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Peculiarities of the Spatial Power Spectrum of Scattered

Electromagnetic Waves in the Turbulent
Collision Magnetized Plasma

George V. Jandieri1, *, Akira Ishimaru2, Banmali S. Rawat3, and Nika K. Tugushi4

Abstract—General dispersion equation is obtained at arbitrary inclination angles of the external
magnetic field and wave vector of an incident EM wave. Statistical characteristics of the phase
fluctuations of scattered high frequency EM waves in the collision magnetized plasma caused by electron
density and external magnetic field fluctuations taking into account polarization coefficients for both
ordinary and extraordinary waves are calculated analytically. The influence of collision frequency,
anisotropy factor and angle of inclination of prolate irregularities of electron density fluctuations with
respect to the geomagnetic field of lines on the broadening of the spatial power spectrum is analyzed.
Phase portraits of the phase fluctuations caused by the geomagnetic field fluctuations are constructed at
different spatial parameters characterizing magnetic field and electron density fluctuations. Numerical
calculations are carried out for the ionospheric F -region parameters using experimental data.

1. INTRODUCTION

The features of EM waves propagation in random media have been rather well studied [1, 2]. Excellent
reviews [3–5] related to the EM waves propagation and observations in the ionosphere have been
published whereas statistical characteristics of scattered radiation by anisotropic irregularities are less
studied.

The geomagnetic field affects as the refractive index as well as the structure of ionospheric
irregularities. Based on the dependence of the GNSS (Global Navigation Satellite Systems) phase
slip on the angle between the satellite-receiver line of sight (LOS) and the magnetic field line, have
revealed an anisotropy effect of ionospheric irregularities [6]. Geomagnetic effects produce anisotropy
of ionospheric irregularities — their sizes along magnetic field lines exceed transverse sizes. This, in
turn, leads to scattering anisotropy effect, i.e., to the dependence of slips in GNSS measurements on
satellite-observer LOS orientation relative to magnetic field line. Thus, observation of this dependence
can provide valuable information about anisotropy of ionospheric irregularities.

The analysis of the statistical characteristics of small-amplitude electromagnetic waves passing
through the turbulent anisotropic plasma is very important in many practical applications associated
with both natural and laboratory plasmas [7, 8]. It has been established that the energy loss due
to the collisions between plasma particles can lead not only to a decrease in the amplitude of the
electromagnetic waves with distance from the slab boundary but also to a significant distortion of
the spatial power spectrum (SPS) of radiation in the events of multiple scattering by random smooth
inhomogeneities of the medium.

Oblique incidence of a small-amplitude plane electromagnetic wave on a semi-infinite slab
of collisional turbulent plasma in an external uniform magnetic field has been considered in [9].
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Compensation effects of oblique incidence and plasma anisotropy on the statistical properties of multiply
scattered radiation in the absorbing medium was analyzed in the small-angle scattering approximation
using the geometrical optics method. It was shown that the spectrum width changes non-monotonically
versus distance from a plasma boundary. Such an asymmetry occurs not only in the case of oblique
incidence of electromagnetic waves on a plasma-vacuum interface, it can also be an intrinsic property
of the plasma in an external magnetic field.

The strong scattering anisotropy is revealed at multiple scattering of EM waves on large-scale
elongated irregularities. In [10] it was shown that for a fixed collision frequency between plasma particles,
the degree to which the absorption influences the SPS of the scattered waves depends strongly on the
propagation direction of the original incident wave with respect to the plasma boundary and also on
the strength of an external magnetic field using the complex geometrical optics approximation. It was
found that the width of the SPS of the received radiation for sufficiently strong absorption in the plasma
is greater than in the collisionless plasma; the spectral maximum is substantially displaced with respect
to the direction to the source.

Broadening of the SPS of scattered EM waves in turbulent collisional magnetized plasma for
both power-law and anisotropic Gaussian correlation function of electron density fluctuations was
analyzed [11] in the complex ray (-optics) approximation. Some properties of single scattering of waves
by random strong anisotropic inhomogeneities using the stationary phase method have been considered
in [12]. It was shown that the angle sensitivity of strong anisotropic scattering, unlike weak anisotropic
scattering, strongly depends on the longitudinal statistical homogeneity of the medium.

In this paper the discussion is divided into five sections. The first section gives an introduction into
the basic concepts that are discussed in the paper. The second section covers formulation of the problem.
Generalized dispersion equation is obtained at arbitrary inclination angles of both external magnetic
field and wave vector of an incident EM waves in the turbulent collisional magnetized plasma. Set of
stochastic differential equations is solved using the modify perturbation method taking into account
both electron density and external magnetic field fluctuations. Second-order statistical moments of the
phase fluctuations of scattered ordinary waves are calculated in the third section. The forth section
is devoted to the numerical calculation of the influence of collision frequency on the broadening of
the spatial power spectrum. Evaluation of the phase portraits caused by the external magnetic field
fluctuations are constructed for the ordinary EM waves scattered in the collisional magnetized plasma.
Numerical calculations are carried out for the ionospheric F -region parameters using the experimental
data. Finally, the paper is concluded with a review of the results obtained and its significance.

