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Colon cancer (CC) is the third common neoplasm worldwide, and it is still a big chal-

lenge for exploring new effective medicine for treating CC. Natural product promoting 

human health has become a hot topic and attracted many researchers recently. Pectin, 

a complex polysaccharide in plant cell wall, mainly consists of four major types of poly-

saccharides: homogalacturonan, xylogalacturonan, rhamnogalacturonan I and II, all of 

which can be degraded into various pectin oligosaccharides (POS) and may provide 

abundant resource for exploring potential anticancer drugs. POS have been regarded as 

a novel class of potential functional food with multiple health-promoting properties. POS 

have antibacterial activities against some aggressive and recurrent bacterial infection 

and exert beneficial immunomodulation for controlling CC risk. However, the molecular 

functional role of POS in the prevention of CC risk and progression remains doubtful. 

The review focuses on antioxidant and anti-inflammatory roles of POS for promoting 

human health by regulating some potential oxidative and inflammation-activated path-

ways, such as ATP-activated protein kinase (AMPK), nuclear factor erythroid-2-related 

factor-2 (Nrf2), and nuclear factor-κB (NF-κB) pathways. The activation of these signaling 

pathways increases the antioxidant and antiinflammatory activities, which will result in 

the apoptosis of CC cells or in the prevention of CC risk and progression. Thus, POS 

may inhibit CC development by affecting antioxidant and antiinflammatory signaling 

pathways AMPK, Nrf2, and NF-κB. However, POS also can activate signal transduction 

and transcriptional activator 1 and 3 signaling pathway, which will reduce antioxidant 

and anti-inflammatory properties and promote CC progression. Specific structural and 

structurally modified POS may be associated with their functions and should be deeply 

explored in the future. The present review paper lacks the important information for the 

linkage between the specific structure of POS and its function. To further explore the 

effects of prebiotic potential of POS and their derivatives on human immunomodulation 

in the prevention of CC, the specific POS with a certain degree of polymerization or 

purified polymers are highly demanded to be performed in clinical practice.
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FIGURE 1 | Pectin oligosaccharides regulate cellular antioxidant activities by 

affecting oxidative stress biomarkers.
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INTRODUCTION

Colon cancer (CC) is one of the third common cancers with more 
than 600,000 deaths worldwide yearly and causes a global burden 
(1). Chemotherapy and radiation therapy are the main treatments 
of CC with signi�cant side e�ects. A dietary prebiotic improves 
glycemic indices, lipid pro�le (2, 3), antioxidant status (4), poten-
tial immunomodulatory bene�ts (5), and reduces cardiovascular 
disease risk (6). �e common prebiotics are oligosaccharides 
while oligosaccharides are indigestible and pass through diges-
tive tracts smoothly. �e oligosaccharides produced in digestive 
tracts will promote the production of volatile fatty acids, which 
can release constipation, reduce serum blood glucose, improve 
mineral absorption and lipid metabolism, prevent colonic cancer, 
inhibit pathogen adhesion, and modulate immune activity. Pectin 
oligosaccharides (POS) belong to new potential prebiotics with 
various health-promoting e�ects (7, 8), such as against Shiga 
toxins (9) and pathogen binding (10), induction of apoptosis of 
human colonic adenocarcinoma cells (11), immunomodulation 
(12, 13), and cardiovascular protection (14). Long-term pectin 
consumption has been found to suppress weight gain and reduce 
obesity risk in an animal obesity model (15). Pectin is an e�cient 
medication to repair wounds and an e�ective prophylaxis during 
surgery with antibacterial activities (16). POS exert antioxidant, 
anti-in�ammatory, and antinociceptive e�ects. Grapefruit pectin 
(Citrus paradisi) can improve lipid pro�les (17). In addition, POS 
are safe and non-mutagenic, and can be used in children food 
(18, 19).

