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Abstract
Chromatin immunoprecipitation followed by tag sequencing (ChIP-Seq) using high-throughput
next-generation instrumentation is replacing ChIP-chip for mapping of sites of transcription-factor
binding and chromatin modification. To develop a scoring approach for this new technique, we
produce two deeply sequenced datasets for human RNA polymerase II and STAT1 with matching
input-DNA controls. In these, we observe that signal peaks corresponding to sites of potential
binding are strongly correlated with peaks in the control, likely revealing features of open
chromatin. Based on these observations, we develop a two-pass approach for scoring ChIP-Seq
relative to controls. The first pass identifies putative binding sites and compensates for genomic
variation in the mappability of sequences. The second pass filters sites not significantly enriched
compared to the normalized control, computing precise enrichments and significances. Using our
scoring we investigate optimal experimental design – i.e. depth of sequencing and value of
replicas (showing marginal information gain beyond two).

With the advent of new high-throughput sequencing technologies (Helicos HeliScope,
Illumina Genome Analyzer, ABI SOLiD, Roche 454), most genome scale assays that
previously could only be done cost-effectively using genomic tiling microarrays can now be
performed using DNA sequencing. One of the most common uses of tiling microarrays is for
performing ChIP-chip1-3. In ChIP-chip, DNA associated with a protein of interest is
immunoprecipitated using an antibody specific to that protein (chromatin
immunoprecipitation or ChIP) and the resulting DNA is labeled and hybridized to a genomic
tiling microarray. Early adaptations of ChIP sequencing (e.g. STAGE4, ChIP-PET5,6) used
Sanger-based sequencing, which generally provided limited tags and/or was expensive. The
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new analog of this experiment is called ChIP-Seq7,8, in which millions of short tags are
sequenced from the immunoprecipitated DNA fragments. More than 100 ChIP-chip
experiments were performed during the pilot phase of the ENCODE project9; however, in
the scale up to the whole human genome almost all ChIP experiments are being done
utilizing ChIP-Seq. Moreover, ChIP-Seq is being used extensively for the modENCODE
project.

Short tag sequencing platforms yield sequence reads of sufficient length to uniquely map
most tags and their associated DNA fragments to the genome of interest. The Illumina
Genome Analyzer platform, formerly Solexa, was the first truly high-throughput sequencing
technology to gain widespread usage for ChIP-Seq. Each lane of data typically generates
several million ~30 nt sequence tags. Mapping these tags against the genome, we can
identify regions that are overrepresented in the number of mapped tags or fragments, which
might correspond to genomic locations of transcription factor binding. However, there are a
number of issues that make scoring more complicated. In this paper we develop a general
methodology for analyzing ChIP-Seq data using two deeply (as compared to previously
published) sequenced ChIP-Seq datasets: human RNA polymerase II (Pol II) and STAT1.
Pol II, a component of the general transcriptional machinery and STAT1, a representative
sequence-specific transcription factor, both bind primarily to punctate regions of DNA in
what is typically called point-source binding. To help determine experimental design we
further analyze target identification as a function of sequencing depth (i.e. saturation) and
the number biological replicas required.

RESULTS
Characteristics of ChIP-Seq Data

ChIP-Seq datasets were generated for both Pol II in unstimulated HeLa S3 cells (an
immortalized cervical cancer derived cell line) as well as STAT1 in interferon-γ stimulated
HeLa S3 cells (STAT1 is induced when a cell is stimulated by interferon-γ). Matching
control input DNA-Seq datasets were obtained for both stimulated and unstimulated cells
(see Methods). Although we chose to use input DNA as the control, we could have used a
ChIP-Seq with a different antibody (i.e. IgG) or a ChIP-Seq sample under a different cellular
condition (i.e. unstimulated STAT1 ChIP).

In the first and third tracks of Figure 1a we see the signal maps for both HeLa S3 Pol II and
STAT1 for a region on chromosome 22. The vertical axis is the count of overlapping
mapped DNA fragments at each nucleotide position. Peaks (large numbers of overlapping
mapped fragments) in this track correspond to regions of DNA where either Pol II or STAT1
has potentially bound in the HeLa S3 cell-line being studied. Ideally the background to this
experimentally generated signal map would be a randomly generated map with the same
number of mapped fragments (i.e. a uniform background distribution). If this were the case,
peaks in the random background would follow Poisson statistics and could be computed
either theoretically or by simulation. A peak threshold could then be set based on a false
discovery rate determined by the number of peaks from the background distribution
compared to the actual data7.

Unfortunately, the background distribution for a ChIP-Seq experiment is not this simple10.
There are multiple effects that contribute to the signal map from a ChIP-Seq experiment.
Firstly, since sequence tags from certain genomic locations are not unique to the genome,
sequenced reads from these regions would not be included, as they do not align uniquely to
the genome. Thus the distribution of uniquely mappable bases in the genome is not uniform
(see the fifth track of Fig. 1a).
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Secondly, genomic DNA isolated from cells is in the form of chromatin: DNA tightly
wound around nucleosomes. The structure of chromatin might bias the amount of DNA that
is experimentally observable from different regions of the genome. In the second and fourth
tracks of Figure 1a we observe that there are also peaks in the signal maps for unstimulated
and interferon-γ stimulated HeLa S3 input DNA in the vicinity of promoters of known
genes, which may correspond to regions of open chromatin11. This can also be seen in
Figure 1b, in which the signal maps have been aggregated proximal to transcription start
sites (TSSs), i.e. within ±2.5 Kb, for all annotated CCDS genes (a consensus set of gene
annotation12, uniformly agreed upon by Ensembl, NCBI and UCSC) in the human genome.