2. FORMULATION OF THE PROBLEM

In the vertical sounding of the ionosphere by radio pulses small differences can be important or
sometimes necessary when high accuracy is required to allow for the effect of collision on the statistical
characteristics of scattered radio waves. Therefore more detailed theoretical investigation of the EM
waves in the collisional ionosphere is needed.

At high frequency the effect of ions can be neglected. Maxwell’s equations and equation of motion
of electron in the collisional magnetized plasma igωw = (e/m)(E+[w ·H0]/c) lead to the wave equation
for the electric field coinciding with [13] at g = 1

grad divE − ΔE − k2
0E = − k2

0vg

g2 − u

{
E − i

√
u

g
[E ·m] − u

g2
(E ·m)m

}
(1)

It is assumed that the velocity and fields vary as exp[i(k · r − ωt)], w is the velocity of an electron,
g = 1 − is, s = νeff /ω, νeff = νei + νen is the effective collision frequency of an electron with other
plasma particles in which

νei = N

[
59 + 4.18 log

(
T 3

e

N

)]
× 10−6T−3/2

e [m.k.s] and νen = 5.4 × 10−16NnT 1/2
e [m.k.s]

are the electron-ion and electron-neutral collision frequencies, respectively [14]; k0 = ω/c, c is a light
speed in the free space, ω = 2πf , f is an operating frequency, u = ω2

H/ω2 and v = ω2
p/ω

2 are
non-dimensional magneto-ionic parameters, ωH = eH0/mc and ωp = 4πNe2/mω2 are the electron
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gyrofrequency and plasma frequency, respectively, N is an electron density, e and m are the charge and
mass of an electron, m = H0/H0 is the unite vector along the direction of an external magnetic field
locating in the YOZ plane. Complex refractive index of the collisional magnetized plasma is [7]:

N2 ≡ (n − iκ)2 = 1 − 2v(g − v)

2g(g − v) − uT ±
√

u2
T + 4uL(g − v)2

, (2)

where: uT = u sin2 α, uL = u cos2 α, α is the angle between vectors k and H0, upper sign corresponds
to the ordinary wave, lower sign to the extraordinary wave; n is refractive index, κ is an absorption
coefficient.

Using the perturbation method each parameter in Equation (1) we submit as sum of the constant
mean and small fluctuating terms which are random functions of the spatial coordinates:

E = 〈E〉 + e, H0 = 〈H0〉 + h0, N = 〈N〉 + n. (3)

The angular brackets indicate the statistical average. Moreover electron density and magnetic field
fluctuations are statistically independent as far as isotropic scalar field not correlated with solenoidal
vector field [15]. Substitution (2) into (1) gives linearized set of equations for the mean field:

(rot rot〈E〉)i − k2
0

3∑
i=1

εij〈Ej〉 = 0, (4)

where components of the dielectric permittivity for the collisional magnetized plasma are [7]:

εxx = 1 − vg

g2 − u
, εyy = 1 − v(g2 − uT )

g(g2 − u)
, εzz = 1 − v(g2 − uL)

g(g2 − u)
,

εxy = −εyx = −i
v
√

uL

g2 − u
, εxz = −εzx = i

v
√

uT

g2 − u
, εyz = εzy =

v
√

uLuT

g(g2 − u)
, (5)

Components of the wave vector in homogeneous medium are determined as:

kx = k0N sin θ sinϕ ≡ k0τ1, ky = k0N sin θ cos ϕ ≡ k0τ2, kz = k0N cos θ ≡ k0q, τ2
1 +τ2

2 +q2 = N2, (6)

where: θ is the angle between wave vector k and Z axis, ϕ is the angle between projection of vector k
on the XOY plane and X axis.

Substituting (3) and (6) into (1), 〈Ej〉 = E0j exp[ik0(τ1x + τ2y + qz)] for the mean field in a
homogeneous medium we obtain set of equations:(−τ2

2 − q2 + εxx

) 〈Ex〉 + (τ1τ2 + εxy) 〈Ey〉 + (τ1q + εxz) 〈Ez〉 = 0,

(τ1τ2 + εyx) 〈Ex〉 +
(−τ2

1 − q2 + εyy

) 〈Ey〉 + (τ2q + εyz) 〈Ez〉 = 0

(τ1q + εzx) 〈Ex〉 + (τ2q + εzy) 〈Ey〉 +
(−τ2

1 − τ2
2 + εzz

) 〈Ez〉 = 0, (7)

the solution of which in general case, at θ �= 0, ϕ �= 0 and α �= 0 leads to the dispersion relation

Δ ≡ a4q
4 + a3q

3 + a2q
2 + a1q + a0 = 0, (8)

here: a4 = εzz, a3 = 2τ2εyz , a2 = ε2
yz − ε2

xz − εzz(εxx + εyy) + τ2
1 (εxx + εzz) + τ2

2 (εyy + εzz),
a1 = 2τ2[εyz(τ2

1 + τ2
2 ) − εxxεyz − εxyεxz], a0 = (τ2

1 + τ2
2 − εzz)(τ2

1 εxx + τ2
2 εyy − εxxεyy − ε2

xy) + ε2
yz(τ

2
2 −

εxx) −−2εxyεxzεyz + ε2
xz(εyy − τ2

1 ).
If θ = 0 and ϕ = 0 (EM wave propagates along Z-axis) we obtain biquadratic equation for the

determinant Δ0 having four poles:

q2
1 =

[
(η′ + μ′′) − 1

2ε′
(ε′ + η′ + μ′′) sin2 θ0

]
− i

s

2ε′2
{
(η̃′′ − μ̃′)

