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Abstract

Projection-based model order reduction (MOR) using local subspaces is becoming an

increasingly important topic in the context of the fast simulation of complex nonlinear

models. Most approaches rely on multiple local spaces constructed using parameter,

time or state-space partitioning. State-space partitioning is usually based on Euclidean

distances. This work highlights the fact that the Euclidean distance is suboptimal and

that local MOR procedures can be improved by the use of a metric directly related to

the projections underlying the reduction. More specifically, scale-invariances of the

underlying model can be captured by the use of a true projection error as a dissimilarity

criterion instead of the Euclidean distance. The capability of the proposed approach to

construct local and compact reduced subspaces is illustrated by approximation

experiments of several data sets and by the model reduction of two nonlinear systems.

Keywords: Model order reduction, Reduced basis methods, Local bases

Background

Projection-based model-order reduction (MOR) is an indispensable tool for accelerat-

ing large-scale computational procedures and enabling their solutions in real-time. This

class of approaches proceeds by restricting the solution to a subspace of the entire solu-

tion space, resulting in a much smaller set of equations. Many problems, however, are

characterized by distinct physical regimes within a given simulation. Among those, one

can mention the transition from laminar to turbulent flows, bifurcation of solutions and

moving features such as shocks and discontinuities. These simulations are particularly dif-

ficult to reduce using classical projection-based MOR as they may require the projection

onto large subspaces. These considerations have motivated the recent development of

novel local model reduction approaches in which smaller local subspaces are defined and

the reduced-order models marches from one subspace to another one within each single

simulation [1–3]. Local subspaces can be defined in time [1,2], parameter space [4–6],

solution features [7] or state-space [3,6,8–10].

In the localMOR context,many approaches are based on a notion of distance in order to

(1) partition solutions and construct local subspaces offline and (2) determineonlinewhich

subspace is currently used to define the reduced order model (ROM) solution. Although

the choice of distance measure is particularly important in these procedures, this choice

has not been yet the subject of detailed studies. More specifically, most approaches are
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based on the Euclidean distance and this choice may be suboptimal as a dissimilarity

measure in the context of local MOR. For instance, a Euclidean distance defined in time

typically fails at recognizing periodic phenomena as well as phase shift. Similarly, a basis

selection using Euclidean or anisotropic distances in the parameter space cannot iden-

tify cases where different parameters lead to identical solutions. On the other hand, a

Euclidean distance in the state-space is able to recognize the two aforementioned classes

of phenomena leading to similar or identical solutions. However, a Euclidean distance in

the state-space does not recognize the linear nature of projections. More specifically, if

two snapshots are scaled versions of each other, they can be captured by a unique low-

dimensional subspace but the two snapshots may be very distant in the state-space when

the measure of distance is the Euclidean norm.

These considerationsunderline the fact that current localMORproceduresmay result in

approximating local subspaces that are suboptimal or redundant, leading to unnecessarily

large reduced bases. In the present work, a novel local MOR approach is presented. It

closely follows the general locality in state-space approach developed in [3,8,9], but is

here based on the true projection error as a natural dissimilarity measure. The proposed

approach both reflects the nature of approximation in linear spaces, as well as explicitly

captures effects of scale-invariance in models. It is based on an extension of the hp-RB

approach [11–13] now using the true projection error as a partitioning criterion for a

given set of snapshots. The procedure partitions the set of snapshot by the construction of

a binary tree structure. Each leaf is a cluster of snapshots which is subsequently reduced

by proper orthogonal decomposition (POD).

This paper is organized as follows. In the next section the proposed projection error

based local ROM approach, PEBL-ROM, is developed and is compared to the k-means

based local ROM procedure, KML-ROM. Numerical experiments are conducted in the

subsequent section, highlighting the capability of the proposed PEBL-ROM approach to

construct small and optimal local reduced-order models. In particular, approximation

experiments on toy and real simulation data are presented together with MOR results for

two nonlinear dynamical systems. Finally, conclusions are given in the last section.

Methods

Data approximation and nonlinear MOR with local bases

The localMOR framework is presented in this section togetherwith notations and notions

in the context of data approximation and nonlinear MOR. A set of training data U =

{uj}
nu
j=1 ⊂ R

n of nu instances or so-called snapshots in state space of dimension n is

assumed to be available. In the context of nonlinear MOR, such a dataset is typically

obtainedby suitable samplingof the solution trajectory of a—say timediscrete—dynamical

system of the form

u(ti+1) = f (u(ti)), u(0) = uinit , (1)

for i = 0, . . . , K − 1, where 0 = t0 < ti < . . . < tK = T denote the time instances, f

represents a general nonlinearmapping and uinit is the initial condition. In addition to this

single deterministic system, parameters can also enter the system and hence the sampling

of snapshots does typically involve both the choice of time instances and parameter values.

The choice of sampling parameters is crucial to the definition of an accurate parametric

ROM but is not the focus of the present paper and the reader is referred to the following
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references [14–16]. The dynamical system, suitable solver and sampling procedure are

assumed to be given in the present work. The goal of this paper is to present a framework

in order to approximate the data and associated dynamical system by local approximation

spaces. Computationally, such approximation spaces are represented by a suitable basis

matrix � ∈ R
n×r and the approximation space Y is the column span of this basis matrix

Y = colspan(�). Such a matrix � is then subsequently referred to as a reduced order

basis (ROB). A typical method for constructing a global approximation space is the proper

orthogonal decomposition (POD) [17]. In this context, � = POD(U , εPOD) ⊂ R
n×r will

subsequently denote the computation of a POD of the snapshot set U with relative energy

error εPOD > 0:

POD(U , εPOD) := arg min
� ∈ R

n×r(εPOD)

�
T
� = I

nu
∑

i=1

‖ui − PYui‖
2
2.