Thus the signal map of aligned fragments for a given transcription factor is actually the
“convolution” of a number of effects: the density of mappable bases in a region, the
underlying chromatin structure and the actual signal from transcription factor binding.
Therefore some fraction of the peaks in the ChIP-Seq signal map for a transcription factor
might be due to the nature of the chromatin structure in those regions, i.e. regions of open
chromatin. In order to ascertain that the signal for any region is enriched due to the presence
of transcription factor binding it is necessary to compare the signal against that from a
control such as a matching sequenced input DNA experiment.

Mappability Map of a Genome Sequence
A significant advantage of using tag-based sequencing instead of tiling microarrays for
unbiased genomic experiments is that it is possible to cover a significantly greater fraction
of the genome. This is especially true for the more complex mammalian genomes that are
almost equally comprised of repetitive and non-repetitive sequence. In Table 1 we compute
the fraction of the genomes of four well-studied organisms (worm, fruit fly, mouse and
human) that are assayable using either tiling arrays or tag sequencing based technologies.
For human we find that even though only 47.5% of the genome is non-repetitive, 79.6% of
the genome is uniquely mappable using 30 nt sequence tags. Even for more compact
genomes such as the worm, which has significantly less repetitive sequence than human, a
significant gain in coverage is achieved by using a tag-sequencing based approach (86.8% to
93.0% coverage with 30 nt tags). As next generation sequencing technologies improve
longer sequence reads become possible. We find that the fraction of the human genome that
is uniquely mappable increases from 79.6% to 89.3% as the length of the sequenced tag is
increased from 30 to 70 nt.

We have developed code for efficiently indexing an entire genome and then determining at
each nucleotide position the number of locations at which a sequence tag of length k appears
in the entire genome (see Supplementary Material). Analysis of the idealized achievable
genome coverage from short tag sequencing has previously been investigated13. The output
from the code is a binary file for each chromosome containing a table that maps from a
position on the chromosome to the number of occurrences in the whole genome of the k-mer
starting at that position. The mappability map that we construct only accounts for sequence
tags that are located multiple places in the genome and that are identical, i.e. no mismatches
are allowed. We have also investigated the effect of allowing for mismatches in the
mappability map (see Supplementary Material).

As shown in the fifth track of Figure 1a, we have determined the fraction of uniquely
mappable nucleotide positions using genomic windows of 1 Kb. We also have generated a
profile of the fraction of alignable bases aggregated across all CCDS TSSs in the human
genome and note a small but statistically significant enrichment in the fraction of alignable
bases proximal to known TSSs (inset in Fig. 1b). The enhancement in mappable bases
proximal to TSSs of genes is likely due to the increased complexity of DNA sequences in
promoter regions.
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Input DNA
In order to determine that a “peak” in the signal map of DNA fragments actually
corresponds to a site of transcription factor binding, it is necessary to show that the signal
obtained is enriched compared to a matched control sample such as input DNA isolated
from the same cell line under the same cellular conditions that the ChIP experiment is
performed, i.e. HeLa S3 cells stimulated by interferon-γ for the case of STAT1. Observing
the signal maps (tracks 2 and 4 of Fig. 1a) for input DNA we first observe that the
distribution is not the “flat” distribution one would expect from a random Poisson process.
We observe more significant “peaks” than would be expected from a random distribution.
By analyzing the number of sites as a function of peak height it has been shown that this
distribution cannot arise from a uniform background distribution10. There is a significant
correlation between the locations of peaks present in the input DNA signal map and the
matching ChIP-Seq results (Supplementary Material).

Using the signal maps of DNA fragments we created profiles of the aggregated signal maps
proximal to the TSSs of well-annotated CCDS genes (see Figure 2). In addition we created
profiles for both Pol II and STAT1. Although the aggregated profiles for HeLa S3 input
DNA are not as pronounced as the aggregated signals from Pol II and STAT1, the input
DNA under both conditions exhibits distinctive enrichments of signal proximal to TSSs.
This again demonstrates that the peaks in the input DNA signal do not arise from a random
background distribution. We also note that the aggregated signals yield a higher definition
profile with finer resolution as compared with the aggregated ENCODE ChIP-chip profiles9.

The aggregated profiles for the input DNA samples proximal to TSSs are substantially more
enriched than the relatively minor enrichment coming from the profiles of mappable bases
(insert in Fig. 1b). This shows that although the mappability map is a component of the input
DNA signal, it only explains a relatively small portion of the enrichment proximal to TSSs.
However, if one views the genome at a more coarse-grained level (averaged over 10 Kb
windows) then we observe that when we scale the coarser-grained input DNA signals by the
fraction of mappable bases, the signal is more uniform than the signal before scaling. This
shows that the fraction of mappable bases plays a substantial role in modulating the signal
we observe.

PeakSeq: Scoring ChIP-Seq Data
Based on these observations and our experience with scoring of ChIP-chip experiments14,
we develop an approach, called PeakSeq, for scoring the results of ChIP-Seq experiments by
compensating for the mappability map and comparing against a normalized matching
control dataset. For computational efficiency we adopt a two-pass approach for scoring
ChIP-Seq data relative to a control dataset. A schematic of the procedure is presented in
Figure 2 (see Methods for further details of each step).

