
Pebble Motion on Graphs with Rotations:
Efficient Feasibility Tests and Planning

Algorithms

Jingjin Yu1,2 and Daniela Rus1

1 CSAIL, Massachusetts Institute of Technology
2 Mechanical Engineering, Boston University

Abstract. We study the problem of planning paths for p distinguish-
able pebbles (robots) residing on the vertices of an n-vertex connected
graph with p ≤ n. A pebble may move from a vertex to an adjacent
one in a time step provided that it does not collide with other pebbles.
When p = n, the only collision free moves are synchronous rotations of
pebbles on disjoint cycles of the graph. We show that the feasibility of
such problems is intrinsically determined by the diameter of a (unique)
permutation group induced by the underlying graph. Roughly speak-
ing, the diameter of a group G is the minimum length of the generator
product required to reach an arbitrary element of G from the identity
element. Through bounding the diameter of this associated permutation
group, which assumes a maximum value of O(n2), we establish a linear
time algorithm for deciding the feasibility of such problems and an O(n3)
algorithm for planning complete paths.

1 Introduction

In Sam Loyd’s 15-puzzle [10], a player arranges square blocks labeled 1-15, scram-
bled on a 4×4 board, to achieve a shuffled row major ordering of the blocks using
one empty swap cell (see, e.g., Fig. 1). Generalizing the grid-based board to an
arbitrary connected graph over n vertices, the 15-puzzle becomes the problem
of pebble motion on graphs (PMG). Here, up to n − 1 uniquely labeled pebbles
on the vertices of the graph must be moved to some desired goal configuration,
using unoccupied (empty) vertices as swap spaces.3 Since the initial work by
Kornhauser et al. [8], PMG and its optimal variants has received significant at-
tention in robotics [13, 18, 19] and artificial intelligence [9, 14], among others. The
connection between PMG and multi-robot path planning is immediately clear,
with potential applications towards micro-fluidics [7], multi-robot path planning
[13], and modular robot reconfiguration [12], to name a few.

As early as 1879, Story [15] observed that the parity of a 15-puzzle instance
decides whether it is solvable. Wilson [20] formalized this observation by showing
that the reachable configurations of a 15-puzzle form an alternating group on

3 We use pebble in place of robot in this paper to keep the notations consistent with
[1, 8], on which the current paper is partially based.

15 letters. An associated planning algorithm was also provided. Kornhauser et
al. [8] improved the potentially exponential time algorithm from [20] by giving
an algorithm for PMG that runs in O(n3) time for graphs with n vertices and
up to n − 1 pebbles. Auletta et al. [1] showed that for trees, deciding whether
an instance of the pebble motion problem is feasible can be done in linear time.
Recently, the linear feasibility result was extended to general graphs for PMG
[6, 21]. Although not a focus of this paper, we note that computing optimal plans
for such problems is generally NP-complete [5, 11, 16, 22].

1

215 3

14

12

13

11

10

8

9

7

6

5

4

1 2

15

3

14

12

13

1110

8

9

765

4

(a) (b)

Fig. 1. Two 15-puzzle instances. a) An unsolved instance. In the next step, one of the
blocks 5, 6, 14 may move to the vacant cell, leaving behind it another vacant cell for
the next move. b) The solved instance.

As evident from the techniques used in [8, 20], PMG and related problems
are closely related to structures of permutation groups. Fixing a graph and the
number of pebbles, and viewing the pebble moving operations as generators,
all configurations reachable from an initial configuration form a group that is
isomorphic to a subgroup of Sn, the symmetric group on n letters. Deciding
whether a problem instance is feasible is then equivalent to deciding whether
the final configuration is reachable from the initial configuration via generator
products. Another interesting problem in this domain is the study of the diameter
of such groups, which is the length of the longest minimal generator product
required to reach a group element. Driscoll and Furst [3, 4] showed that any group
represented by generators that are cycles of bounded degree has a diameter of
O(n2) and such a generator sequence is efficiently computable. For generators
of unbounded size, Babai et al. [2] proved that if one of the generators fixes at
least 67% of the domain, then the resulting group has a polynomial diameter.
In contrast, groups with super polynomial diameters exist [3].

Somewhat surprisingly, a natural generalization of PMG allowing rotations
of the pebbles without empty swap vertices has not received much attention,
possibly due to its difficulty. As an example, in Fig. 2(a), the pebbles labeled
3, 4, and 5 are allowed to rotate clockwise along the (only) triangle to achieve
the configuration in Fig. 2(b). We call this generalization the problem of pebble
motion with rotations (PMR), a formal definition of which will follow shortly.
Synchronous rotations are important to have in a multi-robot setting for at least
two reasons. First, with communication, robots are able to execute synchronous
rotational moves easily. Disabling such moves thus wastes robots’ capabilities.

1
6

2

5

4

3

7

10

9

8

11

1 6

2 4

3

5 7

9

8

11

10

(a) (b)

Fig. 2. Two configurations that can be turned into each other in a single synchronized
move.

Second, allowing rotational moves could allow more problem instances to be
solved and could also significantly reduce the length of plans (note that the
length of a plan can never be increased by adding more modes of motion).

In this paper, we employ a group theoretic approach to derive a linear time
algorithm for testing the feasibility of a given PMR instance. The algorithm also
implies a cubic time algorithm for computing full plans when a PMR instance is
feasible. Thus, we establish that PMR induces similar algorithmic complexity as
PMG does in the sense that planning and feasibility test take O(n3) and linear
time, respectively. Nevertheless, the algorithms for solving PMG and PMR have
significant differences due to the introduction of synchronous pebble rotations.
By delivering these algorithms for PMR, we also bring forth the contribution
of providing a now fairly complete landscape over graph-based multi-robot path
planning problems.

We formally define PMG and PMR problems in Section 2. In Section 3, we
look at the groups generated by cyclic rotations of labeled pebbles, on graphs
fully occupied by pebbles. We show that such groups have O(n2) diameters. With
this intermediate result, we continue to show, in Section 4, that the feasibility
test of the PMR problem can be performed in O(|V |+ |E|) time, which implies
an O(n3) algorithm for computing a feasible solution (the set of movements).
We conclude the paper in Section 5.4

2 Pebble Motion Problems

Let G = (V,E) be a connected undirected graph with |V | = n. Let there be
a set p ≤ n pebbles, numbered 1, . . . , p, residing on distinct vertices of G. A
configuration of these pebbles is a sequence S = ⟨s1, . . . , sp⟩, in which si denotes
the vertex occupied by pebble i. A configuration can also be viewed as a bijective
map S : {1, . . . , p} → V (S) in which V (S) denotes the set of occupied vertices
by S. We allow two types of moves of pebbles. In a simple move, a pebble
may move to an adjacent empty vertex. In a rotation, pebbles occupying all
vertices of a cycle can rotate simultaneously (clockwise or counterclockwise)

4 Given the limited space, we focus on establishing the theoretical foundations behind
the algorithms instead of the algorithms themselves. We believe such coverage offers
more insights into the intrinsic structures of PMR problems.

such that each pebble moves to the vertex previously occupied by its (clockwise
or counterclockwise) neighbor. Two configurations S and S′ are connected if
there exists a sequence of moves that takes S to S′. Let S and D be two pebble
configurations on a given graph G, the problem of pebble motion on graphs is
defined as follows.