+
[
ε̃′′(η′ + μ′′) − 2ε′(η̃′′ − μ̃′)

]
sin2 θ0

} ≡ a − isb,

q2
2 =

[
(η′ − μ′′) − 1

2ε′
(ε′ + η′ − μ′′) sin2 θ0

]
− i

s

2ε′2
{
(η̃′′ + μ̃′)

+
[
ε̃′′(η′ − μ′′) − 2ε′(η̃′′ + μ̃′)

]
sin2 θ0

} ≡ c − isd, (9)
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where θ0 is an incidence angle on a plasma slab; components of dielectric permittivity tensor for the
polar ionospheric collisional magnetized plasma (α = 0◦) at (1 ± u0) � s2 have the following form:

εxx = εyy = η′ − isη̃′′, εzz = ε′ − isε̃′′, εxy = sμ̃′ − iμ′′, η′ = 1 − v0

1 − u0
,

η̃′′ =
v0(1 + u0)
(1 − u0)2

, μ̃′ =
2v0

√
u0

(1 − u0)2
, μ′′ =

v0
√

u0

1 − u0
, ε′ = 1 − v0, ε̃′′ = v0. (10)

If EM wave propagates along the Z-axis and the external magnetic field is located in the YOZ -plane
(principle plane), polarization coefficients for the collisional magnetized plasma are [7]:

〈Ey〉1,2

〈Ex〉1,2
= K1,2 = −i

2
√

uL(g − v)

uT ∓
√

u2
T + 4uL(g − v)2

,
〈Ez〉1,2

〈Ex〉1,2
= −i

√
uT gv + K1,2

√
uLv sin α

gu − g2(g − v) − uLv
. (11)

Upper sign (index 1) corresponds to the ordinary wave; the lower sign (index 2) to the extraordinary
wave; K1K2 = 1, |K1,2| is the ratio of the ellipse semi-axis. In the polar ionosphere (α = 0◦) the waves
are circularly polarized: (〈Ey〉/〈Ex〉) = ±1, (〈Ez〉/〈Ex〉) = 0.

Fluctuating field of scattered EM waves satisfies set of stochastic differential equations taking into
account both electron density and external magnetic field fluctuations(

∂2

∂xi∂xj
− Δδij − k2

0εij

)
ej = ji, (12)

where current density is

j(r) = − k2
0v0g

g2 − u0

{
−i

√
u0

g

[〈E〉h′
0

]− u0

g
(〈E〉m)h′

0 − u0

g2
(〈E〉h′

0)m
}

− k2
0v0g

g2 − u0

{
n′ +

2u0

g2 − u0
(mh′

0)
}{

〈E〉 − i

√
u0

g
[〈E〉m] − u0

g2
(〈E〉m)m

}
,

h′
0 = h0/|〈H0〉| is the unit vector of fluctuating external magnetic field, n′ = n/ < N > is the

electron density fluctuation. Both are random functions of the spatial coordinates, v0 = ω2
p0/ω

2,
ω2

p0 = 4πe2〈N〉/mω2, u0 = (e〈H0〉/mcω)2. Index “zero” indicates the mean values of non-dimensional
magneto-ionic plasma parameters.

We will use Fourier integral over x and y coordinates:

e(r) =

∞∫
−∞

dkx

∞∫
−∞

dkyẽ(kx, ky, z) exp[i(kxx + kyy)], j(r) =

∞∫
−∞

dkx

∞∫
−∞

dkyg̃(kx, ky, z) exp[i(kxx + kyy)]

The boundary conditions should be added to these equations. Fluctuations are negligible below
and above plasma layer. If the plane XOY coincides with the lower boundary of slab, at z ≥ L the EM
waves propagating in the negative direction must be absent, and at z ≤ 0 — in the positive direction.
Since all functions are finite in a turbulent slab, 0 ≤ z ≤ L, we solve the set of Equation (12) via the
spectral method [13]:

ẽx(z) =
1
2π

∞∫
−∞

dqA(q) exp[−i(L − z)k0q], ẽy(z) =
1
2π

∞∫
−∞

dqB(q) exp[−i(L − z)k0q],

ẽz(z) =
1
2π

∞∫
−∞

dqC(q) exp[−i(L − z)k0q], g̃x(z) =
1
2π

∞∫
−∞

dqF1(q) exp[−i(L − z)k0q],

g̃y(z) =
1
2π

∞∫
−∞

dqF2(q) exp[−i(L − z)k0q], g̃z(z) =
1
2π

∞∫
−∞

dqF3(q) exp[−i(L − z)k0q]. (13)
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Boundary conditions also include Snell’s law: τ2
1 + τ2

2 = N2 sin2 θ0 [7]; at the beginning of a slab
(z = 0)θ = θ0, N = 1, and hence τ2

1 + τ2
2 ≈ sin2 θ0.