Construction of Signal Maps—In order to accommodate the large datasets that are
typically generated, we process all ChIP-Seq data on a chromosome-by-chromosome basis.
Using only uniquely mapping reads we generate signal maps along each chromosome for the
ChIP-Seq dataset as well as the matching control dataset. Signal maps are generated by
extending each mapped tag in the 3’ direction (as sequences are read from the 5’ end), to the
average length of the DNA fragments in the sequenced DNA library (~200 bp). The signal
map is then the integer count of the number of overlapping DNA fragments at each
nucleotide position (see first panel of Fig. 2).

First Pass: Identification of Potential Target Sites—Motivated by the scoring
procedure developed in Robertson et al.7, in the first pass of our approach we focus on the
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ChIP-Seq dataset and identify regions or peaks in the ChIP-Seq fragment density map that
are significantly enriched compared to a simulated simple null background model. In order
to capture some level of genomic variability (such as copy number variation15,16) this
analysis is done on a segment-by-segment basis along each chromosome; segments are by
default 1 Mb (second panel of Fig. 2). Within each segment we use the mappability map to
correct for the variation in mappability between segments. The candidate regions that are
identified as potential DNA binding sites are not necessarily locations of transcription factor
binding, as they may also be present in the input DNA control. The first pass of the PeakSeq
procedure acts as a pre-filter in which candidate regions are selected for comparison against
the input DNA control.

Normalization of Control to ChIP-Seq Sample—In order to compare the number of
mapped tags to a potential binding site from the ChIP-Seq sample compared to the control
we need to normalize the control against the sample. We normalize the background of the
sample to the control by linear regression of the counts of tags from the control against the
sample for windows (~10 Kb) along each chromosome. The slope of the linear regression α
is used to scale tag counts from the control in the comparison with the ChIP-Seq sample.
Since windows that contain enriched peaks will cause the slope to be larger (conservatively
over-estimating the tag counts from the control) we introduce a parameter, Pf, the fraction of
potential target regions that we exclude from the normalization procedure (windows that
overlap excluded target regions are not used in the linear regression). In the third panel of
Figure 2 we show the effect of the normalization procedure for two settings of this
parameter (Pf = 0 and Pf = 1).

Second Pass: Scoring Target Sites Relative to Control—In the second pass of the
procedure (last panel of Fig. 2), the ChIP-Seq signals for putative binding sites are then
compared against the normalized input DNA control. Only regions that are enriched in the
counts of the number of mapped sequence tags in the ChIP-Seq sample relative to the input
DNA control are called binding sites. This comparison is analogous to the way enrichment is
determined when validating ChIP “hits” using qPCR. We compute the statistical
significance using the binomial distribution. We also correct for multiple hypothesis testing
by applying a Benjamini-Hochberg correction17. We report a ranked target list sorted by q-
value that also lists fold enrichment values for each binding site. Comparison of potential
target binding sites in the ChIP-Seq sample against the input DNA control accounts for the
non-uniform background of a ChIP–Seq experiment10.

Application of PeakSeq to Pol II and STAT1 ChIP-Seq Data
Scoring Pol II and STAT1 ChIP-Seq Data using PeakSeq—We apply PeakSeq
procedure to the Pol II and STAT1 ChIP-Seq datasets (we conservatively set Pf = 0 in the
following analysis). We initially identify 73,562 and 123,321 potential binding sites for Pol
II and STAT1, respectively. These represent the potential targets that are found to be
significant in the Pol II and STAT1 signal density maps compared to a simulated null
random background. After comparison with the normalized input DNA controls
(unstimulated and interferon-γ stimulated HeLa S3 cells) we find that only 24,739 and
36,998 of these target regions are significantly enriched for Pol II and STAT1, respectively
(using a false discovery rate threshold of less than 0.05). In Supplementary Table 2 we
demonstrate how the number of target binding sites varies for a range of different false
discovery rate thresholds for each target list.

Scaling of Identified Targets—In Figure 3 we divide the putative targets identified for
Pol II (left panel) and STAT1 (right panel) into targets that are enriched (blue) and those that
are not significantly enriched (red). Plotted on a log-log scale the horizontal axis is the count
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of the number of sequence tags overlapping a putative binding region. We observe that both
the enriched and unenriched (potential binding sites that are not enriched compared to the
input DNA control) distributions display an approximate power-law behavior. These plots
are consistent with those generated for models of different background distributions10.
However, the slope of the distribution of regions that are not enriched is steeper than that of
the enriched distribution.

Comparison of PeakSeq Results with Published ChIP-chip and ChIP-Seq Data
We also compared the results obtained for Pol II and STAT1 ChIP-Seq against matching
pilot-phase ENCODE ChIP-chip datasets9. We find that 1,499 Pol II binding sites of average
size 275 bp and 1,164 STAT1 binding sites of average size 128 bp are present in the one
percent of the genome studied. Correspondingly, for ChIP-chip 1,000 Pol II sites of average
size 1,300 bp and 395 STAT1 sites of average size 507 bp were identified (ChIP-chip
experiments were performed using Nimblegen ENCODE tiling microarrays). We find that
321 (32.1%) of the ENCODE Pol II ChIP-chip sites are common to the matching ChIP-Seq
target lists. For the case of STAT1 many of the ChIP-chip target sites were independently
tested for validation by qPCR6. We find that 106 of the 128 (83%) of the validated targets
are common to the STAT1 ChIP-Seq target list. By comparison only 26 of the 282 (9%)
regions were not validated by qPCR are present on the ChIP-Seq target list. In both cases,
ChIP-Seq was able to detect more binding sites (substantially more for STAT1) with higher
resolution (i.e. more localized binding sites). A representative example of the cytokine
receptor locus on chromosome 21 comparing ChIP-Seq and ChIP-chip for Pol II and STAT1
is displayed in Figure 4.