Here, Y denotes the space spanned by the basis � and PY = ��
T is the orthogonal

projection operator PY : R
n → Y . In particular, � is a matrix with orthogonal columns

minimizing the mean projection error of the given data projected onto the subspace

spanned by �. The dimension r = r(εPOD) is in practice chosen such that the ratio of

the sum of the squared projection errors divided by the sum of the squared norm of the

data is smaller than εPOD. For more details on POD, also known as Principal Component

Analysis, the reader is referred to [17–19]. With such a basis matrix � at hand, EP(u,�)

denotes the true orthogonal projection error of a state vector u onto the space Y spanned

by the basis � as

EP(u,�) := min
v∈colspan(�)

‖u − v‖2 = ‖u − PYu‖2.

A typical nonlinear ROM is obtained by a Petrov Galerkin projection procedure. First,

an approximation û := �ur is chosen for the state where the vector ur ∈ R
r of reduced

coordinates is introduced for all time instants. Then, a second projection basis � ∈ R
n×r

is chosen. Two popular choices arise in practice for nonlinear dynamical systems: (a) the

first choice is to consider � = � simplifying the reduction to a Ritz–Galerkin projection

and (b) the second choice is to use a least-square residual minimization [20] arising from

the choice � = ∂f
∂u
(u)�. This second choice will be considered in the nonlinear MOR

numerical experiments of this paper.

The choice of local projection bases depends in practice on the current snapshot �i :=

�( ˆu(ti)), hence the projected local reduced system is solved for each time step i = 1, . . . , K

�
T
i �iur(ti+1) = �

T
i f (�iur(ti)), i = 0, . . .K − 1, (2)

ur(t0) = �
T
i uinit . (3)

This reduced system is denoted as ROM and essentially is a low dimensional system of r

equations where typically r ≪ n. It is well known, however, that a computational acceler-

ation is still not always obtained by this procedure, as the approximate state�iur(ti) needs

to be reconstructed and the full nonlinearity evaluated. Several sparse sampling proce-

dures, sometimes denoted hyperreduction techniques, have been developed that allow to

approximate the evaluation of f in order to accelerate these computations such as the

Empirical Interpolation [21,22] or GNAT [23]. However, this additional approximation
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step is omitted in this paper as its main purpose is to assess the approximation quality

of the local MOR approach of interest. The four-step structure as developed in [3] for

general local ROM approaches is recalled as follows:

1. Collection of snapshots from training simulations.

2. Clustering of the snapshots into k clusters.

3. Construction of a local reduced basis for each cluster using POD.

4. Construction of a ROM for each cluster.

The main focus of the current proposed PEBL-ROM approach is step two and three, the

partitioning and construction of local reduced order models making use of the projection

error. The method is based on a hierarchical partitioning of the state space based on

a binary tree structure. Subsequentially, as a reference method, we recall a procedure

developed in [3,8,9] which is based on the classical k-means clustering (KML-ROM).

Projection-error based local ROM (PEBL-ROM)

In this section, a new approach for local MOR using the true projection error is proposed

as a variant of the hp-RB approach [11,12] in combination with POD. Note that other

types of error measures already have been used in partitioning procedures, i.e., an RB

error estimator in the hp-RB approach [11] or the empirical interpolation error in the

implicit partitioning approach for function approximation [10].

The offline phase of the PEBL-ROMprocedure consists of two stages and is summarized

in the pseudo-code of Algorithm 1. As input quantities, the proposed algorithm requires

the set of snapshots to be processed and accuracy thresholds for the bisection procedure

and POD be specified. In stage 1 of the algorithm, a binary tree structure is constructed.

Its nodes consist of anchor points that are a subset of the training snapshots. This tree

is associated to a non-regular consecutive bisection of the state space. The bisection is

defined by comparing the projection errors of new vectors to the corresponding 1D spaces

spanned by the anchor points. This partitioning of the state space therefore defines a

partitioning of the training snapshots. In stage 2 of the procedure, local bases are generated

by POD separately applied to each of the leaf snapshot sets.

The output of the proposed algorithmconsists of the binary tree composed of the anchor

points and the local bases associated to the leaves of the tree.

The online phase then directly follows and is given in Algorithm 2: Given the bisection

tree and the set of local bases constructed in the offline phase as well as a query current

state u, the tree is traversed depending on the minimum projection error associated with

the 1D spaces corresponding to the two candidate anchor points. When reaching a leaf

node the corresponding local basis is returned as ROB and can be used for approxima-

tion. We anticipate two possibile applications and possible choices for these query states

u: First pure function approximation, where u is a given function, the local basis is deter-

mined by Algorithm 2 and is used for approximation by orthogonal projection. Second,

in dynamical ROM simulation, the current state might be the query, the online algorithm

then determines the local basis, which then is used for computing the next time step.