Problem 1 (Pebble Motion on Graphs (PMG)). Given (G,S,D), find a sequence
of simple moves that take S to D.

When G is a tree, PMG is also referred to as pebble motion on trees (PMT).
In this case, an instance is usually written as I = (T, S,D) with T being a tree.
When both simple moves and rotations are allowed, the resulting variant is the
problem of pebble motion with rotations.

Problem 2 (Pebble Motion with Rotation (PMR)). Given (G,S,D), find a se-
quence of simple moves and rotations that takes S to D.

If G is a tree, then a PMR is simply a PMT. We note that it may be possible
to achieve additional efficiency by allowing multiple simple moves and rotations
(along disjoint cycles) to take place concurrently. For example, the configuration
in Fig. 2(a) can be taken to the configuration in Fig. 2(b) in a single concurrent
move. A full discussion of such moves (i.e., the optimality perspective) is beyond
the scope of this paper.

3 Graph Induced Group and the Upper Bound on its
Diameter

3.1 Groups Generated by Cyclic Pebble Motions and their
Diameters

A particularly important case of PMR is when p = n; we restrict our discussion
to this case in this section. When p = n, only synchronous rotations are possible.
Given two configurations S and S′ that are connected, they induce a permutation
of the pebbles, which is computable via σS,S′(i) = S−1(S′(i)) for each pebble i;
σS,S is the identity element. Given an initial configuration S0, let S denote the set
of all configurations reachable from S0. It can be verified, using basic definitions
of groups, that the permutations σS0,Si over all Si ∈ S form a subgroup of Sn,
the symmetric group on n letters. Since this group is determined by the graph
G, we denote it G.

Two cycles ofG are disjoint if their vertex sets have empty intersection. When
p = n, each synchronous move corresponds to the rotations of pebbles along a
set of of disjoint cycles. Let C be the collection of all sets of disjoint cycles in G;
each C ∈ C is a unique set of disjoint cycles of G. Since the pebbles may rotate
clockwise or counterclockwise along a cycle ci ∈ C, each set of disjoint cycles C
can take a configuration to 2|C| new configurations with one move. That is, each
C yields 2|C| generators of G. Let the set of all generators obtained this way be
G. As an example, the graph in Fig. 3 has two cycles, with |C| = 3 and |G| = 8

v
 1

v
 2

v
 3

v
 4

v
 5v

 6v
 7

v
 8

v
 9

v
 10

Fig. 3. For the graph above, the collection of sets of cycles are C = {{v1v2v3v4v5},
{v6v7v8v9v10}, {v1v2v3v4v5, v6v7v8v9v10}}.

(note that |G| = 2|C| does not hold in general). We make the simple observation
that these definitions yield a natural bijection between synchronous moves and
elements of G. As such, when a configuration S′ is reachable from a configuration
S, we say that the permutation σS,S′ ∈ G is reachable (from the identity) using
products of generators from G corresponding to the synchronous moves. We fre-
quently invoke this bijection between synchronous moves and generators without
explicitly stating so. Lastly, any element x ∈ G can be expressed as generator
product g1g2 . . . gk in which g1, . . . , gk ∈ G. Let kx be the minimum k such that
x = g1g2 . . . gk. The diameter of G, diam(G), is defined as the maximum kx
over all x ∈ G.

3.2 Upper Bound over Group Diameters

The main result to be established in this section is diam(G) = O(n2). To show
this, G is divided into classes based on its connectivity. When G is connected
(1-connected) but none of its subgraphs are 2-connected (i.e., G has no cycles),
it is a tree. In this case, no pebble can move. Another simple case is when G is
a cycle, the simplest 2-connected graph. Then, it is clear that all elements of G
are generated by a single rotation.

Lemma 1 (Trees and Cycles). If G is a tree, then G ∼= {1}, the trivial group.
If G is a cycle, then G ∼= Z/n, the cyclic group of order n.

a
 1

a
 2

a
 `

b

c r

c
 1

c
 2

Fig. 4. Two cycles sharing one common vertex. The graph is separable at b.

When G is connected but the removal of some vertex from G leaves two or
more components, it is separable. An important case here is when G is a set of

cycles sharing vertices so that no edge of G is on more than one cycle. Such
graphs form a subset of 2-edge-connected graphs. Fig. 4 gives an example with
two cycles. Following convention, An denotes the alternating group on n letters.
For groups, G1 ≥ G2 or G2 ≤ G1 denotes that G2 is a subgroup of G1. For two
configurations S and S′ over the same set of pebbles on the same graph, we say
that they are cycle similar if the following property holds. For any pebble a, let
the sets of cycles (of the underlying graph G) occupied by a in configurations S
and S′ be CS and CS′ , respectively. Then CS ∩ CS′ ̸= ∅.

A key result of this section is the following.

Theorem 1 (Cycles, Separable). If every edge of a separable graph G is on
exactly one cycle, then G ≥ An and diam(G) = O(n2).

Proof. Given configurations S and D, we claim:
1. In O(n2) moves, D can be taken to some configuration D′ such that S and

D′ are cycle similar. As an example, in Fig. 4, assuming the given configuration
is S, this step ensures that in configuration D′, pebbles ai’s are all on the left
cycle and pebbles ci’s are all on the right cycle. The pebble b may appear on
either one of the two cycles.

2. In O(n2) moves from D′, a configuration D′′ can be reached such that
either D′′ = S or D′′ and S differ by a transposition (group action). We require
that the transposition is fixed for a fixed S and involves two adjacent pebbles of
S. Let S′ be the result of letting this transposition act on S.

These claims are proved in lemmas that follow. By these claims, an arbitrary
D can reach either S or S′. Therefore, all configurations (and consequently el-
ements of Sn) are partitioned into two equivalence classes based on mutual
reachability. Since the only subgroup of Sn of index 2 is An, this implies that
G ≥ An.

