is used by the offline strategy LP-ExpPrices

and the heuristic strategy H2) is the average price series from all days of the month
in which the current day lies. Furthermore, let ρa denote the average price per kWh,
for any time of the day, of the month in which the current day lies. We assume the
battery to be charged B

2 kW h before the day begins, for which we subtract ρa ∗ B
2 £

from its account. At the end of each day, we add to its account ρa times the number
of kWh of electricity left in the battery. In each scenario, we vary ω, which denotes
the weight with which we multiply overheating costs in the overall revenue function
of the battery.

The mixed integer linear program that represents the offline strategies is calcu-
lated by the GNU Linear Programming kit16. Because of the long computation time
and the high number of evaluated settings, we limited the running time of the linear
programs to fifteen minutes17. We set the highest expected number of consecutive
critical time steps (k) to ten.

6.5.B. RESULTS

General remarks Overall, all strategies decrease the costs on an LV cable that is over-
loaded by more than 50% at multiple times during the simulated day. An increase of
ω leads to an increase in costs, which could of course be expected. However, ω does
not have an influence on the ranking between strategies, which shows us that the out-
comes of our model do not depend on how high overheating costs are in comparison
to revenues made by the battery.

Comparison of strategies In both scenarios, LP-ActPrice performs best, as it has
advance knowledge about actual prices and household behaviour. However, also our
heuristics H1 and H2 can significantly reduce costs. Suppose that the distance (in
costs) between the performance of None and LP-ActPrice denotes 100%, then H2 reaches
83% of the approximated theoretical optimum in the pessimistic scenario and both
H1 and H2 reach 66% of the approximated theoretical optimum in the optimistic sce-
nario. H2 performs better than H1 in the pessimistic scenario, while the differences
between the two are not significant in the optimistic scenario. The positive effect of
planning ahead is visible in the pessimistic scenario, as the performance of H1 (which
does not plan ahead) falls behind both LP-ExpPrice and H2.

Finally, the performance of H1 is remarkably stable, with very low variance in out-
comes. This is due to the non-speculative and robust nature of the algorithm. The
performance of LP-ExpPrice varies the most by far. This is because the algorithm does
not use online information and computes its schedule beforehand.

16http://www.gnu.org/software/glpk/
17We ran the mixed integer linear programs on selected settings for one hour and found that they achieve

comparable performance.
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Figure 6.5: Simulation results for the optimistic case. ω denotes the weight of cost-consideration and ωC−R

denotes total costs accumulated on a simulated day.

6.6. LABORATORY SIMULATIONS
In this section, we describe two laboratory experiments, which were performed in or-
der to evaluate the H2 strategy in a physical setting, where the actual effects on cable
temperature could be studied. The experiments were conducted at the FlexPower-
Grid Labratory18 (FPG Lab) in Arnhem, The Netherlands. We begin by describing the
experiment setup. Then, we discuss outcomes.

6.6.A. HARDWARE SETUP
We model the pessimistic layout scenario (see Section 6.5), where all loads and all
generation are grouped together. The system voltage across all cables was a constant
230V (single phase) or 400V (three phases). For a schematic overview of the experi-
ment setup, refer to Figure 6.7.

Cable We used 30 meters of YMvK mb cable made by Nexans B.V. (a 4x25mm2 cop-
per cable, rated for approximately 45kW). The nominal ratings for this cable are given
for voltage as 600Vac and for current as 127A. The maximum operating temperature

18A public-private partnership between DNV GL, the Dutch energy research institute ECN and the technical
universities of Eindhoven and Delft, see http://www.flexpowergridlab.com/.
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Figure 6.6: Simulation results for the pessimistic case. ω denotes the weight of cost-consideration and
ωC −R denotes total costs accumulated on a simulated day.

is +95 degrees Celsius. We employed three cable segments, each being ten meters
long. The beginning of the cable was connected to the MV grid. LV cables are under-
ground in The Netherlands and thus the thermo-conductivity should resemble these
difficult-to-observe settings, at least for average conditions. To achieve this, the mea-
sured segments were packed in insulation material commonly used for household CV
pipes as thermal barrier, which is very similar to polystyrene.

The activity on the third segment simply represents the activity of the battery,
therefore we only measured temperature in the first two cable segments. We mea-
sured the temperature of the segments at halfway length (5m) and on the outside of
the cable (but within the isolation material). In addition, the ambient room tempera-
ture was measured to serve as a reference.