The practical choice of εbisect is problem dependent. One way of motivated choice for

this parameter is realizing the monotonicity of the map εbisect �→ k by the PEBL-ROM

offline phase, and choose εbisect via the number of desired clusters kd . This means one can
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Algorithm 1Offline phase of the PEBL-ROM procedure

function [T , {�(i)}ki=1] = PEBL_ROM_offline(U , εbisect , εPOD)
Input: training snapshot set U , target accuracy for bisection εbisect and POD
εPOD
Output: binary tree of anchor points T and set of local bases {�(i)}ki=1

1: { Stage 1: generation of bisection tree with accuracy εbisect}

2: u(1) := argmaxu∈U
‖u‖2, T := {u(1)}

3: U (1) := U , ε(1) := maxu∈U (1) EP(u,u
(1))

4: while {i = 1, . . . , |leaves(T )| with ε(i) > εbisect} is not empty do

5: search maximum error leaf index i = argmaxi=1,...,|leaves(T )| ε
(i)

6: search next anchor point unew = argmaxu∈U (i) EP(u,u
(i))

7: divide U (i) into Unew := {u ∈ U (i)|EP(u,u
(i)) > EP(u,unew)} and U (i) :=

U (i)\Unew

8: insert (u(i),unew) into T as children of leaf anchor point u(i) and associate

their snapshot sets U (i) and Unew

9: recompute leaf errors ε(i) := maxu∈U (i) EP(u,u
(i)) for i = 1, . . . , |leaves(T )|

10: end while
11: { Stage 2: generation of local POD bases}
12: k := |leaves(T )|
13: for i = 1, . . . k do
14: compute �

(i) := POD(U (i), εPOD)
15: end for

Algorithm 2Online phase of the PEBL-ROM procedure

function � = PEBL_ROM_online(u, T , {�(i)}ki=1)

Input: State u, binary tree of anchor point T , set of local bases {�(i)}ki=1

Output: Local basis � = �
(i)

1: u∗ = root(T )
2: while not isleaf (u∗) do
3: [u∗

0 ,u
∗
1] = children(u∗, T )

4: if EP(u,u
∗
0) < EP(u,u

∗
1) then

5: u∗ := u∗
0

6: else
7: u∗ := u∗

1
8: end if
9: end while

10: i := leafindex(u∗) ∈ 1, . . . , k

start from some extremely large value (resulting in k = 1) and some close to zero value

for εbisect (resulting in k = nu), perform some (logarithmical) interval division algorithm

while repeatedly performing the offline phase to detect the parameter εbisect that gives

k = kd . We also adopted to this procedure in our experiments.

In the case of the MOR for instationary dynamical systems, switching between clusters

must be ensured. It is obvious that with the fully refined tree and resulting 1D spaces,

the space resulting from a given query snapshot will exactly be the 1D space consisting

of that snapshot. Such a dynamic simulation will never result in a different space and no

switching will occur. Therefore, in the MOR framework and following [3,8,9], a variant

of the algorithm will be considered in which all local snapshot sets used for POD will be
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based on increments of snapshots at the point considered. This means, that the anchor

points are still selected from state snapshots, but the local ROB are generated from a

POD of the corresponding increment snapshots, where an increment snapshot is simply

the difference between two consecutive snapshots of the dynamic simulation. The use

of increment snapshots is demonstrated theoretically and in practice in [3,8,9] for MOR

using local bases.

In the case of dynamical ROM simulation, it is essential that no computational step in

the online phase scales with the dimension n of the high-dimensional space. Algorithm 2

can be executed by computing projection errors with a complexity that does not scale with

n by one of two approaches: (1) by an offline-online decomposition or (2) by introducing

a surrogate inner product acting only on the sampled mesh elements as developed in [9].

For completeness, we give the essential idea for the offline-online decomposition of the

projection error computation: Assuming that the anchor point u∗ ∈ R
n is normalized,

the projection error of a reduced online query state �ur with some basis � ∈ R
n×r and

reducedcoefficient vectorur ∈ R
r canbe explicitly computedby anorthogonal projection:

EP(�ur ,u
∗)2 = ‖�ur − 〈�ur ,u

∗〉u∗‖2 = u
T
r �

T
�ur − ((u∗)T�ur)

2

So offline, the inner product matrix �
T
� and all anchor point projections �

T
u

∗ need to

be precomputed with storage complexity O(r2 + kr). Online, the projection error com-

putations can be realized in O(r2) per node.

As mentioned in the previous section, in case of nonlinear ROM simulation, hyperre-

duction needs to be performed in order to obtain computational acceleration. First, if

using a global hyperreduction Ansatz (i.e., single global sample mesh for GNAT, or single

collateral basis set and interpolation points for DEIM), no changes in Algorithm 1 or 2

are required. as they only address the (Galerkin) projection stage, but not the nonlinearity

approximation. However, the use of local hyperreduction (i.e., local interpolation bases,

submeshes, etc.) would require essential extensions of the offline and online phases. We

refrain from detailed presentation of these extensions, as we do not make use of that in

the experiments, but the extensions can be obtained by following the ideas of [9].

k-means local ROM (KML-ROM)

As a referencemethod, theKML-ROMapproach is considered. It proceeds by applying the

k-means algorithmusing the Euclidean error for clustering the training state-snapshot set,

thenusingPODoneach leaf snapshot set used for constructing local spaces. This approach

has been successfully applied in [3,8,9] for the reduction of nonlinear computational fluid

dynamics problems. The number of clusters is here specified as an input parameter. Then,

the iterative k-means procedure clusters snapshots that are close in the Euclidean norm

sense. For dynamical systems, in addition to the snapshots on each cluster, a fraction fadd

(typically fadd ≈ 10%) of neighboring snapshots is added to each snapshot set, resulting

in overlapping clusters [3,8]. This choice was demonstrated to result in more robust

local ROMs. After clustering, POD is applied to compress each local snapshots set. The

approach is summarized in Algorithm 3.

