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Abstract. Direct measurements of peculiar velocities of galaxies and clusters of galaxies
can in principle provide explicit information on the three dimensional mass distribution, but
this information is modulated by the fact that velocity field is sampled at galaxy positions,
and is thus probing galaxy momentum. We derive expressions for the cross power spectrum
between the density and momentum field and the auto spectrum of the momentum field
in redshift space, by extending the distribution function method to these statistics. The
resulting momentum cross and auto power spectra in redshift space are expressed as infinite
sums over velocity moment correlators in real space, as is the case for the density power
spectrum in redshift space. We compute each correlator using Eulerian perturbation theory
(PT) and halo biasing model and compare the resulting redshift-space velocity statistics to
those measured from N -body simulations for both dark matter and halos. We find that in
redshift space linear theory predictions for the density-momentum cross power spectrum as
well as for the momentum auto spectrum fail to predict the N -body results at very large
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scales. On the other hand, our nonlinear PT prediction for these velocity statistics, together
with real-space power spectrum for dark matter from simulations, improves the accuracy
for both dark matter and halos. We also present the same analysis in configuration space,
computing the redshift-space pairwise mean infall velocities and velocity correlation function
and compare to nonlinear PT.

Keywords: galaxy clustering, power spectrum, redshift surveys, cosmological perturbation
theory
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1 Introduction

The peculiar velocity field probed by galaxies and clusters of galaxies is cosmologically very
important because it provides information on the three dimensional mass density fluctuations.
There are two observational ways to extract the information. The first one is a galaxy
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redshift survey, where peculiar velocities induce redshift space distortions along the line of
sight (RSD) [1–4]. The information on peculiar velocities is entangled in the clustering throuh
the dependence on the line of sight angle and, thus, can be separated out from the intrinsic
clustering of galaxies. The second is a direct map of peculiar velocities [5–7], which can
be obtained by measuring the intrinsic distances to galaxies (e.g. by using Tully-Fisher or
Faber-Jackson relations) and comparing them to the galaxy redshift. Unlike redshift surveys,
peculiar velocity surveys furnish in principle a direct measurement of peculiar velocities.
However, the error on the velocity measurement is proportional to the distance, so the analysis
is limited to the nearby universe (z ∼ 0). The two types of surveys are largely complementary
to each other, and combining these two probes can tighten constraints on the growth rate of
cosmic structure and, therefore, on theories of modified gravity [8]. Observational analyses in
peculiar velocity surveys have been performed by [e.g., 9–12] (see also [13] for recent work).
More recently, it has been suggested that peculiar velocity measurements can be extended to
higher redshifts using Type Ia supernovae [14–16] or the kinetic Sunyaev-Zeldovich (kSZ, [17])
effect [18]. The kSZ effect has been detected by [19] using high-resolution microwave sky maps
and a large galaxy redshift survey.

Theoretical studies have attempted to predict peculiar velocity statistics using linear
theory [5, 6, 20–23], halo models [18, 24], nonlinear PT [25–28] or empirical fitting func-
tions [29]. All the above theoretical works were formulated in real space. In reality, what is
measured in peculiar velocity surveys is the velocity field sampled in redshift space, and the
measured positions are distorted by RSD. Theoretically, the RSD effect on peculiar velocities
has been discussed previously in Fourier space statistics [30–33].

In this paper, we present a comprehensive analysis of the aforementioned issues for two
peculiar velocity statistics: the velocity-density correlation, which can be restated as the pair-
wise mean infall velocity, and the velocity-velocity correlation. We have developed and tested
a phase space distribution function approach to RSD where the redshift-space density can be
written as a sum over mass or number weighted moments of radial velocity [34–38]. The cor-
responding RSD power spectrum can be written as a sum over auto and cross-correlators of
these moments. By applying this technique to the momentum density field in redshift space,
we derive theoretical predictions for momentum power spectra in redshift space as a sum
over auto and cross correlators of density-weighted velocity moments. We present detailed
comparisons of these predictions computed using Eulerian nonlinear perturbation [37, 38] to
the measurements for dark matter and halos obtained from N -body simulations.

This paper is organized as follows. In section 2, we briefly review peculiar velocity
statistics in real space, and derive expressions in redshift space by extending the distribution
function approach for the redshift-space density field to the redshift-space momentum field.
Section 3 describes the N -body simulations as well as our measurements of the Fourier space,
peculiar velocity statistics considered in this paper. In section 4, we present the peculiar
velocity statistics in Fourier space, the density-momentum and momentum-momentum power
spectra measured from N -body simulations. We then make a detailed comparison with linear
and nonlinear perturbation theory. In section 5 we present the peculiar velocity statistics in
configuration space, the mean pairwise velocity and the velocity-velocity correlation function.
We then discuss the configuration-space peculiar velocity statistics measured from N -body
simulations and predicted using perturbation theory. In section 6, we test whether our
nonlinear perturbation theory for halos can also model the peculiar velocity statistics of
satellite galaxies. Section 7 is the conclusion of this paper. For a comparison to the redshift-
space velocity statistics we discuss in this paper, we present the corresponding real-space
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statistics in appendix A. In the analysis of velocity statistics in configuration space, statistics
using pair-weighted velocity is commonly used while we focus on the statistics using density-
weighted velocity throughout this paper. In appendix B, we perform a detail comparison of
pair-weighted and density-weighted statistics and show that the latter are better defined and
more direct observables.

2 Velocity moments power spectra in real and redshift space

In this section we briefly review theoretical formalisms for the velocity statistics in real
space, and also newly define the statistics in redshift space. Throughout this paper we
adopt a plane-parallel approximation. In what follows the super/subscript m and h denote
quantities for dark matter and halos, respectively. We will, however, omit the m and h
when a given equation holds for both dark matter and halos, because much of our formalism
remains unchanged if the dark matter particles are replaced with biased tracers such as halos
or galaxies.

In peculiar velocity surveys, peculiar velocities of galaxies themselves are directly ob-
servable, but they are sampled at galaxy positions, so they are not volume-weighted but
density-weighted velocities. We can define the comoving momentum density field as p(x) =
[1 + δ(x)]v(x), where δ = ρ/ρ̄−1 is an overdensity field and v is the comoving velocity field.
Since only the radial components of these vectors are observables, a more relevant relation is

p‖(x) = [1 + δ(x)] v‖(x), (2.1)

where p‖ = p · ẑ and ẑ is the unit vector pointing along the line of sight. Equation (2.1) is

the L = 1 case of the moments of mass-weighted velocities TL
‖ defined in [34] (see section 2.2

below).

2.1 Momentum power spectra in real space

By correlating the radial momentum density to the density field and to the radial momen-
tum density itself, respectively, we obtain the first-order P r

01 and second-order P r
11 velocity

statistics, as

〈

δ(k)|p∗‖(k′)
〉

= (2π)3P r
01(k)δ

D(k− k′), (2.2)
〈

p‖(k)|p∗‖(k′)
〉

= (2π)3P r
11(k)δ

D(k− k′), (2.3)

where δ(k) and p‖(k) are the Fourier transforms of δ(x) and p‖(x), respectively. Quantities
with the superscript r mean that they are measured in real space, while later we will consider
these quantities in redshift space, denoted by the superscript s. The general definition of
P r
LL′ was introduced in [34] and will be given in the next subsection.

The momentum field is related to the density field through the continuity equation, and
in linear theory for biased objects it reads

P r,h
00,lin(k) =

(−ikb
Hµf

)

P r,h
01,lin(k) =

(

kb

Hµf

)2

P r,h
11,lin(k), (2.4)

where P r
00 is the ordinary power spectrum of a given density field, H(a) = aH(a), H(a) is

the Hubble parameter, µ is the angle between the Fourier mode and line-of-sight, b is the
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bias parameter and f = d lnD/d ln a with D the growth factor. The expression for dark
matter is obtained by substituting b = 1 in equation (2.4), thus the relations between power

spectra for dark matter and halos in linear theory are characterized by b as P r,h
00,lin = b2P r,m

00,lin,

P r,h
01,lin = bP r,m

01,lin and P r,h
11,lin = P r,m

11,lin [34, 36].

2.2 Density power spectrum from the distribution function approach

A phase-space distribution function approach was recently developed by [34, 39] for the
purpose of modeling the power spectrum of the density fields in redshift-space. The approach
was tested against dark matter in [35, 37] and extended to biased objects such as dark matter
halos and galaxies in [36, 38]. In this subsection we briefly review the formalism.

The redshift-space density field in Fourier space is described as a summation of moments
of density-weighted velocity in real space,

δs(k) =
∑

L=0

1

L!

(

ik‖

H

)L

TL
‖ (k). (2.5)

TL
‖ (k) is the Fourier transform of TL

‖ (x), the moments of mass-weighted velocity, defined as

TL
‖ (x) =

ma−3

ρ̄

∫

d3pf(x,p)vL‖ , (2.6)

where f(x,p) is the phase space distribution function of particles at a phase-space position
(x,p). For a single stream at x, equation (2.6) is simply written as TL

‖ (x) = [1 + δ(x)] vL‖ (x)

and it is obviously the L = 1 case if equal to equation (2.1). The equations above are applied
not only to dark matter but also to biased objects [36]. The power spectrum in redshift space
can be expressed as an infinite sum of cross-power spectra between mass weighted velocity
moments in real space, as

P s
00(k) =

∞
∑

L=0

∞
∑

L′=0

(−1)L
′

L! L′!

(

ikµ

H

)L+L′

P r
LL′(k) , (2.7)

where (2π3)P r
LL′(k)(k− k′) = 〈TL

‖ (k)T
∗L′

‖ (k′)〉. Note that we explicitly put the subscript 00
to P s to clarify that the so-cold redshift-space power spectrum is the auto correlation of the
zeroth velocity moments in redshift space, since in the next subsection we discuss the power
spectra of velocity moments in redshift space.

By performing helicity decomposition, [34] determined the angular dependence of PLL′

and the redshift-space power spectrum was shown to be

P s
00(k) =

∞
∑

L=0

1

L!2

(

k

H

)2L 4L
∑

j=2L

P
(j)
LL(k)µ

j+2

∞
∑

L=0

∑

L′>L

(−1)L

L! L′!

(

ik

H

)L+L′ 2(L+L′)
∑

j=(L+L′) or (L+L′+1)

P
(j)
LL′(k)µ

j

≡
∑

j=0,2,4,···

P s
00,µj (k)µ

j , (2.8)

where P
(j)
LL′ are coefficients in expansion in powers of µj of contributions of P r

LL′ to P s
00. The

coefficients P s
00,µj are the moments expanded in terms of µ2, an alternative expansion to the

commonly-used Legendre multipole expansion,

P s
00(k) =

∑

l=0,2,4,···

P s
00,l(k)Pl(µ), P s

00,l(k) = (2l + 1)

∫ 1

0
P s
00(k)Pl(µ)dµ. (2.9)
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We already know that the redshift-space power spectrum P s
00 is given by the velocity

statistics above as well as the density-density spectrum P00 in real space under the nonlinear
Kaiser approximation [3, 25, 36],

P s,h
00 (k) = P r,h

00 (k) + 2fµ2
( −ik
Hµf

)

P r,h
01 (k) + f2µ4

(

k

Hµf

)2

P r,h
11 (k). (2.10)

If we additionally assume standard linear theory in equation (2.10), we obtain the original
linear Kaiser formula, as

P s,h
00,lin(k) =

(

1 + fµ2/b
)2
P h
00,lin(k) =

(

b+ fµ2
)2
P r,m
00,lin(k). (2.11)

2.3 Redshift-space distortions of momentum fields

A direct observable in a peculiar velocity survey are in fact peculiar velocities in redshift
space, which are affected by redshift-space distortions. The position of a particle in redshift
space s is distorted by its peculiar velocity along the line of sight as s = x + ẑv‖/H. Thus
we can define the redshift-space momentum field as

ps‖(s) = [1 + δs(s)] vs‖(s). (2.12)

By extending the phase-space distribution function approach to the redshift-space momentum
field, the momentum density along the line of sight in redshift space is given by

ps‖(s) =
ma−3

ρ̄

∫

d3p d3x
p‖

ma
f (x,p) δD

(

s− x− ẑ
v‖

H
)

=
ma−3

ρ̄

∫

d3p
p‖

ma
f
(

s− ẑ
v‖

H ,p
)

.