Loads We connected one load after the first segment, which represents the aggre-
gated load of several households. We modelled loads with resistances. The FPG lab
has available resistances of 24 Ohm and 12 Ohm. We modelled four switches with dif-
ferent resistances each. All possible combinations of switches thus equalled 24 = 16
distinct settings for the load. In Section 6.5, the aggregated consumption load varies
between 0 kW and 50 kW, thus we made the following choices for the settings of the
four switches: 6 Ohms (2x12 Ohms in parallel), 12 Ohms (1x12 Ohms), 24 Ohms (1x24
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Figure 6.7: Experiment setup in the FPG lab
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Ohms) and 48 Ohms (1x24 Ohms+1x24 Ohms in series). If the resistances of all the
switches were on, up to 49.6 kW of demand were simulated.

Generation In the simulations from Section 6.5, all generation (10 solar panels19

with 5kW output each) was either on or off, which made representing it in the lab
straightforward (as opposed to the representation of loads we describe above). We
connected a diesel generator after the second segment, which represents high cur-
rents from an aggregated number of generators, e.g. assuming a high penetration of
solar panels. The simulation traces specify either 0kW or 50kW.

Battery At the end of the cable, we placed a battery emulator provided by EMForce20.
It emulated a 15kW, bi-directional battery and could simulate battery operation for
any continuous value between -5kW and +5kW. In Section 6.5, a larger example of a
battery used in electric vehicles was assumed (with a capacity of 31kWh). In this ex-
periment, we use a size of 24kWh which is found in mass-produced electric vehicles
(e.g. the Nissan Leaf21) and we also adjust for the assumed advanced lifetime of the
battery - we assume the battery is in its so-called ”second life“, not being suitable any
more to operate an electric vehicle. Thus, we subtract 50% capacity and use 12kWh.
Batteries are assumed not suitable for EVs if the capacity drops below 70% but we as-
sume an even lower capacity to be on the safe side, as capacity also degrades during
the second life of the battery.

6.6.B. EXPERIMENT TRACES

Before we explain the two experiments and report on the results in Section 6.6.c, we
now explain how we generated the experiment traces which we used in the second ex-
periment (the second experiment involved the H2 algorithm). These traces are shown
in Table 6.2. Just as in Section 6.5, all activity by consumers (and, consequently, by the
battery) is based on APX wholesale market traces from 2012. Because we conducted
experiments in real time, we had to choose one price series from the 2012 set. We
chose May 21st, 9am to 5pm (see Figure 6.4, May 21st is shown in dotted black). Due
to the laboratory setup for the load (see Section 6.6.a), we discretised the resulting load
profile to the values we could emulate. The activity of solar panels was fixed to be ac-
tive (full production) from noon to 4pm. During each half hour time step, all activity
is kept at constant kW levels. The activity of the battery is determined by the heuristic
algorithm H2. Table 6.2 shows the resulting experiment used as input to simulate May
21st, 2012, 9am to 5pm.

19For an example of such panels, see https://web.archive.org/web/20150228223707/http://www.eurosolar.com.au/5-
kw-solar-system/

20http://www.emforce.nl/
21https://web.archive.org/web/20140712025737/http://www.nissanusa.com/electric-cars/leaf/charging-

range/battery/
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Minutes Aggr. Aggr. Seg. 1 Seg. 2 H2 Seg. 1 Seg. 2
Load Gen. (no battery activity) action (with battery activity)

0 26.45 0.0 26.45 0.0 0.0 26.45 0.0
30 26.45 0.0 26.45 0.0 -1.99 24.46 -1.99
60 42.98 0.0 42.98 0.0 -5.0 37.98 -5.0
90 42.98 0.0 42.98 0.0 -5.0 37.98 -5.0