Pectin oligosaccharides can stimulate apoptosis process in 
human colonic adenocarcinoma cells, show protective functions 
for cardiovascular tissues, reduce the damage caused by metals, 
and have anti-obesity e�ects, antitoxic, antibacterial, and anti-
oxidant activities (20). Sweet potato pectin possesses anticancer 
activity and induces the apoptosis of CC cells and may be a cancer 
therapeutic drug (21). �e pectin derivative with maleoyl groups 
also shows antitumor properties for CC (22).

Pectin oligosaccharides have also been used to treat gastroin-
testinal disorders (23), diabetes (24), and hypercholesterolemia 
(25). Speci�cally, POS consumption can increase probiotic �ora 
in gastrointestinal tract, such as Lactobacillus Eubacterium, 
Faecalibacterium, and Roseburia (26). Similarly, POS increase 
bi�dobacteria population but no change in Clostridium (27). 
Arabinose oligosaccharides can be selectively used by B. adoles-
centis, B. longum, B. vulgatus, and Lactobacillus (28). POS pro-
mote the growth of bi�dobacteria in all population from younger 
adults to the elders, and increase their immunomodulatory 
capacity (29) while the increase of immunomodulation further 
promotes the apoptosis of CC (30).

Pectin oligosaccharides exert its antioxidant properties by 
significantly increasing the levels of antioxidant biomarkers 
while reducing oxidative biomarkers (31). �e redox system may 
be regulated by POS (Figure 1). POS (as bioactive components 
of pectin) normalize the activity of glutathione reductase (GR) 
and glutathione peroxidase (GPx) (32), whereas GR catalyzes 
GSSG into reduced glutathione (GSH). GPx catalyzes H2O2 into 
H2O under the help from GSH. Furthermore, catalase (CAT) can 
be induced by POS (33) whereas CAT reduces H2O2 into H2O.  

POS also increase glutathione-S-transferase (GST) activity (31), 
while GST promotes the generation of plasma-reduced CysGly 
during GSH catabolism.

�e POS homogalacturonan (HG), isolated from green tea, 
shows phagocytosis-enhancing activity in HL-60 cells (34). 
Meanwhile, POS will increase natural killer bioactivity and the 
levels of anti-in�ammatory cytokines (35) and reduce the levels 
of pro-in�ammatory cytokines (Figure 2). POS can be developed 
as a bene�cial dietary candidate for promoting gastrointestinal 
health and immune activities. Antioxidant and anti-in�ammatory 
activities of functional foods will be bene�cial in the prevention of 
the risk of colon carcinoma (36, 37). Nevertheless, the molecular 
mechanisms for POS function in human health remain doubtful. 
�is work provides a new window for the possible e�ects of POS 
on antioxidant and anti-in�ammatory signaling pathways.

POS PREPARATION

Pectin As a Source of POS
Pectin is the source of POS in natural products and mainly exists 
in citrus peel [it mainly consists of a homopolymer of 1–34-linked 
os-d-galactosyluronic acid with 85.7% methylated esteri�cation 
and a rhamnogalacturonan I (RG-I) fragment] (38), sugar beet 
pulp (a high degree of acetylation and a relatively high neutral 
sugar content) (39), potato pulp (it has highly branched RG-I 
domain) (21, 40), and additional sources, etc. Pectin consists of 
fundamental units of α (1–4)-galacturonic acid, which is o�en 
acetylated and/or methylated. Figure 3 shows the complex struc-
ture of pectin, consisting of HG, a polymer with free or esteri�ed 
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FIGURE 2 | Pectin oligosaccharides regulate cellular autophagous activities by affecting natural killer.

FIGURE 3 | Schematic representation of pectin structure. Pectin consists of rhamnogalacturonan I (RG-I), homogalacturonan (HG), xylogalacturonan, and 

rhamnogalacturonan II regions. HG is a linear polymer consisting of a chain with an estimated length of 72–100 GalA units that represent, approximately, 