When G ∼= An, any element of G is a product of generators from G with a
length of O(n2), proving diam(G) = O(n2). If G is not isomorphic to An, since
the only subgroups of Sn containing An are An and Sn itself, G ∼= Sn. This
implies thatAn has at most two cosets inG; denote the other coset ofAn asAn

c,
which also have a diameter of O(n2) (to see this, note that any configuration D is
reachable from one of S, S′ inO(n2) moves). From the identity, all elements ofAn

are reachable using generator products of length O(n2). Since elements of An
c

are now reachable from elements of An, an element of An
c must be reachable

from the identity using a generator product of length O(n2) as well. Therefore,
when G ∼= Sn, all elements of G are reachable using generator products of length
O(n2), yielding diam(G) = O(n2). ⊓⊔

Before moving to the lemmas, we note that when G is separable and every
edge of G is on exactly one cycle, the edges of G can be partitioned into equiv-
alence classes based on the cycles they belong to. Because G is separable, every
cycle must border one or more cycles and at the same time, two cycles can share
at most one vertex. Such a graph is also called a cactus graph. Moreover, there
exists a cycle that only shares one vertex with other cycles. We call such a cycle
a leaf cycle. An example of a leaf cycle is given in Fig. 5.

a
 2

a
 1

v

C1

1

1

0

2

2

-1

Fig. 5. The dual tree structure in a separable graph G with every edge on exactly one
cycle. The numbers represent the cycle distances of the cycles to the leaf cycle C, which
in fact is the root of the tree.

Given a cycle C ′ on G, it is of cycle distance dc to C if a vertex on C ′ needs
to travel through at least dc cycles to reach C. A neighboring cycle of C has
distance 0 since they share a common vertex. Let C have a cycle distance of −1
by definition. This induces a (dual) tree structure on the cycles when viewing
them as vertices joined by edges to neighbors (see, e.g., Fig. 5). Computing such a
tree takes time O(|V |+|E|) because obtaining maximal 2-connected components
takes linear time [17]. The first claim in the proof of Theorem 1 can be stated
as follows.

Lemma 2 (Initial Arrangement). Given a separable G with each edge on
exactly one cycle and configurations S and D, in O(n2) moves, a configuration
that is cycle similar to S is reachable from D.

Proof. Note that a pebble may reside on multiple cycles; this lemma only
ensures that each pebble gets moved to one of the cycles it belongs to in S. First
we show that a single pebble can be relocated to a cycle it belongs to in S in O(n)
rotations, without affecting pebbles that are previously arranged. When G is two
cycles joined on a common vertex (e.g., Fig. 4), without loss of generality, assume
that we need to move ai from the left cycle to the right cycle. This implies that
some pebble cj (and possibly b) does not belong to the right cycle in S. We note

that the groupG in this case has four generators, gℓ =

(
a1 a2 . . . aℓ b
b a1 . . . aℓ−1 aℓ

)
, gr =(

c1 c2 . . . cr b
c2 c3 . . . b c1

)
, which correspond to clockwise rotations along the left and

right cycles, respectively, and their inverses, g−1
ℓ and g−1

r . One can verify that the
generator product g−i

ℓ g−j
r giℓ exchanges ai and cj between the two cycles without

affecting the cycle membership of other pebbles (see Fig. 6). For the general case
in which a pebble needs to go through some k cycles, denoting the generators as
g1, . . . , gk, it is easy to verify that a product of the form g−i1

1 g−i2
2 . . . gikk . . . gi22 gi11

achieves what we need, with i1 + . . . + ik < n. There may be more than these
2k basic generators, but we do not need the other generators for this proof.
Therefore, at most 2n moves are needed to move one pebble to the desired cycle.

a
 i

c
 j

a
 i

c
 j

a
 i

c
 j

Fig. 6. Illustration of the vertex arrange algorithm for two adjacent cycles.

To avoid affecting pebbles that are previously arranged, we may simply fix a leaf
cycle C and start with cycles based on their cycle distance to C in decreasing
order. At most 2n2 moves are required to arrange all n pebbles to the desired
cycles. ⊓⊔

Lemma 3 (Rearrangement). The pebbles arranged according to Lemma 2
can be rearranged such that the resulting configuration is the same as S or differ
from S by a fixed transposition of two neighboring pebbles in S. Rearrangement
requires O(n2) moves.

Proof. For a fixed G, let C be a leaf cycle and let C border other cycle(s)
via vertex v. In S, let a1 be the pebble occupying counterclockwise neighboring
vertex of v on the cycle C, and let a2 be the counterclockwise neighbor of a1
on C (again, see Fig. 5 for an illustration of this setup). The fixed transposition
will be (a1 a2).

We rearrange pebbles to match the configuration S starting from cycles with
higher cycle distances to the leaf cycle C, using the neighboring cycle with smaller
cycle distance (such a cycle is unique). We show that the pebbles on the more
distant cycle can always be rearranged to occupy the vertex specified by S.
Moreover, this can be achieved using moves that only affect the ordering of
two pebbles on the neighboring cycle. Without loss of generality, we use the
two cycle example from Fig. 4 and let the right cycle be the more distant one.
The generators gℓ, g

−1
ℓ , gr, and g−1

r from previous lemma remain the same. To
exchange two pebbles on the right cycle, for example ci, cj , we may use the
following generator product

g−2
ℓ g−i

r gℓg
j−i
r g−1

ℓ g−j+i
r gℓg

−i
r gℓ. (1)

It is straightforward to verify that (1) works. To make it clear, Fig. 7 illustrates
the application of (1) for exchanging c2 and c5 using a1, a2. Every such exchange
requires at most 2n moves.

Performing such exchanges iteratively, within 2n2 moves, all pebbles except
those on the leaf cycle C can be rearranged to occupy vertices specified by S. Re-
versing the process, we can arrange all pebbles on C to occupy vertices specified
by S, using a neighboring cycle C ′, affecting the ordering of at most two pebbles
on C ′. Repeating this process again with C ′ using C as the neighboring cycle
and a1, a2 as the swapping pebbles, all pebbles except possibly a1, a2 occupy the
vertices specified by S. ⊓⊔

a
 1

a
 1

a
 2

c
 5

a
 1

a
 2

c
 2

c
 5

a
 1

a
 2

c
 2c

 5

a
 2

c
 2

c
 5

a
 1

a
 2

c
 2

c
 5

a
 1

a
 2

c
 2

c
 5

a
 1

a
 2

c
 2

c
 5

a
 1

a
 2

c
 2

c
 5

a
 1

a
 2

c
 2

c
 5

c
 2

Fig. 7. Illustration of the rearrangement algorithm (from left to right, then top to
bottom).

The above two lemmas complete the proof of Theorem 1. At this point, it is
easy to see that when G is separable with each edge on a single cycle, G ∼= Sn

if and only if G contains an even cycle, corresponding to the composition of an
odd number of transpositions. Otherwise, G ∼= An. We are left with the case in
which G is 2-connected but not a (single) cycle.