Similarly as for the PEBL-ROM approach, two use cases of this algorithm can be dis-

tinguished. First, for approximation experiments, the POD is applied to state snapshots.

Second, for dynamic MOR experiments, the POD is applied to local increment snapshots

and not the state snapshots themselves.
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Algorithm 3Offline phase of the KML-ROM procedure

function [{u
(i)
c }ki=1{�

(i)}ki=1] = KML_ROM_offline(U , k, εPOD)

Input: training snapshot setU = {uj}
nu
j=1, number of clusters k andPODaccuracy

εPOD

Output: set of cluster centroids {u
(i)
c }ki=1 and set of local bases {�(i)}ki=1

1: Randomly choose k snapshots as centroids u
(i)
c , i = 1, . . . , k

2: while the centroids have not converged do
3: for j = 1, . . . , |U | do

4: Set cj = argminℓ=1,...,k‖uj − u
(ℓ)
c ‖2

5: end for
6: for i = 1, . . . , k do
7: Update the centroid

u(i)c =

⎛

⎝

|U |
∑

j=1

1cj=iuj

⎞

⎠ /

⎛

⎝

|U |
∑

j=1

1cj=i

⎞

⎠

8: end for
9: end while

10: for j = 1, · · · , |U | do

11: Assign uj to the cluster U
(cj)

12: end for
13: for i = 1, . . . k do
14: compute �

(i) := POD(U (i), εPOD)
15: end for

In the online phase, the current cluster is determined by computing the Euclidean

distance of the current state to each cluster centroid and selecting the closest one. This

step is summarized in Algorithm 4.

Algorithm 4Online phase of the KML-ROM procedure

function � = KML_ROM_online(u, {u
(i)
c }ki=1, {�

(i)}ki=1)

Input: State u, cluster centroids {u
(i)
c }ki=1, set of local bases {�(i)}ki=1

Output: Local basis � = �
(i)

1: for ℓ = 1, . . . , k do
2: Compute the Euclidean distance

dℓ = ‖u − u(ℓ)c ‖2

3: end for
4: Find i = argminℓ=1···,k dℓ

Conceptional discussion

The POD in its elementary definition reflects the linear approximation nature of MOR

by minimizing the mean true projection error of a given set of snapshots. Therefore,

the PEBL-ROM procedure seems a natural extension in the context of local projection-
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based approximation. The PEBL-ROMapproach fully reflects the projection nature of the

approximation task both in the partitioning, the local space construction as well as the

online partition selection.

Some remarks can be made when comparing the PEBL-ROM and the KML-ROM algo-

rithms. First some limiting cases can be considered: In the case of k = nu, both proce-

dures generate the maximum number of k clusters and optimal 1D approximation spaces

allowing the training error to be zero. This highlights the asymptotic optimality of both

approaches.

Further, a remark concerning the computational complexity can be made. The tree-

structure allows a traversal of the local spaces with a lower computational complexity

(logarithmic complexity for a perfectly balanced tree and linear complexity in the worst

case) when compared to the linear search in a cluster list generated by k-means. Still, as

typical values of k are usually modest in the local MOR context, a large CPU discrepancy

at the traversal level should not be expected and is not observed in practice.

A final remark can bemade about the nestedness property of the local bases. The PEBL-

ROM procedure results in a hierarchical partitioning of the training snapshots. Indeed, a

fine binary tree can be coarsened bymerging children nodes at the parent node level. This

constitutes an advantage over the KML-ROM procedure for which the clusters are not

nested when varying k . In the case of the PEBL-ROM procedure, the local ROBs are only

nested themselves when εPOD is small enough to result in no truncation of the snapshots

space.

Results and discussion

Approximation of toy data

In the first set of experiments, the properties of the algorithms are illustrated on artificially

generated data of random clouds in R
n for n = 1000.

The first unimodal dataset consists of 500 points drawn from a single normal random

distribution.Themean is set to0 and the covariancematrix is diagonalwith variance 0.1e10

in the first two dimensions, then exponentially decaying as 0.1e10(2−i) for i = 2, . . . , n.

The secondmultimodal dataset consists of a mixture of four normal distributions, each

with the same covariancematrix as the unimodal dataset, but different mean values. From

each of the four normal distributions, 100 points are drawn.

Figure 1 illustrates the results of the PEBL-ROMprocedure on the unimodal dataset for

εPOD = 10−5 and different bisection accuracies, i.e., by lowering εbisect from 0.25 to 0.15.

These values were chosen such that 2, 3, 4 and 5 parts were respectively obtained. In the

left column of Fig. 1, the 1000-dimensional training data is depicted by projecting it on the

first two dimensions corresponding to the directions of maximal variance of the normal

distributions. Each point is plotted according to a color chosen for the corresponding

local part. The corresponding anchor points are also represented as colored circles with

black boundary. In the right column of Fig. 1, the structure of the corresponding trees is

displayed with the final local snapshot number and basis sizes indicated at each leaf.

As expected, the number of parts is increasing with lower bisection tolerances. Also,

one can observe (despite the differing colors) that the partitions are hierarchical in the

sense that a coarser anchor point set is a subset of the refined anchor set. Hence, each part

of the refined partition always is completely contained in one part of a coarser partition of
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Fig. 1 Results on the unimodal dataset for improving accuracy of the PEBL-ROM procedure. Left column

training partitions and anchor points for εbisect = 0.25, 0.2, 0.17 and 0.15, resulting in k = 2, 3, 4, 5 parts.