60% of the total pectin (41). Xylogalacturonan is a chain of GalA residues partially substituted by D-xylose residues connected by β-(1,3) links at C-3 and/

or C-2 positions. RG-I represents up to 7–14% of pectin and contains alternating units of α-(1,4)-galacturonosyl and α-(1,2)-rhamnosyl (42). In many 

cases, rhamnose residues show side chains as substituents on the O-4 position, made up of arabinan and/or arabinogalactan I and II, although xylose  

or glucose modification also exists (43). Rhamnogalacturonan II (RG-II) is a region characterized by a length of 7–9 GalA units, where complex branches 

made up of 12 types of monosaccharides (as a maximum) can exist, including some minority monomers such as apiose, fucose, acetic acid, DHA, or 

KDO (44).
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carboxyl group; rough regions consists of RG-I with some units 
of rhamnose and galacturonic acid; and rhamnogalacturonan II 
(RG-II) with galacturonic acid units and multiple modi�cation. 
All these regions can be degraded into POS. Various POS can be 
produced from pectin via de-polymerization (Figure 3).

POS Puri�cation
Pectin oligosaccharides, as oligosaccharides, are o�en prepared 
by partial hydrolysis of pectin, which consists of complex heter-
opolysaccharides. �ere are three main methods for POS produc-
tion, including bioenzymatic digestion (45), acid hydrolysis (46) 
or hydrothermal treatments, and high-pressure micro�uidization 
(47). Many raw materials can be treated to obtain POS including 
orange, lemon, apple, beet pulp, and so on by using acids. �ere 
are some disadvantages for the chemical method: environmental 
contamination, simple products, and general toxicity. As an alter-
native, pectin can be degraded into peptic polymers by pectin 
enzymes. Although pectin has complex structures, which can 
be digested by a series of pectin enzymes, including hydrolases, 
lyase, and esterase (48–50). Since one enzyme generally targets 
only speci�c structure, and more de�ned oligosaccharides can be 
released when compared with chemical method. Finally, high-
pressure micro�uidization has been considered as a new method 
but most POS cannot be obtained by only using the physical 
techniques.

After production, purification processes are necessary to 
obtain food-grade �nal products. Membrane �ltration is o�en 
used to purify speci�c POS. Dia�ltration has been used to purify 
POS from the hydrolysis from lemon peel wastes and yields of 
target POS can reach 98 wt% of oligogalacturonides (2–18 DP) 
and AraOS (2–8 DP) (51). �e similar work has been reported to 
achieve a re�ned POS with AraOS (3–21DP), GalOS (5–12 DP), 
and OGalA (2–12 DP) (52). Ultra�ltration and dia�ltration have 
also been used to isolate AraOS, which can be further puri�ed 
into speci�c POS by using a membrane with 1-kDa molecular 
weight cut-o� (53). On the other hand, pectin can ful�ll its 
function via its degraded products POS since pectin cannot be 
dissolved in water. In that case, POS are sometimes used to stand 
for pectin in subsequent introduction.

POS AFFECT MITOGEN-ACTIVATED 

PROTEIN KINASES (MAPK) SIGNALING 

PATHWAY

�e MAPK signaling pathway plays an important role in most 
immune responses (54, 55). Downregulation of MAPK signaling 
pathway can inhibit the proliferation, invasion, and angiogen-
esis of CC (56), and promotes the apoptosis of CC (57). Larch 
Arabinogalactan (a kind of POS) has been reported to inhibit 
p38 phosphorylation in MAPK pathways (58). �us, POS may 
prevent the risk or progression of CC by suppressing MAPK 
signaling pathway. However, there are still inverse reports for the 
e�ects of POS on MAPK/EKR signaling pathway. Mammalian 
cells respond to various extracellular stimuli by activating MAPK/
extracellular signal-regulated kinase (ERK) signaling pathway. 
Typically, ERK activates phosphorylation events, which stimulate 

Ras gene a�er activating growth factor receptor. �e activation 
of Rapidly Accelerated Fibrosarcoma (Raf) phosphorylates ERK. 
Some targets of ERK have been identi�ed, such as p90RSK activa-
tion via Ser380 phosphorylation (59) (Figure 4). POS promotes 
the phosphorylation of ERK (60) and may also activate the phos-
phorylation of Raf, MEK, and p90RSK (Figure 4). �us, POS may 
bind the receptor systems that activate Raf, MEK, and ERK since 
POS cannot transport across plasma membrane. ERK signaling 
pathways can be activated by POS, suggesting that there is an 
oligosaccharide receptor that transfers the information to the 
activated molecules (Figure  4). �e �nal genetic identi�cation 
of all components of the POS signals remains to be determined. 
Several evidence suggests that p90RSK is activated by MAPK 
(61). �e activation of MAPK signaling pathway will increase 
antioxidant activities (62) properties. Furthermore, increasing 
antioxidant activity and activating MAPK signaling will result in 
the apoptosis of CC cells (63).