(2.13)

By Fourier transforming equation (2.13), we get

ps‖(k) =
ma−3

ρ̄

∫

d3x d3p
p‖

ma
f (x,p) ei(k·x+k‖v‖/H)

=
ma−3

ρ̄

∫

d3x eik·x
∫

d3p
p‖

ma
f(x,p)eik‖v‖/H. (2.14)

Expanding the second integral in equation (2.14) as a Taylor series in k‖v‖/H, we get

ma−3

ρ̄

∫

d3p
p‖

ma
f (x,p)eik‖v‖/H =

ma−3

ρ̄

∫

d3q f (x,p)
∑

L=0

1

L!

(

ik‖/H
)L
vL+1
‖

=
∑

L=0

1

L!

(

ik‖

H

)L

TL+1
‖ (x). (2.15)

The Fourier component of the momentum fluctuation in redshift space is

ps‖(k) =
∑

L=0

1

L!

(

ik‖

H

)L

TL+1
‖ (k) =

∑

L=1

1

(L− 1)!

(

ik‖

H

)L−1

TL
‖ (k). (2.16)

This is the expression for the momentum density in redshift space corresponding to that for
the mass density (equation (2.5)).
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2.4 Momentum power spectra in redshift space

As is the case with real space (equations (2.2) and (2.3)), the redshift-space overdensity-
momentum and momentum-momentum power spectrum are defined as,1

〈

δs(k)|ps∗‖ (k′)
〉

= (2π)3P s
01(k)δ

D(k− k′),
〈

ps‖(k)|ps∗‖ (k′)
〉

= (2π)3P s
11(k)δ

D(k− k′). (2.17)

Equations (2.5) and (2.16) give,

P s
01(k) =

∑

L=0

∑

L′=0

(−1)L
′

L!L′!

(

ik‖

H

)L+L′

P r
LL′+1(k)

= i
H
k‖

∑

L=0

∑

L′=1

(−1)L
′

L!L′!

(

ik‖

H

)L+L′

L′ P r
LL′(k),

P s
11(k) =

∑

L=0

∑

L′=0

(−1)L
′

L!L′!

(

ik‖

H

)L+L′

P r
L+1L′+1(k)

=

(H
k‖

)2
∑

L=1

∑

L′=1

(−1)L
′

L!L′!

(

ik‖

H

)L+L′

LL′ P r
LL′(k). (2.18)

As noted in [34] P r
LL′(k) = P r

L′L(k)
∗. Thus only the terms P r

LL′(k) with L ≤ L′ need to be
considered, each of which comes with a factor of 2 if L 6= L′ and 1 if L = L′. If we introduce
µ = k‖/k = cos θ, we can write,

−ikµH P s
01(k) =

∑

L=1

(−1)L

L!

(

ikµ

H

)L

L P r
0L(k) +

∑

L=1

1

(L!)2

(

kµ

H

)2L

L P r
LL(k)

+2Re
∑

L=1

∑

L′>L

(−1)L
′

L!L′!

(

ikµ

H

)L+L′

L′ P r
LL′(k), (2.19)

(

kµ

H

)2

P s
11(k) =

∑

L=1

1

(L!)2

(

kµ

H

)2L

L2P r
LL(k)

+2Re
∑

L=1

∑

L′>L

(−1)L
′

L!L′!

(

ikµ

H

)L+L′

LL′ P r
LL′(k). (2.20)

Considering the helicity decomposition as we did for P s
00 in equation (2.8), we have

P s
01(k) =

∑

j=1,3,···

P s
01,µj (k)µ

j , P s
11(k) =

∑

j=2,4,···

P s
11,µj (k)µ

j . (2.21)

On large scales where linear theory can be applied, peculiar velocity statistics in redshift
space, P s,h

01 and P s,h
11 , can be expressed as,

−ikµH P s,h
01 (k) = −ikµH P r,h

01 (k) +

(

kµ

H

)2

P r,h
11 (k) = fµ2(b+ fµ2)P r,m

00,lin(k), (2.22)

(

kµ

H

)2

P s,h
11 (k) =

(

kµ

H

)2

P r,h
11 (k) = µ4f2P r,m

00,lin(k). (2.23)

1Note that unlike the definition here, we used the definition of P s
LL′ (or P ss

LL′) to describe contributions of
PLL′ in real space to the redshift-space power spectrum P

s(k) in our series of papers on RSD [34–37].
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We thus see that even in linear theory, the density-velocity correlation is not just proportional
to µ, but has an additional b+ fµ2 dependence that arises from RSD. This has usually been
ignored in previous analyses [e.g., 19]. The expression of equation (2.22) is the same as that
presented by [30] who considered the cross correlation of redshift-space density and real-space
velocity in the linear regime, because the velocity field in redshift space is equivalent to that
in real space for the linear theory limit (see equations (2.16) and (2.23), and see also [33]).

3 N -body simulations

As in our previous works [35, 36], we use a series of N -body simulations of the ΛCDM cosmol-
ogy seeded with Gaussian initial conditions [40]. The primordial density field is generated
using the matter transfer function by CAMB [41]. We adopt the standard ΛCDM model
with Ωm = 1 − ΩΛ = 0.279, Ωb = 0.0462, h = 0.7, ns = 0.96, σ8 = 0.807. We employ
10243 particles of mass mp = 2.95 × 1011h−1M⊙ in a cubic box of side 1600 h−1 Mpc. The
positions and velocities of all the dark matter particles are output at z = 0, 0.509, 0.989,
and 2.070, which are quoted as z = 0, 0.5, 1, and 2 in what follows for simplicity. We use 12
independent realizations in order to reduce the statistical scatters.

Dark matter halos are identified using the friends-of-friends algorithm with a linking
length equal to 0.17 times the mean particle separation. We use all the halos with equal to
or more than 20 particles. In order to investigate the halo mass dependences of the velocity
statistics, each dark matter halo catalog is divided into subsamples according to the halo
mass. The subsamples are labelled as bin1, bin2, · · · , from the least massive halos. Since
the number density of halos is smaller at higher redshifts, we construct 4 halo subsamples
at z = 0 and 0.5, and 3 subsamples at z = 1. We do not consider the analysis of halos
at z = 2. The values of the linear bias parameter b1 determined using χ2 statistics for
b(k) = P r,mh

00 (k)/P r,mm
00 (k) at 0.01 ≤ k ≤ 0.04 h Mpc−1 are b1 = 1.17, 1.45, 2.02 and 3.03

at z = 0, b1 = 1.64, 2.16, 3.11 and 4.85 at z = 0.5, and b1 = 2.31, 3.17 and 4.64 at z = 1.
Pmh
00 is the cross power spectrum of matter and halo density fields. See table 1 of [36] for the

detail of the halo catalogs.
We measure the power spectra of velocity moments for dark matter and halos from our

simulation samples following [35, 36]. We assign the number-weighted velocity moments in
real space and in redshift space on 10243 grids using a cloud-in-cell interpolation method
according to the positions of particles. In measuring the velocity field in redshift space, we
distort the positions of particles along the line-of-sight according to their peculiar velocities
before we assign them to the grid. We regard each direction along the three axes of simulation
boxes as the line of sight and the statistics are averaged over the three projections of all
realizations for a total of 36 samples. We use a fast Fourier transform to measure the
Fourier modes of the number-weighted velocity moment fields in real space TL

‖ (k) and in

redshift space T s,L
‖ (k). Then the power spectrum P r

LL′(k) and P s
LL′(k) are measured by

multiplying the modes of the two fields (or squaring in case of auto-correlation) and averaging
over the modes within a bin. The momentum field is normalized by H(a) = aH(a), thus
the momentum power spectra P01 and P11 respectively have the unit of [ h−1 Mpc]4 and
[ h−1 Mpc]5. To show the error of the mean for measured statistics, the scatter among
realizations needs to be divided by the square root of the number of the realizations. Three
measurements along different line-of-sight in each of 12 realizations are, however, not fully
independent. To be conservative, we thus present the measured dispersion divided by

√
12

as the error of the mean in the following analysis.
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4 Fourier-space analysis

The purpose of this paper is to present the momentum cross and auto power spectrum for
dark matter and halos in redshift space measured from N -body simulations and predict them
using linear theory and one-loop nonlinear perturbation theory. As we did in [37, 38], we
consider terms that contribute to the redshift-space velocity statistics, P s

01 and P s
11, up to

one loop in Eulerian PT, so we have P r
LL′ up to L+ L′ ≤ 4 and

−ikµH P s
01(k) = −ikµH P r

01(k) +

(

kµ

H

)2

P r
11(k)−

(

kµ

H

)2

P r
02(k) +

i

2

(

kµ

H

)3

P r
03(k)

− 2i

(

kµ

H

)3

P r
12(k) +

1

6

(

kµ

H

)4

P r
04(k)−

(

kµ

H

)4

P r
13(k) +

1

2

(

kµ

H

)4

P r
22(k),

(4.1)
(

kµ

H

)2

P s
11(k) =

(

kµ

H

)2

P r
11(k)− 2i

(

kµ

H

)3

P r
12(k)−

(

kµ

H

)4

P r
13(k) +

(

kµ

H

)4

P r
22(k).

(4.2)

Among these terms in equation (4.1), all the terms that contribute to −i(kµ/H)P s
01 as µ

2 and
µ4, except for P r

04, can be formulated using one-loop PT for dark matter [37] and halos [38].
The µ4 term in (kµ/H)4P r

04 is of two-loop order, but we take into account the PT modeling
of it because, as shown in [37], it has a non-negligible contribution. We thus include all the
terms that have the angular dependence of µ and µ3 to P s

01 in the following analysis, i.e.,
µ2 and µ4 to −i(kµ/H)P s

01. Likewise, we take into account all the terms that contribute
to µ0 and µ2 in P s

11. All the linear theory predictions presented below are computed using
CAMB [41].

As discussed in [37], modeling the matter power spectrum in real space, P r,m
00 , plays an

important role to predict both P r,m
LL′ and P

r,h
LL′ . The matter power spectrum in real space is the

most fundamental spectrum and there are many attempts to model it based on perturbation
theory for quasi-nonlinear scales [e.g., 42–46] and on calibration using N -body simulations
for fully nonlinear scales [e.g., 47–49]. In this paper, rather than modeling it we assume that
we have a perfect theoretical model for P r,m

00 , namely, the modeled P r,m
00 is equal to that

measured from the N -body simulation. With this assumption we also have perfect model
for P r,m

01 because the scalar part of the momentum field is related to the time derivative
of the matter density field (see equation (3.7) of [34]). Note that we still use nonlinear
PT for the vector part of P r,m

11 that was shown to be in a good agreement with N -body
result [37]. In the following analysis, thus, we use values of P r,m

00 , P r,m
01 and the scalar part of

P r,m
11 measured from N -body simulations as our prediction and use nonlinear PT at one-loop

order for the other P r,m
LL′ ’s and at two-loop for P r,m

04 . In this way we can investigate the
accuracy of nonlinear PT on prediction of nonlinear RSD, since all the possible deviations
from the N -body measurement come from the imperfect modeling of nonlinear RSD, as well
as the imperfect modeling of nonlinear bias in the case of analysis of dark matter halos.

As we have seen in [36, 37], all the P r
LL′ ’s in equations (4.1) and (4.2), except P r

01

and P r
11, have terms proportional to velocity dispersion σ2v . Briefly, at one loop order, the

isotropic part of P r
02 contains a term proportional to σ2vP

r
00, the correlators P r

12 and P r
03

contain a term proportional to σ2vP
r
01, P

r
13 is simply proportional to σ2vP

r
01, and P

r
22 contains

a term proportional to σ2vP
r
02 and another proportional to σ4vP

r
00. The correlator P

r
04 contains

a term proportional to σ2vP
r
02 and another proportional to σ4vP

r
00 at two loop order. Using
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perturbation theory, the velocity dispersion is evaluated as

σ2v =
1

3

∫

d3q

(2π)3
Pθθ(q)

q2
, (4.3)

where Pθθ is the velocity divergence power spectrum. While linear theory gives σv ≃
6fD h−1 Mpc, which is a good approximation for halo velocities [38], this does not properly
take account of small scale contributions which come from within virialized halos where PT
cannot be applied. In order to take into account the nonlinear contributions to the velocity
dispersion, we add the corrections σ2LL′ to σ2v in P r,m

LL′ as σ2v → σ2v+σ
2
LL′ . Rather than treating

the nonlinear correction σLL′ as free parameter, we simply adopt the best fit parameters of
σLL′ , which were obtained for the real-space P r,m

LL′ and shown in table 1 of [37].

