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Abstract
Light scattering by a small spherical particle and nanowire with low
dissipation rates are discussed according to the Mie theory (and similar
solution for the cylinder). It is shown that near plasmon (polariton) resonance
frequencies one can see non-Rayleigh anomalous light scattering with quite a
complicated near-field energy flux.
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1. Introduction

Light scattering by small particles is an important problem for
modern applications in plasmonics and nanotechnologies [1].
However the majority of research on plasmonics was done for
materials with rather a strong dissipation at plasmon (polariton)
resonance frequencies, e.g. gold, platinum, etc. In this case
light scattering by nanostructures can be analysed at the dipole
approximation (the Rayleigh scattering), i.e. a point dipole for
spheres and a linear dipole for nanowires. At the same time
it is well known that all transverse electromagnetic modes for
the particle have finite lifetimes because of radiative damping,
see [2]. The Rayleigh scattering is valid provided the radiative
damping is negligible compared to dissipative losses [3–5].
Meanwhile a few publications devoted to the study of the
opposite limit [6–13] clearly show that light scattering in this
case is characterized by very unusual properties. In this paper

we refer to certain new aspects of light scattering in materials
with weak dissipation rates.

2. Optical resonances for volume and surface modes

Though light scattering by a spherical particle is one of
the most fundamental problems of classical electrodynamics,
the general physical understanding of the problem has not
changed much since the publication of its exact solution by
Mie in 1908 [14]. As for light scattering by a particle
whose size is much smaller than the wavelength of incident
light, its understanding up to now is based upon the approach
developed by Lord Rayleigh in 1871 [15]. According to
the approach a small particle should emit electromagnetic
radiation as an oscillating electric dipole. The point to be
made is that this simple description has quite a general and
very important exception, when the scattering process has
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Light scattering by nanoparticles and nanowires near plasmon resonance frequencies

Figure 1. Amplitudes of the first three optical resonances a�
(electric) and b� (magnetic) for nondissipative material ε′′ = 0, at
n = 1.5. Optical resonances are reached at the points where
Re a� = 1 or Re b� = 1.

very little in common with the Rayleigh scattering, and the
extinction (scattering) cross section differs from that given
by the Rayleigh approximation in orders of magnitude. This
exception corresponds to the low dissipation limit and will be
discussed below.

The formula for the Rayleigh approximation can be
easily found from the general Mie solution. According to
this solution, the extinction, scattering and absorption cross
sections are given by the expression σ = πa2 Q, where related
efficiencies Q are presented as follows [3–5]:

Qext = 2

q2

∞∑

�=1

(2�+ 1)Re (a� + b�),

Qsca = 2

q2

∞∑

�=1

(2�+ 1)
{|a�|2 + |b�|2

}
,

Qabs = Qext − Qsca.

(1)

Here we consider light scattering by a nonmagnetic (μ =
1) spherical particle of radius a immersed in a transparent
medium with purely real positive refractive index nm. The
quantity q = nmaω/c represents the size parameter (q � 1
for a small particle); here c is the speed of light in vacuum
and ω stands for the incident light frequency. The scattering
amplitudes a� (electric) and b� (magnetic) are defined by the
Mie formulae; it is convenient to write them in the following
way:

a� = �(a)
�

�(a)
� + i�(a)�

, b� = �(b)
�

�(b)
� + i�(b)�

, (2)

�(a)
� = ñψ ′

� (q)ψ� (ñq)− ψ� (q) ψ
′
� (nq) ,

�(a)� = ñχ ′
� (q)ψ� (ñq)− ψ ′

� (ñq) χ� (q) ,
(3)

�(b)
� = ñψ ′

� (ñq) ψ� (q)− ψ� (ñq)ψ ′
� (q) ,

�(b)� = ñχ� (q)ψ
′
� (ñq)− ψ� (ñq) χ ′

� (q) .
(4)

Here ψ�(z) = √
πz/2 · J�+ 1

2
(z), χ�(z) = √

πz/2 ·
N�+ 1

2
(z), where J�(z) and N�(z) are the Bessel and the

Neumann functions, respectively. The strokes in formulae (3)
and (4) indicate differentiation over the entire argument of
the corresponding functions, i.e. ψ ′

�(z) ≡ dψ�(z)/dz, etc;
ñ = √

ε = n + iκ is a relative complex refractive index, where
ε stands for relative dielectric permittivity: ε = εp/εm; indexes
‘p’ and ‘m’ indicate the particle and media, respectively. We
consider that both real and imaginary parts of the relative
refractive index are positive quantities.