Theorem 2 (2-connected, General). If G is 2-connected and not a cycle,
G ∼= Sn with diam(G) = O(n2).

Proof. Our proof again starts by showing that the locations of two pebbles
can be exchanged without affecting the locations of other pebbles. Given a 2-
connected graph G that is not a cycle, it can always be decomposed into a cycle
plus one or more ears (an ear is a simple path P whose two end points lie on some
cycle that does not contain other vertices of P). Therefore, any two pebbles on
G must lie on some common cycle with one attached ear. We may then assume
that the two pebbles to be exchanged lie somewhere on two adjacent cycles (i.e.,
they are two arbitrary pebbles in Fig. 8). Restricting to such a graph G′ of G,
which has three cycles (left, right, and outer), rotations along these cycles will
not affect the rest of the pebbles not on G′. We claim that moving within G′

is sufficient to exchange any two pebbles on G′ and the operation can be done
with O(n) moves.

Let G′ have n1+n2+n3 vertices, with n1 vertices belonging to the left cycle
only, n3 vertices belonging to the right cycle only and n2 vertices shared by the
two cycles. Assuming the initial pebble configuration is as illustrated in Fig. 8,

a
 1

a
 2

a

b 1

b 2

b

c

c
 1

c
 2

 n 1
 n 2

 n 3

Fig. 8. A simple 2-connected graph. There are six moves for this configuration: Rotat-
ing clockwise or counterclockwise along one of the three cycles.

we have the following generators,

gℓ =

(
a1 a2 . . . an1 bn2 . . . b1
b1 a1 . . . an1−1 an1 . . . b2

)
,

gr =

(
c1 c2 . . . cn3 bn2 . . . b1
c2 c3 . . . bn2 bn2−1 . . . c1

)
,

go =

(
b1 c1 . . . cn3 bn2 an1 . . . a1
c1 c2 . . . bn2 an1 an1−1 . . . b1

)
,

which are clockwise rotations along the left, right, and the outer cycles of G′,
and their inverses, g−1

ℓ , g−1
r , and g−1

o . Note that

grgℓg
−1
o =

(
b1 c1
c1 b1

)
= (b1 c1). (2)

That is, we may exchange (transpose) b1 and c1 using a generator product of
length 3. Using this length 3 product grgℓg

−1
o , it is possible to exchange any

two pebbles on G′ without affecting other pebbles. We elaborate two such cases,
all other cases are similar. In a first case we exchange ai and cj . To do this,
we first move cj to c1’s location, followed by moving ai to b1’s location. We
can then switch ai and cj using the primitive grgℓg

−1
o . Reversing the earlier

steps then switches ai and cj without affecting any other pebbles. The complete
product sequence is g−i

ℓ gjrgℓg
−1
o g−j+1

r giℓ, which requires O(n) moves or generator
actions. Similarly, if we want to switch some ci, cj that are not adjacent, we can
move them along the outer cycle until one of them belongs to the left cycle and
the other to the right cycle. The case of exchanging ai, cj then applies, after
which we reverse the earlier moves on the outer cycle to obtain the net effect of
switching ci, cj . The number of moves is again O(n). This implies G ∼= Sn and
diam(G) = O(n2). ⊓⊔

Combining Theorems 1 and 2 concludes the case for 2-edge-connected graphs
that are not single cycles; the case of general graph then follows. Since we will
mention “2-edge-connected component” fairly frequently, we abbreviate it to
“TECC” except in theorem statements. Also, we call each component of G after
deleting all TECCs a branch.

Proposition 1 (2-edge-connected). If G is 2-edge-connected and not a single
cycle, G ≥ An with diam(G) = O(n2).

Proof. A 2-edge-connected graph G can be separated into 2-connected com-
ponents via splitting at articulating vertices. A (dual) tree structure, similar to
that illustrated in Fig. 5, can be built over these components. The two-step al-
gorithm used in the proof of Theorem 1, in combination with Theorem 2, can
be applied to show that G ≥ An and diam(G) = O(n2). ⊓⊔

After gathering all cases, we obtain the following main result for this section.

Theorem 3 (General Graph). Given an arbitrary connected, undirected, sim-
ple graph G, diam(G) = O(n2).

Proof. Pebbles on vertices of G that are not on any cycle are always immobile.
Deleting those vertices does not change G. After all such vertices are removed,
we are left with the TECCs of G. Denoting the associated groups of these com-
ponents {Gi}, G is the direct product of the Gi’s. Since all Gi’s have O(n2)
diameter, so does G. ⊓⊔

4 Linear Time Feasibility Test of PMR

We now describe a linear time algorithm for testing the feasibility for PMR,
using a proof strategy similar to that from [1] on PMT. We first restate a result
form [1].

Theorem 4 (Theorem 3 in [1]). Given an instance (T, S,D) of PMT, in
O(n) steps, an instance (T, S′, D) of PMT can be computed such that S′, D
contain the same set of vertices and (T, S, S′) is feasible.

The following corollary is also obvious.

Corollary 1. Given an instance (T, S,D) of PMR, let (T, S′, D) be the new
instance obtained according to Theorem 4. Then (T, S,D) is feasible if and only
if (T, S′, D) is feasible.

By Theorem 4 and Corollary 1, reconfiguration can be performed on a PMR
instance I = (G,S,D) to get an equivalent instance I ′ = (G,S′, D) so that
S′, D have the same underlying vertex set (i.e., V (S′) = V (D)). To do this, find
a spanning tree T of G. The O(n) time algorithm guaranteed by Theorem 4 can
then compute a desired instance (T, S′, D) with S′, D having the same set of
vertices. Since the moves taking (T, S, S′) is feasible, (G,S, S′) is feasible; there-
fore, (G,S,D) is feasible if and only if (G,S′, D) is feasible. Given an instance
I = (G,S,D) in which S and D have the same underlying set, we call it the
pebble permutation with rotation problem or PPR. Given a PPR instance, we
say that two pebbles are equivalent if they can exchange locations with no net
effect on the locations of other pebbles. A set of pebbles are equivalent if every
pair of pebbles from the set are equivalent.

In testing the feasibility of a PPR instance I = (G,S,D), a simple but special
case is when G is a cycle. In this case, S and D induce natural cyclic orderings
of the pebbles. The following is then clear.

Lemma 4. Let I = (G,S,D) be an instance of PPR in which G is a cycle.
Then I is feasible if and only if si = d

(i+k) mod p
for some fixed natural number

k.

When G is not a cycle, the feasibility test is partitioned into four main cases,
depending on the number of pebbles, p, with respect to the number of vertices
of G. It is assumed that G contains at least one TECC since otherwise G is a
tree and the problem is a PMT problem.