120 49.6 0.0 49.6 0.0 -4.6 45.0 -4.6
150 46.29 0.0 46.29 0.0 -1.29 45.0 -1.29
180 46.29 -50.0 -3.71 50.0 5.0 1.29 -45.0
210 42.98 -50.0 -7.02 50.0 5.0 -2.02 -45.0
240 36.37 -50.0 -13.63 50.0 5.0 -8.63 -45.0
270 33.06 -50.0 -16.94 50.0 5.0 -11.94 -45.0
300 23.15 -50.0 -26.85 50.0 1.87 -24.98 -48.13
330 23.15 -50.0 -26.85 50.0 0.39 -26.46 -49.61
360 19.84 -50.0 -30.16 50.0 0.09 -30.07 -49.91
390 19.84 -50.0 -30.16 50.0 0.03 -30.13 -49.97
420 19.84 0.0 19.84 0.0 1.02 20.86 1.02
450 19.84 0.0 19.84 0.0 0.22 20.06 0.22

Table 6.2: Aggregated consumption and generation traces to simulate May 21st 2012, 9am to 5pm and the
resulting power on segments S1 and S2 without and with battery activity. All values (besides first column)
in kW. Values for loads are positive and values for generation are negative (imagine a meter at a house, it
runs backward when net generating).
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Figure 6.8: Results of Experiment 1, temperature on segment 2.

6.6.C. RESULTS

REGULAR INTERRUPTIONS OF POWER FLOW

The first experiment tests how beneficial it is (for the reduction of temperature) to
regularly interrupt a continuous power flow, i.e. to prevent a build-up of temperature
by consecutive high currents. During this experiment, we only used the generator, so
no consumption or battery activity took place. In one condition, we generated 50kW
consecutively for four half-hour steps. In a second condition, in order to simulate
interruptions to high power flow, we introduced a half-hour time step with no genera-
tion after each of the four time steps with generation activity of 50kW. Again, we report
on the temperature of segment 2. Of course, a temperature build-up is to be expected
in both conditions, but were interested in the percentage of the difference between
the conditions. The results in Figure 6.8 show that in the second condition, the peak
temperature difference built up to only 60% of what the first condition exhibited.

REALISTIC LOAD PATTERNS AND SMART BATTERY OPERATION

For the second experiment, we run an eight-hour experiment with realistic load pat-
terns (see Section 6.6.b) and the H2 algorithm. In the tested scenario, both the load
and the generation are (during some time steps) overloading the rated capacity of the
cable (on segment 1 and segment 2, respectively).

Before the actual experiment started, we brought the cable into a thermal state
which approximated the conditions which would exist due to previous activity before
9am. To this end, the load and generation levels of the first 30-minute time step of
the traces (see minute 0 to 30 in Table 6.2) were performed for 90 straight minutes, as
preparation. We report the temperature of both segments, for the case with no battery
activity and for the case with smart battery operation present.
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Figure 6.9: Results of Experiment 2.

The results in Figure 6.9 show that even a battery with a small energy capacity
can make a valuable contribution to avoiding overheating: With a battery present, the
temperature of the cable was lowered up to 13 percent compared to when the same
scenario was tested without a battery present. Between minutes 30 and 180, the bat-
tery was discharging. This is both a preparation for the later part of the day, when high
excess generation from solar panels is expected (and thus charging becomes neces-
sary for cable protection), but between minutes 120 and 180, cable overloading (due
to high local consumption) was avoided by this battery activity. The effect on cable
temperature was several degrees Celsius. After minute 180, cable temperature rose to
the highest values in our experiment. Between minutes 180 and 300, the battery was
charging at its highest possible rate of 5kW and achieving valuable reductions in cable
temperature (5 degrees). Due to its low capacity, it could not sustain this reduction for
longer, but a positive effect on the cable temperature remained clearly visible even for
two more hours of overloading the cable. This can already reduce damage to the cable
significantly.

6.7. CONCLUSIONS

Storage technology (like batteries which we used here as a concrete example) can play
an important role in future energy systems. It combines well with novel technology on
both the generation and consumption side, which are likely to lead to peaks. The over-
arching benefit of storage technology is that it can help to avoid those peaks. However,
a closer look reveals that there are multiple advantages of operating storage technol-
ogy in modern distribution grids, especially when they are placed next to other assets.
Making use of several of these advantages leads to a combined objective function. The
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optimisation of this objective function by intelligent battery control strategies thus is
a multi-objective problem.

The first advantages which we are specifically interested in within this chapter is
the ability to protect assets in the local network. This can relieve a major investment
challenge faced by distribution system operators during the next two decades. The
second advantage is that storage technology can, due to its flexibility of operation,
profit from price fluctuations in the market by implementing revenue management
into its strategy.