The scattering amplitudes a� and b� depend on parameter
q and the real and imaginary parts of ε = ε′ + iε′′. For
fixed ε amplitudes a� and b� oscillate versus size parameter
q. They reach maximal values at some points (the so-called
optical resonances [3–5]). For the case of positive ε′ > 0
and nondissipative media these resonances were studied in
numerous papers, see e.g. [16], due to their important role
in radiation pressure, optical levitation, etc. One can see
immediately from equation (2) that, for nondissipative media,
maximal values of amplitudes are a� = 1 and b� = 1.
They are reached at the points, where �(a)� (q, ε) = 0 and
�(b)� (q, ε) = 0, respectively. These equations present the
trajectories of optical resonances on the {q, ε} plane. At ε′ > 0
the optical resonances are related to excitation of volume waves
in the spherical cavity. It is important that for any reasonable
values of n = Re

√
ε these resonances arise at rather large

values of the size parameter q > 1 and for this case resonances
of electric and magnetic amplitudes are overlapped, see in
figure 1.

At ε < −1 other branches of optical resonances related to
excitation of surface electromagnetic waves arise. At q → 0
these resonances occur at ε = ε� = −(�+ 1)/�. The
branches of volume and surface Mie resonances converge at
some negative values of ε, e.g. at ε ≈ −5 and q ≈ 1.2 for
dipole resonance � = 1, see in figure 2.

Expanding the Bessel and Neumann functions in power
series, it is easy to find that at small q

�(a)
� ≈ q2�+1 (�+ 1)

[(2�+ 1)!!]2 ñ�
(
ñ2 − 1

)
,

�(a)� ≈ ñ�
�

2�+ 1

[
ñ2 + �+ 1

�
− q2

2

(
ñ2 − 1

)

×
(

ñ2

2�+ 3
+ �+ 1

� (2�− 1)

)]
,

�(b)
� ≈ − ñq2

2�+ 1
�(a)
� ,

�(b)� ≈ −ñ�+1

[
1 + 1 − ñ2

2 (2�+ 1)
q2

]
.

(5)
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Figure 2. Trajectories of the five first optical resonances a� (solid)
and b� (dashed) for nondissipative material ε′′ = 0, at negative ε.

Far from the resonances � � �. In this case the term with
� = 1 (dipole scattering) plays the dominant role. Also for
small particles one can neglect magnetic amplitudes compared
to the electric ones because of their additional smallness in q.
It yields the classical Rayleigh formula:

Qsca ≈ 8

3

∣∣∣∣
ε − 1

ε + 2

∣∣∣∣
2

q4. (6)

The Rayleigh scattering approximation for a small particle
is applicable for all cases far from the optical resonances.
Close to the resonances it should be modified, provided the
dissipation is small enough (the right-hand side of equation (6)
just diverges at ε = −2). Note, there are two possibilities to
achieve an optical resonance for small particles. The first way
is related to large values of ε. For example, at ε = 400 optical
dipole magnetic resonance occurs at q ≈ 0.157 and dipole
electric resonance at q ≈ 0.385. The other way is to work with
negative ε in the vicinity of plasmon (polariton) resonances,
where ε ≈ −(�+ 1)/�. In this case optical resonances are
associated with electric amplitudes solely and correspond to
resonant excitation of surface plasmon (polariton) modes.

Pronounced peculiarities of light scattering by small
weakly dissipative particles near the plasmon resonance
frequencies differ from the Rayleigh case so dramatically
that it allows us to name such a scattering ‘anomalous
scattering’ [10, 11, 13]. In anomalous scattering far field
one can see the so-called ‘inverse hierarchy of optical
resonances’ [6, 10, 13]. Namely, at the resonance frequencies
ω = ω� the corresponding electric amplitude a� = 1 while
b� is negligibly small. Then, as it follows from equation (1)
Q(�)

sca = 2(2�+ 1)/q2, where Q(�)
sca stands for the resonance

partial efficiency. As in the vicinity of the resonances the net
efficiency is overwhelmingly determined by the corresponding
partial one the expression Q(�)