4.1 Feasibility test of PPR when p = n

When p = n, all vertices are occupied by pebbles. Clearly, if a pebble is on
a vertex that does not belong to any cycle (i.e., a branch vertex), the pebble
cannot move. Therefore, I = (G,S,D) is feasible only if for every branch vertex
v ∈ V (G), S−1(v) = D−1(v). Furthermore, given any TECC C of G, S−1(C) =
D−1(C) must also hold, since pebbles cannot move out a TECC. If these condi-
tions hold, the feasibility of I is reduced to feasibilities of {(Ci, S|S−1(Ci), D|D−1(Ci))},
in which Ci’s are the TECCs of G and S|S−1(Ci) denotes S restricted to the do-
main S−1(Ci); same applies to D|D−1(Ci). More formally,

Proposition 2. Let I = (G,S,D) be an instance of PPR with p = n. Let
{Ci} be the set of 2-edge-connected components of G. Then I is feasible if and
only if the following holds: 1. for all v ∈ V (G\(∪iCi)), S−1(v) = D−1(v),
2. for each Ci, S−1(Ci) = D−1(Ci), and 3. for each Ci, the PPR instance
(Ci, S|S−1(Ci), D|D−1(Ci)) is feasible. Moreover, the feasibility test can be per-
formed in linear time.

Proof. Finding TECCs of G can be done in O(|V | + |E|) time [17]. Check-
ing whether condition 1 holds takes linear time. For checking condition 2, for
each Ci, we first gather S−1(Ci) and for each pebble in S−1(Ci), mark the
pebble as belonging to Ci. We can then check whether the pebbles in D−1(Ci)
also belong to Ci in linear time. For condition 3, deciding the feasibility of
(Ci, S|S−1(Ci), D|D−1(Ci)) can be done using the results from Section 3. This
check can performed as follows. 1. Check whether Ci is a cycle, which is true if
and only if no vertex of Ci has degree more than two. If this is the case, apply
Observation 4 to test the feasibility on Ci; 2. Check whether Ci is a cactus with
no even cycle. We can verify whether Ci is a cactus as follows: Using depth first
search (DFS), detecting cycles of Ci. If Ci is a cactus, then it should assume a
“tree” structure shown in Fig. 5; the first cycle that is found must be a leaf cycle.
Deleting this cycle (without deleting the vertex that joins this cycle to the rest of
Ci) from Ci yields another cactus. Repeating the process tells us whether Ci is a
cactus. As we are finding the cycles, we can check whether there is an even cycle.
If Ci is indeed a cactus with no even cycle, the possible configurations have two
equivalence classes. The subproblem is only infeasible if S|S−1(Ci), D|D−1(Ci) fall
into different equivalence classes, which can be checked by computing the parity
of the permutation σS,D, restricted to Ci, in linear time; 3. For all other types
of Ci, the subproblem is feasible. ⊓⊔

4.2 Feasibility test of PPR when p = n − 1

When p = n − 1, nearly all PPR instances, in which G are 2-edge-connected
graphs, are feasible.

Lemma 5. Let I = (G,S,D) be an instance of PPR in which G is 2-edge-
connected and not a cycle. If p < n, then I is feasible.

Proof. By Theorems 1 and 2, G ≥ An. That is, there are at most two equiva-
lence classes of configurations, with configurations from different classes differ by
a transposition of neighboring pebbles. Since there is at least one empty vertex,
viewing that vertex as a “virtual” pebble that can be exchanged with a neigh-
boring pebble in one move, it is then clear that the two configuration classes
collapse into a single class. ⊓⊔

Lemma 6. Let I = (G,S,D) be an instance of PPR in which G, after deleting
one (or more) degree 1 vertex (vertices), is a 2-edge-connected graph. If p < n,
then I is feasible.

Proof. Note that by degree 1 vertices, we mean that these vertices have degree 1
in G. LetH be the 2-edge-connected graph after deleting all degree 1 vertices and
let v1, . . . , vk be the degree 1 vertices. Let the neighbor of vi in G be v′i ∈ V (H).
Since v ∈ v1, . . . , vk has degree 1, it is attached to H via a single edge. Let Hi be
the subgraph of G after deleting all vertices in v1, . . . , vk except vi. Assume that
v1 is empty initially, we show next that all pebbles occupying H1 are equivalent.
That is, an arbitrary configuration of these pebbles can be achieved.

v¶

v
1

1

Fig. 9. With one empty vertex, pebbles on a triangle can be arranged to achieve any
desired configuration. This generalizes to an arbitrary TECC.

If H is cycle, the subroutine illustrated in Fig 9 shows how an arbitrary con-
figuration of pebbles can be achieved for a triangle H, which directly generalizes
to an arbitrary sized cycle. This shows that all pebbles on H1 fall in the same
equivalence class. If H is not a cycle, we can move an arbitrary pebble j from H
to v1. Lemma 5 implies that all pebbles on H are equivalent. Since j is arbitrary,
all pebbles on H1 are equivalent.

Having shown that all pebbles on H1 are equivalent, we move an arbitrary
pebble j to v1 and empty vertex v2 (if there is a v2). Following the same pro-
cedure, all pebbles on H2 are equivalent. Since j is arbitrary, all pebbles on
H, v1, v2 are equivalent. Inductively, all pebbles on G are equivalent. Therefore,
an arbitrary instance I is feasible. ⊓⊔

When there is a single empty vertex on G, it is clear that pebbles can be
moved so that the empty vertex is an arbitrary vertex of G. In particular, for
any TECC H of G, we can move the pebbles so that a vertex of H is empty. By
Lemma 6, all pebbles on H and its distance one neighboring vertices fall in the
same equivalence class. We now show that the feasibility of the case of p = n−1
can be decided in linear time.

Proposition 3. Let I = (G,S,D) be an instance of PPR in which p = n − 1
and G is not a cycle. The feasibility of I can be decided in linear time.

Proof. We start with pebble configuration S and group the pebbles into equiv-
alence classes. Without loss of generality, assume that S leaves a vertex of a
TECC, say H, unoccupied. By Lemma 6, all pebbles on H and its distance 1
neighbors belong to the same equivalence class, say hS,1. Now, check whether
any pebble in hS,1 is on some other TECC H ′ ̸= H. If that is the case, all pebbles
on H ′ and its distance 1 neighbors are also equivalent and belong to hS,1. When
no more pebbles can be added to hS,1 this way, hS,1 is completely defined.