Second column the corresponding trees with snapshot number and resulting local basis sizes
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state space. The partitioning is based on the true projection error, which is reflected in the

fact that all clusters are geometrically double-cones centered in the origin. This illustrates

the scale invariance of the parts. In particular, points at the opposite side of an anchor

point are assigned to the cluster of that anchor point, although these points are maximally

distant to this anchor point with respect to the Euclidean distance. Hence, the projection

error has a completely different characteristic as the Euclidean distance. As samples with

current worst projection error are chosen as new anchor point, it is understandable that

these tend to lie at the boundary of the point set and not in the interior.

Figure 2 illustrates a comparison of both the PEBL-ROMand theKML-ROMalgorithms

on theunimodal dataset. For eachof the following experiments, a value εbisect for thePEBL-

ROMprocedure is chosen so that it results in an equivalent number k of local bases chosen

as input for the KML-ROM procedure. This ensures comparability in terms of identical

number of local bases. For subplot a, εbisect is chosen as εbisect = 0.1, resulting in k = 7

local bases, hence k = 7 for the KML-ROM in plot b. For plots c and e, εbisect = 0.05,

resulting in k = 14 local spaces, hence the target number of clusters is k = 14 for the

KML-ROM in plots d and f.

Plot a and c again confirm the insights obtained from the previous refinement experi-

ment, nowwith slightly larger number of parts k = 7 and k = 14. In contrast to this, plot b

and d illustrate the training set partitions obtained by the KML-ROM algorithm. One can

observe how the cluster centers for the k-means based procedure tend to be distributed

uniformly with respect to the Euclidean distance. The clusters are actually Voronoi cells

of a corresponding Voronoi partitioning. With increasing target cluster number k , the

clusters are not nested but rather independent. The rather “circular” shape of the clus-

ters of the KML-ROM algorithm in contrast to the “lengthy” clusters in the PEBL-ROM

procedure might indicate that these k-means clusters require more basis vectors than the

clusters obtained from the tree-based procedure. This will indeed be visible with sub-

sequent approximation experiments. Comparing the partitions on a test set of regularly

distributed points over a considerably larger square domain in plot e and f reveals that

the PEBL-ROM procedure makes full use of the k different clusters in the far field, while

the k-means algorithm only uses fewer number of clusters in the outer regions, as some

clusters are bounded and compact and completely lying in the range of the original train-

ing set. This motivates the expectation that the PEBL-ROM procedure might be better

generalizing on solution regimes, which have not been included in the training data (e.g.,

scaled snapshots).

In Figure 3, results are illustrated for the multimodal dataset. The accuracy is set to

εbisect = 0.2, resulting in k = 9 clusters. Both algorithms are applied and the training set

and the testing set assignments are plotted. Again, one can observe the cone structure and

scale-invariance of the PEBL-ROM procedure clusters, while the clusters of the KML-

ROM algorithm are differently shaped. The difference between the procedures gets very

clear when considering the top left cluster: the KML-ROM algorithm in plot b assigns this

to one cluster, while the PEBL-ROM procedure in plot a splits it into 3 subparts, the latter

promising better approximation. Indeed, due to the scaling nature of the two left clouds,

points from the upper can be very well approximated by points from the lower and vice

versa. This is however not captured by the Euclidean distance as the k-means algorithm

produced disjoint parts of these two point clouds. In contrast, the PEBL-ROM procedure
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Fig. 2 Results on the unimodal dataset. First columnPEBL-ROM with anchor points highlighted, second

column KML-ROM approach with cluster centers highlighted, a–b train set partition for k = 7 local bases, c–d

train set partition for k = 14 local bases, e–f partition of a regularly spaced test set for k = 14 local bases

indeed assigns points from the lower left cloud to the same cluster as some points from

the upper left cloud.

Approximation of Burgers equation data

Next, approximation experiments are performed on data obtained from a dynamical sys-

tem, i.e., snapshots of a parameterized 1DBurgers equation. The one-dimensional Burgers
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Fig. 3 Results on the multimodal dataset for k = 9 local bases. First column PEBL-ROM with anchor points

highlighted, second column KML-ROM approach with cluster centers highlighted, a–b train set partition, c–d

partition of a regularly spaced test set

equation with parameterized boundary condition is investigated as in [24]. The equation

is

∂u

∂t
+

1

2

∂
(

u2
)

∂x
= 0, t ∈ [0, 2.5], x ∈ [0, 5], (4)

with Dirichlet boundary condition

u(x = 0, t) = uBC . (5)

At time t = 0, the initial condition is u(x, t = 0) = 0. As a result of the non-zero boundary

condition, a shock with speed equal to the left boundary value is propagated into the

computational domain.

In the subsequent numerical experiments, three training simulations are conducted for

the three parameter values uBC ∈ {2, 3, 5}. The accuracy of the local model reduction

methods will then be assessed for those three conditions as well as three additional testing

parameter values uBC ∈ {1.5, 4, 5.5}.

The PDE is discretized in space by upwind finite differences with n = 1000 nodes and

in space by the backward Euler finite difference scheme with a time step dt = 0.0125.
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Representative solutions for the parameters considered are depicted in Fig. 4 at times

t ∈ {0.5, 1.0, 1.5, 2.0, 2.5}.

The use of the resulting local bases in MOR will be dealt with later. Here the approxi-

mation properties of the local bases based on the true projection error are investigated.