In this chapter, we have modelled a neighbourhood (with low voltage cables, used
car batteries and a transformer) and a dynamic pricing market. We then use this
model to design a mixed integer linear program to solve the multi-objective problem
mentioned above, where we assume that advance knowledge of household activity is
given. The solution represents an optimal schedule for the battery, with an amount to
charge or discharge in each time step. However, the expectations of future household
activity, weather conditions and market prices are uncertain. We thus propose two
heuristic strategies to dynamically construct a schedule over time, based on available
information in each time step. The strategy H1 uses information about the current
time step and attempts to bring back the battery to half its capacity if possible. The
strategy H2 uses expectations about future time steps in addition to current informa-
tion, in order to prepare the battery successfully for expected future states (e.g. for
peaks or changes in market prices).

We perform stochastic computational simulations, where we simulate 20 differ-
ent days of operation for several settings. We can show that the strategy H2 performs
within 83% of a theoretical upper bound (achieved by the mixed integer linear pro-
gram with complete information). The obtained results indicate that (used) batteries
placed in low voltage neighbourhoods can perform important protection and the pro-
posed strategies are promising candidates for control algorithms being used in this
technology.

Next to performing stochastic computational simulations, it is also important to
study, in real-world circumstances, the precise thermal reaction of low voltage ca-
bles to novel usage spikes and to proposed protection mechanisms. We emulated the
low voltage cable of a Dutch neighbourhood in the FPG laboratory in Arnhem, The
Netherlands, and conducted several overheating experiments for multiple hours. We
could show positive effects on reducing cable temperature by operating even a small
battery (a used battery from an electric vehicle).

Future development of the H2 strategy could improve the protection during longer
overheated intervals, by interrupting the interval repeatedly (rather than reducing
peak temperatures consistently until the battery has no more capacity to do so). This
would probably have positive effects, given that we assume a cost function which is
exponential with respect to multiple consecutively overloaded time steps. However,
this idea was left out of this work as it involves another loop in the algorithm over
future steps and thus adds to the complexity of the necessary analysis.
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CONCLUSIONS

In future electricity systems, settings are expected to be more dynamic and uncertain.
This is due to ongoing technological and economic developments on both the supply
and the demand side. These developments promise to be highly useful, for example in
order to lower CO2 emissions, to increase energy efficiency or to enable more freedom
of choice in the marketplace. However, they also introduce new challenges, which is
why we need to reconsider how electricity is distributed and paid for in real time.

The most significant developments in this regard are of technological nature. On
the generation side, renewable generators with intermittent supply patterns are being
introduced. For example, solar and wind power generators depend on the weather,
which is inherently hard to predict (at a local level). Likewise, on the consumption
side, massive use of new powerful devices with novel usage patterns is on the hori-
zon. For example, electric vehicles need to be charged in advance of journeys and
heat pumps need electricity to keep the room temperature within a given tempera-
ture range. Furthermore, ongoing developments in the IT world make it feasible to
collect and distribute real-time information on the electricity grid and in homes, as
well as to implement local decision-making in smart devices. These capabilities can
be of use in dynamic systems, where the novel generation and consumption patterns
discussed above can be dealt with better than today.

As a response to these technological developments, the smart grid vision has been
formulated recently. In this vision, the availability of real-time sensor data and lo-
cal computing power enables much more fine-grained decision making and thus the
participation of smaller actors in dynamic mechanisms. This can lead to significantly
more efficient outcomes within the daily operation of the energy system.

Next to technological developments, there are also economic developments, due
to the ongoing liberalisation of electricity markets in many countries. Here, the most
remarkable trends are the unbundling of the roles of wholesale producer and retailer
and the involvement of domestic consumers into dynamic pricing. These and other
related economic trends enable new business cases within the smart grid vision. For
instance, real-time prices can inform and motivate the decisions made by software
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which guides the charging of an electric vehicle. This software can attempt to save
charging costs by charging when the price is low and by waiting otherwise (in expec-
tations of prices decreasing again before the time of departure). Another example for
a new business case is a retailer (an actor who buys electricity on the wholesale mar-
ket and then sells it to multiple consumers) who uses dynamic pricing strategies. If he
can vary prices for his consumers to a certain degree in real time, he can limit his ex-
posure to high prices during consumption peaks, which may exist due to intermittent
generation and unexpected consumption peaks.