Let v be a vertex neighboring a vertex occupied by a pebble from hS,1 (v
itself is not occupied by a pebble in hS,1), if v is not a TECC vertex, the pebble
currently on v cannot be move to a TECC and therefore is not equivalent to
any other pebble. The pebble then gets its own equivalence class, say hS,2. If
v belongs to a TECC, say Hv, then all pebbles on Hv and all Hv’s distance
1 neighbors that are not yet classified belong to hS,2; hS,2 is then expanded
similarly to hS,1. At this point, the procedures given so far apply to partition
all pebbles into equivalence classes. It is not hard to see the algorithm takes
linear time to complete using breadth first or depth first search, treating each
TECC as a whole. As the start configuration S is being classified, the same is
done to D. In particular, if a set of pebbles of S belongs to an equivalence class
hS,i, then the pebbles of D occupying the same set of vertices get assigned to
the class hD,i. The instance I is feasible if and only if hS,i = hD,i for all i (this
can be done in linear time as we have shown in checking the second condition
in Proposition 2). ⊓⊔

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

Fig. 10. An example of the case p = n − 1. The pebbles are put into 5 different
equivalence classes, distinguished by different colors.

Fig. 10 provides an example of applying the above procedure to a given
pebble configuration, which partitions the pebbles into 5 equivalence classes.

4.3 Feasibility test of PPR when p < N(TECCs)

We denote by N(TECCs) the number of vertices of all TECCs of G. An instance
is almost always feasible when p < N(TECCs).

Theorem 5. Let I = (G,S,D) be an instance of PPR in which G is not a
cycle. If p < N(TECCs), then I is feasible.

Proof. Since the number of pebbles are not enough to occupy all TECC vertices,
we can update configuration S to a new one S′ such that all pebbles are on TECC
vertices. Repeating the same moves over the configuration D to get D′ (i.e., if
we move a pebble from vi to vj in the initial pebble configuration, we move the
corresponding pebble from vi to vj in the final pebble configuration). After this
process is complete, the updated start and final configurations again occupy the
same set of vertices; (G,S,D) is feasible if and only if the (G,S′, D′) is feasible.
In the rest of the proof we show that (G,S′, D′) is feasible.

v
 jC

 i

C
 j

v i

Fig. 11. A graph with two TECCs.

Since not all TECC vertices are occupied in S′, at least one TECC, say Ci,
has an empty vertex. By Lamma 6, all pebbles on Ci are equivalent. Now let Cj

be another TECC joined to Ci via a single branch (see Fig. 11 for an example).
Since any pebble on Cj can be moved to vertex vj via a proper sequence of
rotations, it is then possible to exchange any pair of pebbles p1 on Ci and p2 on
Cj : move p2 to vj , empty vi, move p2 to vi, rotate p1 to vi, and move it to vj .
Via induction, any pair of pebbles on G can be exchanged, without affecting the
current configuration of other pebbles. Given this procedure, we can iteratively
arrange each pebble i, starting from pebble 1, by exchanging pebble i with some
other pebble occupying i’s vertex in D′. With up to p− 1 exchanges, all pebbles
can be arranged to their desired final configurations. ⊓⊔

4.4 Feasibility test of PPR when N(TECCs) ≤ p < n − 1

For this last case, given a PPR instance, (G,S,D), we first move pebbles in
S and D so that vertices of all TECCs are occupied. To perform this in lin-
ear time, a “fake” goal configuration Df is created with p pebbles such that
all TECCs are full occupied, in an arbitrary order. This is possible because
N(TECCs) ≤ p < n− 1. Using a spanning tree T of G and apply Theorem 4 to
(T, S,Df), (T,D,Df), we get two new instances (T, S′, Df), (T,D

′, Df) with the
property that S′, D′, and Df all occupy the same set of vertices and (T, S, S′),

(T,D,D′) are both feasible. Thus, we obtain a new PPR instance (G,S′, D′),
which is feasible if and only if (G,S,D) is, with the additional property that ver-
tices of all TECCs are occupied. For convenience, we call an instance (G,S,D) of
PPR in which all TECC vertices are occupied a rearranged pebble permutation
problem, or RPP. Note that this implies p ≥ N(TECCs).

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8 v

1

v
2

v
3

v
4

v
5

v
6 v

7

v
8

Fig. 12. The skeleton tree (on the right) after contracting the graph on the left (from
Fig. 10); the black dots are the composite vertices.

Next, we contractG to get a skeleton tree, TG, by collapsing each TECC into a
composite vertex; other vertices and edges are left intact. For example, the graph
from Fig. 10 have the skeleton tree shown in Fig. 12. This procedure induces a
natural map fT that takes any subgraph H of G to fT (H) as a subgraph of
TG (via mapping all vertices belonging to the same TECC of G to a composite
vertex of TG and non-composite vertices of G to non-composite vertices of T).
Given an instance (G,S,D) of RPP with p < n − 1 pebbles, all pebbles on
the same TECC are equivalent by Lemma 6. This induces a problem instance
(TG, S

′, D′) in which all pebbles (in S and D) on the same TECC of G are
combined into a composite pebble (in S′ and D′). Given two vertices u and v
in a graph, u v denotes a (shortest) path between u and v. Such a path is
unique when the graph is a tree. By all vertices on (resp. in) u v, we mean
vertices of u v including (resp. excluding) u and v. Lemma 6 from [1] can be
extended to RPP as follows.

Lemma 7. Let (G,S,D) be an instance of RPP in which G is not a cycle and
N(TECCs) ≤ p < n − 1. Let u, v, and w be vertices of G such that the path
between u and v and the path between v and w are not edge disjoint. Assume u
and v are occupied by pebbles and moves exist that take S to a new configuration
in which pebble S−1(u) is moved to v and S−1(v) is moved to w. Then S can be
taken to an configuration S′ in which S and S′ are the same except pebbles on
u and v are exchanged.

Proof. For convenience, let p1 := S−1(u) and p2 := S−1(v). Let the overlapping
part of u v and v w be y v. Let the sequence of moves that take p1 to v
and p2 to w be represented as X = ⟨S = S0, S1, . . . , D⟩. If it is possible to move
p1, p2 to the same TECC, then clearly the locations of p1, p2 can be exchanged on
the TECC without changing any other pebble’s configuration. Reversing earlier
moves then exchanges p1, p2 on u and v. For the rest of this proof, we assume that
p1, p2 can never occupy vertices from the same TECC. Note that this implies hat

p1, p2 can never occupy vertices of the same TECC in different configurations
originated from S; in particular, no vertex on y v can be on a TECC. To see
this, if p1, p2 both reach a TECC H in some (possibly different) configurations
in X, assume without loss of generality that p1 reaches H first. Since all pebbles
on H are equivalent and H contains at least three vertices, p1 can always stay
on H: Suppose X at some point wants to move p1 outside of H. If p1 is the only
pebble on H, p1 does not hinder any other pebbles from moving through H and
moving p1 out will only crowd the rest of G, making further pebble movements
outside H harder. If p1 is not the only pebble on H, we may pick any pebble on
H to leave H instead of p1. Then p2 will eventually reach H with p1 still on H,
allowing them to exchange.

