
SOFTWARE Open Access

PeakRanger: A cloud-enabled peak caller for
ChIP-seq data
Xin Feng1,2,3*, Robert Grossman4 and Lincoln Stein1,2,3*

Abstract

Background: Chromatin immunoprecipitation (ChIP), coupled with massively parallel short-read sequencing (seq) is

used to probe chromatin dynamics. Although there are many algorithms to call peaks from ChIP-seq datasets,

most are tuned either to handle punctate sites, such as transcriptional factor binding sites, or broad regions, such

as histone modification marks; few can do both. Other algorithms are limited in their configurability, performance

on large data sets, and ability to distinguish closely-spaced peaks.

Results: In this paper, we introduce PeakRanger, a peak caller software package that works equally well on

punctate and broad sites, can resolve closely-spaced peaks, has excellent performance, and is easily customized. In

addition, PeakRanger can be run in a parallel cloud computing environment to obtain extremely high performance

on very large data sets. We present a series of benchmarks to evaluate PeakRanger against 10 other peak callers,

and demonstrate the performance of PeakRanger on both real and synthetic data sets. We also present real world

usages of PeakRanger, including peak-calling in the modENCODE project.

Conclusions: Compared to other peak callers tested, PeakRanger offers improved resolution in distinguishing

extremely closely-spaced peaks. PeakRanger has above-average spatial accuracy in terms of identifying the precise

location of binding events. PeakRanger also has excellent sensitivity and specificity in all benchmarks evaluated. In

addition, PeakRanger offers significant improvements in run time when running on a single processor system, and

very marked improvements when allowed to take advantage of the MapReduce parallel environment offered by a

cloud computing resource. PeakRanger can be downloaded at the official site of modENCODE project: http://www.

modencode.org/software/ranger/

Background
The genome-wide characterization of chromatin protein

binding sites and the profiling of patterns of histone

modification marks is essential for understanding the

dynamics of chromatin, unraveling the transcriptional

regulatory code and probing epigenetic inheritance. The

main technique for performing this characterization is

chromatin immunoprecipitation (ChIP), coupled with

massively parallel short-read sequencing (seq)[1-5].

Unlike its predecessor ChIP-chip [6,7], ChIP-seq pro-

vides improved dynamic range and spatial resolution[5].

After mapping sequenced ChIP reads to the reference

genome, the first critical task of ChIP-seq data analysis

is to accurately identify the target binding sites or

regions enriched in histone marks [8]. Since down-

stream analysis relies heavily on the accurate identifica-

tion of such binding sites or regions, a large number of

algorithms have been proposed for peak calling[2,9-24].

Despite the availability of such a large set of peak call-

ers, many of these algorithms have disadvantages in

real-world settings. Some algorithms have high sensitiv-

ity, but call an excessive number of false positive peaks

due to low specificity. Others have the opposite pro-

blem. Another limitation of the current generation of

peak callers is that many are optimized to detect either

narrow punctate features, such as those generated by

transcription-factor binding site experiments, or else

optimized to detect broad peaks, such as those charac-

terized by regions of modified histones. Hence a ChIP-

seq production environment may need to install and

maintain two different peak calling software packages.

Those algorithms that attempt to handle both type of
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peak typically do so at the sacrifice of inter-peak and

spatial resolution. The former is the ability to distin-

guish two or more closely-spaced peaks, while the latter

is the ability to correctly locate the target binding site or

histone modification boundaries. Both types of resolu-

tion are essential for understanding the underlying biol-

ogy of chromatin dynamics. An example of how loss of

resolution can affect the interpretation of ChIP-seq data

is shown in Figure 1.

Software usability is also an issue. Some otherwise

excellent peak callers are difficult to use because they

require unusual data file formats, run slowly on real-

world data sets, or do not take advantage of cluster

computing. Poor usability can also impede the ability of

a researcher to integrate the software with other tools in

an analytic pipeline.

Here we present our efforts to address these concerns

by creating PeakRanger, a novel peak caller that is both

accurate and usable. Across a series of six accuracy

benchmarks and three software usability benchmarks, it

compares favorably to 10 other peak callers selected

from the recent literature. In addition, PeakRanger sup-

ports MapReduce based parallel computing in a cloud

environment, allowing it to scale well to large data sets

in high-volume applications.