sca = 2(2�+ 1)/q2 means the
resonance scattering cross section increases with an increase
in order of the resonance �. Thus, the cross section at the
quadrupole resonance is 5/3 of that at the dipole resonance,
etc. However to observe this ‘inverse hierarchy’ at least the
necessary condition ε′′ � 1 should be satisfied. Usually
experiments are carried out with small particles of gold, silver,
mercury and platinum [17]. For all these metals the condition

of weak dissipation at the resonance frequencies, ε′′(ω�) � 1,
does not hold. A possible candidate for manifestation of the
anomalous scattering may be an additively coloured crystal
of KCl with colloidal potassium particles as scatterers [6].
Another possible example discussed in [10] is an aluminium
particle in vacuum. The third example is Na (also as colloidal
particles in crystals of NaCl with stoichiometric excess of
sodium). According to [17] the three materials have weak
dissipation rates (about ε′′ ≈ 0.1) at the frequencies of
surface plasmon excitation, i.e. at λ ≈ 125–140 nm for Al,
λ ≈ 310–380 nm for Na and λ ≈ 500–550 nm for K.
Our calculations with experimental values for the dielectric
function show that for Al particles with a = 30 nm the
ratio of the extinction cross-sections at quadrupole and dipole
resonances is about 1.19 [10]. Naturally, it is smaller than 5/3
for a nondissipative particle, but much greater than that for
the Rayleigh approximation. In our calculations [10] we took
into account the size effect with the help of renormalization
of collision frequency of free electrons due to their collisions
with the particle surface [18], γ → γ∞ + vF/a. The data for
Fermi velocity vF for this renormalization was also taken from
the experiment [19].

Optical plasmon resonances for weakly dissipative
materials are extremely sharp. In the case of the Rayleigh
scattering the width of the resonance line is directly related
to ε′′ and vanishes at ε′′ → 0. In contrast to that the exact
Mie solution at ε′′ = 0 near plasmon resonance frequencies
yields the usual Lorentzian contour with a certain characteristic
width γ�. To show this let us consider the case of a metallic
particle whose dielectric permittivity is described by the Drude
formula:

ε = ñ2 = 1 − ω2
p

ω2 + γ 2
+ i

γ

ω

ω2
p

ω2 + γ 2
. (7)

Here, as usual, ωp denotes the plasma frequency, while γ is
the frequency of electron collisions. Inserting equation (7)
in equation (6) in the Raleigh case one obtains a Lorentzian
scattering contour,

Q(Ra)
sca = 8

3

ω4
sp

(
ω2 − ω2

sp

)2 + ω2γ 2

q4, (8)

where ωsp = ωp/
√

3 stands for frequency of the dipole
surface plasmon resonance at q → 0. As is seen from
equation (8), the resonance width is directly connected with
the parameter responsible for dissipation. The Drude formula
can be written in a similar way in the absence of dissipation
(γ = 0). The expression for the partial dipole scattering
efficiency following from equation (1) is Qsca ≈ 6|a1|2/q2.
Here a1 = �(a)

1 /(�(a)
1 + i�(a)1 ), where �(a)

1 and �(a)1 at q � 1
are determined from equation (5). We should remember that
the plasmon resonance frequencies are defined by the condition
�(a)1 = 0, and therefore, in the nearest vicinity of ωsp,�(a)1 ≈
i
√

2(ω2 − ω2
sp)/ω

2
sp and �(a)

1 ≈ −2i
√

2q3/3. It yields the
following Lorentzian profile:

Qsca = 8

3

ω4
sp

(
ω2 − ω2

sp

)2 + 4
9 q6ω4

sp

q4. (9)
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Figure 3. The nondissipative limit for a spherical particle with radius
a. Frequency dependence of Qext for three values of q . Note
different scales of vertical axis on different panels. Calculations
according to the exact Mie solution; ε = 1 − ω2

p/ω
2, where

ωsp = ωp/
√

3 stands for the frequency of the dipole surface plasmon
resonance at q → 0 (ωp is the plasma frequency).