For the case in which p1, p2 never visits the same TECC of G, let W denote
the graph formed by the vertices and edges traveled by p1, p2 as they move
along the sequence of configurations in X. Let TW = fT (W). If TW contains
composite vertices that are not leaves of TW , let z be such a composite vertex
andHz be the TECC corresponding to z inG. LetG(Hz, v) denote the connected
component of G containing v after deleting Hz and let G(Hz, v) denote rest of
the components. By assumption, only one of p1 or p2 may visit Hz. Assume it
is p1 (the case of p2 is similar), then p2 can only visit vertices of G(Hz, v); in
fact the entire path v w is within G(Hz, v). Using the same argument from
the previous paragraph, X can be modified so that p1 does not visit vertices
of G(Hz, v), unless u ∈ G(Hz, v). In this case, however, p1 is equivalent to any
pebble that is initially on Hz; the lemma holds if an only if a pebble initially on
Hz in S can move to v and p2 can move to w. Via induction, it must be possible
for some pebbles p′1, equivalent to p1, and p2 to move from some u′ to v and v
to some w′, respectively, where y v is contained within u′ v and v w′.
Further more, p′1, p2 do not “pass through” any TECC of G.

We may then assume that from the beginning, TW has only composite vertices
that are leaves. Denote the branch of G containing y as Ty. Since p1, p2 may still
visit some TECCs, let T ′

y denote the tree containing Ty as well as the vertices of
these TECCs (visited by p1 or p2) that are (distance 1) neighbors of Ty. Since
the labels of pebbles other than p1, p2 have no effect on moving p1, p2, we may
assume pebbles other than p1, p2 are unlabeled (indistinguishable). It can be
shown that unlabeled pebbles outside of T ′

y never need to move to T ′
y: If an

unlabeled pebble moves from outside T ′
y and stays on T ′

y it only makes moving
p1, p2 less feasible; if an unlabeled pebble moves from one vertex outside T ′

y to
another vertex outside T ′

y via Ty, it does not help the feasibility of moving p1, p2
on T ′

y. Thus, unlabeled pebbles may only move away from T ′
y and they should

never come back. Therefore, we may first take the unlabeled pebbles that will
leave T ′

y and move them outside T ′
y in the beginning. After these steps, the initial

problem is reduced to moving p1 from u to v and p2 from v to w on the tree
T ′
y; by Lemma 6 from [1], p1, p2 are equivalent. Note that this implies that if p1

(resp. p2) can visit a TECC, then p2 (resp. p1) can visit that TECC as well; it is
not possible that a given TECC can only be visited by one of the pebbles from
p1, p2. ⊓⊔

Lemma 7 leads to a generalized version of Theorem 4 from [1] to RPP, given
below. We omit the proof since it is nearly identical (we need extended versions
of Corollary 1 and 2 from [1], which can be easily proved in the same way Lemma
7 is proved).

Theorem 6. An RPP instance, (G,S,D), in which G is not a cycle and N(TECCs) ≤
p < n− 1, is feasible if and only if the individual exchanges between pebble i and
S−1(D(i)), 1 ≤ i ≤ p, can be performed using moves without affecting the con-
figurations of any other pebble.

By Theorem 6, if an instance of RPP, I = (G,S,D), is feasible, then pebbles
i and σS,D(i) = S−1(D(i)) can be exchanged with no net effect on other pebbles.
This enables a feasibility test of RPP problems (and therefore, PMR problems):
vertices occupied by pebbles are partitioned into equivalence classes such that
two pebbles can be exchanged if and only if the vertices occupied by them belong
to the same equivalence class. In fact, we apply the Mark algorithm from [1] on
the skeleton tree TG without any change at the pseudocode level (see [1] for the
simple algorithm description); the main difference is how to check whether two
adjacent pebbles are equivalent (Lemma 8 from [1]).

Before stating our version of the lemma, some notations are in order. We work
with an arbitrary RPP instance I = (G,S,D) in which G is not a cycle and
N(TECCs) ≤ p < n−1. Let I ′ = (TG, S

′, D′) be the induced instance described
earlier in which TG is G’s skeleton tree. A fork vertex of TG is a vertex of degree
at least 3 that is not a composite vertex. F (u) is the set of connected components
of TG after deleting the vertex u. T (u, v) is the tree of F (u) containing the vertex
v; T (u, v) is the rest of F (u). For two vertices u, v ∈ V (TG), d(u, v) is the length
of u v. In the lemmas that follow, only start configuration S′ is operated on;
same procedure can be applied to D. First we need a version of Corollary 3 from
[1] to account for composite vertices; we omit the essentially same proof but
point out that although both fork and composite vertices can help two pebbles
switch locations, a composite vertex can do so with one fewer empty vertex.

Lemma 8. Let p1 := S′−1(u), p2 := S′−1(v) for u, v ∈ V (TG) such that u v
contains no other pebbles; all vertices on u v are of degree 2. Let w be a
composite or fork vertex such that u is in w v. The tree T (u,w) has no more
than d(w, u) (resp. d(w, u) + 1) empty vertices when w is a composite (resp.
fork) vertex. Let w′ be the closest composite or fork vertex to v such that v is in
w′ u satisfying similar properties as w. Then u and v are not equivalent.

Lemma 9. Let p1 := S′−1(u), p2 := S′−1(v) for some u, v ∈ V (TG) such that
u v contains no other pebbles. Then p1, p2 are equivalent with respect to S′ if
and only if at least one of the following conditions holds:

1. There exists a fork vertex w in u v such that both T (w, u), T (w, v) are not
full or at least one other tree of F (w) is not full.
2. Let w be a composite vertex such that u is in w v and no other fork vertex or
composite vertex is in w u. There exists such a w that T (u,w) has d(w, u)+1
empty vertices.

3. Symmetric to 2 with u and v switched.
4. Let w be a fork vertex such that u is in w v and no other fork vertex or
composite vertex is in w u. There exists such a w that T (u,w) has d(w, u)+2
empty vertices.
5. Symmetric to 4 with u and v switched.
6. Vertex u is a fork vertex. Then at least two trees of F (u) has empty vertices
or there are at least two empty vertices outside T (u, v).
7. Symmetric to 6 with u and v switched.
8. Vertex u is a composite vertex. Then at least one tree of T (u, v) has an empty
vertex.
9. Symmetric to 8 with u and v switched.

Proof. The proof is adopted from that of Lemma 8 from [1] with some repetitive
details omitted. Since the sufficiency of the conditions can be easily checked
by constructing plans that exchange p1, p2, only necessity is shown here via
contradiction. Assume that u and v are exchangeable without configuration S
satisfying any of the conditions 1-9. First consider the case in which there is
no fork vertex in u v and u and v are not fork or composite vertices; these
assumptions forbids conditions 1 and 6-9. If conditions 2-5 do not hold, the
condition from Lemma 8 is true, thus u and v cannot be equivalent.