Fourier components of the fluctuating field for arbitrary angle α (vector m lies in the YOZ plane)
satisfy set of differential equations:

∂2ẽx

∂z2
− ik0τ1

∂ẽz

∂z
+ k2

0(εxx − τ2
2 )ẽx + k2

0(εxy + τ1τ2)ẽy + k2
0εxzẽz = −g̃x

∂2ẽy

∂z2
− ik0τ2

∂ẽz

∂z
+ k2

0(−εxy + τ1τ2)ẽx + k2
0(εxx − τ2

1 )ẽy + k2
0εyz ẽz = −g̃y

ik0τ1
∂ẽx

∂z
+ ik0τ2

∂ẽy

∂z
+ k2

0εxzẽx − k2
0εyz ẽy + k2

0(τ
2
1 + τ2

2 − εzz)ẽz = g̃z, (14)

Particularly, for the Y -component and α �= 0 in the collisional magnetized ionospheric plasma we have:

g̃y(æ, z) =
v0

1 − u0
k2

0〈Ex〉
{

(−iB1 + sB3)n′+(B5 + isB8)h′
0x + [−i(B6 + B2 sin α) + s(B9 + B4 sin α)]h′

oy

+ [−i(B7 + B2 cos α) + s(B10 + B4 cos α)] h′
0z

}
, (15)

where: B1 = −Ry +
√

u0 cos α + u0R2 sin α, B2 = 2u0(−Ry +
√

u0 cos α + u0R2 sin α)/(1 − u0),
B3 = [−(1 + u0)Ry + 2

√
u0 cos α + u0(3 − u0)R2 sinα]/(1 − u0), B5 =

√
u0Rz + u0 sinα, B4 =

2u0[−(3 + u0)Ry + 4
√

u0 cos α + u0(5 − u0)R2 sin α]/(1 − u0)2, B6 = u0(R2 + Ry sinα), B7 =
√

u0 +
u0Rz sin α, B8 = [2

√
u0Rz + u0(3 − u0) sin α]/(1 − u0), B9 = u0(3 − u0)(R2 + Ry sin α)/(1 − u0),

B10 = [2
√

u0 + u0(3 − u0)Rz sin α]/(1 − u0), R1 = Ry cos α − Rz sin α, R2 = Ry sin α + Rz cos α,
〈Ey〉/〈Ex〉 = −iRy〈Ez〉/〈Ex〉 = −iRz are the polarization coefficients determined by (11), n′ ≡ n′(æ, z),
h′

0i ≡ h′
0i(æ, z), æ = {kx, ky}.

In the polar ionosphere, at α = 0◦, formula (15) simplifies:

g̃y = ∓ik0〈Ex〉
[
(D1 + isD3)n′ − (D2 + isD4)h′

0z

]
, (16)

g̃z(æ, z) = k2
0〈Ex〉(F1 + isF2)

[
h′

0x(æ, z) ± ih′
0y(æ, z)

]
, (17)

g̃y(æ, z) = ±ig̃x(æ, z); for the collisionless magnetized plasma it coincides with [13], where:

D1 =
v0

1 − u0
(1 ±√

u0) , D2 = − v0

1 − u0

[
±√

u0 +
2u0

(
1 ±√

u0

)
1 − u0

]
, D3 =

v0

(1 − u0)2
(1 ±√

u0)
2 ,

D4 = − 2v0

(1 − u0)2

[
±√

u0 +
u0

(
3 + u0 ± 4

√
u0

)
1 − u0

]
, F1 =

v0

1 − u0
(u0 ±√

u0) ,

F2 =
v0

(1 − u0)2
[u0(3 − u0) ± 2

√
u0] .

Hence, current density fluctuations in the XOY plane are caused by both electron density and external
magnetic field fluctuations, while the Z component contains only magnetic field fluctuations.

In the case of θ �= 0, ϕ �= 0 and α = 0◦, at (1±u0) � s2 coefficients of Equation (13) are determined
as:

A(q) = − 1
k2

0Δ0

{[
(P1q

2 + P2) + is(Q0q
2 + Q1)

]
F1(q) +

[
(P3q

2 + P ′
4 + iP ′′

4 ) + s(Q′
2 + iQ′′

2)
]
F2(q)

+
[
P5q

3 + (P ′
6 + iP ′′

6 )q + s(Q′
3 + iQ′′

3)
]
F3(x)

}
,

B(q) = − 1
k2

0Δ0

{[
(P3q

2 + T ′
2 + iT ′′

2 ) + s(Q′
4 + iQ′′

4)
]
F1(q) +

[
(T3q

2 + T4) + is(Q5q
2 + Q6)

]
F2(q)

+
[
T5q

3 + (T ′
6 + iT ′′

6 )q + s(Q′
7 + iQ′′

7)
]
F3(x)

}
,
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C(q) = − 1
k2

0Δ0

{[
(P5q

3 + (P ′
6 − iP ′′

6 )q + s(−Q′
3 + iQ′′

3)q
]
F1(q) + [T5q

3 + (T ′
6 − iT ′′

6 )q

+s(−Q′
7 + iQ′′

7)q]F2(q) +
[
(q4 + B5q

2 + B6) + is(D′
3q

2 − D′
4)
]
F3(q)