Implementation
Building the read coverage profile

The first step of peak calling is to build a read coverage

profile using aligned raw reads. A key step in ChIP-seq is

to shear the immunoprecipitated chromatin into frag-

ments of 200-500 bp prior to extracting the DNA and

sequencing it. Because the shear size is much larger than

the small reads produced by early next-generation

sequencing machines, many peak calling algorithms

make use of the “shift” distance between coverage peaks

defined by plus and minus strand read alignments, but

this has become less useful as the read length produced

by next-generation sequencers approaches the ChIP-seq

DNA shear size. PeakRanger uses the same “blind-exten-

sion” strategy as PeakSeq[18] in which the shear size is

provided by the user and not estimated from aligned raw

reads. This choice significantly simplifies the software

design and improves performance. (see additional file 1)

Peak Detection

We first identify broad regions of signal enrichment

using the same algorithm as PeakSeq, which detects

contiguous enrichment regions by thresholding. After

that, we use a “summit-valley-alternator” algorithm to

scan for summits within regions identified by PeakSeq.

This algorithm starts by searching for the first summit

within the region, where a summit is defined as the

location that has the maximum signal value before sub-

sequent locations drop below a pre-defined cutoff value.

The value is calculated by multiplying the current maxi-

mum signal value with delta, a tuning factor that should

be chosen based on the needs of users. Delta is in the

range (0, 1). Since the reads signal of broad regions are

usually noisy, we perform additional signal processing

before calling summits. (see additional file 1)

Software Engineering

PeakRanger is written in C++, and can be compiled on

Linux, MacOS and Windows. It runs as a command-

line program.

Figure 1 The importance of peak caller resolution. Some peak callers are designed to call surrounding enriched regions instead of summits.

This degrades their ability to locate the site of binding events and their inter-peak resolution.
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Results
Benchmarking

In preparation for benchmarking, we compiled a list of

17 third-party peak callers mentioned in two recent

reviews [8,25] plus several recently-published packages

(see additional file 1). We attempted to install and run

each peak caller on a test data set, and discarded seven

that either failed to install, crashed during the test run,

or produced no peaks from the test data set. This

reduced the number of peak callers evaluated to 11,

including PeakRanger.

Sensitivity benchmarks

In order to evaluate the sensitivities of the 11 algo-

rithms, we evaluated them using two independent ChIP-

seq datasets whose binding sites had been validated by

qPCR[2,19]. Peaks called by each peak caller were

ranked by their confidence scores and then compared to

the list of validated sites. As measured by the average

recovered proportion of validated sites, PeakRanger

ranks within the top group, all of which have very simi-

lar sensitivities(Figure 2A).

Specificity benchmarks

It is more difficult to evaluate the specificity of peak calling

than sensitivity because there is no golden standard of

true-negative binding sites of sufficient size to confidently

evaluate specificity. To partially address this issue, we per-

formed a specificity analysis using a previously-published

synthetic dataset [21]. This data set was generated from a

real-world control (no antibody) experiment that contains

no binding events, which was then spiked with simulated

binding site peaks. Since all peaks were generated by the

author, the locations of all simulated binding sites are

known and false positive peaks can thus be defined.

Figure 3 graphs the true positive rate against (1-the

false positive rate) for each of the peak callers at a fixed

FDR rate of 0.01, as shown in Figure 3, in the top

group, PeakRanger, PeakSeq, GPS and MACS have

nearly the same good specificity and sensitivity. SPP is

close to the top group. While SISSRs has higher sensi-

tivity, it suffers from higher false positives. In contrast,

although CisGenome called only a few false positive

peaks, it recovered fewer peaks than the top group. F-

Seq, Erange and FindPeaks all had unusually high false

positive rates in this test.

Spatial accuracy benchmark

Spatial accuracy measures the ability of the peak caller

to correctly identify the biological binding site underly-

ing punctate peaks. To evaluate spatial accuracy, we

Figure 2 Sensitivity test using qPCR validated ChIP-Seq binding sites. The proportion of recovered qPCR validated binding sites is shown as

a function of the ranked peaks called by each peak caller. Peaks are ranked based on significance values reported. A) Test results on the GABP

dataset. B) Test results on the NRSF dataset.

Figure 3 The specificity test. Peak calls of all peak callers on a

semi-synthetic dataset are shown. All peak callers were configured

to have a FDR cut off of 0.01. Recall rate is plotted against (1 - False

positive rate)
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again used the ChIP-seq data sets for the GABP and

NSRF transcription factor targets. To identify the most

likely biological binding sites, we used MAST[26] and

the canonical target binding site motif and correspond-

ing position specific scoring matrices (PSSMs) to find all

matches in the 200 bp surrounding regions.