For the case in which no fork vertex exists in u v but u or v (possibly
both) is a fork or composite vertex, the proof from Lemma 8 from [1] applies with
little change to show that u and v are not equivalent unless one of conditions
2-9 holds: If conditions 2-5 do not hold, this means that p1, p2 must use u or v
as a “hub” for switching locations; traveling beyond distance 1 from u v will
not help u and v to switch. On the other hand, if conditions 6-9 do not hold,
u or v cannot serve as the hub that enables u and v to switch. Furthermore, if
conditions 6-9 do not hold, reconfiguration of pebbles will not make conditions
2-5, previously invalid, become valid.

This leaves the case in which conditions 2-9 do not hold, which means that u
and v cannot switch on T (u, v) nor T (v, u). Since there is no pebble in u v, the
vertices in u v cannot be composite vertices. The same proof from Lemma 8
from [1] then shows that unless condition 1 is met, u and v cannot be equivalent.

⊓⊔
With Lemma 9, all criteria needed for the Mark algorithm from [1], in par-

ticular Observations 1-4, continue to hold on TG without change. Since Mark is
not changed, its running time is linear if deciding whether two adjacent pebbles
are equivalent can be performed in (amortized) constant time. For this to hold,
for an arbitrary tree T (u,w), we need to know whether T (u,w) has 0, 1, 2 holes
and whether the fork or composite vertex of T (u,w) closest to u allows u and
another vertex v in T (u,w) to exchange (i.e., T (u,w) should have enough empty
vertices). These data can be precomputed in O(|V |+ |E|) time using two depth
firth traversals over the tree TG. At this point, it is not hard to see that this
linear decision algorithm easily turns into an algorithm that computes a feasi-
ble solution to a PPR instance. Our complexity analysis shows that a feasible
solution can be computed in O(|E|) if a high level plan is required (computes

a corresponding RPP instance, checks feasibility, and outputs the permutation
pairs for exchanges) and O(n3) if step by step output is required (each exchange
can be done in O(n2) moves produced by a fixed formula). We summarize the
main result of this section with the following theorem.

Theorem 7. The feasibility of PMR problems can be decided in linear time.
Moreover, a plan for a feasible instance can be computed in O(n3) time.

5 Conclusion

In this paper, we proposed the problem of pebble motion on graphs with rota-
tions (PMR), a graph-based multi-robot path planning problem. Our formulation
takes into account natural, synchronous rotations of pebbles along fully occupied
cycles of the underlying graph. The inclusion of this important case, in conjunc-
tion with previous studies of the problem that only allow pebbles to move to
unoccupied vertices, paints a fairly complete picture of graph-based multi-robot
path planning problems. In our systematic analysis of PMR, we show that, even
for the fully constrained case in which the number of pebbles equals the number
of vertices, deciding the feasibility of a PMR instance can be completed in linear
time with respect to the size of the underlying graph. Moreover, computing a
full plan for all moving all pebbles requires O(n3) time.

Acknowledgment. This work was supported in part by NSF grant 0904501
and ONR projects N00014-12-1-1000, N00014-09-1-1051, and N00014-09-1-1052.

References

1. V. Auletta, A. Monti, M. Parente, and P. Persiano. A linear-time algorithm for
the feasbility of pebble motion on trees. Algorithmica, 23:223–245, 1999.

2. L. Babai, R. Beals, and Á. Seress. On the Diameter of the Symmetric Group: Poly-
nomial Bounds. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1108–1112, 2004.

3. J. R. Driscoll and M. L. Furst. On the diameter of permutation groups. In Pro-
ceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pages
152–160, 1983.

4. J. R. Driscoll and M. L. Furst. Computing short generator sequences. Information
and Computation, 72(2):117–132, February 1987.

5. O. Goldreich. Finding the shortest move-sequence in the graph-generalized 15-
puzzle is np-hard. 1984. Laboratory for Computer Science, Massachusetts Institute
of Technology, unpublished manuscript.

6. G. Goraly and R. Hassin. Multi-color pebble motion on graph. Algorithmica,
58:610–636, 2010.

7. E. J. Griffith and S. Akella. Coordinating multiple droplets in planar array digital
microfluidic systems. International Journal of Robotics Research, 24(11):933–949,
2005.

8. D. Kornhauser, G. Miller, and P. Spirakis. Coordinating pebble motion on graphs,
the diameter of permutation groups, and applications. In Proceedings of the 25th
Annual Symposium on Foundations of Computer Science, pages 241–250, 1984.

9. A. Krontiris, R. Luna, and K. E. Bekris. From feasibility tests to path planners
for multi-agent pathfinding. In Symposium on Combinatorial Search, 2013.

10. S. Loyd. Mathematical Puzzles of Sam Loyd. Dover, New York, 1959.
11. D. Ratner and M. Warmuth. The (n2 − 1)-puzzle and related relocation problems.

Journal of Symbolic Computation, 10:111–137, 1990.
12. J. H. Reif and S. Slee. Asymptotically optimal kinodynamic motion planning for

self-reconfigurable robots. In The Seventh International Workshop on Algorithmic
Foundations of Robotics, 2006.

13. K. Solovey and D. Halperin. k-color multi-robot motion planning. In The Tenth
International Workshop on Algorithmic Foundations of Robotics, 2012.

14. T. Standley and R. Korf. Complete algorithms for cooperative pathfinding prob-
lems. In Twenty-Second International Joint Conference on Artificial Intelligence,
pages 668–673, 2011.

15. E. W. Story. Note on the ‘15’ puzzle. American Journal of Mathematics, 2:399–404,
1879.

16. P. Surynek. An optimization variant of multi-robot path planning is intractable. In
The Twenty-Fourth AAAI Conference on Artificial Intelligence, pages 1261–1263,
2010.

17. R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):140–160, 1972.

18. J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha. Centralized path plan-
ning for multiple robots: Optimal decoupling into sequential plans. In Proceedings
Robotics: Science and Systems, 2009.

19. G. Wagner and H.. Choset. M*: A complete multirobot path planning algorithm
with performance bounds. In Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3260–3267, 2011.

20. R. M. Wilson. Graph puzzles, homotopy, and the alternating group. Journal of
Combinatorial Theory (B), 16:86–96, 1974.

21. J. Yu. A linear time algorithm for the feasibility of pebble motion on graphs.
arXiv:1301.2342, 2013.

22. J. Yu and S. M. LaValle. Structure and intractability of optimal multi-robot
path planning on graphs. In Proceedings AAAI National Conference on Artificial
Intelligence, pages 1444–1449, 2013.