In order to keep the security of supply high and prices within acceptable ranges in
these novel circumstances, it is crucial to find suitable methods with which to allocate
electricity among both generators and consumers. In addition, these methods need to
set a price for each actor, which he can earn or needs to pay. Market mechanisms are
very useful procedures for such allocations. Today, there are usually one or two mar-
kets in place per country, being operated by the nationwide grid operator. In future
energy systems, operators of lower grid levels can also operate markets. Furthermore,
market mechanisms can be used in other use cases, e.g. to manage generation and
consumption in microgrids, office buildings or virtual power plants.

For a market mechanism to be effective in these settings, it needs to assess the
flexibility of participants or of their devices to deviate from their natural course of
action. An example of useful flexibility is the ability to shift actions across time (we
have mentioned electric vehicle batteries as a possible use case above). Finally, a mar-
ket mechanism will need to operate with multiple objectives, for instance to allocate
electricity to those who want it the most, to protect expensive network assets, and to
provide some level of fairness.

In this thesis, we have proposed several novel algorithms and allocation mecha-
nisms which can be useful for participants in future electricity systems. We have out-
lined the problem motivation and the reasons for our technical methods in Chapters 1
and 2. Furthermore, each contribution chapter (Chapters 3 through 6) summarises
the problem it tackles and the contributions it makes (in their introduction section),
as well as the possible future work for its specific approach (in their conclusion sec-
tion). In order to conclude this thesis in addition to these chapter summaries, we will
in this chapter discuss the methodological approach taken in this thesis. We also re-
visit the research questions which were outlined in Section 1.3 and evaluate to what
extent this thesis has been able to answer them.

7.1. METHODOLOGY DISCUSSION
In this thesis, we have addressed the novel problem settings in future electricity sys-
tems which we outlined above with methods from computer science. In particular,
we have focused on relevant markets for electricity (i.e. markets suitable for smart
grid settings, where small actors are involved and decisions should be made fast) as a
method to find well-working solutions for given problems in these settings. The con-
tributions in this thesis have been made in the form of novel market mechanisms and
strategies which participants can use.

Our methodological approach has been as follows: We have developed an agent-
based model of each chosen problem setting and proposed a novel solution. We have
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then evaluated our proposed solution using stochastic computational simulations in
parameterised scenarios. In this section, we review this methodological approach
from three angles. We consider our choices for stakeholder perspectives in problem
models, the evaluation of outcomes and the use of optimisation techniques.

In markets for electricity, a range of different stakeholders with distinct objectives
take part. As a consequence, novel solutions should consider several different rele-
vant points of views. Agent-based modelling is a useful approach in this regard. In
this thesis, we have taken the point of view of small market participants, namely pro-
ducers who sell electricity (Chapters 3), consumers who buy electricity (Chapters 3, 4
and 5), and also prosumers who do both (Chapters 3 and 6). In particular, we have
proposed a mechanism which can make it easier for these small participants to de-
cide how to successfully engage in novel markets for electricity (Chapter 3). We have
also proposed ways to measure whether a market is too complex to be comprehen-
sible for small participants, given their local knowledge (Chapter 4). Finally, we have
provided pricing strategies for sellers in settings in which a maximal price limit shields
small consumers from too much price variation (Chapter 5). In addition to small mar-
ket participants, we have also taken the point of view of market operators. We have
proposed methods to combine the trade of binding commitments with the trade of re-
serve capacity, in order to reduce the inherent complexity of running two markets at
the same time (Chapter 3). Finally, we have tackled a problem specific to distribution
system operators and proposed algorithms to operate a battery in a low voltage neigh-
bourhood, in order to avoid costs which can exist if the network cable is overloaded
(Chapter 6).