We find that 21,750 of the 36,998 STAT1 ChIP-Seq target sites (58.7%) are in common
with the ChIP-Seq results from Robertson et al.7 (see Supplementary Material for details).
We also ran the ChIPSeqMini8 software on the Pol II ChIP-Seq data produced in this paper
and 9,467 target binding sites were identified with a median size of 1,939 bp. By
comparison PeakSeq identified 24,739 sites with a median size of 841 bp. Using the same
data and the same hardware PeakSeq ran in under 8 minutes while ChIPSeqMini required
459 minutes to run. All the regions identified by ChIPSeqMini overlap regions called by
PeakSeq, which is consistent with ChIPSeqMini using a more restrictive threshold in calling
peaks, even though the regions identified are broader. The most significant peaks identified
in the initial peak-calling pass of PeakSeq tend to all be significantly enriched compared to
the input DNA control.

Implications for the Optimal Design of ChIP-Seq Experiments
Depth of Sequencing—In order to investigate the depth of sequencing required to
saturate the number of identifiable target binding sites we performed the following analysis.
For both the Pol II and STAT1 ChIP-Seq datasets we shuffle the mapped sequence reads in
order to remove any biases due to the variation between biological replicas or different
flowcell lanes. The sequences for each of the input DNA controls were similarly shuffled.

Initially, for each transcription factor one million reads were selected from both the
randomly ordered sample and control sequences. These datasets were scored, identifying
both potential targets for binding as well as the subset of these that are enriched compared to
the control. For increasing numbers of reads we scored putative and enriched target sites
(larger sets of reads are inclusive of smaller sets).

In Figure 5c we plot the number of identified putative targets (dashed lines) and enriched
targets (solid lines) for both Pol II (blue) and STAT1 (red). We observe that the number of
Pol II targets is saturating as a function of sequencing depth. The number of targets for Pol
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II appears to be approaching an asymptotic value of ~25,000 target regions. Curiously, the
number of targets identified for STAT1 initially climbs much slower than Pol II; however,
the number of targets continues to rise and is only starting to show signs of plateauing once
22.5 million reads have been analyzed. This is consistent with the larger proportion of Pol II
targets that show higher levels of enrichment as compared to STAT1. We note that for both
Pol II and STAT1 the number of putative target regions continues to increase significantly
as a function of sequencing depth. This analysis implies that the set of identified sites is
approaching the total number of target sites (or that the total number of sites is saturating).
However, formally this is not a proof of saturation as in principle there could be another
regime after some critical number of sequence reads where it is possible to identify a novel
class of enriched regions (i.e. broad-binding domains).

In Figure 5a and 5b we display the target binding sites that are significantly enriched as a
function of the number of mapped sequence reads. We observe that the most prominent
peaks are identified with only one million sequences: however, smaller peaks are only called
when more sequences are included.

Number of Biological Replicas—Biological replicas in high-throughput genomic
experiments are performed to achieve two disparate objectives: to ensure that experiments
are reproducible and to quantify the biological variation between samples in an experiment.
As part of the pilot phase of the ENCODE project9 it was decided that three biological
replicas were necessary for ChIP-chip experiments in order to ensure reproducibility. What
is the optimal number of biological replicas necessary for a ChIP-Seq experiment?

In order to quantify the gain in the number of enriched target binding sites identified by
adding additional biological replicas, we performed the following analysis using the ~29
million uniquely mapped sequence reads for Pol II ChIP-Seq that were generated using three
independent biological preparations. We conducted the analysis where, using the same total
number of mapped reads, we separately analyzed the results using sequences coming from
increasing numbers of replicas. Care needs to be taken to ensure appropriate randomization
of reads and permutations of replicas and flowcells/lanes to avoid biases (see Methods).

Using the target list identified from all the available Pol II ChIP-Seq data as a gold standard
set of positives (and all other regions as negatives) we compared the target lists identified
using 9 million reads from only one biological replica, or from two replicas or from all three
replicas and computed the sensitivity and positive predictive value for each target list. We
then calculated the average sensitivity and positive predictive value for one replica
(averaged over all three), two replicas (averaged over all three pairs) and three replicas
(results summarized in Fig. 5d).

We observe some gain in sensitivity and positive predictive value when the number of
biological replicas is increased from one to two. However, there is no further increase in
sensitivity when using three replicas and the positive predictive value only increases
marginally. In a ChIP-Seq experiment it is necessary to perform at least two replicas in order
to be able to ensure that experimental results are reproducible (in order to identify a failed
experiment); however, it is not clear that there is a significant information gain beyond two
independent replicas. Consequently the ENCODE consortium currently requires greater than
90% agreement between target lists from biological replicas.