We ran each of the peak callers on the data sets, and

measured the distance between the binding site motifs

and the centers of the closest overlapping peak call. As

shown in Figure 4, algorithms that report peaks as single

bp coordinates are much better than those that report

broader regions. In particular, SPP, FindPeaks, GPS and

QuEST were all tied for first place, closely followed by

PeakRanger. However, the difference in spatial accuracy

among the top-ranked peak callers is small.

Inter-peak resolution benchmark

This benchmark measures the ability of peak callers to

distinguish between two closely-spaced peaks. This is a

particularly difficult task for region-reporter algorithms,

which tend to merge close peaks, potentially missing

biologically-significant duplets. PeakRanger identifies

closely-spaced summits within an enriched region by

identifying local maxima within a smoothed model of

coverage.

There are no real-world gold standard data sets for

evaluating inter-peak resolution, so we adapted the

semi-synthetic data set used previously for the specificity

benchmarks. We created a series of derivative data sets

to simulate closely spaced binding sites by generating a

peak adjacent to each synthetic binding site. The inter-

peak spacing varied from 200 to 500 bp in each of 13

derived data sets. To compensate for changes in cover-

age introduced by this modification, we added the same

number of reads to the control. Some peak callers,

including PeakRanger, provide a “resolution mode” that

seeks to discover all summits within an enriched region.

For this benchmark, we set each algorithm to use reso-

lution mode or equivalent when available, or the default

settings when not.

As shown in Figure 5A, no peak caller is able to

resolve closely-spaced peaks in this data set when the

peak separation is less than 250 bp. In the range of 250-

350 bp, FindPeaks and PeakRanger lead the group in

sensitivity, but FindPeaks produces an excessive number

of false positives, as shown in Figure 5B. The other algo-

rithms have lower sensitivities across this range and

some exhibit very high false positive rates as well.

MACS crashed on the 200 bp, 400 bp and 500 bp data

sets, so these data points are missing.

Usability design and performance tuning

Published algorithms are sometimes released in the

research prototype stage, and do not have the software

engineering necessary to work in a high volume, high

availability setting. Ideally, a number of software engi-

neering issues should be addressed (Table 1). First, the

software should be as fast as possible. Our experience in

large projects such as the modENCODE project[27] sup-

ports the notion that a faster peak caller will signifi-

cantly reduce the time to analyze and interpret ChIP-
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Figure 4 The spatial accuracies of peak callers. The distance from binding sites to motif center is measured for A) GABP and B) NRSF. Box-

and-whisker plot is plotted to illustrate the distribution of distances from called binding sites to motif center for each peak caller.

Feng et al. BMC Bioinformatics 2011, 12:139

http://www.biomedcentral.com/1471-2105/12/139

Page 4 of 11



seq data, because all the downstream analyses rely on

accurate peak calls and there is often a cycle in which

the results of downstream analyses inform additional

rounds of peak calling using different parameter sets.

Second, the software should support multiple common

data formats. Transforming file formats requires extra

time, computing resources, and introduces a step in

which programming errors can creep in. Third, the soft-

ware should be easy to use and requires less computing

expertise from users. Finally, the software should be able

to handle very large ChIP-seq data sets, given the rapid

increase in next generation sequencing capacity.

We implemented PeakRanger in the compiled C++

programming language to optimize performance. We

avoided performance losses from disk I/O by keeping all

working data in memory rather than in temporary files;

this has the effect of trading a larger memory footprint

for increased execution speed. To take advantage of

modern multi-core processors, we also designed Peak-

Ranger to use parallel processing.

To benchmark the performance of PeakRanger against

other peak callers, we recorded the running time of

them required to process a typical data set. As shown in

Table 2, PeakRanger is more than twice as fast as the

next fastest peak caller tested, while consuming an

acceptable amount of memory.

To enable the support of multiple input data formats,

we adopted designs shared by SPP and MACS which

separate data loading from data processing. We wrote

individual modules for specific data formats and let

users to choose the one they need. PeakRanger currently

supports Bowtie[28], Eland, SAM[29] and BAM[29] for-

mats. Other file formats can be added by writing addi-

tional importation modules. PeakRanger is also capable

of exporting its results in formats suitable for data

visualization, including both compressed and uncom-

pressed versions of the UCSC Genome Browser “wiggle”

format.