The chosen method of evaluation should ensure that solutions are robust against
many different what-if scenarios. This is particularly important for the problem set-
tings addressed in this thesis, for three reasons. First, the settings we address model
economic problems with a high level of complexity. In our models (as is the case in
reality), agents have a wide variety of possible actions (e.g. how much to buy) for
a number of time steps, where the consequences of the decisions in each time step
affect other time steps, as well. Second, it is currently not known precisely which
scenarios will exist in future energy systems. The main concerns in this regard are
the economic affordability of novel technologies in the mass markets, the acceptance
among end customers and the adaptations which will be made to existing regulations.
Finally, future dynamics are more variable than today due to novel developments. The
influx of renewable energy makes it more difficult to predict supply levels (or prices,
for that matter), as intermittent factors like the weather have a large influence. Novel
consumption devices like electric vehicles or heat pumps can be controlled in a more
reactive fashion and thus strategic economic behaviour will lead to novel consump-
tion dynamics. As a consequence, we have, in each of Chapters 3 through 6, mod-
elled several possible what-if scenarios in the computational simulations, e.g. differ-
ent market conditions or different setups of devices that take part. Furthermore, we
have sampled multiple instances for each scenario, by choosing randomised parame-
ter settings (this technique is commonly referred to as “Monte-Carlo Sampling"). This
approach has enabled us to record a variety of outcomes from which we drew our
conclusions. For example, two scenarios of interest can be compared or averages and
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standard deviations can be investigated across a range of different parameter settings.
We have made use of optimisation techniques to either find good solution param-

eters, to facilitate the stochastic evaluation or to implement agent behaviour. Using
markets and multi-agent systems as an approach to modelling in this thesis has al-
lowed us to keep an open attitude towards optimisation techniques and we have taken
care to use a fitting approach to each problem. We have used simplex optimisation (in
Chapter 3) and greedy algorithms (in Chapter 4) to model economic decision making
in agents. Furthermore, we have used linear programming (in Chapter 6) and brute
force methods (in Chapter 5) to compute problem benchmarks. Finally, we have used
evolutionary algorithms to optimise parameterised strategies (in Chapter 5).

7.2. REVISITING THE RESEARCH QUESTIONS
In this section, we revisit the research questions which were outlined in Section 1.3.
We first state each question and then evaluate to what extent this thesis has been able
to answer them.

Future energy systems will exhibit more intermittent supply and more hetero-
geneous demand, while storage technology will still be expensive. Consequently,
we will require flexible participants and devices to adapt their activities on short
notice, in order to balance supply and demand and to protect assets. Existing dy-
namic pricing mechanisms for smart grid settings are able to achieve balancing of
supply and demand by providing monetary benefits for such behaviour. However,
in these mechanisms the ability of both flexible and inflexible participants to plan
ahead is usually greatly reduced. Can we design pricing mechanisms that enable

adaptations by flexible participants on short notice, but still maintain the ability of

participants to plan ahead?

This research question addresses settings with high uncertainty about the near
future and decentralised decision-making. In particular, it asks for mechanisms in
which flexible participants (who can react to price changes on short notice) are in-
centivised to make use of their flexibility in order to facilitate balancing of supply and
demand, but at the same time both flexible as well as inflexible participants can plan
ahead sufficiently. The ability to plan ahead is important for the efficient operation
of all participants and thus makes a mechanism more attractive to use, but it can also
increase the effectiveness of flexible participants with respect to system goals, such as
the reduction of consumption peaks. We have proposed contributions in this regard
in Chapters 3 and 5.

The market mechanism we have proposed in Chapter 3 explicitly addresses the
uncertainty about the near future by adding a market for reserve capacity. All partici-
pants can plan ahead explicitly by bidding on binding commitments as well as reserve
capacity, which flexible participants would sell and inflexible participants would buy
in case of unforeseen peaks in demand or supply. Price-finding in the market is fa-
cilitated by the ability of the bid format to represent both binding commitments and
optional reserve capacity. In our proposed mechanism, flexible consumers are incen-
tivised to offer reserve capacity ahead of time, which we prove for the case of perfect
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competition and show in simulations for the case of imperfect competition. To ensure
that our mechanism does not trade in these advantages for any major disadvantages,
we compared outcomes to a benchmark mechanism and were able to show that our
proposed mechanism has no economic drawbacks for participants.

Chapter 5, on the other hand, proposes pricing strategies for a seller who can ad-
just unit prices dynamically (and can thus incentivise flexible consumers not to con-
sume during consumption peaks). The ability for participants (i.e. consumers) to
plan ahead is introduced by two means. First, the seller is bound by his promise to the
consumers to keep prices below a maximal limit. Defining price limits will be crucial
for retailers (to attract consumers as customers) as well as regulators (to protect con-
sumers). However, when designing dynamic pricing strategies, peak reduction and
keeping prices within limits can be conflicting goals. Second, the pricing strategies
are optimised offline for a given setting and are applied consistently for an extended
time period, during which participants can form reasonable expectations of prices
and thus their ability to plan ahead improves. We have proposed two parametrisable
strategies for setting prices dynamically, based on limited information about current
demand for electricity. Among other results, we were able to show that employing
the proposed dynamic pricing strategies reduces consumption peaks, although their
parameters are being optimised for the maximisation of retailer profits.

