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Abstract: As autonomous vehicles become more common on the roads, their advancement draws
on safety concerns for vulnerable road users, such as pedestrians and cyclists. This paper presents a
review of recent developments in pedestrian and cyclist detection and intent estimation to increase
the safety of autonomous vehicles, for both the driver and other road users. Understanding the
intentions of the pedestrian/cyclist enables the self-driving vehicle to take actions to avoid incidents.
To make this possible, development of methods/techniques, such as deep learning (DL), for the
autonomous vehicle will be explored. For example, the development of pedestrian detection has been
significantly advanced using DL approaches, such as; Fast Region-Convolutional Neural Network
(R-CNN) , Faster R-CNN and Single Shot Detector (SSD). Although DL has been around for several
decades, the hardware to realise the techniques have only recently become viable. Using these DL
methods for pedestrian and cyclist detection and applying it for the tracking, motion modelling and
pose estimation can allow for a successful and accurate method of intent estimation for the vulnerable
road users. Although there has been a growth in research surrounding the study of pedestrian
detection using vision-based approaches, further attention should include focus on cyclist detection.
To further improve safety for these vulnerable road users (VRUs), approaches such as sensor fusion
and intent estimation should be investigated.

Keywords: pedestrian detection; cyclist detection; deep learning; CNN; Fast R-CNN; Faster R-CNN;
pose estimation; motion modelling; tracking; intent estimation

1. Introduction

The rise in the development of autonomous vehicles underpins essential safety concerns
particularly for vulnerable road users (VRUs) such as pedestrians and cyclists. Concerns have
been mounting specifically surrounding whether the autonomous vehicle is able to take them into
consideration while operating on public roads. Therefore, it is critical that the autonomous vehicle can
detect, classify and predict the intention of the VRUs in real time, and required action is taken not to
compromise the safety of other road users. To achieve this, deep learning (DL) techniques have recently
been employed for detection and pose estimation to predict the intention of pedestrians and cyclists.
For example, Convolutional Neural Networks (CNNs), a type of DL technique, have been highly
successful in the field of object detection, particularly, pedestrian detection [1–5]. Recent advances of
such DL techniques have outperformed previous methods of computer vision problems (see [6–10]
reduced number of refs). Some DL techniques used for pedestrian detection have achieved miss rates
of less than 10% [11]. Although the miss rate is significantly low, they are yet to reach human levels
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of detection, and therefore significant research is still necessary. Until detection levels are improved,
autonomous vehicles remain a danger to VRUs.

According to the World Health Organisation (WHO), nearly half of road traffic fatalities are
experienced by pedestrians and cyclists than any other road users as they do not have any special
means of protection (i.e., helmets, clothing, etc.) [12]. To be able to predict the intention of a pedestrian
using identification and pose estimation techniques would provide a higher level of safety for all road
users. In 2013, WHO reported that it is expected that traffic accidents will be the fifth leading cause
of death by 2030, rising from the current eighth position [13,14]. In 2013, VRUs make up more than
a quarter of victims of traffic accidents. Of the deaths recorded due to traffic accidents, 42% were
pedestrians and 16% were cyclists, with 69% of these fatal accidents occurring in urban locations.
In 2017, of all fatalities due to road traffic accidents, 21% were pedestrians, and 8% were cyclists [15].
In the UK, pedestrians and cyclists accounted for 26% and 6% of road traffic fatalities, respectively [16]
in 2017. Most accidents occurred in rural roads (55%) and Urban areas (37%). It is also worth noting
that half of the accidents involving pedestrians occur at night [17,18].

Autonomous vehicles aim to make the roads safer for the VRUs through accurate detection.
Although detection systems have become more accurate, they have yet to reach human levels.
To improve the accuracy of detection systems, the challenges that need to be overcome include
occlusion, crowding, weather and lighting conditions. The flowchart in Figure 1 represents the
tasks required by the autonomous vehicles to safely detect and estimate the future actions of VRUs.
This process allows the vehicle to safely navigate with respect to the VRU. The interaction between the
autonomous vehicle and its surroundings is achieved via sensors which collect information primarily
to detect and track objects. The sensor input in Figure 1 is affected by external sources, which can
reduce efficiency. Typically, the sensing method relies on a vision-based approach such as visible
band cameras (operating at the spectrum of 400 nm to 700 nm) [1–4]. Sensing based on the visible
light spectrum is susceptible to ambient light, shadowing and weather conditions. During low-light
conditions due to the time of the day, weather, shadowing, etc. can reduce the accuracy of the sensors.
A common approach to overcome this problem is to create multiple sensor systems using sensor
fusion (e.g., combining visible and infrared band camera) to increase the robustness and accuracy [3,4].
The thermal sensor detects the thermal radiation from an object, which allows the detection and
tracking of pedestrians and cyclists in low-light conditions.