Comparing equations (8) and (9), it is easy to see that the role
of the dissipation parameter in equation (9) is played by the
quantity

γeff = 2

3
ωspq3 = 2

3

ω4
spa3

c3
. (10)

This damping is related to the finite plasmon lifetime τp =
γ −1

eff caused by the radiative losses. The effects of a finite
plasmon lifetime have already been discussed in the literature.
It has been attributed to dissipative (non-radiative) losses and
for a small particle estimated as τp ≈ a/vF, see [18]. In
contrast, in our case, the finiteness of the lifetime is attributed
to radiative (nondissipative) losses due to the transformations
of the localized plasmons into scattering light [2, 6, 13] and
corresponding time sharply increases with a decrease in the
particle size: τp ∝ a−3. Formula (10) represents the ‘natural
width’ of the dipole resonance related to this transformation.
In the general case the natural width of the arbitrary resonance
is given by the following expression [13]:

γ� = (�+ 1)q2�+1

[�(2�− 1)!!]2(dε/dω)�
, (11)

where derivative (dε/dω)� is taken at the corresponding
plasmon resonance frequency ω = ω�. Note an extremely
sharp decrease in γ� with both a decrease in q and an increase
in �, see in figure 3.

However this fascinating effect is strongly suppressed
by dissipation. The necessary conditions for the anomalous
scattering to come into being may be found from the Mie
theory, taking into account the dissipation factor ε′′ in the
denominator of the scattering amplitude. This consideration
leads to the applicability condition [6, 13]

ε′′ (ω�) � q2�+1

� [(2�− 1)!!]2 . (12)

When this condition is fulfilled the anomalous scattering is
dominant. In the opposite case the Rayleigh scattering is
restored. This condition clearly explained numerical results
found in [10]. For example, it follows from equation (12) that

Figure 4. Polar scattering diagrams for the scattering of linearly
polarized (red) and nonpolarized (blue) light in the vicinity of
quadrupole resonance for the nondissipative small particle with
q = 0.1 and different values of the dielectric permittivity (shown in
the pictures).

with any small ε′′ the anomalous scattering is suppressed for
very small particles. Thus, under real experimental conditions
anomalous scattering can be realized just in some intermediate
range of size parameters and only up to a certain order of the
resonances: � < �max.

Another peculiarity of weakly dissipative material is the
extra high sensitivity of the angular distribution of scattering
light near plasmon resonance frequency, see figure 4. One
can compare this picture with figure 10.14 in [3], where
calculations are done for a small gold particle. From figure 4
follows that very small variation in the incident light frequency
changes the scattering diagram from forward scattering to
backward scattering. Note that for a small perfectly reflected
sphere the ratio of forward and backward scattered intensities
is 1:9, see problem 2 to § 92 in [20].

For the Rayleigh scattering all components of the scattered
fields vanish at q → 0. In contrast, the Mie theory for
nondissipative materials near plasmon resonance frequencies
yields singularities and divergent fields, proportional to q−�−2

for E (�)
r,θ,ϕ components of the electric field and proportional to

q−�−1 for H (�)
θ,ϕ components. This divergence is stabilized at

ε′′ �= 0, however the inverse size dependence may result in
very large enhancement rates of the fields achieved at a small
q.

3. Near-field structure of the energy flux

Though the discussed far-field effects are already quite
unusual, the most appealing manifestation of the anomalous
scattering takes place in the near field. The key point is that the
dramatic changes in both the modulus and phase of complex
amplitude a� in the vicinity of plasmon resonances yield the
corresponding dramatic changes in the near-field structure. For
the dipole mode at the dipole resonance point (a1 = 1) the
exact Mie solution yields the following equation for the field
lines at x–z plane: dρ/dθ = ρSr/Sθ , where ρ = r/a,
and Sr and Sθ are corresponding spherical components of the
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Figure 5. The Poynting vector field in the vicinity of quadrupole
resonance at q = 0.3 and ε = −1.553 . . .. Various singular points
(red circles) are marked with Arabic numerals. The red lines
represent the separatrixes; the blue line denotes the particle surface.
Points 1–4 indicate the centres of four localized plasmons
(polaritons) on the surface of the particle. Within the particle with
weak dissipation these points correspond to centres of the ‘optical
whirlpools’ discussed in [9]. Points 5–8 and 11 are saddles. Note two
optical vortices (points 9 and 10).

Poynting vector:

Sr = cos θ

2q3ρ3
(2q3ρ3 − 3q2ρ2 cos K + (3 − 3q2ρ2) sin K ),

K = qρ(1 − cos θ),

Sθ = sin θ

2q4ρ4
(−2q4ρ4 − 9(1 − qρ) cos θ

− 3q2ρ2(2 − qρ cos θ) cos K

+ 3qρ(2 + q2ρ2 cos θ) sin K ).

