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The note outlines a scenario for a two-dimensionał dynamic system to possess
strange nonchaotic behaviour in the presence of two frequency quasi periodic
forcing. Implications for turbulence are also discussed.

PACS numbers: 05.45. +b

1. Preliminary remarks

Recent investigations [1-4] revealed the existence of strange, yet nonchaotic
attraction in quasi periodically driven oscillators. These are fractal attractors
which look topologically similar to the more familiar strange attractors, yet possess
negatve Liapunov exponents and are thus nonchaotic. Also recently O. Roessler
et al. gave convincing reasons for anticipating new strange chaotic phenomena in
four dimensions [5, 6]. Now the simplest quasi periodically forced oscillation have
a four-dimensional phase space. Considering that Ruelle, Takens and Newhouse
envisage chaos as a sequence of finite number of Hopf bifurcations leading to a to-
tally unstable torus in four dimensions [7] then it is understandable that one may
be inclined to speculate on possible cross connections between all these different
lines of thought.

In what follows we outline a scenario which is similar to a Smale horse shoe [7]
and may serve as a prototype for strange, but nonchaotic behaviour. We show that
the action of contracting, stretching and special form of twist-folding of the phase
space in a way similar but not identical to the horse shoe, leads to a distinct form
of dynamics. The invariant set of this dynamics are Cantor-like objects and may be
shown to be oriented on a Peano curve-like discrete manifold [8]. The immediate
consequence of this picture is that we may anticipate a Poincaré map of a system
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with strange nonchaotic behaviour to have a fractal dimension, tending towards
dc = 2. Finally we give some arguments showing that we may indeed expect new
phenomena in four-variable systems [6].

2. A fractal model for phase space deformation

Consider first a very simple, Cantor set geometrical construction which gives
by and large the main features of Smale,s horse shoe dynamics [7]. The ule gov-
erning this construction is to delete the middle cross of a unit square which is
formed from nine equal smaller squares. Removing from the remaining four squares
again the middle cross and so on ad infinitum, it is easy show that the area of
the resulting set tends towards zero while its Hausdorff dimension tends towards

dc =log24/ loge3≈2 (0.6309)≈1.261.
This is clearly the Cartesian product of two middle third Cantor sets. This

set with zero Lebesgue measure [9-11] thus has the same capacity dimension as the
Koch curve which is used frequently in modelling many natural objects [8]. Now,
the four corner squares which ultimately give rise to this Cantor set do correspond
to the invariant set of a twodimensional horse shoe map and are analogous to
the intersection areas of the horse shoe and its preimage as explained with con-
siderable lucidity for instance in the book of Nicolis and Prigogine [7]. In fact, if
the dissipation parameter of a one-dimensional Smale horse shoe is made equal
to α = 7.05595 then the fractal dimension will equal that of our twodimensional
map, namely dc = 1.261. Alternatively, one could choose α = 3/2 to reach the
same result for the twodimensional horse shoe. Returning now to phase space,
it is very simple to see that dynamics which can be attached to this simplistic
fractal constuction is: pressing, streching and bending in a C shape; then repeat-
ing the procedure ad infinitum. Suppose now that in addition to these actions
we introduce a periodic torsional (twist) deformation before bending into an S
shape. It is not difficult to see that an idealized form of the projection of such a
torsional deformation of a long stretched rectangular strip could look similar to
the nine elements of the forty five degrees rotated square drawn on the original
square of Fig. 1. This may also be demonstrated by folding a twisted long paper
strip (see Fig. 2). It is an elementary matter to establish that the capacity of
the resulting geometrical set as we repeat this specific deformation mechanism
is dc log36/log6 = 2. In what follows we will attempt to make it plausible
that the resulting Cantor set-like objects generated by this iteration are related
to the dynamics of a Peanolike curve [7] as well as to quasi periodically forced
twodimensional maps and strange nonchaotic attractors.