The accuracy of the classification, detection and pose estimation are based on the quality of
the sensor data information. The focus of this paper is to provide an overview of the current
pedestrian and cyclist detection and intent estimation techniques and compare the existing techniques.
Building upon the vast existing literature in the field of computer vision and object detection, pedestrian
and cyclist detection will be explored and discussed. The detection stage allows for identification
and location of such objects in images and video frames [19], therefore making it a vital part of
autonomous vehicles [20–23]. Detection results are then used for tracking and pose estimation of the
pedestrians/cyclists. As DL techniques for VRU detection and intent estimation will be the primary
focus, this will not encompass tracking techniques.

The purpose of this survey is to provide comprehensive review of the recent studies undertaken
in both pedestrian and cyclist detection and pose estimation based on state-of-the-art sensor fusion
and DL techniques. There is limited work focused on cyclists detection compared to pedestrian
detection. There is also limited work on using multispectral data for VRU detection. Using sensor
fusion techniques with DL can lead to improved results based on previous state-of-the-art methods.
Therefore, it is critical to find an optimal fusion technique to improve the detection accuracy of the
system. Once detected, pose estimation techniques can be applied to the VRUs.

The organisation of the paper is as follows: Section 2 will highlight the challenges and importance
of detection and intent estimation for autonomous vehicles. Sections 3 and 4 will provide a brief history
of object detection techniques and its typical detection pipeline. Section 5 will explore the state-of-art
techniques based on DL currently used in pedestrian and cyclist detection. Section 6 discusses the
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architectures of the DL-based detectors for pedestrians and cyclists. Section 7 outlines the datasets
used for pedestrian and cyclist detection. Section 8 will discuss DL-based sensor fusion approaches for
an improving detection. Section 9 introduces the latest DL approaches that are used for pose estimation
and intent estimation. Concluding remarks and future works will be presented in Section 10.

Figure 1. A flowchart of detection and intent estimation system.
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2. Challenges of Detection and Intent Estimation

Advanced driver assistance system (ADAS) technology, such as cruise control, emergency braking
and lane departure system have brought a certain level of safety for vehicles and other road users.
Automatic speed control (cruise control) was developed in the early 1990s, based on electronic cruise
control technology that was introduced in the late 1960s. It was not widely implemented until the
1980s [24]. From the cruise control technology, adaptive cruise control was developed. It uses sensors to
detect vehicles in front to adjust speed to maintain a distance between the vehicles. These sensors have
also been used for emergency braking if an object is detected within a given range. Lane departure
systems are used for warning the driver of potentially unintended lane changes. Initially designed
for semi-truck drivers, they were adopted by consumer vehicles in 2001 as part of the lane keeping
support system by Nissan [24]. By monitoring the use of the indicators, the system detects if a lane
departure is intentional. If the vehicle begins to change lanes without the use of indicators, the system
warns the driver. The systems discussed above are dependent on driver intervention and focus on
a single aspect of dangers on the road. However, the technology discussed above cannot provide a
sufficient level of safety for a fully autonomous vehicle. So, further research is required to increase
detection accuracy for autonomous vehicles.

For a fully automated vehicle, the detection of dangers associated with pedestrian/cyclist
detection should be a continuous operation, as represented in Figure 1. This cannot be achieved
by a driver driven vehicle as the driver cannot maintain a continuous level of awareness to their
surroundings. Even with the considerable progress on autonomous vehicles, further development is
pivotal for pedestrian and cyclist detection to address safety concerns. Therefore, this continues to be
an area that is being investigated and explored, as in [25–27] reduced ref grouping.

3. Detection Techniques: A Brief History

Detection techniques, especially for pedestrians, has been widely researched with several
techniques. The first instance of object detection is known as the region of interest (ROI) [28]. Once the
potential location of the desired object (i.e., pedestrian or cyclist) is identified in an image, feature
extraction takes place. These features can include edges, shapes, curvature, etc. These features are sent
to a classifier for classification [28] (see Figure 1).

The Background Subtraction (BS) approach was the first technique applied for detecting a moving
object. In this approach, the moving objects are identified by comparing the current frame with the
reference frame, known as the background image [23,29]. This method is simple to implement but
is susceptible to environmental conditions such as light intensities (i.e., time of day, shadowing) and
dynamic backgrounds [30]. To improve the detection and tracking, a number of advanced techniques
such as the sliding window, objectiveness and selective search were developed [31].