�e lysin motif receptor-like kinase is necessary in the 
activation of chitin-induced signals (64). Furthermore, chitin 
elicitor-binding protein (CEBiP) has a LysM domain and is also 
a surface receptor for plant chitin (65). LysM domain-containing 
protein pectate lyase (66) suggests that POS has high a�nity with 
LysM domain. �us, LysM RLK1 and CEBiP may be potential 
receptors of POS (Figure  4). In general, POS binds potential 
membrane receptors and activates MAP3K, which activates 
MAP2K, resulting in the activation of MAPK, which can activate 
related transcription factors. Besides of these receptors, POS may 
interact with many membrane receptors. Capsaicin represents an 
important class of surface receptors (67, 68). �erefore, they cast 
light on how the cells regulate biological events.

POS Regulate STAT 1 and 3 Signaling via 

Leptin Receptor
Signal transduction and transcriptional activator 1 (STAT1) is 
encoded by STAT1 gene in human being. Speci�c expression 
of STAT1 can be mediated by some cytokines, such as IFN-α 
(69, 70), IFN-γ (71, 72), or IL-6 (73, 74). IFN-α binds receptor 
and triggers STAT signal via its phosphorylation and activation 
of STAT1 and STAT2. STAT binds ISGF3G/IRF-9 and forms a 
complex, which stimulates IFN-3 and IFN-9. STAT1 plays a 
key role in gene expression, cell survival, viability, or response 
to pathogens. In response to IFN-γ stimulation, STATl forms a 
homodimer or heterodimer with STAT3. �e activation of STAT1 
will improve the antitumor capability for CC (75). STAT1 dele-
tion will change the interactions between tumor and �broblast 
cells and contribute to CC progression, suggesting that STAT1 is 
an important link between intestinal in�ammation and CC (76). 
In contrast, the activation of STAT3 signaling pathway regulates 
the pathogenesis of colon tumor (77).

Oxidative Stress and In�ammation 

Activates STAT 1/3 Pathways
STAT 1/3 signaling pathways participates in cellular responses to 
cytokines or growth factors. ROS activates STAT 1/3 pathways in 
the exterior membranes of basilar blood vessels (78). �is path-
way can cause morphological varies of the wall of blood vessels 
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FIGURE 4 | Pectin oligosaccharides binds potential membrane receptors in mitogen-activated protein kinases/ERK signaling pathway. LysM RLK1, chitin 

elicitor-binding protein, and RX are potential receptors in the pathway.

5

Tan et al. POS and CC

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1504

in brainy vasospasm (79). Oxidative stress is closely associated 
with the cell apoptosis and induces STAT activation (80). STAT1 
and STAT3 inhibitors suppress TLR-induced TNF expression 
(81). Viral replication and in�ammation are associated with 
STAT pathway. �e result suggests that activation of STAT 1 and 
3 signaling pathway will develop in�ammation via the increase 
in IFN level. �e inactivation of the STAT pathway can improve 
anti-in�ammatory activities (82).

POS Regulate STAT-1 and -3 Signaling 

Pathways and Anti-In�ammatory Cytokine 

Secretion
Pectin oligosaccharides promotes the expression of cardiotropin-1, 
which upregulates JAK and STAT pathway (14) and delivers the 
signals to cardiomyocytes, resulting in transcriptional, di�erenti-
ating, and immune activity (Figure 5) (14). PKC is activated by a 
variety of agonists, including biological macrophage chemokines 
(83) and modulates a variety of allogeneic megakaryocytes (84). 
Pectin consumption will induce the expression of PKC (85), 
which promotes STAT1 phosphorylation (86). �us, POS may 
modulate STAT1 activation and also depends on PKC (Figure 5).