(13)

At the same time an analogous equation for the field lines at the
Rayleigh scattering [21] contains singularities at ε′′ → 0. We
should add also that even small deviations of ω from the exact
resonance values make the single-partial-mode approximation
insufficient to describe the near-field distribution [7].

While the far-field effects are restricted by strong
inequality (12) the near-field distribution is affected by the
anomalous scattering up to much larger dissipation rates. For
example, for a particle with q = 0.3 complete restoration
of the Rayleigh scattering happens only at ε′′ > 0.6 [7].
Modifications of the Poynting vector field and a bifurcation
diagram in the vicinity of the dipole resonance have already
been discussed in [7, 11, 12]. Here we present a particular
example of the Poynting vector field in the vicinity of the
quadrupole resonance at ε′′ = 0, see figure 5. The Poynting
vector field is shown in the xz plane for incident electric field
polarized along the x axis, and a wave propagating along the z
axis. All the singular points are lying in the near field, i.e. all
these field peculiarities have the characteristic scale much
smaller than the wavelength. It provides a unique opportunity
to control optically field distribution in the nanoscale region.

The radiation losses related to transformation of the
plasmon into the propagating electromagnetic radiation can be
clearly seen in a 3D picture of the near-field distribution of the
Poynting vector in figure 6.

Figure 6. The Poynting vector lines in the vicinity of a spherical
particle for the nondissipative case (incident plane wave with electric
field polarized along the x axis comes from z = −∞). Left insert
shows 2D field in the xz plane. Points 1 and 2 are saddles. Thick red
lines indicate separatrixes in the xz plane. Field lines in 2D picture
demonstrate circular energy flux around centres (points 3 and 4). In
the 3D plot one can see the energy flow outward the particle
(helicoidally shaped field lines). It illustrates the radiative losses of
energy, general directions of which are shown by arrows on the
bottom xy projection plane.

4. Anomalous light scattering by nanowires

Effects related to the radiative damping are important also for
nanowires with surface plasmon (polaritons). This also leads
to deviation of extinction and scattering characteristics from
the Rayleigh approximations for a linear dipole, e.g. for the
scattering efficiency [4]

Q̃(Ra)
sca = π2

4

(
ε − 1

ε + 1

)2

q3. (14)

We used a tilde to distinguish cylindrical geometry.
Equation (14) is written in normalized dimensionless units; to
find the dimensional cross sections σsca, one should multiply
Q̃sca by the geometrical cross section σgeom. For a cylinder
σgeom = 2aL , where a is the radius of the wire and L 
 a is
the length of the cylinder. Quantities q, ε and ñ have the same
meaning as before.

Scattering of light by an infinite cylinder also has the exact
solution, similar to the Mie solution for a sphere, see e.g. [4].
The simplest form this solution has is for the normal incidence
of radiation and TE-mode. In this case the scattering efficiency
is expressed in terms of coefficient ã� only [4]:

Q̃sca = 2

q

∞∑

n =−∞
|ãn|2, where ã� = �̃�

�̃� + i�̃�
and

�̃� = ñ J� (ñq) J ′
� (q)− J ′

� (ñq) J� (q) , (15)

�̃� = ñ J� (ñq) N ′
� (q)− J ′

� (ñq) N� (q) . (16)

Here J�(ρ) and N�(q) are the Bessel and Neumann functions.
Coefficients ã� are symmetric: ã−� = ã�, In contrast to a
spherical particle, where the Mie expansion begins with the
dipole term (� = 1), the cylinder contains the monopole term
(� = 0) also.
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Figure 7. Trajectories of the first resonances (� = 0, 1, 2, 3, 4) found
from the equation �̃�(ε, q) = 0. For the dipole resonance (� = 1) the
surface plasmon branch merges with the volume optical one (for
which dq(ε)/dε > 0) at q ≈ 0.7 and ε ≈ −1.3. The trajectories of
all other resonances with � > 1 demonstrate similar behaviour.

Employing the well-known expansion for the Bessel
functions, [22]:

J� (z) =
( z

2

)� ∞∑

p=0

(
− z2

4

)p

p!� (�+ p + 1)
, (17)

we can obtain the following term in the numerator of ã� for the
case of small size parameter q � 1 [12]

�̃� ≈

⎧
⎪⎪⎨

⎪⎪⎩

ñ
(
ñ2 − 1

)

16
q3, if � = 0

ñ�−1
(
ñ2 − 1

)

22��! (�− 1)! q2�−1, if � > 0.