}
, (18)

here: P1 = τ2
1 − ε′, P2 = (ε′ − sin2 θ0)(η′ − τ2

1 ), Q0 = ε̃′′, Q1 = ε̃′′(τ2
1 − η′) − η̃′′(ε′ − sin2 θ0), P3 = τ1τ2,

P ′
4 = −τ1τ2(ε′ − sin2 θ0), P ′′

4 = μ′′(ε′ − sin2 θ0), Q′
2 = μ′′ε̃′′ − μ̃′(ε′ − sin2 θ0), Q′′

2 = τ1τ2ε̃
′′, P5 = τ1,

P ′
6 = −τ1(η′ − sin2 θ0), P ′′

6 = −τ2μ
′′, Q′

3 = τ2μ̃
′, Q′′

3 = τ1η̃
′′, T ′

2 = τ1τ2, T ′′
2 = μ′′(−ε′ + sin2 θ0),

Q′
4 = μ̃′(ε′ − sin2 θ0) − μ′′ε̃′′, Q′′

4 = τ1τ2ε̃
′′, T3 = τ2

2 − ε′, T4 = η′ε′ − η′τ2
1 − (ε′ + η′)τ2

2 , T5 = ε̃′′,
Q6 = −(η′ε̃′′ + ε′η̃′′) + η̃′′τ2

1 + (η̃′′ + ε̃′′)τ2
2 , T5 = τ2, T ′

6 = −η′τ2, T ′′
6 = τ1μ

′′, Q′
7 = −τ1μ̃

′, Q′′
7 = τ2η̃

′′,
B5 = sin2 θ0 − 2η′, B6 = η′(η′ + sin2 θ0) − μ′′2, D′

3 = 2η̃′′, D′
4 = B5η̃

′′ − 2μ̃′μ′′.
Substituting (18) into (13) and taking into account (9), Fourier integrals should be calculated using

the residue theory.

3. SECOND ORDER STATISTICAL MOMENTS OF SCATTERED RADIATION

In this section we will investigate second order statistical moments of the ordinary EM waves scattered
in the turbulent collision magnetized plasma caused by electron density fluctuations if waves propagates
along the external magnetic field.

Substituting (14)–(17) into (13), taking into account that phase fluctuation ϕ1 is determined by the
expression ϕ1 = Im(e/〈Ex〉), applying the residue theory, for the Y component of scattered radiation and
arbitrary correlation function of the phased fluctuations Wϕ(r1, r2) = 〈ϕ1(r1)ϕ∗

1(r2)〉 at the observation
points r1 and r2 caused by electron density fluctuations has the following form:

〈ϕ1(x + ρx, y + ρy, L)ϕ∗
1(x, y, L)〉Y D = −4D1k

2
0L

∞∫
−∞

dkx

∞∫
−∞

dky

∞∫
−∞

dρzWD(kx, ky, ρz)

exp(ikxρx + ikyρy)
{

2t0
δ2
1

(G′
1 + s · G′′

1)
[
sin(2k01L)

2k01L
ch(s · r1k0ρz) − cos(k01ρz)

]

+
2t′0
δ2
1

(G′
2 + s · G′′

2)
[
sin(2k02L)

2k02L
ch(s · r2k0ρz) − cos(k02ρz)

]

− 4
δ1δ2

(G′
3 + s · G′′

3)
[
sin(p2k0L)

p2k0L
cos
(p1

2
k0ρz

)
ch
(
s · q1

2
k0ρz

)
− (J1 + s · J2) cos

(p2

2
k0ρz

)

·ch
(
s · q2

2
k0ρz

)
+ (J3 − s · J4) sin

(p2

2
k0ρz

)
sh
(
s · q2

2
k0ρz

)]}
, (19)

where observation points are spaced apart at a very small distances ρx and ρy perpendicular to
the principle plane, Wn(k) is the arbitrary correlation function of the electron density fluctuations,
G′

1 = D1(t0 + 2t1τ2
1 + 2t2τ2

2 ), G′′
1 = 2D3hτ1τ2, G′

2 = D1(t′0 + 2t′1τ
2
1 + 2t′2τ

2
2 ), G′′

2 = 2D3h
′τ1τ2, G′

3 =
D1[t0(t′0 + t′1τ2

1 + t′2τ2
2 ) + t′0(t1τ2

1 + t2τ
2
2 )], G′′

3 = D3(ht′0 + h′t0)τ1τ2, t0 = −2μ′′ε′, t1 = (ε′ − η′ + 3μ′′)/2,
t2 = (−ε′ + η′ + 5μ′′)/2, h = η′ + μ′′ − ε′; stroke terms t′0,1,2 and h′ are obtained using replacements:
μ′′ → −μ′′, μ̃′ → −μ̃′; r1 = b1/2a1, r2 = d1/2c1, k01 = k0