Pectin can regulate biological activities via the interaction 
with immune cells. Pectin treatment increases TNF-α, IL-1β, 
and IL-10 cytokines (Figure  5) (87). Further work showed 

that the degree of methyl esteri�cation, molecular size, and the 
characteristics of pectin structure were closely associated with the 
regulation of cytokine. �ese data suggest that POS variety will 
a�ect macrophages releasing chemokines. On the other hand, 
all the cytokines can be secreted by activating STAT signaling 
pathway (88). All the cytokines can be inhibited by preventing 
the activity of STAT pathway in macrophages (89). �us, POS 
may a�ect the release of cytokines by regulating STAT signaling 
pathway (Figure 5).

Pectin oligosaccharides treatment promotes IL-1ra and IL-10 
secretion (90), which may be bene�cial to cartilage reparation. 
IL-1ra can inhibit the activity of IL-1β, whereas IL-1β overex-
pression is associated with osteoarthritis progression (91). �us, 
the release of IL-1ra by POS-stimulated may help to protect the 
synthetic metabolic environment of the natural cartilage during 
bone cartilage repair. POS activating STAT-1 and -3 signaling 
pathways will not be bene�cial to CC control while the increase 
of anti-in�ammatory cytokines will result in the prevention of 
CC (37, 92).

The Binding Between POS and Leptin 

Receptor
Pectin oligosaccharides has been regarded to have anti-obesity 
activities (15, 93). POS consumption increases leptin levels in 
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FIGURE 5 | Pectin oligosaccharides (POS) regulates STAT 1 and 3 signaling pathway by the leptin receptor. POS-binding leptin receptor forms signal transduction 

and transcriptional activator 1 or STAT3 complex, which induces cell apoptosis or cell survival.
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adipose cells when compared to those without the treatment 
(P  <  0.05). POS exerts anti-obesity properties via regulating 
appetite and satiety signals (94). An earlier report shows that 
POS can signi�cantly decrease lipid accumulation by a�ecting 
lipid metabolism (95). POS from Hawthorn can reduce the 
concentrations of peroxisome proliferator-activated receptor γ, 
an important adipogenic regulating element (96). �e POS tends 
to enhance TC level and to decrease sterol regulatory element-
binding protein 2 and LDL receptor, suggesting that POS can 
be developed as a kind of functional food in improving lipid 
metabolism. Long-term pectin consumption can remarkably 
reduce lipid contents and decrease insulin and leptin resistance 
(97). Pectin diets can also reduce plasma leptin signi�cantly by 
more than 60% in an obesity animal model (98). Leptin recep-
tor (OB-R) can induce cardiac disorders (99) and also is linked 
with obesity development, which leads to obesity risk (100–102). 
�erefore, POS may a�ect these molecules by binding OB-R 
(Figure 5). Leptin regulates weight hemostasis (103, 104), repro-
duction (105), and possible hematopoiesis (106). Leptin receptor 
(OB-R) is produced in some alternating chunks of rodents (107) 
and humans (108). �e activated JAK tyrosine kinase binds to 
ligands for rapid phosphorylation of STATS via the cytokine 
family of receptors (109). Gene transcription can be initiated by 
activating STATS homologous or heterologous fusion and migra-
tion to nuclear-binding STAT response elements such as GAS 
(IFN-gamma activation site). POS binding OB-R promotes the 
complex formation of STAT-1/3 (Figure 5). �e low-level OB-R 
can activate STAT signal transduction pathway.