4.1 Dark matter in real space and in redshift space

In figure 1 we show the density-momentum cross power spectra and the momentum auto
power spectra measured for dark matter and halos as functions of (k, µ) both in real space and
redshift space at z = 0. We adopt the constant µ binning into five bins between 0 ≤ µ ≤ 1,
but only four µ bins among the five are plotted, 0 ≤ µ ≤ 0.2 (green), 0.2 ≤ µ ≤ 0.4 (yellow),
0.4 ≤ µ ≤ 0.6 (red) and 0.8 ≤ µ ≤ 1 (blue). The corresponding linear theory predictions are
shown as the dotted line with the same color. Our nonlinear PT predictions are shown as
the solid lines. In the rest of this section we will see the results in detail. First let us focus
on the results for dark matter that are shown in the left column of figure 1, while those for
halos will be presented in the next subsection.

4.1.1 Cross power spectrum between density and momentum

At the top of the left column of figure 1 we show the density-momentum power spectrum
in real space P r,m

01 (k, µ), multiplied by k2 for dark matter. This is the quantity that has
been already computed and presented in [35, 37], and we show it here to compare with the
corresponding redshift-space spectrum. As we have seen in [35, 37], this statistics approaches
linear theory at large scales shown as the dotted lines, while for k > 0.1 h Mpc−1 it exceeds
linear theory. Because the N -body measurement of P r,m

01 is used as our theoretical prediction,
the prediction shown as the solid lines coincides with the measured P r,m

01 by construction.
Next, at the left panel of the second row of figure 1 the density-momentum power

spectrum for dark matter measured in redshift space, P s,m
01 (k, µ), is shown. There are two

terms, P r,m
01 and P r,m

11 , that have linear-order contributions to P s,m
01 . As expected, P s,m

01

starts to deviate from linear theory at larger scales than P r,m
01 . At k ≃ 0.15 h Mpc−1 the

sign of P s,m
01 is changed, because of the FoG effect, mainly from P02. The more detailed

comparison is presented for four redshifts at the top row of figure 2 where we plot the ratio
of P s,m

01 to the corresponding linear power spectrum without BAO wiggles P s,m
01,no-wiggle =

(1 + fµ2)P r,m
01,no-wiggle. The linear theory no-wiggle power spectrum in real space P r,m

01,no-wiggle

is computed using the formula of [50]. Here P s,m
01,no-wiggle has two terms, one proportional to

µ and another proportional to µ3, thus the ratio P s,m
01 /P s,m

01,no-wiggle has angular dependence.

One can see that except at very large scales k ∼ 0.01 h Mpc−1, linear theory cannot explain
the N -body results at all. On the other hand, our nonlinear PT prediction agrees well with
the N -body results. Our PT calculation also well explains the trend of the change of signs
of P s,m

01 . However, at higher µ, the deviation of the PT prediction from the N -body result
starts at larger scales: at µ = 0.9 k ∼ 0.05 h Mpc−1 for z = 0 and k ∼ 0.08 h Mpc−1
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Figure 1. Density-momentum cross power spectra in real space P01(k, µ) (first row) and in redshift
space P s

01(k, µ) (second row), and momentum auto power spectra in real space P11(k, µ) (third row)
and in redshift space P s

11(k, µ) (bottom row), all measured at z = 0. From left to right we show the
results for dark matter, halos with mass bin 1, and halos with mass bin 3. P01 and P11 are respectively
multiplied by k2 and k3 for clarity. The points with different color show the results with different µ
values, quoted in the third row, with the width of ±0.1. The sold lines show our PT predictions and
the negative values are shown as the dashed lines. The corresponding linear theory predictions are
shown as the dotted line with the same color.

for z = 2. This is expected because −(ikµ/H)P s
01 has the angular dependence of µ2j (j =

1, 2, · · · ), while we used terms up to µ4 using PT, and the neglected higher order terms are
more significant for higher µ. On the other hand, such higher-order terms are significantly
suppressed for smaller µ, thus our one-loop PT agrees with N -body results of P s,m

01 at µ = 0.3
up to much smaller scales. For comparison, the density-momentum spectrum in real space
P r,m
01 (k, µ)/P r,m

01,no-wiggle(k, µ) is shown in the top row of figure 2 as the black dashed line
(angle independent). Since P r

01 has angular dependence of P r
01(k) = µP r

01,µ1(k), the ratio of

the measured P r,m
01 to the corresponding no-wiggle linear spectrum becomes isotropic. The
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Figure 2. Top row : density-momentum cross power spectra for dark matter in redshift space divided
by the no-wiggle spectra [50], P s,m

01 /P s,m

01,no-wiggle. From the left to right, results are shown for z = 0,
0.5, 1 and 2. The solid lines show our PT predictions and the negative values are shown as the dashed
lines. For comparison, the results in real space, P r,m

01 /P r,m

01,no-wiggle, are shown as the black dashed line
(it is angle independent). The corresponding linear theory prediction is isotropic and equivalent in real
space and redshift space, P r,m

01,lin/P
r,m

01,no-wiggle = P s,m

01,lin/P
s,m

01,no-wiggle, shown as the dotted lines. Bottom

row : ratios of the spectra in redshift space and real space, P s,m
01 (k, µ)/P r,m

01 (k, µ). The corresponding
nonlinear PT prediction is shown as the solid (positive) and dashed (negative) lines with the same
color as the measurement, while linear theory prediction is as the dotted lines.

ratios of the cross power spectrum in redshift space to that in real space, P s,m
01 /P r,m

01 , are
shown in the bottom panels of figure 2. At the linear theory limit this ratio gives (1 + fµ2),
shown as the dotted horizontal lines. Nonlinear PT can predict the numerical results for
µ = 0.9 up to k ≃ 0.05 h Mpc−1 at z = 0 and to k ≃ 0.08 h Mpc−1 at z = 2, and to the
smallest scales probed here for µ = 0.3. Note that we use µ = 0 simulation results as the
starting point.

4.1.2 Auto power spectrum of momentum

Third, we show at the left panels of the third and fourth rows in figure 1 the momentum auto
power spectrum in real space P r,m

11 and in redshift space P s,m
11 , respectively. In linear theory

the two statistics are equivalent (equation (2.23)) and the behaviors of these measurements
are indeed similar. As we have seen in [35, 37], P r,m

11 exceeds linear theory at small scales
just like P r,m

01 but the nonlinear effect is stronger. For prediction of the auto momentum
spectrum in real space, we use the measurement from N -body simulation for the scalar part
and nonlinear PT for the vector part. Because the vector part of P r,m

11 is well modeled using
one-loop nonlinear PT [37], the measured P r,m

11 perfectly agrees with our prediction. Unlike
P s,m
01 , P s,m

11 does not change the sign at all scales because there is no contribution from P r,m
02

that has a large FoG effect. The momentum auto power spectra of dark matter in real space
and in redshift space divided by their corresponding no-wiggle spectra are shown at the first
row in figure 3. Interestingly, the momentum auto power spectrum in redshift space P s,m

11

is better predicted using our nonlinear PT than the density-momentum cross spectrum in
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Figure 3. Top row : momentum auto power spectra for dark matter in redshift space divided by the
no-wiggle spectra P s,m

11 /P s,m

11,no-wiggle. From the left results are shown for z = 0, 0.5, 1 and 2. The solid
lines show nonlinear PT predictions with the same color as the measurement, while the linear theory
prediction is shown as the black dotted line. For comparison the real-space result P r,m

11 /P r,m

11,no-wiggle

is shown as the dashed lines. Bottom row : ratios of the spectra in redshift space and real space,
P s,m
11 (k, µ)/P r,m

11 (k, µ). The solid lines and the horizontal dotted lines are the nonlinear and linear
theory predictions, respectively.

redshift space P s,m
01 . As is the case with P s,m

01 , however, the deviation of our PT prediction
from the simulation result is larger at higher µ, since we use only the terms up to µ4 for
(kµ/H)2P s

11 while it has the infinite angular dependence of µ2j (j = 1, 2, · · · ). The bottom
row of figure 3 shows the ratio of the momentum auto spectra in redshift space and in real
space, P s,m

11 /P r,m
11 , that is just unity in linear theory. Although the effect of RSD on P11 is

a fully nonlinear effect, that changes the amplitude of P11 by ∼ 50% at k ≃ 0.1 h Mpc−1

at z = 0 and ∼ 15% even at z = 2. These trends are well captured by our one-loop PT
calculations.

Let us consider the cross-correlation coefficient between density and momentum in red-
shift space, defined as,

Rs,m(k) =
P s,m
01 (k)

√

P s,m
00 (k)P s,m

11 (k)
. (4.4)

In linear theory the dark matter density field is perfectly correlated with the momentum field
thus the cross-correlation coefficient is just unity. We show in figure 4 the cross-correlation
coefficient for dark matter in redshift space as functions of (k, µ). For comparison we also show
the cross-correlation coefficient defined in real space, Rr,m, that is a similar quantity presented
by [51] for the velocity field instead of the momentum field. Because theN -body measurement
and prediction of Rr,m are almost identical, we show only the latter as the dashed lines. The
angular dependence of Rr,m comes from the nonlinear, isotropic part of P r,m

11 . If only the
scalar part of P r,m

11 is used, the coefficient becomes isotropic Rr,m(k) = Rr,m(k) [36]. Because
of the decoherence of density and momentum fields, Rr,m approaches 0 at small scales. As
for the cross-correlation coefficient in redshift space, Rs,m(k, µ), since the momentum field
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Figure 4. Cross-correlation coefficient of the density and momentum for dark matter at four redshifts
in redshift space Rs,m(k, µ). The sold lines show our PT predictions. In linear theory the cross-
correlation coefficients are simply unity, as denoted by the black dotted lines. For comparison the
coefficient in real space is shown as the dashed lines.

here is correlated with the redshift-space density field that is distorted by the momentum
field, it does not approach 0 but goes to negative values. The trend is well captured by our
nonlinear PT prediction. However, at low redshifts the deviation from N -body results gets
larger and larger for higher k.

4.2 Halos in redshift space

Let us move onto results obtained for biased objects, dark matter halos. As mentioned above,
halo velocity dispersion is well predicted by linear theory with weak dependence of halo mass,
so we use the linear theory prediction, σv/fD = 6 h−1 Mpc. There is an additional issue to
model halo P h

LL′ , that is halo biasing. Following [38] we adopt an Eulerian biasing model [52]

δh[δm] = b1δm(x) +
b2
2

[

δ2m(x)− 〈δ2m〉
]

+
bs
2

[

s(x)2 − 〈s2〉
]

+
b3
6
δ3m(x), (4.5)

where bs is the nonlocal bias term that comes from the tidal tensor. With bias renormalization
b3 can be absorbed into b1, and bs can be related to b1 through bs = −2

7(b1 − 1) [53]. Thus
we will consider a set of the two bias parameters (b1, b2) for each halo subsample. We use
the models of P h

LL′ with the best fit values of the halo biasing (b1, b2) found by [38]. As is the
case in section 4.1, we assume that we can model the dark matter power spectrum in real
space Pm

00 , thus we use P r,m
00 , P r,m

01 and the scalar part of P r,m
11 measured from simulations.

4.2.1 Cross power spectrum between density and momentum

At the first row in figure 1, the middle and right panels show the density-momentum cross
power spectra of the lightest halos (bin1) and the second most massive halos (bin3), re-

spectively, in real space P r,h
01 measured at z = 0. Just like the case for dark matter, P r,h

01

for halos exceeds linear theory at small scales. Because we studied the density-momentum
power spectrum of halos in real space in detail in [36, 38], the result is shown in appendix A
only for z = 0 as a comparison to the corresponding redshift-space results shown below.