√
a1, k02 = k0

√
c1, p1,2 = p′1,2 − p′′1,2,

q1,2 = q′1,2 + q′′1,2 sin2 θ0, p′1,2 =
√

a1±√
c1, q′1,2 = (d1/2

√
c1)∓ (b1/2

√
a1), p′′1,2 = (a2/2

√
a1)± (c2/2

√
c1),

q′′1,2 = (d2/2
√

c1) ∓ (b2/2
√

a1), a1 = η′ + μ′′, a2 = (ε′ + η′ + μ′′/2ε′), b1 = (η̃′′ − μ̃′/2ε′2),
b2 = [ε̃′′(η′ + μ′′) − 2ε′(η̃′′ − μ̃′)]/2ε′2, c1 = η′ − μ′′, c2 = (ε′ + η′ − μ′′/2ε′), d1 = (η̃′′ + μ̃′)/2ε′2,
d2 = [ε̃′′(η′ − μ′′) − 2ε′(η̃′′ + μ̃′)]/2ε′2, J1 = sin(p1k0L)

p1k0L ch(s · q1k0L), J2 = q1

p1

cos(p1k0L)
p1k0L sh(s · q1k0L),

J3 = cos(p1k0L)
p1k0L sh(s · q1k0L), J4 = q1

p1

sin(p1k0L)
p1k0L ch(s · q1k0L); δ1 = 4μ′′√η′ + μ′′, δ2 = −4μ′′√η′ − μ′′.

This expression is applicable for the near (R  1) and far (R � 1) zones from a plasma boundary,
R = L/k0l

2
‖ is the wavy parameter. Double integral in the wave number space depends only on the

shape of the fluctuation spectrum but not on the strength of the fluctuations.
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For statistically isotropic and homogeneous random magnetic field we have [16]:

Vij(ρ) ≡ 〈h′
0i(r1)h′

0j(r2)〉 =
σ2

h0

12

(
∂2

∂ρi∂ρj
− δij

∂2

∂ρm∂ρm

)
Φ(ρ), (20)

where: ρ = |r1 − r2|, σ2
h0 is the variance of the fluctuating field, Φ(ρ) is the arbitrary scalar function

having characteristic spatial scale L0. Random magnetic field within one irregularity (linear scale L0)
displaces plasma particles on small angle. At the same time the displacement of particles by regular
field H0 on the same distance maybe not small.

Correlation function of the phase fluctuation of scattered ordinary EM wave in the collisional
magnetized plasma caused by the external magnetic field fluctuations in a the zero-order approximation
is

V (ρx, ρy, L)

= 2k2
0D

2
2M0

∞∫
−∞

dkx

∞∫
−∞

dky
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t20
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. (21)

It contains only ZZ component, while in the first and second approximations cross-correlation functions
should be taken into account. We will not write theirs out having quite bulky forms.

4. NUMERICAL CALCULATIONS

Currently polar ionosphere is of great interest [8, 17]. This is connected with creation of global model
of ionospheric storms and providing stable navigation in polar region. In some cases a strong positive
correlation between the phase acceleration variations and TEC variations in the variation frequency band
of 0.08–1 Hz. It is well known that this frequency band relates to the 1-st Fresnel zone sized ionospheric
irregularities. A clear positive correlation between the increase in phase acceleration and the growth of
TEC variation spectral components of 0.08–0.6 Hz exists [18]. This frequency range corresponds to the
scope of small-scale ionospheric irregularities with sizes from hundred meters to several kilometers.

Small-scale ionospheric irregularities are primarily responsible for the occurrence of rapid variations
of amplitude and phase confirming a possible link between non-stationary phase changes and small-
amplitude irregularities in the ionosphere.

Let us consider some results of simulation, where the obtained formulas have been used. Analytical
and numerical calculations are out for the anisotropic Gaussian correlation function of electron density
fluctuation [11, 19]:

WD(kx, ky , ρz) =
σ2

D

4π

l2‖
χΓ0

exp

(
−m2

l2‖
ρ2

z + inkxρz

)
exp

(
−

k2
xl2‖

4Γ2
0

−
k2

y l
2
‖

4χ2

)
, (22)

where: m2 = χ2/Γ2
0, Γ2

0 = sin2 γ0 + χ2 cos2 γ0, n = (χ2 − 1) sin γ0 cos γ0/Γ2
0, σ2

D is the variance of
the density fluctuations. The average shape of electron density irregularities has the form of elongate
ellipsoid of rotation. The rotation axis is located in the plane of geomagnetic meridian. The ellipsoid is
characterized with two parameters: the anisotropy factor for the irregularities equaling to the ratio of
ellipsoid axes χ = l‖/l⊥ (ratio of longitudinal and transverse sizes of plasma irregularities with respect
to the external magnetic field) and orientation characterizes by the inclination angle γ0 of the prolate
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irregularities with respect to the lines of forces of an external magnetic field (sometimes with respect to
horizon). Anisotropy of the shape of irregularities is connected with the difference of diffusion coefficients
in the field align and field perpendicular directions.