Algorithms for feature extraction and classification for object detection can be either hand-crafted
or DL-based methods. Hand-crafted methods for feature extraction are based on models that were
manually designed on low-level features to propose ROIs [19]. These models were based on techniques
such as BS, the histogram of oriented gradients (HOG) features [32,33] or local binary pattern (LBP) [34].
Hand-crafted methods can be limited and not very robust as complex features can be difficult to
hand-craft. DL techniques allow the network to determine features. This can provide a higher level
of abstraction.

Then classifiers, such as a Support Vector Machine (SVM) [19,35–38], a decision tree [19,36–38] or
a deep network [39,40] are used to classify the object (e.g., pedestrian, cyclist) in the image or video
sequence. Deep networks have shown promising results in pedestrian detection, outperforming some
traditional methods of pedestrian detection. DL-based techniques will be discussed in later sections.

Some of the more commonly used hand-crafted techniques for pedestrian and cyclist detection
are discussed below. Haar-like features detect the changes in intensities in the horizontal, vertical
and diagonal directions to detect the object [23,41]. Viola and Jones (VJ) implemented the Haar-like
features detection approach, while also taking into account the intensity information from the video
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frame [30,42]. Introduced in 2003, it used the sudden changes in pixel intensities to detect the shape
of an object [42–44]. The VJ detector was one of the earlier techniques designed for pedestrian
detection [42]. It used box-shaped filters for feature extraction which is then fed into a classifier based on
adaptive boosting known as AdaBoost [45]. Dalal and Triggs presented the HOG (detector which uses
a linear SVM for classification [25,32,43,44]). The HOG detector finds an object’s shape and appearance
based on the intensities of the local gradients or the orientation of the edge [23,32]. The HOG detector
became a building block for the Deformable Part Model (DPM) detector in later works [25,35,44,46,47].
DPM was used to weaken the effects of deformation of non-rigid objects [48]. DPM is a popular method
for object detection and works well with varying and occluded appearances [48,49]. Based on the
DPM, many other object detection methods have been proposed [50]. DPM was implemented in [25]
to simultaneously detect and classify both pedestrians and cyclists using an innovative detection
approach with a deep network for classification and localisation. The detection method, upper
body-multiple potential regions (UB-MPR ), focused on the UB of the pedestrian/cyclist for object
candidate abstraction as the UB of these road users are normally similar and visible. The potential
object regions were extracted using multiple potential regions (MPR) for the UB of the candidate.
These potential objects were then sent to a Fast Region-Convolutional Neural Network (R-CNN) [51]
for classification. A Fast R-CNN is a DL approach which will be discussed in later sections. A similar
approach for using DPM was found in [52]. Methods for detecting pedestrians can be employed
for cyclist detection as in [53,54]. LBP uses a neighbourhood of each pixel to extract features [23,34].
This method is very robust compared with the methods above and therefore has become very popular.

4. Typical Detection Pipeline

Pedestrian and cyclist detection algorithms mostly follow a basic pipeline or structure (as shown
in Figure 2): (a) information collected by the sensor system (b) region of proposals, (c) feature extraction,
and (d) classification [23]. These pipelines are described in detail in the following section. The detection
pipeline is the first aspects of the overall detection and intent estimation system as described in Figure 1.

(a) (b)
Figure 2. Cont.
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(c) (d)
Figure 2. Basic Detection System Structure: (a) the sensor system captures data in the form of an
image (b) region proposal techniques are applied, (c) features are extracted from the proposed regions
and (d) finally the features are fed into a classifier. (a) Sensor System [55]. (b) Region Proposal [56].
(c) Feature Extraction [57]. (d) Classification [58].

4.1. Regions of Interest

ROIs, also known as region proposal, is regarded as the first and most vital step in a detection
system [59]. Some image processing techniques are applied at this stage for ease of finding ROIs [23].
The region proposals have been typically visible-based approaches, such as monocular or stereo
cameras. The features such as edges, lines, patterns are then extracted and processed through to
the classifier to determine the class of the object (e.g., whether the object is human or not). ROIs are
proposed in an image to detect potential pedestrians/cyclists in the scene. Approaches that can be
used for finding ROIs include sliding window, selective search [60] and locally decorrelated channel
features (LDCF) [44].