Using the tolerances εPOD = 10−5 and εbisect = 10 the results for the PEBL-ROM

approach are given in the left column of Table 1. Again, in order to be able to compare

qualitative results, a value of k for the KML-ROMprocedure is chosen so that it generates

the samenumberof partitions.The corresponding results are indicated in the right column

of Table 1. The maximum basis size is slightly larger for the PEBL-ROM approach than

for the KML-ROM. In contrast, the overall basis size sum and the mean basis size is
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Fig. 4 Solutions of the parameterized Burgers equation at t ∈ {0.5, 1.0, 1.5, 2.0, 2.5} for different boundary

values uBC : a–c training parameters, d–f test parameters
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Table1 Results of the offline phases for the approximation of Burgers data

PEBL-ROM KML-ROM

Number of bases 12 12

Sum of overall basis sizes 187 301

Maximum basis size 68 54

Min of basis sizes 4 4

Mean of basis sizes 15.5833 25.0833

Variance of basis sizes 295.3561 217.9015

much larger for the KML-ROM approach. This indicates that the PEBL-ROM procedure

generatesmore compact ROBs than theKML-ROMprocedure and few large bases. This is

also reflected in the larger variance for the PEBL-ROMprocedure. Consequently, with the

PEBL-ROM procedure a set of local reduced approximation spaces that requires overall

smaller storage is obtained.

In order to illustrate the resulting partitions, some properties of the PEBL-ROM pro-

cedure are reported in Fig. 5. In plot a, the shape of the resulting binary tree with the

local snapshot set is indicated together with the local basis sizes for each leaf node. An

unbalanced binary tree is generated as locally repeated refinements are required. Overall

a compression by the POD of about a factor 2–3 is observed. The “lowest” node (dark

green) can be observed to compress a large set of 45 snapshots to merely 4 POD modes,

which corresponds to the local basis with shock position at the end of the interval, i.e.,

the snapshots, where the shock has already left the interval and the solutions are expected

to be rather smooth. Plot b illustrates for a set of test snapshots, depicted by their shock

position and by color coding, which local space is chosen for approximation. It is clearly

visible, that the test data is consisting of consecutive snapshots of few number of trajecto-

ries. Now,when comparing the colors, one realizes that indeed, the PEBL-ROMprocedure

chooses similar spaces for snapshots with similar shock position from trajectories of dif-

ferent parameters. For fast moving shocks, the time range is small enough such that the

shocks leave the computational domain and, again, many snapshots at these final times

are assigned to one cluster representing such “smooth” solutions. Also, the blue node in

the tree is outstanding, as it used a remarkable large set of 247 snapshots which cannot

be compressed very well, resulting in a 68 dimensional local basis. This node corresponds

to early time snapshots over a remarkably large shock position interval (0–300). This is

resulting from the fact, that these initial snapshots have quite small norms (the value

behind the shock being zero), hence allow quite good approximation by a single basis for

a long time. In contrast, the “later” shock positions are represented by much finer clus-

ters, as the snapshots have larger norms, hence larger projection errors indicate an earlier

refinement for these shock position regimes.

The corresponding experiment for the test data and the KML-ROM algorithm is given

in Fig. 6. One can clearly observe that the partitioning using the Euclidean error considers

several shapshots with identical shock position as being dissimilar and assigns different

local bases, although essentially, they mainly differ by a scaling.

Quantitative results are now compared concerning approximation quality by determin-

ing the relative sum of squared training errors. Using the notation introduced before, the

absolute squared training error is defined as
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Fig. 5 Results of PEBL-ROM procedure on Burgers data, a resulting tree with indicated local snapshot and

basis sizes, b illustration of the clusters, to which the test snapshots are assigned after tree traversal

nu
∑

i=1

‖ui − PYi (ui)‖
2
2,

where Yi := colspan(�(ui)) denotes the local space associated with the i th snapshot.

This error measure is exactly the quantity that is minimized by the POD procedure. This

measure does not involve the approximation results from solving the reduced dynamical

system, but purely measures the approximation quality of the local spaces.

While varying the number of local bases (by varying k for the KML-ROM, and by

choosing εbisect for the PEBL-ROM procedure), the results obtained are summarized in

Fig. 7. Both approaches result in training errors below the POD accuracy εPOD = 10−5

confirming the training stage correctness.Otherwise, the approaches are very comparable,

the PEBL-ROM perhaps being slightly more accurate.

However, this relation becomes much more expressive, if considering a predictive sce-

nario. In the predictive context, analogous experiments are performed using the set of



Amsallem and Haasdonk Adv. Model. and Simul. in Eng. Sci. (2016) 3:6 Page 16 of 25

Fig. 6 Results of KML-ROM procedure on Burgers data: illustration of the clusters, to which the test

snapshots are assigned

Fig. 7 Results of training error performance of PEBL-ROM and KML-ROM procedure for approximation of the

Burgers data

test snapshots. The results are given in Fig. 8. In a, the relative summed squared test error

performance is reported as a function of the number of local bases. In b the error is plotted

over the average local basis size. One can observe that the PEBL-ROM procedure clearly

outperforms the KML-ROM algorithm by almost one order of magnitude in the relative

squared error. This relation is even more clear in case of a small number of local bases

or a higher average local basis size. Inspecting the diagram more carefully indicates an

increase of the test-error for the PEBL-ROM with increasing number of local bases. We

expect that this indicates an overfitting effect, as the training error in the previous figure

is simultaneously decreasing.
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Fig. 8 Results of test error performance of PEBL-ROM and KML-ROM procedure for approximation of the

Burgers data. a error over local bases number, b error over (average) local basis size

Overall, it can be concluded from these numerical experiments that the PEBL-ROM

procedure provides more compact approximation models in the sense of ROB size versus

test error. This is due to the expected scaling properties of the Burgers snapshots. This

scaling invariance is captured by the true projection error, while it is overseen by the

Euclidean distance.