3. The discrete Peano curve — fat fractals

In the following the original Peano curve, to use Mandelbrot's terminology
[8], will serve as the basis of our discussion. For this form of the curve we need
at least a grid of nine squares (Fig. 3). These squares define the forty five degrees
rotated square shown in Fig. 3 whose Hausdorff dimension when iterated is easily



Peano Dynamics as a Model for Turbulence... 	 5



6 	 M.S. El Naschie

shown in Ref. [8] to be 2. At the same time, the nine squares lie on two large Peano
blocks as shown in Fig. 1. This curve, as it is well-known, possesses the properties of
being area filling, selfavoiding and ergodic. Consequently its capacity dimension
will tend towards dc = 2 and as will be reasoned later on in some detail, its
information dimension will tend towards unity [7, 8]. As we repeat our procedure
in the sense of a discrete iterated map we see that each of the nine squares of
all new sets of the small green squares lies on smaller and smaller Peano islands
(Fig. 1) which we may now describe as discrete Peano curves. More precisely these
curves have a double nature — they are globally discrete but locally connected,
as can be seen from Fig. 1.

The capacity dimension remains nevertheless the same. Superficially, this
might be regarded as logically inconsistent at least in the traditional geometrical
sense, but again the notion of area-like curve is itself inconsistent in the same
way. In Fig. 1 we see how the nine squares lie in a vertical larger square made of
25 squares. Finally the entire dynamics of an S form bending deformation of the
pressed, stretched and twisted "phase space" lies in a seven by seven larger square.
The invariant points of the set defining the starting point of the discrete Peano
curve construction lies now on the intersections of the S deformed shape indicated
in Fig. 1 with red lines and arrows and their pre-image S -1 . A first estimation of
the area left is A P.: 0.6 of the unit area but this will not be given here. It may be
of interest however, to note that the critical probability of percolation in certain
simulations considered for instance in Ref. [9] was found to be P 0.6.

One may also note that the present picture of a discrete Peano map is rem-
iniscent of fate fractals where we have an area coverage of a finite portion of the
total initial area but with holes in it on all scales. For a middle third Cantor set for
instance, if we delete (1/3)n for the n-th iteration we obtain a fate fractal Cantor
set. However in this case we have dc = 1 instead of dc = 0.6309 and the remaining
length is 4, 0.56 of the original unit length. In fact the same result was obtained
by Farmer [11] for a twodimensional system with quasi periodical orbits. He found
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that the fat fractal set takes about AF ≈ 0.56 of the unit area that represents the
full phase space. This is close to A ≈ 0.6 found here.

4. Relation to quasi periodic forcing and four -dimensional phase space

We have seen how a seemingly trivial change of symmetry due to an out
of plane torsional movement radically changes the capacity-Hausdorff dimension
of the geometrical configuration of an idealized phase space. This movement ob-
viously mimic the action of quasi periodic forcing and the spiralling movement
on a torus. Consequently our discrete map may be regarded in a sense as a quasi
periodically forced horse shoe-like map. That might be the explanation for the
numerically observed link between this form of forcing and the associated capacity
dimension of possible strange attractors. Numerical calculations for these type of
attraction have repeatedly shown for the Poincaré maps a capacity dimension near
to dc = 2 as well as a positive Lebesgue measure [1-4]. In the case of a pendulum
for instance, one finds for both

a strange nonchaotic attractor in the φ - cp Poincaré map with a fractal capacity
dimension

respectively. This alone may suggest that the present model correctly reflects a
substantial part of the phenomenon of nonchaotic strange behaviour. One has, of
course, to remember that twist in a twodimensional horse shoe is not permissible
which shows the cucial role played by the dimensionality of the phase space.
In fact, for a four-dimensional phase space such as that of a quasi periodically
forced pendulum one could argue that "typically" a Poincaré map projection would
have a fractal dimension dc = 2 regardless of whether the attractor is chaotic or
nonchaotic. This may be shown analytically by rescalling the phase dimension
using an appropriate measure.