In the sliding window approach, a window is scanned both vertically and horizontally to extract
candidate regions. These regions may be different scales as the pedestrians can be of varying sizes.
No positive regions are discarded as all the regions are fed into CNN. This will provide high accuracy
but with a higher level of computational complexity due to the large number false positives [44].
Selective search uses a coarse filter for detecting class-independent regions [60]. This has been
successfully used with CNNs for feature extraction and classification [51]. The approach reduces the
number of regions proposed, reducing the computational costs. LDCF can detect pedestrians with
high accuracy [61]. To further improve, this approach is coupled with a neural network [44], where a
large number of regions are produced, each with a confidence value. The confidence value refers to
the likelihood that a pedestrian is contained in the frame. This provides for a trade-off of accuracy and
efficiency of the detector.

The sliding window approach is the simplest technique and is adaptable for use with various
aspect ratios and scales [44]. However, more complex algorithms can lead to lower the number of
ROIs, reducing the number of false positives. This also reduces the computational costs of the overall
detection system.

4.2. Feature Extraction

Feature extraction of the ROIs is processed. Some of the major and well-known feature extraction
techniques were discussed in Section 3. Depending on the application, different techniques can be
applied [44]. For example, to identify visible characteristics the VJ descriptor, HOG descriptor and DL
approaches can be applied. The VJ descriptor uses intensity contrasts for feature extraction while the
HOG descriptor uses pooled gradients. DL techniques can be used when certain features cannot be
hand-crafted. For each input region, a vector of real-valued or binary values are produced. The output
vector represents the visible characteristics of the proposed regions.
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4.3. Classification

The output vector produced from the feature extraction stage is fed into a classifier to determine if a
pedestrian or any other object exists in the proposed regions in the form of a binary label. Classifiers that
have been used in the previous studies with feature extractors include AdaBoost [42] and SVM [32].
However, with the advancement of DL, more often, CNN-based approaches, are being implemented
for classification. These CNN-based approaches will be discussed in the next section.

5. Deep Learning for Pedestrian and Cyclist Detection

A subset of artificial intelligence and machine learning, deep learning (DL) was first introduced
in the 1990s but has only recently been able to be used due to advancements and decline in
costs of computational equipment (e.g., graphics processing units (GPUs)) and efficient training
algorithms [44,62]. In particular, the Convolutional Neural Networks (CNN) algorithms have
been used in the field of computer vision and image analysis [59] for object detection [51], image
classification [7] and face recognition [63]. CNN approaches have been considered state-of-the-art in
this field of computer vision.

Convolutional Neural Networks (CNNs) are a type of DL technique that has high performance in
many fields as object recognition and classification. These objects can include faces and handwritten
numerals and letters. The robustness of CNNs stems from the fact that they are able to extract
information from raw-pixel content and learn features automatically [44]. It does this by performing
various operations, typically some combination of filtering, pooling and non-linear activation.
One benefit of using CNNs for feature extraction, when compared to hand-crafted methods, is that
CNNs learn features from the images without explicit programming.

Since 2012, new approaches based on DL techniques have developed for pedestrian detection such
as AlexNet [1], a CNN technique developed by Alex Krizhevsky and named after the developer [64].
AlexNet was trained used in an ImageNet dataset. For ImageNet, the custom is to report two error
rates; top-1 (full testset) and top-5 (fraction of testset). AlexNet error rates were 37.5% and 17.0% for
top-1 and top-5 respectively. Prior to AlexNet’s results, the best performance in terms of error rates
were 47.1% and 28.2%. These results aided in the designing of hardware to improve the performance
of CNNs for an increased accuracy in detection as well as the affordability of training of the CNNs.

DL uses multiple layers, which are able to extract features, such as edges or patterns in images
and use these features to classify an object. In this way, deep neural networks such as CNNs are
used for feature learning to recognise objects such as pedestrians [59,65–67]. Feed-forward neural
networks comprise of a series of computational nodes known as neurons that are interconnected
for information processing. This is also known as multi-layer perceptron (MLP). The nodes form
layers that are interconnected through parameter values called weights. The neuron functions as
a logistic regression classifier. The neurons use non-linear operations to transform input data and
create a decision boundary in which the data can be linearly separable. An illustration of a single
perceptron can be found in Figure 3. Multiple layers of these perceptrons create an MLP or neural
network (Figure 4). The neural network in Figure 4 is a fully connected network. This means that each
neuron receives an input from each neuron from the previous layer. For CNN, convolution layers exist
within the hidden layers to perform the convolutional computations.

DL aims to detect objects in a single/multiple frames similar to how humans detect and interact
with objects [44]. However, the detection of pedestrians and cyclists has been a major challenge
in computer vision. With the recent software and hardware advancements, there has been a real
progression in this field. There are many survey papers for pedestrian detection [46,68–74] and
tracking systems, including the sensor technology and processing techniques. The use of a monocular
camera for capturing images of pedestrians was used in [75]. A review of techniques of pedestrian
detection techniques is compared, including some DL techniques, namely, the Convolutional Neural
Network (CNN) in [43]. However, with the recent adoption of Deep Learning (DL) techniques,
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state-of-the-art survey for pedestrian detection and tracking using these DL techniques should be
conducted [23].