Nonlinear MOR for the Burgers equation

Now, the use of the local reduced bases is investigated in dynamical problems for reduced

order simulations. The experiments here are exactly using the same trajectory snapshots

from the Burgers model as in the previous section. As explained in the method section

clustering is performed on snapshot increments of the training trajectories.
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In a first set of experiments, the number of local ROBs is fixed to k = 7. The POD

energy level of the truncation, εPOD, is varied and the following two local model reduction

approaches are compared to build the local bases: (1) KML-ROM clustering with overlap-

ping clusters (fadd = 10%) and (2) the proposed PEBL-ROM approach. The accuracy of

the resulting reduced-order model solutions is depicted in Fig. 9 for the following mean

relative error measuring the discrepancy between the high-dimensional and the reduced

trajectories

1

K + 1

K
∑

i=0

‖u(ti) − �iur(ti)‖2

‖u(ti)‖2

In consistency with the paper title, we denote this error “Local ROMError” in subsequent

plots.

One can observe that, for small values of εPOD, the PEBL-ROM approach generally

results in more accurate reduced-order models than its k-means counterpart, both for

training (top row) and testing parameters (bottom row). Figure 10 shows the error as a

function of the average basis size. Again, the PEBL-ROM approach leads tomore accurate

ROMs.

In a second set of numerical experiments, the truncated POD energy level is fixed to

εPOD = 10−8. In that case, the number of local bases is varied from k = 2 to 10 and the

KML-ROM approach compared to the PEBL-ROM approach. Figure 11 depicts the error

as a function of the number of local ROBs. Again, the PEBL-ROMmethod leads to more

−12 −10 −8 −6 −4 −2

−3

−2

−1

0

1

2

POD Energy Truncated (10
p
)

L
o
c
a
l 
R

O
M

 E
rr

o
r 

(1
0

p
 i
n
 %

)

u
BC

 = 2

−12 −10 −8 −6 −4 −2

−2

−1

0

1

2

POD Energy Truncated (10
p
)

L
o
c
a
l 
R

O
M

 E
rr

o
r 

(1
0

p
 i
n
 %

)

u
BC

 = 3

−12 −10 −8 −6 −4 −2
−1

−0.5

0

0.5

1

1.5

2

POD Energy Truncated (10
p
)

L
o
c
a
l 
R

O
M

 E
rr

o
r 

(1
0

p
 i
n
 %

)

u
BC

 = 5

−12 −10 −8 −6 −4 −2

−0.5

0

0.5

1

1.5

2

POD Energy Truncated (10
p
)

L
o
c
a
l 
R

O
M

 E
rr

o
r 

(1
0

p
 i
n
 %

)

u
BC

 = 1.5

−12 −10 −8 −6 −4 −2

0

0.5

1

1.5

2

POD Energy Truncated (10
p
)

L
o
c
a
l 
R

O
M

 E
rr

o
r 

(1
0

p
 i
n
 %

)

u
BC

 = 4

−12 −10 −8 −6 −4 −2

1.3

1.4

1.5

1.6

1.7

1.8

POD Energy Truncated (10
p
)

L
o
c
a
l 
R

O
M

 E
rr

o
r 

(1
0

p
 i
n
 %

)

u
BC

 = 5.5

Fig. 9 Local ROM error for Burgers equation as a function of the POD truncated energy for seven local ROBs:

KML-ROM (solid line) and PEBL-ROM (dashed dotted line) for training (top row) and test parameters (bottom

row)
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Fig. 10 Local ROM error for Burgers equation as a function of the average ROB size (by varying εPOD) for

k = 7 local ROBs: KML-ROM (solid line) and PEBL-ROM (dashed dotted line) for training (top row) and test

parameters (bottom row)

accurate reduced-order models. Figure 12 reports the average ROB size as a function

of the number of local bases. It can be observed that the PEBL-ROM approach leads to

smaller bases for the same truncation criterion εPOD. This is confirmed by inspecting

Fig. 13, where the error is reported as a function of the average ROB dimensionality. The

PEBL-ROM approach leads to both smaller and more accurate ROBs.

Nonlinear MOR for a chemical reaction problem

In this secondMOR application, the reaction of a premixedH2-air flamemodel is studied

in two space dimensions. The reaction, 2H2 + O2 → 2H2O, is modeled by the following

nonlinear unsteady advection-diffusion-reaction equation [25]:

∂w

∂t
+ u · ∇w − κ�w = s(w), x ∈ [0, Lx] × [0, Ly], t ∈ [0, Tmax] (6)

where the state vector

w(x, t) = [T (x, t), YH2 (x, t), YO2 (x, t), YH2O(x, t)]
T ∈ R

4 (7)

contains the temperatureT and themass fractionYi of the three species i ∈ {H2, O2, H2O}.