POS REGULATES NUCLEAR FACTOR-

KAPPA B (NF-κB) PATHWAY VIA TOLL-

LIKE RECEPTOR

POS Prevents Colonic In�ammation
�e relationship between chronic intestinal in�ammation and 
cancer has been widely reported (110, 111). �e e�ect of POS 
on oral administration of colitis has been assessed by weight loss 
(112), disease activity index (DAI) (113), and bloody diarrhea 
events (114). DAI is associated with fecal consistency, fecal occult 
blood and weight loss. POS treatment signi�cantly inhibits dex-
tran sulfate sodium (DSS)-induced DAI (115). In addition, colon 
size is inversely proportional to the severity of DSS-induced coli-
tis. �ese data indicate that POS can reduce intestinal in�amma-
tion in colitis mice. However, the related molecular mechanism 
remains widely unknown.

NF-κB Signaling Pathway Is Involved With 

In�ammatory and CC
Nuclear factor-kappa B regulates DNA transcription, cytokine 
generation, and cellular life activities. NF-κB is existed in most 
animal cells types and involves the responses to cytokines, ROS, 
bacterial and viral antigens (116). Regulation of NF-κB is closely 
associated with CC (117, 118), in�ammation and autoimmune 
disorders (119), septic shock, viral infection, and dysfunctional 
immunological progression (120). NF-κB can be a�ected by cel-
lular antioxidant activities. �e ratio of GSSG/GSH can strongly 
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a�ect NF-κB pathway (121). NF-κB is linked with diabetic 
neuropathy and promulgation of in�ammatory activity (122). 
�e signaling pathway has protective functions for neuroin�am-
mation and oxidative stress. NF-κB can a�ect brain edema and 
infarct volume, and its expression will result in in�ammatory 
response a�er cerebral ischemia–reperfusion (123).

POS Regulates NF-κB/TLR4/COX-2 

Signaling Cascade
Ulcerative colitis (UC) is one common in�ammatory bowel 
disorder and has high morbidity and prevalence throughout 
the world. UC is the main risk factor inducing CC (124). In UC 
patients, CC risk is higher than the average population (125, 126). 
�e main feature of UC is the uncontrolled in�ammation of the 
colon, causing acute abdominal pain, severe diarrhea, bloody 
stools, and reduced symptoms. �e initiation and maintenance 
of colonic in�ammation is characterized by the transmembrane 
invasion of leukocytes in the mucosa, the overproduction of 
in�ammatory cytokines, etc., which are necessary for subsequent 
mucosal rupture and ulcers and involve in UC development, 
particularly in the early stages of disease (127, 128). �us, UC 
therapy is mainly dependent on the drugs, which can inhibit 
colon in�ammation and control symptoms.

However, conventional anti-in�ammatory drug compounds 
generally have undesirable side e�ects, which may reduce patient 
compliance and degrade the condition. 5-aminosalicylic acid 
compounds and salazosulfa pyridine is considered �rst-line 
therapy for active UC therapy. However, side e�ects including 
abdominal pain, fever, diarrhea, cramps, rashes, and kidney 
failure limit their use. �e lack of satisfactory treatment of UC 
has contributed to the study of alternative treatment strategies. 
Anti-in�ammatory natural products or functional food from 
supplemental or alternative medicine represent a new class of 
drugs that are promising to UC therapy. Previous studies in vitro 
have found that POS can signi�cantly and reliably attenuate 
lipopolysaccharide-induced inflammatory responses (129), 
demonstrating the potential medical utility of POS in controlling 
bowel disorder (130). �e e�ect of oral POS on the prevention 
of in�ammation has been proved, which shows a decrease in 
histological damage score and colonic PGE2 content in the mice 
with UC model and further con�rmed the potential of POS for 
colitis therapy.

Apple POS has been proved to be e�ective to treat in�am-
matory and cancer diseases by a�ecting LPS/TLR4/NF-κB 
pathway (131). POS exerts bene�cial e�ects on clinical colitis and 
carcinogenesis. Apple POS exhibit higher antibacterial e�ects on 
some pathogens than citrus POS (132). Staphylococcus has been 
reported to be isolated from the blood of the patients with cardiac 
disorder (133). �e lipopolysaccharide derived from Escherichia 
coli and Pseudomonas aeruginosa induces cardiovascular damage 
(134). Apple POS prevent colon carcinogenesis that may partially 
depend on prostaglandin E, and POS types, which are associated 
with fecal enzyme function.