DISCUSSION
In this paper we have demonstrated that there are two main observed effects that modulate
the ChIP-Seq signal profile: the genomic variation in the fraction of mappable sequence tags
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and differences in chromatin accessibility as evidenced in input DNA-Seq control
experiments. These two effects can be contrasted with the two main biases that affect tiling
array ChIP-chip experiments: probe-to-probe hybridization differences and cross-
hybridization18. In reality we use the same input DNA control in ChIP-chip experiments and
the same chromatin features should be present when observing the signal for the single
channel input DNA control. This is typically not apparent as the other two effects that are
more pronounced obscure this signal. The effect of the input DNA is the same for ChIP-chip
and is normally scaled out when the ChIP-chip signal is scored in the typical two-channel
fashion.

One might think that ChIP-Seq experiments are immune to the probe-specific effects and
cross-hybridization that both occur for ChIP-chip; these two effects can be contrasted
against the genomic variation in mappable sequence tags, which plays a similar role in the
analysis of ChIP-Seq datasets. One fundamental difference between ChIP-chip and ChIP-
Seq is that the signal for ChIP-chip is a continuous-valued fluorescent intensity for each
oligonucleotide probe, whereas the signal for ChIP-Seq is a discrete integer-valued count of
the number of mapped tags in a genomic region. This affects the analysis and the type of
statistics used. Motivated by the way ChIP-chip experimental data are analyzed we have
developed an approach for scoring ChIP-Seq data accounting for variation in mappability
and input DNA controls. Initial analyses of ChIP-Seq7,8 experiments did not account for
these effects and target regions were not scored relative to an appropriate control
experiment.

Although we have initially implemented our methodology for use with tag sequence data
from the Illumina Genome Analyzer platform, it should be relatively straightforward to
adapt it for use with other high-throughput sequencing platforms. We have developed the
PeakSeq approach to identify peak regions in ChIP-Seq datasets that correspond to sites of
transcription factor binding. Although we have used input DNA as a control in this paper,
other controls can be used (e.g. unstimulated STAT1 ChIP or IgG). We have also shown that
separate input DNA control samples are needed for different cellular conditions even for the
same cell-line (see Supplementary Material). Even though this approach has been developed
and calibrated to identify sites for more punctate point-source binding of transcription
factors or proteins to DNA, it can also be used to identify broader regions of binding (such
as histone modifications) that show significant enrichment relative to control. However, a
more detailed procedure will be necessary for identifying extended regions of binding. A
significant feature of our analysis methodology is that statistical quantities such as false
discovery rates and p-values are based on the number of target regions identified rather than
the number of enriched nucleotides. In our approach we treat sequence tags mapping to the
forward and reverse strands equally (tags are sequenced from the 5’ ends of DNA
fragments). One could compare the relative orientation of these reads in each target region
compared to what would occur by chance.

For certain transcription factors ChIP-Seq surpasses ChIP-chip for identifying sites of
transcription factor binding7. By analyzing the signal data between ChIP-Seq and ChIP-chip
data it is evident that ChIP-Seq data gives finer resolution and greater signal-to-noise (see
Figure 4). ChIP-Seq also achieves a significantly greater coverage of the genome of interest
as compared with ChIP-chip using tiling arrays, especially for the larger mammalian
genomes. The fold enrichment determined for ChIP-Seq typically shows a significantly
greater range than does ChIP-chip; this is understandable as effects such as cross-
hybridization tend to reduce the fold enrichment from a tiling array approach. While ChIP-
Seq appears to significantly outperform ChIP-chip it is not clear that this will be the case for
all transcription factors and chromatin modifications, especially those that bind to broader
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genomic regions where it might be necessary to sequence extremely deeply in order to
achieve better results than from tiling arrays.

METHODS
Generation of Illumina Tag Sequencing Data

For this paper we generated two deeply sequenced ChIP-Seq datasets for antibodies against
both human RNA polymerase II and STAT1 performed in the HeLa S3 cell line. For Pol II
using the results from 24 lanes of Illumina sequencing data we obtained more than 29
million mapped reads for the Pol II ChIP-Seq as well as a matching 29 million reads for a
control sample of HeLa S3 Input DNA. STAT1 ChIP was performed in HeLa S3 cells that
had been stimulated using interferon-γ, producing 26 million mapped reads for IFN-γ
stimulated STAT1 ChIP DNA. We obtained 24 million mapped reads for a matching control
of IFN-γ stimulated HeLa S3 input DNA. See Supplementary Material for further details of
experimental protocols. A complete breakdown of the ChIP-Seq reads generated is
summarized in Supplementary Table 1. Raw and aligned sequence reads for all datasets
have been deposited at GEO with accessions numbers: GSE12781 (Pol II) and GSE12782
(STAT1).

Illumina Data Analysis Pipeline
Raw image files from the Illumina Genome Analyzer machine are transferred to the Yale
biomedical high-performance computing cluster. Data is processed following the
recommended Illumina pipeline. Raw images are first processed using the Firecrest software
package. Base-called sequences with confidence metrics are obtained using the Bustard
software. Gerald is the last part of the pipeline. It uses the program ELAND to align the
short sequence reads against the genome of interest allowing for up to 2 possible
mismatches. By default ELAND only gives the locations for reads that align uniquely to the
target sequence; however, with modified parameters ELAND can report the locations for
reads that map to multiple locations. For the human ChIP-Seq and control datasets we
aligned the sequence reads to the latest build of the human genome (hg18/NCBIv36)
obtained from the UCSC Genome Browser12. We excluded the random unassembled
contigs.