Figure 3. Single perceptron.

Figure 4. The architecture of a multilayer perceptron.

With the introduction of DL techniques (mainly CNN-based), deep network architectures are
able to propose ROIs and extract the features for classification with a single step [23,64,76,77]. By this
way, the need for traditional region proposal feature extraction techniques becomes obsolete. As deep
networks can achieve a higher level of abstraction than traditional methods, higher accuracy and faster
run-time can be achieved by deep network-based detectors [44]. This is one of the benefits of using DL
for object detection. However, the training of these deep networks structure requires longer to build as
deep networks require large annotated datasets for training. DL-based object detection has yielded
encouraging results in the field of pedestrian detection and general object detection [50,64,78,79] (will
be discussed in later sections).

Convolutional Neural Network

Prior to current state-of-the-art neural networks being introduced, basic neural networks (such as
in Figure 4) would sometimes find it difficult to extract useful features from raw data from sensors.
To find significant features, hand-crafted methods were used [65,66] (as discussed in Section 3).
To overcome this and increase the performance of the neural network, Convolutional Neural Networks
(CNNs) were implemented [59,65–67] (see Figure 5). CNNs are based on the feed-forward neural
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network (where the output of a neuron would be the input of another set of neurons in the preceding
layer). CNNs use convolutional operations to extract features from the input data (e.g., images,
videos); with each layer using a kernel (filter) to extract input features. The activation value of the
neurons in the layers represents the filtered input data. Different regions of the input are processed
using convolutional operations to detect patterns in the data. Feature maps are then generated after
the convolutional operation is performed across the entire input data [65]. The feature map is a
representation of the activation of different parts in the image. It is used to set the parametrisation of
the weights and biases of the layers, allowing the learning of features. Max pooling is typically used
after the convolution to reduce the size of the input. This reduces the computation requirement as the
parameters of the input are reduced. This also aids in over-fitting.

Figure 5. CNN architecture.

The convolutional operator that is used is dependent on the type of input data. 2D kernels (i.e.,
filters) are used for 2D temporal sequences (e.g., videos) and 1D kernels are used for 1D temporal
sequences. When the CNN’s kernel is used in this way, they can be used as classifiers [65]. With several
layers, CNNs are able to represent data in a hierarchical fashion. As the layers become deeper, the input
data is represented in a more abstract manner, something hand-crafted feature extractors would find
very difficult or impossible to achieve. This has allowed CNNs to become more of a standard practice
in many fields, such as computer vision (e.g., object detection) [64,80,81] and speech recognition [82].

The network can automatically learn to extract useful information (i.e., features) from
images/frames. As the CNN is a DL technique, there will be numerous neurons and layers. Each layer
will learn different levels of abstraction. The first few layers learn lower level features such as edges,
curves or patterns. The deep layers will attempt to combine the features to identify objects in the
frame [44]. The classifying layer typically consists of a number neurons. The number of neurons is
dependent on the number of desired outputs (i.e., number of classes). For example, the classes could
be pedestrian, cyclist or car, which means three classes are required. The higher the output value
for one of these classifier neurons, the higher the chance that a pedestrian or cyclist is successfully
detected. It is important to understand that this gives the deep network the ability to learn features
without explicit programming. The learned information is stored within adjustable parameters of
the network known as weights and biases. To train the network to learn features, a dataset is used.
The dataset will feed numerous number of images that include the object that is to be detected. In this
way, features are extracted and learned by the network. However, as the network learns based on only
the dataset provided, it can be limited. Therefore, to design a more robust and accurate CNN, a very
large annotated dataset is required.

6. Deep Learning Architectures for Pedestrian and Cyclist Detection

DL approaches for pedestrian and cyclist detection can be one of the following two categories:
a two stages (region proposal approach) detector or a single stage (non-region proposal approach)
detector. The single stage detector aims to remove the need for traditional region proposal feature
extraction by processing these steps within a single network. The single stage detector can be simpler



Appl. Sci. 2019, 9, 2335 10 of 38

to train, with a higher computational efficiency [5]. In this approach, a proposal of regions is first
completed and then the deep network conducts the classification.