The starting point of this analysis is the generally accepted realization that
fractals [10] are the carries of complex strange behaviour. Second, we follow Yorke,s
conjecture that single Cantor sets are somehow the back bone of all strange be-
haviour [1]. To that we add what is intuitively evident namely that in one dimen-
sion the simplest fractal set is Cantor's middle third set [12] with dc = log 2/ log 3.
If we accept this, then we can claim that in four-dimensional phase space a strange
set will typically have a Cantor-like fractal dimension d c ≈4. This result is reached
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using the following scaling argument. The idea is to find the equivalent to a tri-
adic Cantor set in two dimensions. Such a set should be triadic Cantorian in every
conceivable direction. It cannot therefore be the Cartesian product of two such
sets, dc = log 4/ log 2 nor a Cantor target dc  = 1 + log 2/ log 3. However, we know
that a unit area A of an Euclidian manifold is given by A = (1)(1) = 1 and conse-
quently a corresponding quasi area of a Cantor set is Ac = (dc( (dc). It follows then
that in order to normalize Ac it must be multiplied by the normalization factor
e 2 = (A/Ac)2. By analogy in n dimensions we would have en = (A/Ac)n . Denot-
ing the n-th Cantor-like fractal dimension n-dimensional space by dc(n)  and the
dimension of the corresponding Euclidian space in n dimensions by dE(n)  = n it
follows then that

where ds is termed the escalation factor. This is the set which we are looking for
and the result is now evaluated for dc = log 2/ log 3 in Table I, where wehave

we have introduced a new quantity termed co-dimension defined as c = dE(n) - dc(n). Note
that ds could be equally interpreted as the Floquet multiplier of a discrete map

There are a few intere8ting obserwations here. First dc(n+1)/dc(n) = ds is the
fractal dimension of the Sierpiński gasket which is the prototype of fractal lattices
with infinite hierarchy of semi-loops. Second, for all n < 4 we have n > dc(n) while
for n > 4 we have dc(n) > n. Only at n = 4 we have a Cantor-like structure which
comes very near to a space filling set. The twodimensional geometrical analogue
of this is the Peano curve which as mentioned ealier is ergodic and shares a few
properties with fat fractals [11, 13]. We may say therefore that at n = 4 the set is
almost ergodic. This point is clearly marked by the codimension C becoming Very
small and then abuptly changing its sign to negative as can be seen in Table I.

It follows then that for a system with four-dimensional phase space (n=4),
a twodimensional Poincaré section will typically have a capacity dimension
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Here we have assumed that the map is very weakly dependent on the phase of
forcing. A numerical justification of this independence may be found in Table 6-2
of Ref. [19]. The paradoxal fact that the fractal dimension becomes substantially
larger than the phase space dimension for n = 4 is a clear indication of a very
rugged hypersurface of possible strange attraction and may be related to what has
been predicted by Roessler. It also indicates that we will have self intersections
and complete loops instead of the semi-loops and selfavoidence of the Sierpiński
gasket and the Peano curve.

5. Insensitivity to initiaI conditions

So far we have not explained why the just described Peano dynamics is non-
chaotic. Leaving the ergodicity of the curve aside, a possible mechanism which
may be at least a partial explanation is also related to the spiralling twist move-
ment of the two frequencies, quasi-periodic forcing. The horse shoe deformation
have all the basic elements of intuitive thinking, namely stretching, contraction
and bending. To that we add now torsional twisting. Taking a long strip of paper
of the length l and width a where l»a, we may start by dividing the strip
in n parts using a pencil so that (l/n)/α = 1. Now we fold only every second
of the drawn squares along the diagonal in one direction only. Subsequently one
cuts out all parts that overlap, except for a very thin seam to keep the chain
connected. The result is a long chain identical to one row of the rotated Peano
squares of Fig. 1. We could have arrived at the same form by twisting the paper
strip in many waves like a long helical spring then flattening it simply by pressing
it on an even surface. The most important, though trivial observation here is that
the length of the paper strip will now be reduced. For l → ∞ the reduction will
tend to 50%. This percentage is, of course, dependent on the ratio (l/n)/α which
is analogous to the frequency of quasi periodic forcing. The shortening is clearly
in the opposite direction to the axial stretching of the map. It follows then that
analogous to one-dimensional horse shoe maps, the Liapunov exponents may be
written as