Lx and Ly denote the length and width of the geometrical rectangular domain. The non-

linear reaction source term

s(w) = [sT (w), sH2 (w), sO2 (w), sH2O(w)]
T (8)
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Fig. 11 Local ROM error as a function of the number of local bases: KML-ROM (solid line) and PEBL-ROM

(dashed dotted line) for training (top row) and test parameters (bottom row)
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Fig. 12 Average ROB size as a function of number of local bases: KML-ROM (square) and PEBL-ROM (circle)
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Fig. 13 Local ROM error as a function of the average ROB size (by varying k and keeping εPOD fixed):

KML-ROM (square) and PEBL-ROM (circle) for training (top row) and test parameters (bottom row)

is of Arrhenius type and

si(w) = − νi
Wi

ρ

(

ρYH2

WH2

)νH2
(

ρYO2

WO2

)νO2

A exp

(

−
E

RT

)

,

i ∈ {H2, O2, H2O} (9)

sT (w) = QSH2O(w)

with the stoichiometric coefficients νH2 = 2, νO2 = 1 and νH2O = −2. The molecular

weights of the three species areWH2 = 2.016 gmol−1,WO2 = 31.9 gmol−1 andWH2O =

18 gmol−1. The density of the mixture is ρ = 1.39 × 10−3 g cm−3. The universal gas

constant is R = 8.314 Jmol−1 K−1 and the heat of the reaction is Q = 9800 K. The

diffusivity is κ = 2 cm2 s−1. The activation energy is here E = 5.5 × 103 J.mol−1. The

advection velocity is chosen as u = 0.5m.s−1.

A Dirichlet boundary condition T (x) = 950 K is enforced in the middle of the left

boundary. Everywhere else on the left boundary, T (x) = 300 K. Homogeneous Neumann

boundary conditions are enforced at all other three boundaries of the computational

domain which is depicted in Fig. 14. The boundary conditions for the mass fractions are

chosen as Yi = 0 on the left boundary and homogeneous Neumann everywhere else.

The PDE is discretized by the finite differences method in space, resulting in a solution

vector of dimension n = 23, 104 and by backward Euler finite differences in time with

uniform time step dt = 6 × 10−4 s.
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Fig. 14 Computational domain for the reactive flow problem

Fig. 15 Training solutions of the parameterized reaction equation at t = 0.06 s for configuration T1

The pre-exponential factorAwill be allowed to vary in the following study.More specif-

ically, two training conditions and one testing predictive condition are considered:

• T1 for which A = 7

• T2 for which A = 10

• P1 for which A = 8.5

The steady-state solution associated with the configuration T1 is depicted in Fig. 15. The

two training simulations result in the collection of nu = 200 snapshots. Figure 16 displays

the temperature field for all three configurations. One can observe that the magnitude of

the solution differs in each configuration but the shape of the solution is similar across

configurations.
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Fig. 16 Solutions of the parameterized reaction equation at t = 0.06 s for configurations T1, T2 and P1

The POD truncation is set to εPOD = 10−12 and the number of local bases is varied from

k = 2 to 10. The accuracy of local ROMs obtained with the two approaches (KML-ROM

with clustering overlap of fadd = 10% and PEBL-ROM) are then computed in each case

and reported in Fig. 17 for configurations T1 and P1. One can observe that the KML-ROM

algorithm is more accurate for the training configuration with an average error of 10−4,

versus 0.015 % for the PEBL-ROM approach. However, all models are very accurate here.

On the other hand the PEBL-ROM approach leads to much more accurate predictions

for the predictive configuration for k ≤ 7 (average error of 0.66 versus 1.37 % for KML-

ROM procedure) and similar accuracy for k ≥ 8. This emphasizes the fact that the PEBL-

ROM procedure is more suited for clustering snapshots of similar shapes but different

magnitudes and might be less prone to overfitting.

Conclusions

A PEBL-ROM approach for local nonlinear model reduction is presented in this work.

It relies on a dissimilarity measure defined as the true projection error. The approach

proceeds by building offline a binary tree that is used to determine online the local ROB

of interest. On a set of toy data, numerical experiments verify that the projection-error

based partitioning creates partitions that are independent of intuitive “Euclidean” cluster

structure. In the approximation this is reflected in segments being double-cones instead of

Voronoi tessellation for a KML-ROM approach. The projection-error partition generates

large “generalization” regions outside of any training samples. The clusters are naturally



Amsallem and Haasdonk Adv. Model. and Simul. in Eng. Sci. (2016) 3:6 Page 24 of 25

2 4 6 8 10

−4

−3.5

−3

−2.5

−2

−1.5

Number of local bases

L
o
c
a
l 
R

O
M

 E
rr

o
r 

(1
0

p
 i
n
 %

)

 T1

2 4 6 8 10

−0.3

−0.2

−0.1

0

0.1

0.2

Number of local bases

L
o
c
a
l 
R

O
M

 E
rr

o
r 

(1
0

p
 i
n
 %

)

 P1

Fig. 17 Local ROM error for the parametrized reaction equation as a function of the number of local ROBs for

εPOD = 10−12 : KML-ROM (solid line) and PEBL-ROM (dashed dotted line)

scale invariant, nicely fitting to the projection nature and not available for other local basis

approaches so far. In addition to these approximation experiments, MOR experiments

are also performed, illustrating the capability of the proposed PEBL-ROM approach to

generate accurate local reduced bases in dynamical simulations that are more robust to

changes in parameters than existing approaches. Overall we see a very good performance

of the PEBL-ROM over the KML-ROM. The situations, where the former is inferior to

the latter are mainly situations of large k (i.e., small sets of snapshots per subset) and

regions of high POD truncation value. Both situations are not considered to be of major

relevance, as accurate ROMs, i.e., models with low POD truncation value are of practical

interest. Also the large k (i.e., the case where the ratio of k over the number of snapshots

is getting close to 1 is not of interest, as in the limit this would imply clusters of single

training snapshots, where all clustering procedures and subspaces coincide.
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