The cross power spectrum for halos in redshift space P s,h
01 (k, µ) is shown at the middle

and right panels of the second row in figure 1. The spectrum for halos is closer to linear
theory than that for dark matter. It is because the power spectrum in redshift space is
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expanded in terms of kµv‖/H, where radial velocity v‖ is much smaller for halos than for
dark matter and the suppression of the amplitude by the nonlinear velocity dispersion is
partially cancelled out with the nonlinear clustering as we have seen in RSD of halos [36].
Because each term of the expansion of P s

01 has a different factor, e.g., P r
11+P

r
02 in P

s
01 is twice

as large relative to P r
01 as that in P s

00, the halo cross spectrum in redshift space P s,h
01 changes

sign at smaller scales than P s,h
00 . The halo mass dependence of P s,h

01 is shown at the first rows
of figures 5, 6 and 7 for z = 0, 0.5 and 1, respectively. As is the case with dark matter P s,m

01 ,
N -body results for halos disagree with linear theory prediction except for the largest scale
k ≤ 0.02 h Mpc−1. Although the velocity dispersion of halos is so small that linear theory
can be applied, the amplitude of P s,h

01 is suppressed relative to linear theory prediction for all
the halo subsamples for all the redshifts. Our nonlinear prediction at one-loop level with a
set of bias (b1, b2) significantly improves the accuracy. Except the lowest mass bin at z = 0,
the nonlinear PT well predicts the scale dependence up to small scales including the scale
where the sign of P s,h

01 turns negative. The ratio of the cross power spectrum in redshift space

and in real space, P s,h
01 /P

r,h
01 , is shown at the bottom rows in figures 5, 6 and 7. The more

massive halos we focus on, the more isotropic the ratio P s,h
01 /P

h
01 on linear scales becomes

since the anisotropy induced by RSD is parameterized by f/b. Although the overall trend
of each simulation result is well captured by nonlinear PT, a careful look at the comparison
reveals small differences between N -body results and the PT prediction. For example at
z = 0.5, they agree with each other for mass bin1 up to k ∼ 0.15 h Mpc−1 for µ = 0.3 and
up to k ∼ 0.13 h Mpc−1 for µ = 0.9, and for mass bin3 up to k ∼ 0.2 h Mpc−1 for µ = 0.3
and up to k ∼ 0.11 h Mpc−1 for µ = 0.9. The prediction of P s

01(k, µ) along the line of sight is
less accurate than that perpendicular to the line of sight because we consider PT at one-loop
level thus the angular dependence is truncated at µ3.

4.2.2 Auto power spectrum of momentum

Next we consider the auto-power spectrum of momentum for halos P r,h
11 and P s,h

11 . They
have an isotropic term thus affected by shot noise [34, 36]. In our previous works it was not

important because the shot noise on P r,h
11 is canceled out by that coming from the density-

energy density spectrum P r,h
02 when their contributions to the redshift-space power spectrum

P s,h
00 is considered. Here, because we consider the momentum spectrum itself, the shot noise

needs to be estimated and subtracted. [54] defined the scale-dependent shot noise for the halo
density field σn,00(k) as δh(k) = bδm(k) + σn,00(k), then the shot noise for the halo density
spectrum was estimated as

σ2n,00(k) = P r,h
00 (k)− 2b1P

r,mh
00 (k) + b21P

r,m
00 (k), (4.6)

where P r,mh
00 is the cross power spectrum of matter and halo density fields in real space. If

one assumes the Poisson model the contribution of the shot noise to the halo power spectrum
is simply σ2n,00 = 1/n, where n is the halo number density. With the analogy to the method
of [54] above, we can estimate the shot noise for the momentum spectrum as

σ2n,11(k) = P r,h
11 (k)− 2P r,mh

11 (k) + P r,m
11 (k), (4.7)

where P r,mh
11 is the real-space cross power spectrum between matter and halo momentum

fields. Here we assumed that the momentum bias is unity at the large scale limit, which is
a reasonable assumption as is clear from [36]. Again, under the assumption of the Poisson
model we have σ2n,11 = 〈v2‖〉/n = 〈v2‖〉σ2n,00 [11, 30].
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Figure 5. Top row : density-momentum cross power spectra for halos in redshift space divided by
the no-wiggle spectra at z = 0, P s,m

01 /P s,m

01,no-wiggle. Bottom row : ratios of the spectra in redshift space

and real space, P s,m
01 (k, µ)/P r,m

01 (k, µ). The corresponding linear theory predictions are shown as the
dotted line with the same color, while our nonlinear PT predictions are as the solid and dashed lines
for positive and negative values, respectively.
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Figure 6. Same as figure 5 but for z = 0.5.

In the top panels of figure 8 we show the shot noise measured for the halo momentum
field σ2n,11. The horizontal lines with the same color as the measured points are the corre-
sponding Poisson model. The bottom panels show the deviation of the shot noise from the
Poisson model, σ2n,11(k)− 〈v2‖〉/n. As is clear from the figure, the behavior of the shot noise
measured from simulations differs among halo subsamples with different mass, and it changes
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Figure 7. Same as figure 5 but for z = 1.
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Figure 8. Top: shot noise power spectrum for momentum power spectrum σn,11 measured using the
matter-halo cross power spectra. The horizontal lines with the same color are the shot noise predicted
with the Poisson model, 〈v2‖〉/n. Bottom: the difference between the measurement and the Poisson
model. The filled and open points show positive and negative values, respectively.

a lot as a function of scale. It is expected to some extent, because even though equation (4.6)
is the true expression for the non-Poissonian shot noise for the halo density spectrum, that
for the halo momentum spectrum (equation (4.7)) is just the analogy and holds only in the
limited case where the momentum field is uncorrelated with stochasticity. Moreover, we have
tested if adopting equation (4.7) improved the accuracy of modeling P r,h

11 and found that the
results were not improved very much compared to the case with the Poisson shot noise. For
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Figure 9. Top row : momentum auto power spectra for halos in redshift space divided by their
no-wiggle spectra at z = 0, P s,h

11 /P
s,h

11,no-wiggle. Bottom row : ratios of the spectra in redshift space

and real space, P s,h
11 (k, µ)/P r,h

11 (k, µ). The corresponding linear theory predictions are shown as the
dotted line with the same color while our nonlinear PT predictions are as the solid lines.

simplicity, we thus assume in the following analysis the Poisson model to subtract the shot
noise from the measured auto power spectrum of halo momentum fields P r,h

11 and P s,h
11 .

The resulting auto power spectra of halos for mass bin1 and bin3 in real space P r,h
11

at z = 0 after the shot noise is subtracted are shown respectively at the middle and right
panels in the third row of figure 1. The amplitude of P r,h

11 exceeds linear theory at large

scales similarly to the case of P r,h
01 . The behavior of P r,h

11 is well explained by nonlinear PT
for halos with the lowest mass, while there are systematic deviations for the result with more
massive halos. It is most likely because the assumption of the Poisson model for shot noise
〈v2‖〉/n is incorrect when the number density n is small. Because exploring the shot noise on
the momentum power spectrum is not the main purpose of this paper, the accuracy of our
model for the real-space spectra of momentum field with different halo mass is presented in
appendix A. The effect of shot noise on the momentum power spectrum needs to be studied
in detail when analyzing real surveys.

Finally we present the auto power spectrum of halos in redshift space P s,h
11 (k, µ). The

resulting redshift-space spectra with the shot noise subtracted for mass bin1 and bin3 at
z = 0 are shown at the middle and right panels in the bottom row of figure 1. The nonlinear
PT prediction for halos in redshift space achieve almost the same precision compared to
the real-space results, and has better agreement to N -body results for halos than for dark
matter. The ratios of these redshift-space momentum spectra to the corresponding linear
no-wiggle spectra are presented at the second rows in figures 9, 10 and 11 for z = 0, 0.5, and
1, respectively. Overall, our nonlinear PT at one-loop level for the momentum power spectra
of halos in redshift space P s,h

11 is as accurate as that in real space. The ratio P s,h
11 /P

r,h
11

is shown at the bottom rows of figures 9, 10 and 11. The ratio is closer to unity, linear
theory prediction, than that for dark matter. The deviation from unity which is caused by
fully nonlinear RSD and expected to be small is still at ∼ 20% levels. In previous theoretical
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Figure 10. Same as figure 9 but for z = 0.5.
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Figure 11. Same as figure 9 but for z = 1.

studies this effect has not been studied, but it needs to be taken into account. Our theoretical
prediction is well able to predict the ∼ 20% level effect. In order to improve the prediction
up to smaller scales, however, we need to model the shot noise on P s,h

11 more correctly than
the Poisson model.

5 Configuration-space analysis

Observationally, peculiar velocity statistics have been studied more intensively in configu-
ration space than in Fourier space. In this section we study two basic velocity statistics
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in configuration space: the mean infall velocity and velocity auto correlation function, that
are respectively related to the density-momentum cross power spectrum and momentum
auto power spectrum in Fourier space which we have studied so far. We define the Fourier
transform of the power spectra of the density-weighted velocity moments as

ξXLL′(r) + δ0Lδ0L′ =
〈

TX,L
‖ (xb)T

X,L′

‖ (xa)
〉

=

∫

d3k

(2π)3
PX
LL′(k, µ)e−ik·r, (5.1)

where r = xb − xa, T
L
‖ (x) is defined in equation (2.6), δLL′ is the Kronecker delta, and

the superscript X is r for real pace and s for redshift space. The functions ξr00 and ξs00 are
the well-known density correlation functions for a given sample in real space and in redshift
space, respectively, and simply written as ξX00 = ξX . In this section we present the velocity
statistics in real space and redshift space, and relate them to the correlation functions of the
velocity moments defined above. We also derive the contribution from RSD to the Kaiser
limit for the mean infall velocity in redshift space.

5.1 Mean pairwise infall momentum

The mean streaming velocity between pairs of galaxies, vmean, was originally introduced
by [5] in the context of the BBGKY theory. Because only the line-of-sight component of
velocity, v‖(x) = v(x) · ẑ, is measurable in observations, we consider the mean streaming
velocity along the line of sight. The density-weighted, line-of-sight pairwise velocity for both
dark matter and halos is described as [5, 20, 25];

〈

[1 + δ(xa)] [1 + δ(xb)]
[

v‖(xb)− v‖(xa)
]〉

= −2
〈

δ(xb)p‖(xa)
〉

= −2ξr01(r), (5.2)

where p‖(x) is the momentum density field given in equation (2.1). As in section 2, a quan-
tity with superscripts r is defined in real space, distinguished from redshift-space quantities
denoted with s that we will discuss in the following, and the superscriptsm and h are omitted
when a given equation holds both for dark matter and halos. Since the mean infall velocity
in configuration space is related to the density-momentum cross power spectrum through
equations (5.1) and (5.2), ξr01 has only the dipole component, ξr01(r) = ξr01,1(r)µ. Note that
the mean pairwise velocity in equation (5.2) is velocity weighted by density, thus the mean
pairwise momentum. It is related to the commonly used, pair-weighted velocity through
−2ξr01 = [1 + ξr]vr‖mean, where vr‖mean is the radial component of the pair-weighted infall
velocity, v‖mean = vmean · ẑ. We will make a comparison of the density-weighted velocity
statistics to pair-weighted velocity statistics in appendix B. In linear theory, the equation of
the real-space mean streaming is described for halos as [5, 20, 25, 55, 56];

ξr,h01,lin(r) = µ
f

2π2b

∫

kdkP r,h
00,lin(k)j1(kr). (5.3)

The linear-theory expression for dark matter is obtained by replacing the superscript h with
m and substituting b = 1. See [18, 56] for nonlinear prediction of the mean streaming velocity
based on the halo model and [27] for prediction based on Lagrangian perturbation theory [57].