where γ is the factor of stretching in one direction, α is the factor of compression
in the perpendicular direction while is the factor of compression produced by the
shortening due to torsional waves. Nonchaotic behaviour would consequently be
associated with dynamics for which we have 0 ≤ (γ - β) < 1. It is very important
to observe here that a shortening factor β which is on its own sufficient to just
make λ i smaller than zero, corresponds to a deformation of the Peano squares
to rectangulars. This in turn causes the fractal dimension to drop under 2. For a
rectangular with α/b = 2 for instance, we obtain = log 32/ log6 ≈1.93. We feel
therefore that due to inaccuracy and difficulties of calculating dc  it is not easy to
distinguish between chaotic and nonchaotic attraction based upon this criterion
alone when dc is very close to dc = 2. However we anticipate that in general
nonchaotic attraction will have ≤  2 in addition to an information dimension
dI ≥ 1.
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6. Another view of the problem — the Kaplan-Yorke conjecture

The nonchaoticness of our map can be argued in a different more subtle,
but also slightly terse way. To do this we appeal to two facts and an established
conjecture. First we know that ergodicity in all its different definitions will always
guarantee that the orbit must cover the energy surface uniformly. It follows then
that the pointwise dimension will be equal to its smooth Euclid manifold which in
our case is two. Second, we know that the information dimension which is not a
simple matric-dimension, implies that the information entropy H(ε) is an average
of N(1/ε) of the pointwise dimension. Combining these two facts for the "discrete"
Peano dynamics of our map it follows that dI ≈½dP ≈ 1 for two dimensions. An
intuitive explanation of this may be found by looking to the problem as being
analogous to fat fractals. Using Kaplan—Yorke conjecture about the equality of
Liapunov dimension and the information dimension, it is a relatively simple matter
to show that that dI = 1 implies Liapunov exponents combination guaranteeing
insensitivity to initial conditions and thus nonchaoticness.

7. Discussion and conclusion

Relatively recently S. Donaldson made the discovery of a non-standard smooth
structure on 4-space. He found that Lie groups of all rotations is simple for all di-
mensions higher or lower than 4 bnt not 4. In phase space of dynamical systems four
dimensions also seem to be, associated with strange nonchaotic attractors, wrin-
kled attractors and other interesting phenomena as pointed out by O. Roessler.
We have speculated on the relevance of some of the numbers displayed in Table I
in particular n = = 4. This may be interpreted in some intuitive sense as
suggesting that the hosting four-dimensional Euclidian phase space of a possible
strange attractor is typically saturated with fractals. In turn this meant that it
is ergodic and eventually fill the entire phase space. Consequently the Poincaré
map is also area filling. This means dc --+ 2 and quite frequently also dI —> 1.
This could provide some intuitive basis for Ruelle, Takens and Newhouse theorem
since three-dimensional torus implies at least four-dimensional phase space [20].
According to n = dc(n) = 4 this is now a highly critical state because any further
increase in dimension say n = 5, would obviously lead to self intersection replacing
the semi-loops of the Sierpiński construction by homoclinic loop soliton and even
cusps as a homotopic limit for the loops because theoretically and paradoxically
the fractal dimension dc(n) ≈ 6.3 is significantly higher than n = 5.