With the progress of DL and its development and success in pedestrian detection, detection
accuracy has improved. The DL techniques used for pedestrian detection can include region
proposal as part of the system. Some of the region proposal-based techniques include Region-CNN
(R-CNN) [79], Regional-Fast Convolutional Network (R-FCN) [83] and Faster R-CNN [59].
Non-region proposal-based techniques include Single Shot Detector (SSD) [84–86] and You Only
Look Once (YOLO) [87]. All of these pedestrian detection techniques are based on CNN, which has
become the standard for pedestrian detection. For the task of classification, detection techniques can
be placed into one of these families: DPM variants, decision forests and deep neural networks [47,48].
These techniques can also be applied for cyclist detection as they are visibly similar to pedestrians [25].

CNN is a popular technique for object classification in pedestrian detection systems [59,65].
An in-depth review of DL techniques is provided in later sections. A region proposal technique (such
as the hand-crafted techniques described in the previous section) can be used alongside CNNs for
object detection [59,65–67,79]. The region proposal technique is used to suggest where an object may
exist in the image. The proposed regions are fed into a classifier (e.g., CNN) to determine the class
of the object. Studies of the use of deep networks for pedestrian detection applications can be found
in [88–92].

There are also non-region proposal-based DL techniques [59,79,83]. Figure 6 depicts the difference
between the two types of architecture for object detection. Figure 6a is a detector based on traditional
region proposal and feature extraction techniques, where only the classifier is the deep network.
Figure 6b represents a deep network that is able to complete region proposal and feature extraction as
well as classification in a single step. This is known as a single step detector. In 2009 the Caltech dataset
was introduced for benchmarking the various techniques for pedestrian detection. The ConvNet
(a CNN-based approach) was introduced in 2013 with competitive results when compared to previous
pedestrian detection techniques mentioned [43].

(a)

Figure 6. Cont.
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(b)

Figure 6. Architectures for CNNs for feature extraction and classification based on traditional methods
for (a) Non-Region Proposal-based Detectors and DL methods for (b) Region Proposal-based Detectors.

6.1. Two-Stage Detectors

Region proposal-based CNNs (i.e., R-CNN, Fast R-CNN) has provided positive results for general
object detection. An example of such a system is the use of selective search [60] in [79] for generating
ROIs. The accuracy of this type of network is dependent on the region proposal technique that is
applied as these ROIs are used for classification. Approaches have been made to improve the speed
of two-stage detectors as in [51], where feature maps are generated when the deep network extracts
features from the ROIs [59]. These techniques have since been adopted and variations of the techniques
have been applied with encouraging results [5].

For example, in [93] the Average Precision (AP) achieved a higher score than the KITTI (Karlsruhe
Institute of Technology and Toyota Technological Institute at Chicago) evaluation [94]. The resulting AP
increased by 9% to 16.7%. With the development of Fast R-CNN [79] and Faster R-CNN, computational
speed has increased. Fast R-CNN is based on R-CNN, also designed by [79]. R-CNN uses selective
search (a region proposal technique) to generate 2000 region proposals rather than some large number
of region proposals. These proposals are fed into a CNN to feature extraction and then an SVM for
classification. There were a few issues with this approach. Namely, classifying 2000 region proposals
still takes a large amount of time. Also, this technique could not be implemented in real time as it took
47s per image. To overcome these issues, [95] (the same author who proposed R-CNN) introduced
Fast R-CNN. A similar approach to the R-CNN, however, this time the image is fed into a CNN to
generate a feature map. This feature map is used to identify region proposals (i.e., ROIs). This was
faster than the R-CNN technique as the convolution is completed once per image rather than for
2000 region proposals, which could have more than 2000 region proposals. Fast R-CNN was found to
be approximately 2 magnitudes faster than techniques based on R-CNN [95].

Faster R-CNN, proposed in [59], which lets the network learn region proposals, rather than
use selective search, as selective search can be a time consuming process. Based on the Fast
R-CNN technique, images are fed into a CNN to generate feature maps. However, instead of
using selective search for identifying region proposals, a sub-network is used to predict region
proposals. This sub-network, termed Region Proposal Network (RPN), learns region proposals using
DL algorithms. RPN provided a mean average precision (MAP) of 75.9%, which is approximately
10.2% better compared to selective search results on the VOC (visible Object Classes) 2012 dataset [59].
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However, these networks have also shown that computation of region proposal for object detection
has a bottleneck as they are dependent on traditional techniques of region proposal.

Region-based CNNs share convolutions across proposals to reduce computational costs as
in [79,96]. However, with the Fast R-CNN region proposal could be a bottleneck for the advancement
for real-time detectors. To overcome this issue, a Region Proposal Network (RPN), which shares
convolutional features with the detection network was proposed in [59]. This allows for region
proposals that are almost computationally cost-free. The RPN is a CNN that functions by predicting
object bounds (region proposals) and scores for those bounds simultaneously. This provides the
detector with high-quality region proposals. This design performed at near real-time frame rates,
improving the quality and object detection accuracy for general DL-based object detection.