In redshift space, where the radial velocity components can be measured in peculiar
velocity surveys, we can also write down the mean streaming momentum in the same way, as

〈

[1 + δs(xa)] [1 + δs(xb)]
[

vs‖(xb)− vs‖(xa)
]〉

= −2
〈

δs(xb)p
s
‖(xa)

〉

= −2ξs01(r). (5.4)
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Note that although the velocity terms in the r.h.s. of equations (5.2) and (5.4) look the
same, r = xb − xa in equation (5.4) is the separation measured in redshift space. Using
equations (2.21) and (5.1), we can derive full angular dependence of ξs01(x) as

ξs01(r) =
∑

j=1,3,···

ξs01,µj (r)µ
j . (5.5)

At the linear theory limit for ξs01, we have additional anisotropic terms compared to
ξr01,lin due to linear RSD as follows:

ξs,h01,lin(r) =
〈

δs,h(xb)v
s,h
‖ (xa)

〉

= if

∫

kdk

(2π)3
P r,m
00,lin(k)

∫

dOke
−ik·r(b+ fµ2lk)µkx

=
〈

δh(xb)v
h
‖ (xa)

〉

+ if2
∫

kdk

(2π)3
P r,m
00,lin

∫

dOke
−krµkrµ3lk

= ξr,h01,lin(r) + if2
∫

kdk

(2π)3
P r,m
00,lin

∫

dOke
−krµkr

(

2

5
P3(µlk) +

3

5
P1(µlk)

)

=

(

1 +
3f

5b

)

ξr,h01,lin(r)−
(

3

5
µ− µ3

)

f2

2π2

∫

kdkP r,m
00,lin(k)j3(kr), (5.6)

where µlk = ẑ · k̂ and µkx = k̂ · x̂, and µlk = µkx since we assume the distant-observer
approximation. There are thus ξs01,µ1 and ξs01,µ3 in equation (5.5) that have linear order
contributions.

We measure the velocity statistics from N -body simulations using the direct pair count-
ing in configuration space. Since only the line-of-sight component of velocity is observable
in peculiar velocity surveys, an estimator for the mean pairwise velocity in real space using
only the observables was proposed by [58, 59], as

vXmean(r) =

∑

i,j (v
X
i · x̂i − vX

j · x̂j)cij
∑

i,j c
2
ij

, (5.7)

where the superscript X = r or s and

cij = r̂ · x̂i + x̂j

2
. (5.8)

cij is simply equal to µ under the distant observer approximation. This estimator was
adopted by several observational and numerical studies [e.g., 10, 18] and it is based on mean
pair-weighted velocity. Throughout this paper except in appendix B, we analyze the density-
weighted velocity in this paper, thus we adopt the following estimator [e.g., 60],

− 2ξX01(r) =
[

1 + ξX(r)
]

vXmean(r) =

∑

i,j (v
X
i · x̂i − vX

j · x̂j)cij
∑

i,j c
2
ij,rand

, (5.9)

where
∑

i,j c
2
ij,rand =

[

1 + ξX(r)
]−1∑

i,j c
2
ij , and cij,rand is the same as cij but without clus-

tering. This estimator gives the dipole component of the mean pairwise momentum. As we
often do for the monopole component for the density correlation function, we omit the order
of l = 1 for the dipole, thus ξX01(r) ≡ ξX01,1(r) = 3

∫ 1
0 ξ

X
01(r)P1(µ)dµ. In real space it is simply

ξr01(r) = ξr01,µ1 , while in redshift space we have ξs01(r) = ξs01,µ1 +
3
5ξ

s
01,µ3 +

3
7ξ

s
01,µ5 + · · · .
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Figure 12. Upper panel of left set : mean pairwise momentum of dark matter in real space −2ξr,m01 (r).
The dotted lines with the same color are the corresponding linear theory predictions, while the solid
lines show the Fourier transform of P r,m

01 measured from simulations. Lower panel of left set : the
ratios of the mean pairwise momentum to linear theory. For clarity, the results are offset by +30%,
+20%, +10% and 0% from z = 2 to z = 0. Middle set : same as the left set but results for the dipoles
in redshift space −2ξs,m01 (r). The solid lines are our model predictions based on nonlinear PT. To
clearly show both the upturn at small scales and large-scale asymptotic behavior, mixed linear and
logarithmic scales are used for the horizontal axis. Right panel : ratio of mean pairwise momentum in
redshift space to that in real space. The dotted lines show linear theory predictions 1 + 3f/5 while
the solid lines are nonlinear PT results.

5.1.1 Dark matter

In the upper left panel of figure 12, we show the angularly-averaged, dipole component of
mean pairwise momentum for dark matter in real space −2ξr,m01 measured using the estimator
(equation (5.9)) at z = 0, 0.5, 1 and 2. Note that the velocity field is normalized by H as was
stated in section 3, so the mean pairwise momentum thus has a unit of h−1 Mpc. Because
two objects moving towards each other has negative contribution, the sign of −2ξr,m01 (r) is
negative at all scales. At all the four redshifts linear theory predictions, shown as the dotted
lines, explain the trend of the N -body results up to ∼ 15 h−1 Mpc. In the lower left panel
of figure 12, these results divided by the corresponding linear theory are plotted. For clarity
the results are offset by +30%, +20%, and +10% for results at z = 2, 1 and 0.5, respectively.
A careful look at the results reveals that the linear theory prediction for the measured mean
infall momentum starts to deviate from the N -body results at larger scales for lower redshifts,
as previously found [e.g., 18, 27]. In the both panels of the left set, the solid lines show the
Fourier transform of −2P r,m

01 measured from simulations.
At the upper panel of the middle set of figure 12 we show the dipole moment of the

redshift-space mean pairwise momentum. The change of sign for −2ξs,m01 (r) occurred at
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r ∼ 10 h−1 Mpc was seen in the recent observation [19]. This upturn can be seen in linear
theory, but the scale of the turn comes to much smaller scales and the change is also small.
On the other hand, the upturn is precisely predicted by nonlinear PT shown as the solid
line. Note that while the amplitude of the mean infall momentum monotonically increases as
redshift decreases in real space, it is not the case at low redshift in redshift space. It is because
the contribution of RSD to the mean streaming velocity is proportional to f2, not f . The
ratio of the measured mean infall momentum in redshift space to the corresponding linear
theory is presented at the bottom panel of the middle set of figure 12. The measurement
is more suppressed from the linear theory in redshift space than that in real space, because
the mean infall momentum in redshift space is affected by nonlinear velocity dispersion. It is
interesting to note that the deviation of the measurement in redshift space from linear theory
is larger even at large scales, around BAO scales of ≃ 105 h−1 Mpc. These trends in redshift
space are very well captured by the nonlinear PT. At the right panel in figure 12, the ratios
ξs,m01 (r)/ξr,m01 (r) are shown. The linear theory predictions, that are (1 + 3f/5), are shown as
the horizontal lines with the same color. As expected the nonlinear PT has good agreement
with the N -body results.

Unlike the infall velocity in real space, the velocity in redshift space is expressed as the
infinite sum of odd powers of µ due to RSD, starting from µ1, as we have seen in equation (5.5)
and also in equation (5.6) for the linear theory limit. In order to see the anisotropy on the
mean pairwise momentum due to RSD, we consider an estimator,

−2ξs01(r, µ)

µ
=

∑

i,j (v
s
i · x̂i − vs

j · x̂j)cij
∑

i,j c
2
ij,rand

. (5.10)

This is the same estimator as that of equation (5.9), but the sum at the right-hand side is
taken over each µ bin.

We plot the dark matter pairwise velocity in redshift space, −2ξs,m01 (r, µ)/µ, at the top
row in figure 13. For comparison we also plot −2ξr,m01 (r), which is the same quantity as in
figure 12. The amplitude of ξs,m01 /µ is larger for separation perpendicular to the line-of-sight
(µ = 0) than that along the line-of-sight (µ = 1). The difference between ξs,m01 (r, µ = 0) and
the real-space one is also larger than that between ξs,m01 (r, µ = 1) and the real-space one,
opposite of our expectation in Fourier space. The N -body results of ξs,m01 for the separation
along the line-of-sight at the upturn scales are better predicted by our nonlinear PT than
those perpendicular to the line-of-sight. In the second row of figure 13, the ratio of the 2D
pairwise streaming velocity in redshift space to the corresponding linear theory prediction,
ξs,m01 (r, µ)/ξs,m01,lin(r, µ) is shown. The deviation from linear theory is larger for ξs,m01 at µ = 0
than for µ = 1. At z = 0 the result for µ = 0.9 is consistent with linear theory at r ≥
80 h−1 Mpc while that for µ = 0.1 agrees with linear theory at r > 100 h−1 Mpc. While
our PT prediction is in good agreement with the N -body measurements for larger µ, the
prediction for the transverse separation is less accurately agreed with the measurement. In the
bottom row of figure 13, we show the anisotropic pairwise streaming velocity in redshift space
divided by the isotropic dipole in real space, ξs,m01 (r, µ)/µ/ξr,m01 (r). Because the anisotropy
is characterized by f(z), the higher-redshift results are more anisotropic. Again one can see
the significant deviation from linear theory for the mean pairwise momentum at µ = 0 even
at very large scales.

5.1.2 Halos

Now let us extend the analysis to biased objects, dark matter halos. The real-space mean
pairwise momentum is just a Fourier transform of P r

01 that was studied and the N -body
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Figure 13. Top row : mean pairwise infall momenta of dark matter measured in redshift space,
−2ξs,m01 (r, µ)/µ for the three directions, µ = 0.1 (green), µ = 0.5 (red) and µ = 0.9 (blue). The real-
space dipole of the mean infall, −2ξr,m01 (r), is also plotted as the black dashed line for comparison.
The linear theory and nonlinear PT predictions are shown as the dotted and sold lines with the same
color, respectively. Middle row : the ratio of the redshift-space pairwise velocity to linear theory. For
clarity, the results for µ = 0.5 and µ = 0.9 are offset by +15% and +30%, respectively. Bottom row :
the ratio of the mean streaming velocities in redshift space and in real space. Note that mixed linear
and logarithmic scales are used for the horizontal axis.

results were compared to perturbation theory in [38]. However, it is useful to show the
configuration-space results because several previous works adopted the configuration-space
statistics and also they can also be compared to the corresponding redshift-space statistics
we will present below. We thus show the real-space results in appendix A.

We present the pairwise mean infall momenta for halos in redshift space. At the top row
of figure 14 we show the angularly-averaged, dipole components. The results for dark matter,
presented already, are also shown for comparison. As is the case with dark matter, nonlinear
PT at one-loop level can predict well the upturn in −2ξs,h01 seen at around r ∼ 10 h−1 Mpc.

At the second row we show the ratios of ξs,h01 from N -body simulations and nonlinear PT to
the corresponding liner theory. As we have already seen, redshift-space velocity statistics in
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Figure 14. Top row : mean pairwise infall momenta of halos in redshift space −2ξs,h01 (r). For
comparison the results for dark matter are shown as the black points. The dotted lines with the
same color are the corresponding linear theory predictions while the solid lines are the corresponding
nonlinear PT predictions. Second row : the ratios of the mean pairwise momenta to the corresponding
linear theory. The results are offset by +0%, +15%, +30% and +45% for halos from the lightest to
heaviest mass bins. Bottom row : the ratios of the mean pairwise momenta in redshift space and real
space, vs,hmean(r)/v

h
mean(r). The linear theory denoted by the dotted horizontal line gives the Kaiser

factor (1 + 3f/5b).

Fourier space, P s
01 and P s

11 have much more nonlinear contributions than real-space statistics
P01 and P11. In configuration space there are significant nonlinear corrections up to very
large scales through nonlinear transform from Fourier space [25]. Thus the deviation of the

redshift-space pairwise momentum ξs,h01 is much more significant at all the scales probed than

the real-space one ξr,h01 . At scales r ≤ 100 h−1 Mpc the pairwise momentum for halos starts to
be suppressed relative to linear theory due to nonlinear velocity dispersion as is the case for
dark matter. This large-scale deviation can be well explained by our nonlinear PT prediction.
For massive halo subsamples the amplitude of the measured momentum exceeds linear theory
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Figure 15. The ratios of the mean pairwise momenta of halos in redshift space and the momentum
dipole in real space, ξs,h01 (r, µ)/µ/ξr,h01 (r). Results for z = 0, 0.5 and 1 are shown at the left, middle
and right columns, respectively. Linear and nonlinear predictions are respectively shown as the dotted
and solid lines with the same color as the measurements.

at scales of r ∼ 30 h−1 Mpc and at smaller scales the amplitude goes below linear theory
again. This complicated behavior of ξs,h01 is also precisely predicted by nonlinear PT. We plot
the ratio of the mean pairwise momenta between redshift space and real space at the bottom
row in figure 14. As in the right panel of figure 12, the horizontal lines are the linear theory
predictions, (1 + f(z)/3b1), where b1 is the large-scale constant halo bias (see section 3).