For statistically isotropic and homogeneous random magnetic field H0 Gaussian correlation
function [18] Φ(ρ) = L2

0 exp(−ρ2/L2
0) having characteristic linear scale L0 formula (20) can be rewritten

as:

Vij(ρ) =
σ2

h0

3

[(
1 − ρ2

L2
0

)
δij +

ρiρj

L2
0

]
exp

(−ρ2/L2
0

)
(23)

and its spectral representation is

Vij(k) = M0

(
k2δij − kikj

)
exp

(
−k2L2

0

4

)
, (24)

where M0 ≡ σ2
h0π

3/2L5
0/12, σ2

h0 is the variance of an external magnetic field fluctuations.
Numerical calculations are carried out for an incident wave 3MHz (k0 = 6.28 · 10−2 m) using the

following dimensionless parameters: v0 = 0.28, u0 = 0.22. The effective collision frequency of electron
with other plasma particles in the ionospheric F -region (at altitudes 160–340 km) is of the order of
∼ 10−2 and hence s ∼ 10−4 for 3 MHz operating frequency. Variance of electron density fluctuations is
in the interval σ2

D ∼ 10−4–10−6 [20].
It has been established that small irregularities (≤ 10 km) in F -region are highly elongated along

the direction of the magnetic field and are strongly anisotropic. On the other hand, large irregularities
(≥ 10 km) are weakly anisotropic [21].

Spaced receiver measurements made at Kingston, Jamaica, show [22] that the irregularities causing
the scintillation of signals from earth satellites are closely aligned along the magnetic field in the F -
region, between heights of 153 and 617 km with an average height of 362 km. The signals observed
were the 41-MHz transmissions from the moving satellites BE-B and BE-C. The orientation of the
irregularities in the ionosphere was measured with respect to the geographic north. The dip angle of
the irregularities in the ionosphere was in the interval 0◦ ÷ 18◦ mainly within 16◦ of dip.

Statistical characteristics of scattered radiation are calculated at k0L � 1 using the stationary
phase method [23]. Substituting (22) into (19) in nonmagnetic (u0 = 0) isotropic (χ = 1) collisionless
plasma (s = 0) at ρx = ρy = 0 we obtain the well-known formula for the variance of the phase
fluctuations WϕD =

√
πσ2

Dv2
0k

2
0Ll/4 [8].

Figure 1 depicts the dependence of the normalized correlation function of the phase fluctuations
of scattered ordinary wave versus nondimensional space parameter ρy/l‖ in the turbulent collisional
magnetized plasma at s = 10−4, k0L = 2 · 103 (corresponding thickness of plasma slab 32 km). Angle of

(a) (b)

Figure 1. (a) Depicts correlation function of the phase fluctuations of scattered ordinary wave in
the collisional magnetized plasma with electron density fluctuations as a function of distance between
observation points. 3D picture of the broadening of the SPS versus angle of inclination and thickness
of plasma slab is presented on (b).
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inclination of prolate irregularities is equal γ0 = 10◦, l‖ = 3km. If l‖/L = 0.01, in the case of isotropic
irregularities (χ = 1) increasing anisotropic factor up to χ = 5, correlation function fast dumping.
Decreasing thickness of a slab l‖/L = 0.1 correlation function of the phase fluctuation oscillates from
Y = 1 up to Y = 5 solely due to the collision of electrons with other plasma particles; stationary
interval of oscillations exists in the interval Y = 1.5–2.5. Simulations show that oscillations increase in
proportion to the parameter l‖/L. Varying thickness of plasma slab and inclination angle γ0, broadening
of the SPS in the collision magnetized plasma oscillates (Figure 1(b)).

In Figure 2 the dependences of the SPS broadening are shown as a function of nondimensional
spatial parameter D = L/l‖ in the principle plane for different inclination angle γ0 = 0◦–10◦ of prolate
electron density irregularities with respect to the external magnetic field, at fixed anisotropy factor χ = 2
(Figure 2(a)) and as a function of the inclination angle for different anisotropy factors (Figure 2(b)). If
prolate irregularities are strongly stretched along the external magnetic field, γ0 = 0◦, the broadening of
the spatial spectrum tents to the saturation at D = 22. Increasing inclination angle γ0 = 5◦ saturation
is started from D = 25, while if γ0 = 10◦, at D = 40. Increasing angle in the interval γ0 = 0◦–10◦
the broadening of the SPS of scattered ordinary EM waves tends to the saturation in proportion to
the thickness of plasma slab and broadens in 45 percent. Figure 2(b) illustrates APS versus inclination
angle γ0 for different anisotropy factor. If χ = 10 spectrum has maximum at γ0 = 10◦, if χ = 13
maximum is displaced to the left, γ0 = 7◦, while at χ = 15 we obtain γ0 = 6◦. Maximum of the SPS is
displaced to the left, to the small angles γ0, increasing anisotropy factor.

(a) (b)

Figure 2. Broadening of the SPS of scattered ordinary wave in the collisional plasma as a function of
non-dimensional parameter (a) D = L/l‖ and (b) inclination angle γ0.

Hence, thickness of a slab, characteristic spatial scale of electron density fluctuations along the
external magnetic field, anisotropy factor and inclination factor have a substantial influence on the
behavior of the second order statistical characteristics of scattered ordinary waves in the magnetized
collision plasma.