To support multiple species, peak calling packages

need basic genome build information such as the names

and sizes of chromosomes. For users’ convenience, Peak-

Ranger can either derive this information directly from

the input files, or can be given pre-computed genome

tables. Although the former mode is convenient, it does

add a small amount of overhead to the execution time.

Although hard to quantify, we noted considerably var-

iation in the difficulty of installing and configuring the

various peak caller packages during our benchmarking

tests. For example, some packages require the user to

make changes to the source code in order to change the

location of hard-coded file paths and run-time para-

meters. PeakRanger makes all its run-time configuration

parameters available as command-line options, and also

provides a reasonable set of presets for common analysis

tasks. For example, PeakRanger provides “resolution

mode” and “region mode”, which are presets suitable for

analyzing transcription factor binding sites and other

punctate data on the one hand, and broad regions such

as histone modifications on the other. All run-time

parameters can be read from external configuration files

as well, allowing parameter sets to be managed by

source code control, versioned, and shared among

laboratories.

PeakRanger does not provide a graphical user interface

(GUI) such as those provided by CisGenome, USeq and

Sole-Search[10]. While GUIs are convenient for casual

users, they make it difficult to integrate the software

into the automatic workflows needed by high-through-

put laboratories, which are the target audience for

PeakRanger.

Figure 5 Resolution test. We called peaks on a series of semi-synthetic datasets consisting of paired peaks of increasing inter-peak separation.

A) The percentage of close peaks recovered as the function of increasing inter-peak distance. B) The percentage of false positive peaks called.

MACS crashed on the 200 bp, 400 bp and 500 bp datasets, so these data points are not plotted.
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Table 1 Usability summary of peak callers

GUI Command line
parameters input

Data format Customizable
input

Automatic
format detection

Species Reusable
configuration

file

Wiggle file
generation

No
preprocessing

Parallel
processing

Cloud parallel
computing

PeakRanger Yes Eland, Bowtie, SAM/
BAM, BED

Yes All Yes Yes Yes Yes Yes

MACS Yes Eland, Bowtie, SAM/
BAM, BED

Yes All Yes Yes

FindPeaks Yes Yes Eland, Bowtie, BED,
GFF

All Yes

SPP Eland, Bowtie, MAQ,
Arachne

All Yes Yes Yes

QuEST Yes Eland, Bowtie, Solexa,
MAQ

All Yes Yes

GPS Yes Eland, Bowtie, SAM,
NovoAlign, BED

All Yes

Erange Yes Eland, Bowtie, Blat,
BED

All Yes

CisGenome Yes Yes Eland, BED All Yes

F-Seq Yes BED All Yes Yes

SISSRs Yes BED All Yes

PeakSeq Eland Human Yes

This table summarizes commonly supported software features by existing peak callers.
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Support for MapReduce

With sequencing industry’s rapidly increasing capacity

to generate more and longer sequencing reads[30], peak

calling algorithms face an exponentially growing

demand for computational resources. Cloud computing

[31] offers a cost-effective solution for groups that have

highly variable demands for compute resources.

Current cloud computing infrastructures offer a highly

scalable parallel computational model called MapReduce

[32] which was originally designed by Google to process

very large-volume datasets. We thus also implemented a

MapReduce version of PeakRanger on top of the

Hadoop library[33], a free open source implementation

of MapReduce.

The Hadoop version of PeakRanger supports splitting

the job by chromosomes to take advantage of the chro-

mosome-level independence (CLI) of ChIP-seq data sets.

Other ways of partitioning the genome are possible, but

require additional preparation by the user.

Within the Hadoop framework, a PeakRanger job can

be expressed as a series of “map-then-reduce” sub-jobs

(Figure 6). PeakRanger first starts a series of mappers to

map the input datasets to a set of keys. Then a Hadoop

partitioner assigns keys to a set of reducers. Each indivi-

dual reducer fetches the data according to the keys it

receives and processes these data. In the CLI case,

“map-then-reduce” becomes “split-by-chromosome-

then-call-peaks” where chromosomes are used as keys.

That is, we delegate the data loading/preprocessing to

mappers and peak calling to reducers. After mappers

finishes splitting data on chromosome, the partitioner

assigns jobs based on the number of available reducers

and reducers then do the actual peak calling.