In order to see the angular dependence of the mean pairwise infall momentum due
to RSD, we show in figures 15 the ratio of redshift-space momentum to real space one as
functions of (r, µ) measured using the estimator of equation (5.10). They are compared to
the prediction from linear and nonlinear PT, and good agreement of the N -body results to
the latter is found. As we have seen for dark matter in figure 13, linear theory has a poor
accuracy also for halos pairwise velocity in redshift space.

5.2 Momentum correlation function

The second fundamental velocity statistics in configuration space is an auto-correlation func-
tion of density-weighted peculiar velocity [5], the Fourier transform of the momentum auto
power spectrum PX

11 . The momentum correlation is fully described in real space by the 3× 3
correlation tensor Ψr

ij , and for a statistically homogeneous and isotropic velocity field, it
follows that [5, 61, 62]

Ψr
ij(r) = 〈[1 + δ(xa)] [1 + δ(xb)] vi(xb)vj(xa)〉 = Ψ⊥(r)δij + [Ψ∂(r)−Ψ⊥(r)] r̂ir̂j , (5.11)

where Ψ∂ and Ψ⊥ are respectively the correlation functions parallel and perpendicular to the
line of separation.2 The statistics for the momentum correlation can be defined using the

2Note that the subscript ‖ is usually used in place of ∂, as Ψ‖, but in this paper ‖ is used to describe a
quantity along the line of sight.
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observable quantities, as [63, 64]

3
∑

i,j

ẑiΨ
r
ij(r)ẑj =

〈

p‖(xb)p‖(xa)
〉

= ξr11(r). (5.12)

Thus, the angular dependence of the momentum correlation function in real space is de-
scribed as

ξr11(r) = ξr11,µ0(r) + ξr11,µ2(r)µ
2 = Ψ⊥(r) + [Ψ∂(r)−Ψ⊥(r)]µ

2. (5.13)

In linear theory, we have well-known results in real space [60, 62, 65];

Ψ⊥(r) =
f2

2π2

∫

dkP r,m
00 (k)

j1(kr)

kr
, Ψ∂(r) =

f2

2π2

∫

dkP r,m
00 (k)j0(kr). (5.14)

In redshift space we can use exactly the same definitions as in real space (equations (5.11)
and 5.12), so we can write,

〈

[1 + δs(xa)] [1 + δs(xb)] v
s
‖(xb)v

s
‖(xa)

〉

=
〈

ps‖(xb)p
s
‖(xa)

〉

= ξs11(r). (5.15)

However, because of equation (5.1) in redshift space, the redshift-space velocity correlation
function is expressed as an infinite sum of the velocity-moment correlation functions,

ξs11(r) =
∑

j=0,2,···

ξs11,µj (r)µ
j . (5.16)

As we have seen in the previous section, the velocity correlation in redshift space is equivalent
to that in real space in the Kaiser limit, ξs11,lin(r) = ξr11,lin(r).

From N -body simulations, we measure the velocity correlation function, we use an
estimator introduced in real space by [63] and modified as,

ξX11(r) =

∑

i,j(vi · x̂i)dij(vj · x̂j)
∑

i,j dij,rand
, where dij = x̂i · x̂j , (5.17)

X = r or s and
∑

i,j d
2
ij,rand =

[

1 + ξX(r)
]−1∑

i,j d
2
ij . Under the distant observer approxi-

mation, simply dij = 1. Equation (5.17) gives the angularly-averaged, monopole moment of
the velocity correlation function. The estimator originally proposed in [63] is pair-weighted,
related to our estimator as ψr(r) = [1 + ξr(r)]−1 ξr11(r), and will be discussed in appendix B.

5.2.1 Dark matter

In the upper left panel of figure 16, we show the monopole momentum correlation function of
dark matter in real space ξr,m11 (r) for z = 0, 0.5, 1 and 2. The velocity correlation function has
a unit of [ h−1 Mpc]2. Just like the redshift-space mean pairwise momentum, the momentum
correlation of dark matter does not simply evolve with redshift because the amplitude depends
on f2D2. N -body results start to deviate from linear theory, denoted as the dotted lines, at
the scales r ∼ 10 h−1 Mpc for all the four redshifts. At smaller scales measurements from
simulations exceed linear theory due to the nonlinear effects. The solid lines are the Fourier
transform of our prediction for P r,h

11 : the scalar part of the dark matter P r,m
11 modeled using

N -body simulations and the vector part using nonlinear PT. Because the vector part was
well modeled using nonlinear PT, the prediction matches the N -body result in configuration
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Figure 16. Upper panel of left set : angularly-averaged momentum correlation functions of dark
matter in real space ξr,m11 (r) = 〈pm‖ (x)pm‖ (x + r)〉. The dotted lines with the same color are the
corresponding linear theory predictions, and the solid lines are our nonlinear PT predictions. Lower
panel of left set : the ratios of the momentum correlation function to the linear theory. For clarity,
the results are offset by +75%, +50%, +25% and 0% for dark matter from z = 2 to z = 0. Middle
set : same as left set but for redshift space, ξs,m11 (r). Right panel : monopole-to-real-space ratio of the
momentum correlation functions, ξs,m11 (r)/ξr,m11 (r). The dotted line is the linear theory predictions,
which is just unity while the solid lines with the same color as the points are corresponding nonlinear
PT predictions.

space up to small scales, r ∼ 5 h−1 Mpc at z = 0 and r ∼ 3 h−1 Mpc at z = 2. In the lower
left panel of figure 16, the momentum correlation function divided by the corresponding
linear theory is shown. At large scales the simulation results are systematically smaller than
linear theory, almost by a constant [e.g., 18, 60]. Thus the larger scales we focus on and the
smaller the amplitude of the correlation becomes, the lager the deviation of the ratio to linear
theory deviates from unity becomes. On such large scales there is a small but non-negligible
improvement (∼ a few percent) by applying nonlinear PT. Recently a new method to model
the velocity correlation function based on a peculiar velocity decomposition was proposed
and tested by [66, 67].

At the upper panel of the middle set in 16, we show the momentum correlation function
for dark matter in redshift space, averaged over angle. Linear theory prediction in redshift
space shown as the dotted lines is exactly the same as that in real space, while it is not the case
for nonlinear PT shown as the solid lines. Although the cross power spectra between density
and velocity moments ξr0L do not contribute to ξs11, there are still many terms contributing
to it such as ξr12, ξ

r
13, ξ

r
22, and so on. Thus the measurements in redshift space start to exceed

linear theory at larger scales, particularly for lower redshifts. Nonlinear PT can explain the
measurements up to smaller scales than linear PT does, but it also breaks down at larger
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scales than the case in real space. The ratio of the measured momentum correlation function
in redshift space to the corresponding linear theory is presented at the bottom panel of the
middle set of figure 16. The nonlinear, higher-order terms suppress the amplitude to deviate
from linear theory even at r < 90 h−1 Mpc for z = 0 and r < 50 h−1 Mpc for z = 2. One loop
PT dramatically improves the agreement with the N -body results, up to r < 20 h−1 Mpc for
z = 0 and r < 4 h−1 Mpc for z = 2. At the right panel in figure 16, the ratios ξs,m11 (r)/ξr,m11 (r)
are shown. As is the case in Fourier-space analysis, in linear theory the ratio is just unity,
thus the deviations from unity are entirely from a nonlinear RSD effect. The effect alters the
amplitude by at most ∼ 25% for z = 0 and ∼ 7% for z = 2. Due to the systematic deviations
of ξs,m11 and ξr,m11 from the linear theory at large scales, there are slight discrepancies in the
ratios between N -body results and nonlinear PT at all scales. However, overall behaviors of
the nonlinear RSD are well explained using our one-loop PT.

We show the real-space momentum correlation function of dark matter in 2D, ξr,m11 (r, µ),
at the first row of figure 17 as the dashed lines. We do not show the real-space result at z = 2
because it is very close to that in redshift space, as shown at the bottom right panel. The
results are well explained by linear theory, up to ∼ 20 h−1 Mpc at z = 0 and ∼ 10 h−1 Mpc
at z = 2, although there are small but systematic deviations for µ = 0.9 at larger scales at
lower redshifts. The first row of figure 17 also shows the redshift-space momentum correlation
function ξs,m11 (r, µ). Its linear theory prediction is equivalent to that in real space. Since in
practice there are contributions from higher powers of µ due to RSD, the validity of linear
theory is limited to very large scales, while our nonlinear PT at one loop level captures the
deviation of the measurements from linear theory at r ≤ 10 h−1 Mpc. However, as shown
in the second row of figure 17, there is still small disagreement between N -body results for
µ = 0.9 and their nonlinear PT prediction. The bottom row of figure 17 plots the ratio
between momentum correlation functions in redshift space and in real space. Just like the
case of Fourier space in figure 3, the deviation of the ratio from unity is caused by nonlinear
RSD. At r > 10 h−1 Mpc the amplitude is suppressed by ∼ 30% at z = 0 and ∼ 10% at
z = 2.

5.2.2 Halos

Finally, let us extend the dark matter analysis to halos. We discuss the momentum correla-
tion function of halos ξr,h11 with different mass bins at appendix A. At the top row of figure 18
we show the angularly-averaged momentum correlation functions for halos in redshift space.
Unlike the case for the mean infall momentum, the shape of the momentum correlation func-
tion in redshift space is very similar to that in real space for all scales proved. It implies that
even the redshift-space momentum correlation at nonlinear scales is dominated by the real-
space one that only contains linear-order contributions in the expansion (equation (2.20)).
Also the accuracy of nonlinear PT at small scales in redshift space is almost the same as for
that in real space. The bottom row of figure 18 compares N -body results to linear theory
and our nonlinear PT. Contrary to the real-space case, N -body measurements do not agree
with linear theory even up to very large scales, ∼ 70 h−1 Mpc for the halos with the smallest
mass and ∼ 100 h−1 Mpc at z = 0. On the other hand, nonlinear PT agrees with the N -
body results quite well. It is thus necessary to take into account the nonlinear corrections to
theoretical models in order to predict the momentum correlation function in redshift space.

Figure 19 shows the ratio of the redshift-space and real-space momentum correlation
functions in 2D, ξs,h11 (r, µ)/µ/ξr,h11 (r). The ratio measured from simulations is compared to
linear theory that is unity and to nonlinear PT. The deviation of the ratio from unity due

– 28 –



J
C
A
P
0
5
(
2
0
1
4
)
0
0
3

 1

 10

ξ 1
1

s
,m

(r
,µ

) 
[h

-2
M

p
c

2
]

sim

z=0

µ=0.1
0.5
0.9

linear

z=0.5

µ=0.1
0.5
0.9

model

z=1

µ=0.1
0.5
0.9

real space

z=2

µ=0.1
0.5
0.9

 0.8

 1.2

 1.6

 2

ξ 1
1

s
,m

(r
,µ

)/
ξs

,m
1

1
,l
in

(r
,µ

)

 0.8

 1.2

 10  100

ξ 1
1

s
,m

(r
,µ

)/
ξ 1

1
r,

m
(r

,µ
)

r [h
-1

Mpc]

 10  100

r [h
-1

Mpc]

 10  100

r [h
-1

Mpc]

 10  100

r [h
-1

Mpc]

Figure 17. Momentum correlation functions of dark matter in redshift space, ξs,m11 (r, µ) (first row)
for the three angular directions, µ = 0.1, 0.5 and 0.9 denoted by the green, red and blue points,
respectively. The real-space result ξr,m11 (r, µ) is shown as the dashed lines for comparison. The
second row shows the ratios of the redshift-space momentum correlation function to the linear theory,
ξs,m11 (r, µ)/ξs,m11,lin(r, µ). The results for µ = 0.5 and 0.9 are offset by +15% and +30%, respectively
for clarity. The bottom row shows the ratio of the momentum correlation function in redshift space
to that in real space ξs,m11 (r, µ)/ξr,m11 (r, µ). In all the panels the dotted and solid lines with the same
color as the N -body measurements are the corresponding linear theory and nonlinear PT predictions,
respectively.

to nonlinear RSD is smaller for halos than for dark matter we have seen in figure 17, and
becomes smaller for more massive halos. Nonlinear PT agrees with the N -body results up
to r ∼ 10 h−1 Mpc for µ = 0.1 and 0.5 and up to r ∼ 30 h−1 Mpc for µ = 0.9.