Today, participants in dynamic economic allocation mechanisms for electric-
ity are professional energy traders, who make use of elaborated financial portfo-
lio management techniques and powerful computation facilities to find the best
strategies. If many more actors are exposed to dynamic prices, then the level of re-
quired sophistication that is needed to take part in pricing mechanisms should be
lowered. Can we design pricing mechanisms that require little sophistication from

the participants, are able to find allocations fast (suitable for smart grids) and are

able to limit the exposure of small participants to risk?

This research question addresses the fact that many small players with limited
computational facilities take part in future smart grid settings, who also need to have
a lower exposure to risk than the more professional participant in today’s wholesale
settings. We have made several contributions in this regard, in Chapters 3, 4 and 5.

The market mechanism which we have proposed in Chapter 3 (see our answer to
the first research question above) reduces the necessary level of sophistication to take
part in a smart grid market which has modern features for planning ahead in elec-
tricity markets (the ahead market supports both binding ahead-commitments and
reserve capacities in bids). The construction of bids is then straightforward and fast.

In Chapter 4, we have modelled the perspective of participants in dynamic pric-
ing settings, which receives very little attention in contemporary research. We were
interested in both flexible as well as inflexible consumers, where we especially focus
on non-sophisticated ones (our modelling can apply to both human or automated
decision-making in this regard). The insights from this chapter can be a valuable con-
tribution to the discussion of complexity in future electricity markets. Furthermore,
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the indicators we have proposed might prove useful to tweak pricing strategies for
settings with non-sophisticated decision-makers.

The pricing strategies for a retailer which we have proposed in Chapter 5 (see
our answer to the first research question above) includes the promise of an upper
price bound, which is an important ingredient to reduce risks for consumers in dy-
namic pricing settings. These promises are commonly made either because the re-
tailer needs to attract consumers or due to regulation (consumer protection). Fur-
thermore, the strategies have been designed to compute prices fast in real time (they
are fine-tuned by finding the most promising parameters for a given setting offline).

Automated grid protection is a crucial innovation step for network operators.
Smart devices can be programmed to perform protective actions, but they can react
to dynamic prices as well. Is it possible for such devices to combine the objective of

protection with market participation, such that the devices can earn back parts of

their own costs and at the same time add flexibility to the markets?

This research question addresses the need for novel control strategies which can
be used by smart devices in dynamic market settings. Each device has a primary ob-
jective, e.g. the primary objective of a deep freezer is to keep temperatures within a
given range. We can assume that in future energy systems, a smart device is buying
or selling electricity in a market with a dynamic price. It therefore becomes crucial
that the device can limit its cost of operation by taking these price dynamic into ac-
count, or even make a profit during times where its primary objective is not relevant.
In Chapter 6, we have developed algorithms for the application of such an approach
to small storage devices. In the setting we modelled, the primary objective for the
storage device is the protection of network assets. The algorithms we proposed com-
pute an action for the current time step (to charge or discharge the battery), where the
protection of the cable takes precedence over profitable market participation.

We have modelled a domestic neighbourhood with powerful new generation and
consumption devices present. In such possible settings, overloading of the low volt-
age cable is expected to happen frequently, which can reduce the cable lifetime signif-
icantly. Due to the introduction of electric vehicles to mass markets, so-called second
life batteries will become affordable in a few years, and we therefore proposed to use
such a battery for cable protection, controlled by our algorithms. The motivation is
that this solution can be a much more cost-efficient alternative than simply reacting
to such settings (with frequent overloading) by replacing the cable right away. We
were able to show in computational simulations that our proposed strategies perform
well when compared to an approximated theoretical optimum (which was computed
with clairvoyant knowledge of future prices). We also studied the thermal reaction of
real-world cable hardware in laboratory experiments, where we could show positive
effects on reducing cable temperature by operating a small battery with one of our
proposed strategies.
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