For example, the Faster R-CNN, a two-stage detector, comprises of a region proposal network
(RPN) and a classification sub-network. The RPN uses DL techniques to learn features in images,
allowing it detect potential region proposals. These region proposals are then fed into a classifier to
determine the class of the object. The Faster R-CNN has had state-of-the-art performance results on
datasets, such as the PASCAL-VOC and Caltech datasets. Most notably, Fast R-CNN [25,40] and Faster
R-CNN [25,40,48,79] have been used for pedestrian detection [59,97]. For example, in [40], there was
an approximately 23% error reduction using a type of R-CNN approach when compared to some
state-of-the-art techniques for pedestrian detection. These types of results illustrate the effectiveness of
these techniques.

6.2. Single Stage Detectors

As promising as two-stage detector may be, for them to be able to process sizeable proposals,
the computation is typically heavy in the second stage (i.e., classifier stage). So, Single Stage Detectors
(SSDs) have been proposed that do not rely on region proposal in the hope that they would increase
the speed of the system. SSD, such as You Only Look Once (YOLO), are designed in such a way
that a single network predicts region proposals as well as the class of those region proposals [84].
This design saves a significant amount of computational time, allowing it to perform 3× faster than
the state-of-the-art Fast R-CNN while achieving higher accuracy in [59]. Approaches for using deep
networks for region proposal can be found in [80,98,99].

The two-stage techniques are implemented to increase the accuracy and speed of the network
(when compared to R-CNN approaches), whereas, the single stage techniques focus on the overall
speed of the system, allowing them to be better suited for real-time applications [19]. A comparison of
the DL architectures can be found in [100] and summarised in Table 1. edited table below

Table 1. Detector Types.

Type Advantages Trade-Offs

Two-stage Increased accuracy Slower speeds
Information rich Complex computation

Single stage Higher speeds Information loss
Large number of false positives

7. Sensors Fusion Techniques Using Deep Learning

Even with recent development and advancement made in computer vision for pedestrian and
cyclist detection, there are several challenges that need to be addressed [101–104]. One of the
biggest problems is accuracy; which is affected by cluttered backgrounds, environmental conditions,
occlusions [105], and poor visibility [104,106].

The environment around the autonomous vehicle is perceived through sensors. These sensors
collect the environmental information that is then used for detecting any pedestrians or cyclists.
Sensors can be classified as either active or passive. Active sensors typically require a device to be
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attached to the object that is to be detected and tracked. Although active sensors provide simple
processing, they have been typically applied to controlled environments [23]. For uncontrolled
environments, passive sensors are more suitable as they use natural-based signal sources (e.g., natural
light, thermal readings). Therefore there is no requirement for a device to be attached to the object,
making it less intrusive than active sensors. Passive sensors would be more effective for autonomous
vehicle applications as the environment in which they operate will be uncontrolled and attaching
tracking devices would not be feasible. Some examples of the types of sensors employed in vehicles for
environmental sensing are visible cameras, thermal cameras, LiDAR and RADAR. Implementation of
these sensors is also described in Table 2. The primary focus of this review will encompass visible and
thermal sensors as it has become apparent that further research surrounding these sensors are required.

Table 2. Sensors for detection.

Study Sensor Type 1 Overview Purpose 2 Performance Evaluation

[107]

VS &
IR in
pairs
(4 in
total)

Flow from
the cameras
is processed
independently
and then fused.
This method
provides a list
of detected
pedestrians.

PD

Even when not visible
by the visible cameras,
pedestrians were still
detected. Works even
when pedestrians are
occluded. This approach
was able to detect more
than 95% of pedestrians
at 45 m and more than
80% at 75 m.

The camera
system
consisted of 2
colour cameras
and 2 far infra
-red cameras. It
was evaluated
over 5000
images.

[108]

IR
and
laser
filter

Kalman
filters
in parallel
to handle
fusion of
sensors for
detection
and
localisation

PD
+T

The multi-sensor
approach uses an IR
camera for detection
and laser for tracking.
The technique aids in
providing a precise
location of the
pedestrian(s). Proved
to work well even
when pedestrians are
overlapping.

The sensor
system was
implemented
to obtain real-
time results.
These results
were discussed
in the study.

[109]

VS,
radar
and
LiDAR

Fusion at
detection
level,
reducing
the number
of false
detections

T

The IR sensor was used
as it is not affected
interference from
visible light. It is
also cheap and easy to
implement and provides
a long detection range.
The techniques were able
to increase the accuracy
and acceleration
of the tracking.