6 Effects of satellite galaxies on velocity statistics

So far we have focused on modeling velocity statistics for dark matter and halos using non-
linear PT. In real surveys we observe galaxies that have two types of contributions; central
galaxies which can be considered to move together with the host halos [but see, 68, 69], and
satellite galaxies that mainly exist in massive halos. Modeling the latter part is not a trivial
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Figure 18. Same as 27 but here we show the halo results in redshift space, ξs,h11 (r).
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Figure 19. The ratios of the momentum correlation functions of halos in redshift space and in
real space in 2D, ξs,h11 (r, µ)/ξr,h11 (r, µ). Linear and nonlinear predictions are respectively shown as the
dotted (unity) and solid lines with the same color as the measurements.
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task, which makes it hard to model the statistics of a galaxy sample. It is thus meaningful
to test whether the velocity statistics we considered above can be modeled for galaxies using
PT of halos.

As a mock galaxy catalog, we use a halo occupation distribution (HOD) modeling
which populates dark matter halos with galaxies according to the halo mass [e.g., 70–73].
We consider as a mock galaxy sample the galaxies from the Baryon Oscillation Spectroscopic
Survey (BOSS) [74, 75], referred to as the “CMASS” galaxy sample. Galaxies are assigned
to the halos at z = 0.5 using the best fit HOD parameters for CMASS galaxies determined
by [76]. For halos which contain satellite galaxies, we randomly pick up the same number of
dark matter particles to represent the positions and velocities of the satellites. This method
was applied in our previous work [36] and the good agreement with the observation has
been confirmed. In the following we will compare the real-space and redshift-space velocity
statistics measured from the mock galaxy sample to the nonlinear PT prediction for the halo
subsample that has the same bias as the galaxy sample (bin2 at z = 0.5).

6.1 Fourier space

We start the comparison in Fourier space. At the upper panel of the left set in figure 20
we show the density-momentum power spectra in real space P h

01 of galaxies and halos which
have the same bias as the galaxies. The lower panel shows this cross power spectrum divided
by the linear theory, P r,h

01 /P
r,h
01,lin. The behavior of P r,h

01 measured for galaxies in real space is

consistent to that for halos to k ≤ 0.14 h Mpc−1 for higher µ values. The amplitude of P r,h
01 for

galaxies becomes higher than that for halos at smaller scales, by ∼ 10% at k ≤ 0.2 h Mpc−1.
This behavior has been already seen in [36].

The upper panel of the middle set in figure 20 shows the results for halos and galaxies
in redshift space and the lower panel shows their ratios to the corresponding linear theory.
The right panel in figure 20 shows the ratio of the redshift-space and real-space cross power
spectra. Because of the contributions from satellite galaxies, the galaxy sample has much
larger velocity dispersion than halos. Thus the redshift-space density-momentum power
spectrum of galaxies is suppressed and changes the sign as is the case for the quadrupole
spectrum of galaxy density but at larger scales k ∼ 0.15 h Mpc−1 (see figure 5 of [36]).
Obviously, nonlinear PT for halos cannot predict the measured cross spectrum in redshift
space except for very large scales because we used linear theory to predict the velocity
dispersion of halos. At k ∼ 0.1 h Mpc−1 the amplitude of P s,h

01 for galaxies is suppressed
relative to nonlinear PT for halos by ∼ 50%.

Figure 21 compares the results for the auto power spectra of momentum for halos and
galaxies. The left panel presents the momentum auto spectrum in real space P r,h

11 . As we
discussed in section 4.2.2 we assume the Poisson model for the shot noise for the momentum
power spectrum as 〈v2‖〉/n. Thus there are systematic deviations between the measurements
and nonlinear PT, coming from the deviation from the Poisson model as well as the accuracy
of modeling the vector part of P r,h

11 . In redshift space, as shown at the middle panel, there

is a suppression of the auto power spectrum for galaxies P s,h
11 (k, µ) for µ = 0.9 that cannot

be explained by the incorrect assumption of the Poisson model and thus can be considered
as nonlinear contributions from satellite galaxies. However, like the case for the cross power
shown above, P s,h

11 for galaxies is relatively well modeled by nonlinear PT at one-loop level
predicted for halos, compared to linear theory. The ratio of the redshift-space and real-
space power spectra of momentum, P s,h

11 (k, µ)/P r,h
11 (k, µ), is shown for halos and galaxies at
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Figure 20. At the upper panel of the left set we show the density-momentum power spectrum in real
space k2P r,h

01 at z = 0.5, and at the lower panel we plot its ratio to the corresponding linear theory

prediction without BAO, P r,h
01 /P

r,h

01,no-wiggle. The middle set is the same as the left set but for the
results in redshift space. The right panel shows the ratio of the density-momentum spectra in redshift
space and in real space, P s,h

01 /P
r,h
01 . The colored points show the results for halos at z = 0.5 and the

black points with the same point types as the colored points show the results for mock galaxies with
the same values of µ. The halo subsample has the same bias as the galaxy sample. The dotted lines
show the linear Kaiser model while the solid (positive) and dashed (negative) lines show our one-loop
PT prediction. For clarity we show only results for some µ bins among the five µ bins.
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Figure 21. Same as figure 20 but results for the momentum auto power spectra are shown. The power
spectra in real and redshift space, respectively shown in the left and middle panels, are multiplied by
k2 for clarity.

the right panel of figure 21. As expected, the deviation of the ratio from unity caused by
nonlinear RSD is larger for galaxies that have contributions from satellites than for halos.

6.2 Configuration space

Finally let us consider effects of satellite galaxies on velocity statistics in configuration space,
the mean pairwise infall momentum and the momentum correlation function. The upper
panel of the left set in figure 22 shows the mean pairwise momentum of galaxies measured in
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Figure 22. From the left, we show the mean pairwise infall momenta in real space, those in redshift
space, and the ratios of the mean infall in redshift space and in real space. At the left panel, we show
−(−2ξr,h01 ) = 2ξr,h01 because −2ξr,h01 has a negative sign for all the scales. The black and red points
respectively show the results for mock galaxies and halos at z = 0.5. The halo subsample has almost
the same bias as the galaxy sample. The dotted lines show the linear Kaiser model while the solid
lines show our PT prediction for the halo subsample.

real space at z = 0.5. Because this statistics −2ξr,h01 has a negative sign at all the scales, we

plot −(−2ξr,h01 ) = 2ξr,h01 . The lower panel shows its ratio to linear theory ξr,h01 /ξ
r,h
01,lin. We also

compare it to the measurement and one-loop nonlinear PT for halos. The measured velocity
of galaxies deviates from the prediction for halos at slightly larger scales, r ≃ 10 h−1 Mpc,
but for r > 10 h−1 Mpc the mean pairwise momentum for galaxies is almost equivalent to
that for halos. While the amplitude of ξr,h01 for halos is suppressed at small scales because of
finite sizes of halos, that is not found for the galaxy sample because of the one-halo term.

The middle set in figure 22 is the same as the left but shows the results in redshift space
−2ξs,h01 . The result for mock galaxies starts to deviate from the nonlinear PT for halos at
one-loop level at r ≃ 40 h−1 Mpc. Because of the FoG effect from satellite galaxies, the scale
of upturn that appeared at r ≃ 10 h−1 Mpc for halos shifts to larger scales, r ∼ 20 h−1 Mpc,
and is no longer predictable with the halo nonlinear PT. Thus, in order to predict the upturn
scale of the mean infall velocity measured by [19] for detection of the kSZ effect, that is also
at r ∼ 20 h−1 Mpc, one needs to properly take into account the effect of the FoG, that should
be pursued in future work. The ratio of the mean pairwise momentum in redshift space to
that in real space is shown in the top right panel in figure 22.

Figure 23 present the comparison of the momentum correlation function for galaxies to
that for halos. The upper panel of the left set shows the real-space momentum correlation
functions for halos and galaxies, ξr,h11 , and the lower panel shows their ratios to the linear
theory prediction. The real-space result for galaxies is similar to that for halos, down to less
than 10 h−1 Mpc. The middle panels in figure 23 are the same as the left panels but show
the results in redshift space ξs,h11 . The result for galaxies slightly deviates from nonlinear PT
at one loop at r ≤ 30 h−1 Mpc, but the trend of the shape of the correlation function is still
well described with the nonlinear PT down to scales similar to the result in real space. The
ratio of the momentum correlation function in redshift space to that in real space is shown
in the right panel of figure 23. While the effect of nonlinear RSD on the halo momentum
correlation is ∼ 10% that is predicted by our nonlinear PT at r ≥ 5 h−1 Mpc, that on the
galaxy momentum correlation has a ∼ 20% effect. Taking into account the contribution
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Figure 23. Same as figure 22 but results for the momentum correlation functions are shown.

of satellite galaxies is also an important issue to model a redshift-space power spectrum of
galaxies. The effect of satellite galaxies needs to be studied for a theoretical modeling of
velocity statistics in redshift space.

7 Conclusions

In this paper we have studied the cross power spectrum between the density and momentum
density fields together with the auto power spectrum of the momentum density field, which
are the fundamental statistics being measured in peculiar velocity surveys. What we can
directly measure from velocity surveys is the momentum density field in redshift space, rather
than the velocity field in real space, which was the focus of most of the previous analyzes. This
leads to corrections both at the linear and nonlinear level. To model them, we extended the
phase-space distribution function approach originally developed to predict the redshift-space
power spectrum of the density field [34–38]. In doing so, we showed that the redshift space
momentum field can be expressed in terms of a sum over mass-weighted velocity moments in
real space, starting from the real space momentum density field. Likewise, the momentum
power spectra in redshift space can be expressed in terms of correlators between the Fourier
components of these moments, analogously to the density-density power spectrum.

We derived momentum power spectra using both the linear Kaiser model [3] and the
perturbative approach developed in [37, 38]. To test the accuracy of the linear theory and
phase space approach, we compared the theoretical predictions for the density-momentum
cross power and momentum auto power spectra in redshift space with those measured from
cosmological N -body simulations. We found that, for dark matter, the velocity dispersion
affects the redshift-space cross power spectrum between the density and momentum. There-
fore, for dark matter the numerical results deviate from linear theory at k ∼ 0.1 h Mpc−1

by ∼ 50% at z = 0. Our nonlinear PT prediction, which relies on the real-space dark mat-
ter power spectrum measured from the simulations, achieves a much better agreement than
linear PT. It can reproduce the N -body results at z = 0 for the transverse direction µ ∼ 0.3
nearly perfectly up to k ≃ 0.3 h Mpc−1, and for the line-of-sight direction µ ∼ 0.9 up to
k ≃ 0.06 h Mpc−1. The accuracy of our nonlinear PT is even better for the momentum
auto power spectrum, because it is less affected by the velocity dispersion. It predicts the
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N -body measurement for dark matter at z = 0 for the line-of-sight direction µ ∼ 0.9 up to
k ≃ 0.08 h Mpc−1.

Because the dark matter halos have smaller peculiar velocity than the dark matter
particles, the momentum power spectra for halos are better modeled than those for dark
matter by combining nonlinear PT at one-loop level with a physically motivated description
of halo biasing. However, the auto power spectra of the momentum field P r,h

11 and P s,h
11 are

affected by exclusion and other nonperturbative effects that require furhter understanding in
order to precisely model the momentum auto power spectrum of sparse, biased objects.

We have also presented an analysis of peculiar velocity statistics in configuration space.
We measured the mean infall pairwise momentum and the momentum correlation function
for both dark matter and halos. We then compared these measurement in real and redshift
space to our one-loop PT calculations, finding significant improvements relative to linear
theory. As an example of a realistic galaxy sample, we constructed a mock BOSS-type
galaxy sample by applying the HOD modeling to the simulated halos at z = 0.5. Since the
inclusion of the effect of satellite galaxies on velocity statistics is not straightforward within
our PT formalism, we simply tested how well our nonlinear PT of halos can predict peculiar
velocity statistics of galaxies. We found that a more detailed PT model is required to improve
the agreement.
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A Real-space velocity statistics of halos

Peculiar velocity statistics were studied in real space in detail in previous works. The main
purpose of this paper is to present the formalism and numerical analysis for the peculiar ve-
locity statistics in redshift space. However, it is still useful to present the real-space velocities
to compare to the redshift-space velocity. Thus in this appendix we present the real-space
velocity statistics for halos.