Alignment of Tag Sequences
Following a typical analysis pipeline, flowcell images are analyzed, yielding base called
sequences with confidence scores, which are then aligned against the appropriate genome.
The standard Illumina pipeline utilizes the program Eland for aligning sequence tags,
although a number of other applications have been developed for the same purpose, e.g.
Maq19, Rmap (unpublished), SOAP20. When aligning sequence reads against the genome,
reads aligning to multiple locations are typically excluded, as they are ambiguous (see
Supplementary Table 1 to see the proportion of sequence reads generated that map to
multiple locations in the human genome). However, such exclusion results in portions of the
genome, including highly repetitive sequences or recent segmental duplications, that are not
alignable and thus not assayable.

Although the algorithm we have developed by default only utilizes sequence tags that map
uniquely, it would be a relatively straightforward modification to utilize tags that map to
multiple locations by capping the number of locations to which a tag is allowed to map and
by weighting tags by a factor dependant on the number of locations to which it maps or
randomly selecting one of the locations. Many of the mapping algorithms including Eland
and Maq have options allowing for the aligning of sequence reads to multiple locations in
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the genome. The effect of including sequence reads that map to multiple locations in the
scoring is also discussed in these Methods.

PeakSeq: First Pass Identification of Potential Target Sites
Once fragment density maps have been created for both the sample and control datasets, we
initially focus on the sample density map. Each chromosome is subdivided into segments of
length Lsegment (typically 1 Mb) for analysis. Depending upon the genome being analyzed
one might select a different size for these segments, e.g. smaller segments for more compact
genomes. For each segment the number of fragments that align to that segment are counted,
Nreads. In addition by using the mappability map for the genome of interest, we can
precompute the fraction of uniquely alignable bases in that segment, f (see methods for
further details). Using these two parameters, Nreads and f we can perform a computational
simulation by randomly generating Nreads aligned DNA fragments in a scaled segment of
length f×Lsegment (see second panel of Figure 2 and below for details of the simulation). In
order to perform an accurate simulation this is done multiple times and the results of these
simulations are averaged.

Using a height threshold we can determine all the contiguous regions that are above this
threshold in the sample fragment density map. Regions above threshold that are separated by
genomic distances less than the average fragment length (~200 bp) are merged. This is
similar to the maxgap/minrun approach that is commonly used for analyzing ChIP-chip
tiling array data14,21. For the same threshold we can determine the number of merged
regions above the threshold in the simulation. For each threshold the fraction of false
positives is calculated from the ratio of the estimated number of false positives above
threshold from the simulation divided by the number of regions above threshold for the
ChIP-Seq sample. By tuning the threshold used we can set an initial first pass false
discovery rate (the false discovery rate for the final list of target binding sites will be
determined after comparison with the control sample). The threshold is set independently for
each segment of each chromosome, which accommodates for genomic variability along each
chromosome due to e.g. structural variation15,16.

Using this thresholding procedure we obtain candidate sets of peak regions (i.e. putative
binding sites) from each chromosome that are significantly enriched compared to a null
random background for each segment. However, some of these regions might be due to
underlying peak signal that is present in the control sample. Thus in order to determine
whether each of these putative peaks is actually bound by the transcription factor, we need
to show that the number of mapped fragments from the sample dataset is significantly
enriched compared the control input DNA dataset.

Estimation of False Positives by Simulation in the First Pass of PeakSeq
For each segment of length Lsegment a computational simulation of Nreads tag sequences is
performed using the scaled segment length f×Lsegment (the length is scaled by the fraction of
uniquely mappable bases in the segment). Nreads tag sequences are randomly placed along
the f×Lsegment segment length. The same thresholding procedure is then followed for
determining false positives from the simulated data. This is shown in the second panel of
Figure 2. The simulation is performed multiple times and the number of false positives is
averaged over the different simulations.

We only use a simple background null distribution (Poisson) for each segment, rather than
the more-complicated background model10, during the first pass of the PeakSeq procedure.
This is because we are trying to identify a candidate list of potential target regions using a
relatively liberal threshold. The non-uniformity of the background will be accounted for in
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the second pass when counts of mapped fragments for putative binding sites are compared
against the input DNA control. The control captures the actual background distribution,
which we do not need to model explicitly. If we were scoring the ChIP-Seq data without a
reference control then the non-uniformity of the background would have to be modeled
explicitly.

Application of the Mappability Map to PeakSeq Scoring
The mappability map is initially constructed for each base pair in the genome (see
Supplementary Material), counting the number of locations to which a subsequence starting
at that position, typically of length 30 nt, aligns. Using this we can generate a coarse-grained
map of the fraction of uniquely mappable bases (corresponding to tags starting at those base
pair locations) in a segment (i.e. window) of a given size. In the paper we have used coarse-
grained maps for segments of size 1 Kb for illustrative purposes in Figures 1a and 1b. In
addition we have generated a coarse-grained mappability map using larger 1 Mb segments.
As part of the first pass filtering in the PeakSeq scoring procedure (the second panel of
Figure 2) we determine a peak-height threshold determined for each 1 Mb segment in the
genome. For a segment, the threshold is determined by comparison against a simulated null
background using the same number of tag reads randomly mapped onto a region of length
corresponding to the number of uniquely mappable bases in that 1 Mb segment (i.e. the
fraction of mappable bases multiplied by the segment length).