Spatial correlation function of the phase fluctuations WD(ρ) may be simply converted intotemporal
correlation function if rigid irregularities moving with the velocity V0 in perpendicular direction
to the radio path, WD(t) = WD(V0t) and hence, for the broadening of the spectrum we obtain:
〈Ω2〉 = −V 2

0 ∂2WD/∂ρ2
y = V 2

0 〈k2
y〉. Spaced receive measurement shows [24] that small-scale irregularities

in the nightly ionospheric F -region having elliptic form and anisotropy axis are oriented along the
Earth magnetic field. Irregularities are drift to the south-west direction with the velocity of the
order 40–100 m/sec. Numerical calculations carrying out for the velocity V0 ∼ 100 m/sec show that
〈Ω2〉1/2 ∼ 0.1 Hz, which is in agreement with experimental data [25].

As we consider statistical characteristics of scattered radiation in the polar ionospheric collision
magnetized plasma with vertical line of force of the geomagnetic field, the normalized phase portraits
ΦY M (X,Y,L)/ΦY M (0, 0, L) are calculated analytically and numerically for three regions: principle plane
— location of both external magnetic field and wave vector, perpendicular plane and transition area
connecting these regions.
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Substituting (24) into (21) using the polar coordinate system in the principle plane we obtain:

〈ϕ1ϕ
∗
1〉Y M = −2

3
π3σ2

h0D
2
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2
0L0LτΞ

2π∫
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2τ
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where:
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)
, τ =

L0
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. (26)

Analytical calculations show that in the transition region only Vxz and Vyz components, while in
the XOY plane (perpendicular to the location of the external magnetic field) X and Y components
of the second rank tensor Vij give the contribution correlation function of an external magnetic field
fluctuation. Phase portraits of the phase fluctuations for the ordinary wave has been constructed at:
B = k0L = 100, s = 10−3. Figure 3 represents evaluation of the phasor lobes at τ < 1 (L0 = 10,
l‖ = 900). Figure 3(a) corresponds X = 7 · 10−3 and Y = 2 · 10−3; replacing X and Y phase portrait
turns on the counterclockwise direction on 60◦. Analysis show that the orientation of the phase portrait
depends on the location of the observation points leading to the narrowing of the lobs if L0 � l‖.
Figure 4 depicts phase portraits of the phase fluctuations at τ > 1 for X = 0.5, Y = 0.2. Figure 4(a)
corresponds: L0 = 100, l‖ = 10; Figure 4(b) L0 = 1000, l‖ = 30. Increasing parameter τ three times
small lobes are decreased, while the main one are increased due to energy transfer from the electron
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Figure 3. Phasor diagrams of the phase fluctuations caused by the external magnetic field fluctuations
in the collision magnetized plasma at τ = 6 · 10−3.
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Figure 4. Phasor plots of the phase fluctuations caused by magnetic field fluctuations in the collision
magnetized plasma for (a) τ = 5; (b) τ = 16.

density fluctuations to the external magnetic field fluctuations not varying orientation of the phase
portrait.

Geomagnetic field fluctuations are more intensive at the geomagnetic storms belong to the most
striking phenomena impacting the space weather. A variety of complicated ionospheric patterns
resulting from the interplay between different space weather factors were revealed by low-orbiting
satellite radio tomography (LORT) during the geomagnetic storms [26]. Some features are common
of the most storms, and the others are event-specific traits. The LORT images of the disturbed
ionosphere demonstrate plasma distributions with numerous enhancements and depletions on various
scaled, rapid rearrangement of the ionospheric structures, uplifting of the ionospheric F -layer, variations
in the position and shape of the main ionization trough, waves and wavelike disturbances, etc.

5. CONCLUSION

Correlation function of the phase fluctuation oscillates in the collision magnetized ionospheric plasma.
Oscillations are increased decreasing thickness of a slab.

The broadening of the SPS of scattered ordinary waves in magnetized plasma with anisotropic
irregularities tends to the saturation inversely to the thickness of a slab increasing characteristic spatial
scale of electron density fluctuations l‖ along the external magnetic field. Increasing anisotropy factor
maximum of the SPS is displaced to the small inclination angles.

Converting spatial correlation function of the phase fluctuations intotemporal correlation function
and if rigid small-scale irregularities in the nightly ionospheric F -region irregularities moving with the
velocity V0 ∼ 100 m/sec in perpendicular direction to the radio path, the broadening of the spectrum is
of the order 0.1 Hz which is in agreement with the experimental data.

Phasor diagrams of the phase fluctuations caused by the external magnetic field fluctuations are
constructed for the collisional magnetized plasma at different spatial parameter τ = (L0/2l‖) is the
ratio of the spatial scale of an external magnetic field fluctuations L0 and l‖ varying location of the
observation points. Increasing parameter τ three times small lobes decrease, while the main lobes
increase due to energy transfer from the electron density fluctuations to the external magnetic field
fluctuations not varying orientation of the phase portrait. More conventional way of investigating the
anisotropy of ionospheric fluctuations is studying the statistical properties of the diffraction pattern
implying at least three closely-spaced receivers. The multi-receiver method provides the anisotropy of
the diffraction pattern in both field-aligned and perpendicular anisotropies of the irregularities, which
cannot be done using a single receiver.

The above theory can be applied in determining the anisotropy parameters of the ionospheric
irregularities observing statistical characteristics caused by the phase fluctuations.
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