To evaluate the performance of Hadoop-PeakRanger,

we performed two benchmark tests: 1) test with fixed

number of nodes and data sets of increasing size; 2) test

with increasing numbers of nodes and data sets with

fixed sizes.

Figure 7A demonstrates that on a fixed number of

nodes with increasing data set sizes, the execution time

for the Hadoop version of PeakRanger is dramatically

shorter, and increases more slowly, than the regular sin-

gle-processor version. For example, the cloud version

processed 14 Gb dataset of 192 million reads in less

than 5 minutes, more than 10 times faster than the ori-

ginal PeakRanger.

In the second test, we tested how the running time

scales with the increasing number of nodes (Figure 7B).

As expected, runtime decreases rapidly until the number

of nodes equals the number of chromosomes (25), after

Figure 6 The programming model of Hadoop and the adaptation of PeakRanger to it. Reads are first splitted by the Hadoop spliter.

Mappers are then initiated to preprocess these reads by chromosomes. Hadoop partitioner then assign processed reads to individual reducers

to call peaks. Called peaks then undergo post-call processing.

Table 2 The performance of peak callers

Algorithms Elapsed time Maximum memory footprint

PeakRanger 2m9s 2.9G

PeakSeq 5m11s 1.48G

SISSRs 15m18s 0.89G

FindPeaks 19m39s 4.2G

Erange 21m31s 0.81G

F-Seq 23m6s 7.27G

MACS 33m13s 1.04G

SPP 34m59s 1.98G

QuEST 36m51s 4.36G

CisGenome 55m39s 1.85G

GPS 64m18s 4.39G

Running time and memory footprint was recorded for peak callers using the

GABP dataset.

Feng et al. BMC Bioinformatics 2011, 12:139
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which adding additional nodes does not provide further

benefit. Future versions of PeakRanger will provide

alternate ways of splitting the genome to overcome this

parallelization bottleneck.

We plan to make both the regular and Hadoop ver-

sion of PeakRanger available as public machine images

in Amazon EC2 and other cloud service providers in

order to facilitate its use by the research community.

Real world usage of PeakRanger

In this section we provide two examples of using Peak-

Ranger in biological research settings.

Characterization of broad enriched regions

It is common for studies of histone modifications to

identify broad regions enriched in the modification of

interest and then to correlate these broad regions with

other biological annotations such as genes. Although

this type of analysis is straightforward, it ignores the

detailed internal structure of the enriched profiles,

which can contain summits and valleys relating to quan-

titative differences in modification efficiency and/or het-

erogeneity within the sample.

Recently there have been several publications report-

ing biologically significant phenomena based on the

internal structures of the enriched histone modification

regions [34-36]. Therefore it is desirable that a peak

caller be able to retrieve both broad enriched regions

while simultaneously identifying the detailed summits

within these regions. Here we demonstrate such an

example using PeakRanger.

In the paper recently published by He et al[34], the

authors found that after exposures to 5-a-dihydrotestos-

terone (DHT) the central nucleosome was depleted

from a subpopulation of androgen receptor (AR) bind-

ing sites, leaving a pair of flanking nucleosomes. With-

out knowing the region structure in advance, it is

difficult to identify the paired nucleosomes from the

read coverage signal alone, and He et al built additional

models to identify and quantify the paired binding sites.

We applied PeakRanger directly to the He data set,

using a configuration that allowed it to find both broad

enriched regions and summits within the regions. We

then compared the number of summits in each enriched

region before and after DHT exposure to directly iden-

tify the subpopulation of AR binding sites that have

depleted central nucleosomes. In order to accomplish

this objective, we configured PeakRanger to detect sum-

mits with comparable heights. As shown in Figure 8A,

the profile plot strongly resembled that reported in the

original publication, and had an average twin-peak

separation of 360 bp, close to the publication estimate

of 370 bp. As a comparison, we repeated the same pro-

cedure using QuEST. The resulting estimated peak dis-

tance was 240 bp and the profile plot departed from the

original one(Figure 8B). For other peak callers, since no

information is available for the number of summits of

an enriched region, we could not perform the same

analysis.