(18)

The corresponding expansion of �̃� in powers of small q
contains a product of convergent Bessel functions J�(q) to
divergent Neumann functions N�(q). As a result the leading
term in this expansion is as follows:

�̃� ≈

⎧
⎪⎪⎨

⎪⎪⎩

2ñ

πq
+ . . . , if � = 0

ñ�−1
(
ñ2 + 1

)

πq
+ . . . , if � > 0,

(19)

where ellipses indicate dropped higher order in q terms. The
resonances at q → 0 correspond to ε = −1 for all modes with
� � 1 in contrast to a spherical particle where all the modes
correspond to different resonant frequencies: ε = −(�+ 1)/�.
Such degeneracy is removed at finite q when every mode has
its individual resonance conditions, see below.

Far from the resonance frequencies the inequality |�̃�| 

|�̃�| holds, thus, ã� ≈ −i�̃�/�̃�, which yields

ã0 ≈ −i
π

32
(ε − 1)q4, ã� ≈ −i

π

22��!(�− 1)!
ε − 1

ε + 1
q2�,

for � > 0. (20)

One can see that the dominant term at small q is represented
by the dipole partial mode with � = 1, thus Q̃sca ≈
4|ã1|2/q and we arrive at the Rayleigh formula equation (14).

Figure 8. Spectral dependences of extinction efficiencies for an
infinite cylinder (TE-mode) with different values of the size
parameter: q = 0.1 (a), 0.5 (b) and 1 (c). Three curves in each plot
correspond to different values of dissipation parameter γ/ωp = 0,
3 × 10−3 and 10−2 in the Drude formula equation (7). For
nondissipative material γ = 0 and q = 0.5 and 1.0 the three
sequential resonances are seen clearly.

However the exact resonances correspond to the situation when
�̃�(ε, q) = 0. Thus, accurate description of the resonances
requires accounting for the �̃� contribution in the resonant
denominators. It results in finite and real values a� = 1
at the resonant frequencies even in the absence of the usual
dissipation, i.e. at Im ε = 0. For this ‘nondissipative’ case
with −1 < ε < 0 all the amplitudes tend to zero at q → 0.
With a larger size parameter these amplitudes demonstrate
resonances similar to the Mie resonances for a sphere. For
small q resonances arise at ε < −1. They occur just for
modes with � � 1 and do not happen for the monopole mode
� = 0, see equation (19). These resonances are extremely
sharp. The trajectories of the resonances are determined by
equation �̃�(ε, q) = 0. To find this equation at small q it
suffices to take into account the term proportional to q2 only.
As a result we arrive at the equations

ε + 1 ≈ q2

8
(ε − 1)

[
2 + ε − 4 log

qC

2

]
, for � = 1,

ε + 1 ≈ q2

4
(ε − 1)

[
1

�− 1
+ ε

�+ 1

]
, for � > 1,

(21)
where log C ≡ γ ∼= 0.577 is Euler’s constant.

The trajectories of several sequential resonances on the
plane of parameters {q, ε} are shown in figure 7. At small q
these trajectories are described by equation (21) and tend to
limit ε = −1 at q → 0. The amplitudes ã� are equal one
everywhere along the corresponding trajectories. Resonances
at small q � 1 correspond to localized surface plasmon
(polariton) modes. At certain values of ε they converge with
volume resonances similar to that for the discussed optical
resonances for a sphere, cf figure 2. At small q � 1 surface
plasmon resonances produce an anomalous light scattering
effect, see in figure 8.

In the case of the nanowire the near-field structure of the
energy flux turns out to be quite sensitive to fine detuning
of frequency of the incident light from the exact resonant
frequencies. Numerous modifications of the Poynting vector
field were discussed in detail in [12].
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5. Conclusions

Various applications of the anomalous scattering in nanotech-
nologies and related fields may be associated with (i) enormous
amplification of the incident electromagnetic field in the near
field; (ii) controllable changes of the near-field structure with
changes of the incident light frequency; (iii) comparable inten-
sity of the resonant electromagnetic field at different resonant
frequencies of the incident light, corresponding to different or-
ders of resonance, accompanied by quite a different field dis-
tribution for each order of the resonance. All this opens new
prospects for optical manipulation in the field structure in the
nanoscale region.
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