PeakSeq: Normalization of Control to ChIP-Seq Sample
Before this comparison can be made the control dataset has to be appropriately normalized
to the sample dataset. Naïvely one could use matching datasets with the same number of
mapped reads by removing reads from the larger dataset. This is not the correct way to
perform the normalization, as it is overly conservative. The sample dataset is composed of a
portion of mapped reads that come from the background distribution whereas the remainder
arises from peak regions that are genuine binding sites (see Methods for further details).
Mapped reads that are part of genuine binding sites would incorrectly skew the apparent
parity achieved by simply using the same number of mapped reads between sample and
control. We actually want to normalize the control dataset against the background
component of the sample dataset. In order to reduce the effects of peaks in the
normalization, we divide each chromosome into short segments (length ~ 10 Kb) and
perform the normalization using all segments that have at least one mapped fragment. We
would like to exclude segments from the normalization procedure that contain peaks
corresponding to binding sites; however, we do not want to exclude all putative binding sites
identified in the first pass of the procedure as this would exclude segments that contain
peaks that are present in the both the sample and control background distributions. Thus we
introduce a parameter, Pf, which is the fraction of the peaks (ranked by peak height) that
should not be included in the normalization procedure. If Pf = 0 then no peaks are excluded
and all segments are used for the normalization whereas if Pf = 1, only segments that do not
overlap any candidate peak are used for normalization. Using this procedure all the included
segments contribute equally when computing the normalization factor rather than allowing
the peaks to dominate.

For each segment (indexed by s) not overlapping the Pf fraction of putative peaks identified
in the first pass, we count the number of mapped tags per segment for both the sample,

 , as well as the control,  . Chromosome-by-chromosome we perform least
squares linear regression between these two sets of counts,  and  . The slope of
the regression is then a scaling factor, α, between the number of counts from the control and
the sample of interest. In general, setting Pf = 0 will be more conservative because both the

Rozowsky et al. Page 11

Nat Biotechnol. Author manuscript; available in PMC 2010 August 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



slope α and the normalized counts of tags from the control for each potential target binding
site will be larger and thus fewer regions will be deemed enriched relative to the control (see
the normalization step in Figure 2).

PeakSeq: Second Pass Scoring Target Sites Relative to Control
For each of the putative binding regions, indexed by r, we can now count the number of
mapped fragments that overlap the region from both the sample dataset,  as well as
the number from the control dataset,  . We appropriately normalize the count from the
control by multiplying by the scaling factor computed above. For each putative site we first
compute the fold enrichment, i.e. the ratio of the number of mapped reads from the sample

 over the scaled number of mapped reads from the control,  . The fold
enrichment is the signal normally computed for a transcription factor binding site, which
should be proportional to the occupancy number for the binding site (the fraction of cells in
the experiment that have the transcription factor bound at this site). Using the binomial
distribution we can calculate a p-value of the significance of the region’s enrichment in the
number of fragments from the sample as compared to the scaled number from the control
(because the scaled number is not in general an integer, this number is rounded up to the
nearest integer value). The null hypothesis is that there is no enrichment (see Methods for
statistical tests used).

As is typical in high-throughput experiments that generate a large number of results,
corrections need to be made in order to account for multiple hypothesis testing. Due to the
large number of statistical tests being performed, for any p-value threshold used some
number of false positives (potentially many) will arise by random chance. Following a
standard approach for the analysis of large-scale experiments we employ a false
discovery22-24 based approach using a q-value22-24. A Bonferroni-type correction for
multiple hypothesis testing is typically overly conservative so we choose to use a Benjamini-
Hochberg correction17.

Statistical Tests
In order to determine whether a given putative target region r is enriched in the number of
mapped tags from the ChIP-Seq sample compared to the normalized input DNA control, we
calculate the p-value from the cumulative distribution function for the binomial distribution,
which corresponds to summing the tail of the distribution. The cumulative distribution
function is given by

where  is the scaled number of sequence tags overlapping the target region
from the input DNA,  is the number of tags from the sample  and p =
0.5 which is the probability under the null hypothesis that tags should occur with equal
likelihood from the sample as from the control. Once np is sufficiently large the binomial
distribution can be accurately approximated by a normal distribution

with mean np and variance np(1-p).
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Correcting for Multiple Testing—We follow Benjamini and Hochberg17 in adjusting
our p-value to correct for multiple testing. All the target regions that are tested for
significance are ranked by p-value from most significant to least significant. Then for each
region the q-value is then given by

where Count is the total number of regions tested. Enriched target regions are then selected
using a q-value threshold rather than a p-value threshold.

PeakSeq Software
The scoring procedure has been implemented in C and Perl and the source code is publicly
available for download (http://www.gersteinlab.org/proj/PeakSeq/).

Scoring ChIP-Seq Data Including Reads that Map to Multiple Locations
In order to investigate the effect of only including uniquely mapping reads we selected a
single lane of Pol II ChIP-Seq and input DNA data and included reads that aligned to at
most 10 distinct locations in the genome allowing for up to two possible mismatches per
read. Alignments were performed using Eland. For reads that align to multiple locations, we
randomly selected one of those locations. Scoring this data using the same PeakSeq
procedure outlined below, we find that the number of binding sites identified increases by
17% compared to only using reads where the best match is unique. Thus we can use
PeakSeq to score the reads that map to multiple locations; however, these binding sites are
inherently ambiguous due to the nature of these sequences. Some of these regions will
correspond to legitimate sites of factor binding to DNA. These results are available for
download from http://www.gersteinlab.org/proj/PeakSeq/.