A.1 Fourier space

Because we studied the density-momentum power spectrum of halos in real space in detail
in [36, 38], the ratio of P r,h

01 to the corresponding linear theory, P r,h
01 /P

r,h
01,no-wiggle is shown

only for z = 0 in figure 24. As we have seen in [36], the excess of the amplitude of P r,h
01 due

to the nonlinear effects is larger for more massive halos. Since we use the best fit values of b1
and b2 found in [38], our prediction for P r,h

01 agree perfectly with the N -body results, under
the condition that the dark matter spectra P r,m

01 and the scalar part of P r,m
11 are perfectly

modeled. The ratios of the real-space momentum spectra to the corresponding linear no-
wiggle spectra are presented at the first, second and bottom rows in figures 25 for z = 0,
0.5, 1, respectively. At all the redshifts, P r,h

11 is well explained by our model for less massive
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Figure 24. Density-momentum cross power spectra for halos in real space divided by the no-wiggle
spectra at z = 0, P r,m
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01,no-wiggle. The corresponding linear theory predictions and our model, both
of which are isotropic, are shown as the dotted and solid lines, respectively.
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Figure 25. Momentum auto power spectra for halos in real space divided by the no-wiggle spectra
P r,h
11 /P

r,h

11,no-wiggle at z = 0 (top row), z = 0.5 (second row) and z = 1 (bottom row).

halos at lower redshifts. However, there are systematic deviations of N -body results for more
massive halos from the corresponding PT due to the assumption of the Poisson shot noise.

A.2 Configuration space

The real-space mean pairwise momenta of halos are shown at the top row in figure 26,
compared to those of dark matter denoted as the black points. Because the mean pairwise
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Figure 26. Top panels: mean pairwise infall momenta of halos in real space. Because −2ξr,h01 has a

negative sign at all the scales, we plot −(−2ξr,h01 (r)) = 2ξr,h01 (r). For comparison the results for dark
matter are shown as the black points. The dotted lines with the same color are the corresponding
linear theory predictions while the solid lines are the Fourier transform of the prediction for 2P r,h

01 .
Bottom panels : the ratios of the mean pairwise momentum to the corresponding linear theory. For
clarity, the results are offset by +0%, +15%, +30% and +45% for halos from the lightest to heaviest.

momenta in real space −2ξr,h01 has a negative sign for all the scales, we plot −(−2ξr,h01 ) = 2ξr,h01

with a logarithmic scale. More massive halos have larger amplitude for the pairwise streaming
momentum because it is proportional to bias. At the bottom row we show their ratios to
linear theory predictions. At z = 0, 2ξr,h01 of smaller halos starts to deviate from linear theory
at larger scales, but that of larger halos diverges at larger scales, as we have seen in different
statistics [e.g., 27, 36, 77]. At z > 0 the deviation from linear theory starts at larger scales
for more massive halos (∼ 40 h−1 Mpc for bin4 halos at z = 0.5) than for less massive halos
(∼ 20 h−1 Mpc for bin1 halos). The solid lines are the Fourier transform of the prediction

for −2P r,h
01 we discussed in previous section. It agrees with the N -body measurements for all

the four redshifts and for the scales much smaller than r ∼ 10 h−1 Mpc.
In figure 27 we present the monopole of the momentum correlation functions of halos

ξr,h11 (r) with different mass bins at redshifts z = 0, 0.5, 1 and 2. Since the velocity correlation
does not depend on halo bias in linear theory, we multiply the amplitude by 1.4, 1.42 and 1.43

for bin 2, 3 and 4 results, respectively, for clarity at the top panels. N -body results for the
momentum correlation function are well explained within linear theory at large scales. The
result for more massive halos starts to deviate from linear theory at slightly larger scales,
∼ 30 h−1 Mpc for the most massive halos, while ∼ 20 h−1 Mpc for low mass halos. Our
model predicts the simulation results down to much smaller scales. However, because of the
finite size of halos, the amplitude of the measured momentum correlation is suppressed at
small scales. It starts at larger scales for more massive halos that have larger size. As is
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Figure 27. (Top) Momentum correlation functions of halos in real space ξr,h11 (r). The dotted and solid
lines show the corresponding linear and nonlinear PT predictions, respectively. Since the correlation
does not depend on bias in linear theory, the amplitude is multiplied by 1.40, 1.41, 1.42 and 1.43 for
bin 1, 2, 3 and 4 results for clarity. (Bottom) The ratios of the momentum correlation function to
the corresponding linear theory. For clarity, the results are offset by 0%, +25%, +50% and +75% for
halos from the lightest to heavies.

the case for dark matter presented in figure 16, the amplitude of the momentum correlation
is systematically smaller than linear theory at large scales as seen in the bottom panels of
figure 27. The trend can be seen in the work by [60] and [18] that was based on linear theory
and a halo model, respectively. Nonlinear PT improves the accuracy at the large scales,
particularly for massive halos by ∼ 5%, but the measured amplitude is still systematically
higher.

B Density-weighted vs pair-weighted velocities

In this paper we focus on velocity statistics based on density-weighted velocity. It is worth
comparing the accuracy of the nonlinear PT for density-weighted velocity statistics to that
for pair-weighted velocity statistics, which are often used in literature [e.g., 19, 20, 25, 56].

B.1 Mean pairwise velocity

The pair-weighted pairwise velocity in real space vr‖mean and in redshift space vs‖mean is
given by

vX‖mean(r) ≡

〈

[

1 + δX(xa)
] [

1 + δX(xb)
]

[

vX‖ (xb)− vX‖ (xa)
]〉

〈[1 + δX(xa)] [1 + δX (xb)]〉
=

−2ξX01(r)

1 + ξX(r)
, (B.1)
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Figure 28. Pair-weighted mean pairwise velocities for dark matter and halos in real space vrmean(r) =
ξr01(r)[1+ξ

r(r)]−1 (top) and in redshift space vsmean(r) = ξs01(r)[1+ξ
s(r)]−1 . The dashed lines with the

same color are the corresponding linear theory predictions while the solid lines are the corresponding
nonlinear PT predictions.

where r = xb − xa. As is clear from equation (B.1), in order to predict the pair-weighted
pairwise velocity in real and redshift space one needs to additionally model the density
correlation function in real and redshift space, respectively, that comes into the denominator.
The effect of the denominator becomes more significant for a sample with the higher bias.
It is one of the disadvantages to use the pair-weighted velocity. Moreover, the pair-weighted
velocity is not equivalent to volume-weighted velocity, namely vX‖mean 6= −2〈δX(xb)v

X
‖ (xa)〉.

The dipole component of the pair-weighted mean infall velocity in real space, vr,hmean(r),
measured using the estimator of equation (5.7), is shown in the top row of figure 28. For
linear theory denoted by the dashed lines, the correlation function in the denominator is
also computed using linear theory ξr,hlin = b21ξ

r,m
lin . The agreement of the N -body result to

linear theory differs from the case for the density-weighted velocity by a factor of (1 +
ξr,h(r))/(1+ b21ξ

r,m
lin (r)). At small scales where the N -body results largely deviate from linear

theory (r < 10 h−1 Mpc), the deviation becomes smaller for the pair-weighted mean infall
velocity at a glance because the nonlinearity in ξr01 and that in ξr cancel out to some extent.
However, it does not mean that the pair-weighted velocity is better modeled by linear theory
than density-weighted velocity. The black solid lines are the predictions for dark mater,
vr,mmean = −2ξr,m01 /[1+ξr,m], where ξr,m is also measured from simulations, thus the accuracy is
the same as the solid lines at the top panel of the left set in figure 12. The solid curves with
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other colors are the predictions for halos, vr,hmean, where the measured ξr,m and the nonlocal
bias model are used [38]. In figure 26 we have seen that the measured density-weighted
pairwise velocity for halos in real space is accurately modeled down to r < 10 h−1 Mpc.
On the other hand, that of the pair-weighted velocity agrees with N -body results only at
larger scales. Particularly for the most massive halo subsamples, the disagreement starts at
r ∼ 30 h−1 Mpc at z = 0 and 0.5.

The dipole component of the pair-weighted mean pairwise velocity in redshift space,
vsmean(r) = −2ξs01(r)[1 + ξs(r)]−1, is the statistics used by [19] to claim the detection of the
kSZ effect. The bottom row of figure 28 shows the measurements of vsmean using the estimator
of equation (5.7). Here we model the redshift-space correlation function ξs using nonlinear
PT in the same way as [38]. Briefly, in equation (2.8) we use the N -body results for P r,m

00 ,
P r,m
01 and the scalar part of P r,m

11 , nonlinear PT for the other terms up to µ4. Then for
dark matter we use the best fit parameters for the nonlinear velocity dispersion as we did
for the redshift-space momentum power spectrum P s,m

01 and P s,m
11 , while for halos we use the

simple model of the linear theory velocity dispersion and adopt the nonlocal bias model. The
N -body results for the pair-weighted mean pairwise velocity are predicted by the nonlinear
PT for both dark matter and halos, as well as those for the density-weighted velocity shown
in figure 14, up to the peak scales at ∼ 20 h−1 Mpc.

B.2 Velocity correlation function

The velocity correlation function, studied in the previous section, can also be defined similarly
as pair-weighted statistics. It is expressed in real space ψr and in redshift space ψs as

ψX(r) =
(1− µ2)ΨX

⊥ (r) + µ2ΨX
∂ (r)

〈[1 + δX(xa)] [1 + δX(xb)]〉
=

ξX11(r)

1 + ξX(r)
, (B.2)

where X = r or s. Compared to the density-weighted velocity correlation ξX11, modeling
the pair-weighted correlation ψX requires the additional modeling of the density correlation
function ξX .

First we focus on the velocity correlation measured in real space ψr. [65, 78] claimed
that linear theory fails to predict the real-space velocity correlation function even at very
large scales, but later it was pointed out by [60] that the disagreement was because of the
confusion of the pair-weighted and density-weighted velocity statistics. As shown at the
top row of figure 29, the pair-weighted velocity correlation function of halos measured from
simulations in real space ψr agrees with linear theory up at r > 20 h−1 Mpc at z = 0 and
r > 40 h−1 Mpc at z = 1, confirming the work by [60]. This accuracy is more or less the
same as the case for the density-weighted velocity correlation in real space shown in figure 27.
Our model predicts the N -body results in real space with similar accuracy to the case for the
number-weighted velocity correlation because the real-space halo correlation function ξr,h is
precisely modeled with the perfect modeling of P r,m

00 and the nonlocal bias model.

Next we present the results of the pair-weighted velocity correlation function measured
in redshift space ψs at the bottom row of figure 29. Note that the corresponding linear
theory in redshift space is no longer the same as that in real space, ψs

11,lin 6= ψr
11,lin despite

ξs11,lin = ξr11,lin because ξslin = (b+ fµ2)2ξrlin. Good agreement between numerical results and
one-loop nonlinear PT is found for both dark matter and halos for the similar range to the
case for the number-weighted velocity correlation shown in figures 16 and 18. However, at the
scales lower than the valid range of nonlinear PT, the disagreement in the halo correlation
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Figure 29. Same as figure 28 but the pair-weighted velocity correlation functions in real space
ψr(r) = ξr11(r)[1 + ξ(r)]−1 (top) and in redshift space ψs(r) = ξs11(r)[1 + ξs(r)]−1 (bottom). The
amplitude is multiplied by 1.4−1 for results for dark matter, and by 1.40, 1.41, 1.42, and 1.43 for halos
with from the lightest mass (bin1) to the largest mass (bin4).

becomes large very quickly because of large nonlinearity of halo clustering ξs,h. Also note
again that the pair-weighted velocity correlation function defined by equation (B.2) is not
equivalent to the volume-weighted velocity correlation function ψX(r) 6= 〈vX‖ (xb)v

X
‖ (xa)〉.

We thus conclude that there is no advantage in defining pair-weighted velocity statistics that
are commonly used in previous works.
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