Apple POS can modulate in�ammatory activities by a�ecting 
NF-κB pathway (131). Normally, NF-κB forms a p65-p50 dimer, 
which enters into the nucleus and binds speci�c DNA sequence, 

and inhibits target gene expression. POS may inactivate NF-κB 
and a�ects the level of its downstream genes [cyclin D1 (135), 
TNF-α (136), and IL-6 (115)] have been tested in NF-κB signaling 
pathway. Some data show that POS are the most potent activators 
of NF-κB signaling (Figure 6) (137), whereas the activation of 
NF-κB signaling pathway will promote CC apoptosis (138).

POS Bind Toll-Like Receptor
�e oral administration of POS reduced the incidence of diar-
rhea and DAI, which shortens the length of colon caused by DSS. 
Importantly, it was found that POS showed an anti-colitis e�ect 
that appears to be related to its ability to downregulate COX-2 
of TLR4/NF-κB pathway (129, 139). POS administration a�ects 
the activation of TLR4/NF-κB/COX-2 signaling cascade by bind-
ing TLR (Figure 6) (140). �e level of TLR4 is associated with 
cardiac disorders and regarded as a clinical biomarker of heart 
disease (141).

COX-2 expression is closely related to TLR4/NF-κB pathway 
in the intestine, particularly in the setting of DSS colitis. As a key 
receptor in innate immunity, TLR4 has been found to be over-
expressed in UC patients (142, 143). TLR4-modulated signaling 
further activates NF-κB, which is followed by expression of an 
array of subsequent genes participating in in�ammatory signal-
ing cascades that mediate the pathogenesis of colitis (Figure 6).

Understanding UC pathogenesis and progress has greatly 
accelerated the discovery of many therapeutic drugs targeting 
targeted in�ammatory signaling, such as TLR4/NF-κB/COX-2 
signaling pathway (Figure 6). COX-2 contributes to the produc-
tion of in�ammatory mediators of PGE2 (144). Consistent with 
the results of the POS anti-in�ammatory mechanism obtained 
in other diseases, POS has been found to signi�cantly down-
regulate COX-2 expression (145). Many therapeutic agents have 
been considered to eliminate intestinal in�ammation in UC by 
blocking TLR4/NF-κB pathways. TLR4 is highly expressed in 
in�ammatory mucosa of UC patients. As a pattern recognition 
receptor, TLR4 plays a key role in preventing intestinal pathogens. 
However, since TLR4 is considered to be the most important 
in�ammatory inducer of all members of the TLR family, TLR4-
mediated in�ammation-related intestinal dysfunction further 
contributes to the development of UC. NF-κB can be stimulated 
by TLR4, which is a key transcription factor for inducing and 
regulating a series of in�ammatory mediators. Apple POS has 
been found to signi�cantly reduce the protein levels of TLR4 
and NF-κB, suggesting that inhibition of TLR4/NF-κB pathway 
and its downstream COX-2 is associated with anti-in�ammation 
properties of POS (Figure 6).

Controversies of the Present Review
�e review focuses on antioxidant and anti-in�ammatory roles of 
POS for promoting human health by regulating some potential oxi-
dative and in�ammation-activated ATP-activated protein kinase 
(AMPK), nuclear factor erythroid-2-related factor-2 (Nrf2), and 
NF-κB pathways. �e activation of these signaling pathways 
increases the antioxidant and anti-in�ammatory activities, which 
will result in the apoptosis of CC cells or in the prevention of CC 
risk and progression. �us, POS may inhibit CC development 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FIGURE 6 | Pectin oligosaccharides (POS) downregulates the expression of nuclear factor-kappa B (NF-κB) and COX-2 by binding toll-like receptor 4 (TLR4).  

The binding between TLR4 and POS activates NF-κB and COX-2 signaling pathway, which is associated with inflammatory activities.
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FIGURE 7 | The hypothesis of the advantage and disadvantage effects of pectin oligosaccharides on colon cancer risk.
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