A further interesting observation regarding Table I is that for any three
successive dimensions dc(n) ≈ dc(n-1_+dc(n-2). This is strongly reminiscent of the bonacci fractal dimension will by termed the
Fibonacci numbers [4] and the corresponding dimension will be termed the Fi-
bonacci fractal dimension. Should we insist that d(n) = d(n-1)+s(n-2)  then we
find that at n = 4 the corresponding Cantor-like dimension is dc = 4.23606 while
the Sierpiński gasket [13] is replaced by dc  = 1/  ds whereis the golden mean
[12]. In fact our Table I becomes identical to the table calculated by Cook [14] for
Botticelli's Venus. It might be intersting at this point to determirie the escalation
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value ds corresponding to exact critical equality of ds(n) and n in four dimensions.
This is an elementary application of our formula relating dc(n) to n. This way one
finds

This is very close to the Sierpiński gasket [18] dc = 1.58496. Now a single Cantor
set is easily made to have any fractal dimension between one and zero. Within
this range it is now interesting to consider the consequence of having taken a
Cantor set with Hausdorff dimension = log 2/ log 4. In this case dc  = 0.5 seems
to be a distinct value between one and zero which may be regarded naively as
the most "fractal" value in this unit interval. It is also the correlation dimension
found for period doubling chaos in the one-dimensional logistic map as well as
the probability describing the random behaviour of the tent map. It is an elemen-
tary matter to show, using the same previous formula, that dc = 2. The critical
state thus shifts from n = 4 to n = 2. This is however another way of viewing
the "critical" ergodic state n = 4 in case of quasi periodically forced horse shoe
maps displaying Peano-like dynamics [15]. Finally let us consider the implication
of shifting criticality in the present ergodic sense to n = 3. This clearly implies
an escalation factor ds ==1.732050. Notice that in this case dc(2) = 1.73205
is indeed a value found frequently in two-dimensional Poincaré maps of dynamic
systems as well as numerous fractal objects found in nature [13]. The role of mul-
tifractals as well as fractal sets made up of the union of different fractal subsets
in developing more accurate mathematical models have not been discussed here.
Looking again at Table I. One may speculate if fully developed turbulence has
a fractal dimension dc ≈ 6.3 and that five-dimensional phase space is required
to study this phenomenon. This would be for instance a nonlinearly oscillating
set described by a phase space x, x and x' representing temporal and spatial os-
cillation of a state variable x. In addition we need a spatial fluctuation wx and
a temporal fluctuation wt as forcing frequencies. This makes them indeed five
variables. Another worthwhile observation is that the Fibonacci fractal dimension

dF/(3) = 1 + 1/(log 2/ log 3) = 2.584496 is identical to dc=1/(log 2/ log 6), where
log 2/ log 6 is clearly a reasonable measure of the fractal dimension at period 3
chaos of a Feigenbaum cascade. Note also that dc  = log 2/ log6 = 0.387 is very
close to the smallest value (d = 0.378) found for period 3 chaos of the logistic map
[16, 17].

A final point which is worth further careful investigations is the possible
connection between loop soliton and chaos found recently in connection with
diffusion-like process [18] and the Sierpiński gasket structure which we hinted at
earlier on. The preliminary generalization of this structure to higher dimensions
has lead to the fractal dimension dc  = log(s + 1)/ log 2 where s = 3, 4, .... This
means that we need a seven-dimensional space for dc  = 3 and that the codimension
will never converge to zero. Although this is a negative result, the fact that for
three and seven dimensions we have an integer as a fractal dimension is worth
noting.

It is, of course, important to be cautious and appreciate the role of the
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proximity of some rational and irrational numbers such as 3/4, π/5, dc (1+ /2
and dc log 2/ log 3, in arriving at some of the preceding conclusions.

We have made our case that the  Poincaré map capacity dimension of
strange nonchaotic attractors of a quasi periodically, two frequencies forced system
is = 2 using different arguments. Taken on their own, none of these arguments
is completely conclusive. However, taken altogether, we feel that they converge
towards an intuitive informal proof.
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