Processing modENCODE worm datasets

ModENCODE is a multi-center collaboration to catalo-

gue functional elements in C. elegans and D. melanoga-

ster [27,37], and includes more than 100 ChIP-seq data

sets. PeakRanger was used by modENCODE as the stan-

dard ChIP-seq peak caller for 29 ChIP-seq experiments

for involving 23 C. elegans transcription factors across

various developmental stages[37]. PeakRanger was able

to process the entire data sets in less than 2 hours run-

ning on a regular workstation with 8G ram and a quad

core CPU. This illustrates PeakRanger’s ability to inte-

grate into a high-throughput environment. Ultra-high

through-put enabled great collaborated analysis among

different labs. A couple of internal analysis shows that

Figure 7 Performance of PeakRanger in cloud parallel computing. A) test with fixed number of nodes and data sets of increasing size; B)

test with increasing numbers of nodes and data sets with fixed sizes.
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peaks produced by PeakRanger were of high quality

(Data not shown).

Discussion
Figure 9 summarizes the accuracy and software engi-

neering benchmarks discussed above, where each of the

11 peak callers examined is ranked from 0 (worst) to 10

(best) for a particular benchmark. The last column of

the table is a simple sum of the ranks. No single peak

caller ranks as the best on all benchmarks; in particular,

algorithms with high sensitivity often have low specifi-

city. However, PeakRanger manages a good compromise

among all the performance benchmarks and ranks first

in the aggregate ranking.

The algorithm used to find the summits within

enriched regions are similar to those used by QuEST

and FindPeaks. To make the summit detection more

reliable and flexible, we enhanced it based on our

experiences of real ChIP-Seq datasets. In QuEST, users

can not control the sensitivity of summits detection. In

comparison, PeakRanger allows users to specify the sen-

sitivity by using the -r option. We also applied an addi-

tional padding algorithm to avoid calling false positive

summits. In case a dataset does not have adequate

Figure 9 Summary of benchmarks performed in this study. For each benchmark item, peak callers are ranked and scored (see methods).

The score has a range of 0 to 10 and 10 is the best score. The overall rank is based on the sum of all scores in all benchmarks.
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sequencing depth, we pad enriched regions so that the

summit detection algorithm will not call summits if two

base pairs are separated with regions of zero read

counts.

PeakRanger relies on PeakSeq which detects enriched

regions before the step of summit detecting. PeakSeq is

an effective algorithm but the original implementation

gives only limited usage of the algorithm. We thus sig-

nificantly modified PeakSeq so that it can be integrated

as a part of PeakRanger. PeakSeq contains two separate

parts: pre-processing and peak-calling. These two parts

are now combined into a single module to reduce file I/

O cost. We also designed indexing of chromosomes to

enable support to other species with different number

and names of chromosomes. The original PeakSeq runs

in single-thread mode and we modified related data

structures to support multi-thread mode.

Although PeakRanger represents a successful compro-

mise among multiple measures of accuracy, researchers

should consider one of the other peak calling algorithms if

a particular performance characteristic is of the top prior-

ity. For example, if identifying the precise center of the

peak is critical to an experiment, then researchers should

consider GPS, QuEST, MACS, SPP or FindPeaks, all of

which have better spatial accuracy than PeakRanger.

The current design for the Hadoop version is based

on chromosome-level-independence (CLI), which limits

the practical level of parallelization to the number of

chromosomes in the genome. This concept can be gen-

eralized to region-level-independence (RLI) by breaking

the genomes into a set of arbitrary regions and call

peaks in each individual region. However, this is depen-

dent on the peak calls for each region being indepen-

dent of each other, a criterion that is not satisfied when

an enriched region crosses the region boundary. Addi-

tional manipulation of the regions to allow for overlap

between them, and adjustments for the changes in cov-

erage in overlapped regions will be necessary to imple-

ment this, and is deferred to future work. However,

even with the current design we are able to archive an

order-of-magnitude increase in speed, which is sufficient

for most practical applications.

Conclusion
In this paper, we introduce PeakRanger, a general pur-

pose ChIP-seq peak calling algorithm that is optimized

for accuracy, speed and ease of use. It is suitable for use

in small laboratories, as well as in large production cen-

ters, and can be used in a cloud environment for very

high throughput environments. The software is freely

available and open source under the Artistic License 2.0.

The primary download site is http://www.modencode.

org/software/ranger/.

Availability and requirements
PeakRanger is under the Artistic License 2.0. PeakRan-

ger can be downloaded from: http://www.modencode.

org/software/ranger/. We currently provide the full

source code, as well as binaries for Linux systems. Bin-

aries for other operating system and an Amazon EC2

image will be available during the first quarter of 2011.

Additional material

Additional file 1: This file contains detailed description of the

algorithms and benchmarks.
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