Analysis of ChIP-Seq Data from Biological Replicas
In order to appropriately compare sequence reads from biological replicas we subdivided the
data from each of the three different biological replicas (the sequences were also randomly
permuted for each replica). We first selected 9 million reads from each of the three replicas
(only 8.1 million reads were available for analysis from the third biological replica). Each of
these datasets was scored against 9 million reads randomly selected from the input DNA
control (the same 9 million control reads were used as a control for each analysis). Second,
we randomly selected 4.5 million reads from each of two different biological replicas, which
were then combined to form 9 million reads and these were scored against the 9 million
control reads as before. This was done for all three combinations of selecting two-of-three
pairs of samples. Lastly, we selected 3 million reads from each of the three replicas, which
were combined and scored against the sampled control dataset. This type of analysis can be
generalized for the comparison of more than 3 replicas.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ChIP-Seq Characteristics
1a) The first and third signal tracks are plots of mapped fragment density for Pol II (in blue)
and STAT1 (in red), respectively. The second and fourth tracks correspond to the input
DNA tracks for unstimulated (in blue) and interferon-γ stimulated HeLa S3 cells (in red).
The vertical axis for the first four tracks is the count of the number of overlapping DNA
fragments at each nucleotide position (peaks in the top track indicated with a star have been
truncated). The fifth track shows the fraction of uniquely mappable bases plotted in 1 kb
bins (in green). We observe that many of the peaks in the Pol II and STAT1 tracks match
corresponding peaks in the input DNA controls, only some of which are enriched in their
height relative to the control. 1b) Here we see the signal for Pol II (solid blue line), STAT1
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(solid red line) ChIP-Seq and corresponding unstimulated (dashed blue line) and interferon-γ
stimulated (dashed red line) input DNA controls aggregated over regions proximal to all
human CCDS transcription start sites (± 2.5 Kb) plotted in 100 bp bins. We observe
significant enrichment for both transcription factors as well as the input DNA controls over
TSSs. The aggregated signal for the fraction of mappable bases is also plotted (green line)
and we also observe a smaller but significant enhancement over TSSs (see insert where the
vertical scale is from 0.95 to 1.15), though not as pronounced as the sequencing results.
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Figure 2. PeakSeq Scoring Schematic
We present a schematic of the scoring procedure. 1) Mapped reads are extended to have the
average DNA fragment length (reads on either strand are extended in the 3’ direction
relative to that strand) and then accumulated to form a fragment density signal map. 2) In the
first pass of the PeakSeq scoring procedure potential binding sites are determined. The
threshold is determined by comparison of putative peaks with a simulated segment with the
same number of mapped reads. The length of the simulated segment is scaled by the fraction
of uniquely mappable starting bases. 3) After selecting the fraction of potential targets sites
that should be excluded from the normalization, Pf, a scaling factor is determined by linear
regression of the ChIP-Seq sample against the input DNA control in 10 Kb bins. Bins that
overlap the potential targets regions selected for exclusion are not used for regression. The
fitted slopes as well as the Pearson correlations are displayed for Pf set to either 0 or 1. 4)
Enrichment and significance are computed for putative binding regions.
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Figure 3. ChIP-Seq Target List Scaling
On a log-log plot we show the distribution of target regions that are enriched (blue) relative
to input DNA and those that are not (red). The horizontal axis is the count of the sequence
tags that are within a target peak while the vertical axis the number of target regions with
that count. The left and right panel shows the results for Pol II and STAT1, respectively.
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Figure 4. ChIP-Seq vs ChIP-chip
In this figure we show the signal tracks and target binding sites for Pol II and STAT1 for
both ChIP-chip and ChIP-Seq. The ChIP-chip data was generated as part of the pilot-phase
of the ENCODE project for one percent of the human genome. The region displayed is the
cytokine receptor locus on chromosome 21. We observe that the ChIP-Seq signal has better
signal to noise and is higher resolution than the corresponding ChIP-chip data. Data was
obtained from the UCSC Genome Browser12.
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Figure 5. Depth of Sequencing and Value of Replicas
5a) Fragment density signal tracks are plotted for Pol II and the input DNA control as well
as the target regions that are identified (significantly enriched) as a function of the number
of mapped sequence reads. The same numbers of sequence reads are used for both sample
and control. More prominent peaks are identified with fewer reads, while weaker peaks
require greater depth. 5b) Similar plot with STAT1 and matching interferon-γ stimulated
HeLa input DNA control. 5c) Here we plot as a function of the number of mapped sequence
reads the number of putative Pol II (blue line) and STAT1 (red line) targets identified and
the fraction for each of these that are enriched relative to input DNA. We see that while the
number of putative targets continues to climbs for both Pol II and STAT1 the number of
enriched targets begins to plateau. The number of Pol II targets appears to be saturating
faster than STAT1. 5d) We summarize the results of analyzing 9 million mapped Pol II
ChIP-Seq sequence reads using 1, 2 or 3 biological replicas. We calculate sensitivity and
positive predictive values using the targets identified with all the available sequence reads
(~29 million uniquely mapped reads) as gold standard positives and the remainder as
negatives. Only a marginal gain in positive predictive value at the cost of sensitivity is
gained by using 3 biological replicas instead of 2 biological replicas.
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