Datasets for
evaluation were
generated using
the CRF (Fiat
Research Center)
demonstrator for
various driving
scenarios that
can be
encountered in
real-time.
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Table 2. Cont.

Study Sensor Type 1 Overview Purpose 2 Performance Evaluation

[110]

VS,
IR,
LiDAR
and
RADAR

Improve
standard
ADAS with
processing
units.
Combining
the various
sensors as
part of the
ADAS can
provide an
improved
detection
system

PD
+T

Improved
environmental
detection. RADAR
and LiDAR provide
precise distance
measurements and is
not influenced by
weather or low
illumination
conditions. Unlike
the VS, camera, the
resolution of the
RADAR and LiDAR
sensors is affected
by elevation.
However, the VS
camera is affected
by illumination and
weather, while RADAR
and LiDAR are not.

The study
discussed the
benefits of
sensor fusion.
This study was
an informative
piece rather
than a
implementation
of a proposal.

[111] RADAR

FFT
processing
radar for
the
distinction
of moving
targets from
background

PD
+T

Information successfully
extracted for slow moving
humans from the background.
During the evaluation and
testing a moving human was
successfully detected at
1.76m with a velocity of
-4.39 km/h in a crowded
scene. The proposed method
was able to provide a clearer
than typical tracking systems
based on RADAR.

The detection
algorithm was
tested using
real-time data
and a 24 GHz
radar
transceiver.

[52] VS

Multi-view
detector
for
different
viewpoints
and SVM
classifier

CD
+T

Successful tracking, even
with changes in
orientation of cyclists.
HOG descriptor for
feature extraction and an
SVM for classification.
It was an effective
method, however, it has
not taken bicycle
kinematics into account.

Various datasets,
particularly the
INRIA dataset,
were used for
testing the
proposed method
as well as a
custom dataset
created from
collecting online
images.

[54] VS

More
effective
feature
extractor: HOG-LP

CD

The proposed HOG-LP
technique was intended
to overcome the shortcomings
of the original HOG
descriptor. The method was
designed for detecting cyclists
that were crossing the road.
It was able to achieve a
detection rate of 93.9%, with
a false positive rate of only 0.3%.
However, it was stated that it
would be not suitable for
real-time application as its speed
was not fast enough.

At the time of this
study, there was no
public dataset for
cyclist detection.
Therefore, data was
collected to created
a cyclist dataset.
1000 positive samples
were collected. 400
samples were used for
training and the
remaining 600 samples
along with an
additional 3000
negative samples were
used for evaluation.

1 VS-visible Data, IR-infrared Data. 2 PD-Pedestrian Detection, CD-Cyclist Detection, T-Tracking.

7.1. Visible-Based Sensors

For the detection of pedestrians and cyclists, visible sensors are often used as they are able to
capture high-resolution images [107,108]. The images provide useful information for detection and
classification, such as colour and texture. Cameras also typically provide more information than active
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sensors [25]. Visible cameras have been applied to multiple tasks for vehicles, such as lane detection,
distance detection from other vehicles and traffic sign detection.

In terms of 2D and 3D visible cameras, a 2D video would provide enough information to
perform object detection. It could potentially even allow for tracking using a bi-dimensional
approach [23,112]. However, 2D cameras lose a large amount of information when used with a
bi-dimensional approach [23], and therefore may not be suitable as that lost data may have held useful
scene information. The 3D cameras create a virtual environment in which the pedestrian coordinates
can be represented in 3D space. Unlike a 2D system, a 3D system uses a stereo camera (i.e., multiple
lenses), allowing the camera to capture 3D views based on multiple points of views.

Even though vision-based detection has been extensively researched in recent years, there are
still issues and challenges while the detection system is in operations [25,106]. These are caused
by the appearance of the pedestrians/cyclists due to occlusion, pose, crowded scenes and clothing.
Cyclist detection, however, can be more difficult than pedestrian detection as cyclists can have a greater
number of possible orientations. To overcome this challenge, combining visible cameras with other
sensors could be beneficial.

7.2. Thermal-Based Sensors

Even though visible sensors have difficulty functioning when there is a low level of light (i.e.,
night-time, bad weather), they are the most commonly used sensors for pedestrian and cyclist detection
applications [106]. To overcome the shortcomings of visible sensors, thermal cameras could be used
in conjunction with visible cameras as, unlike visible cameras, thermal cameras are not significantly
affected by ambient lighting [113]. A type of 3D system that could use both visible and thermal
information to provide more accurate detection and tracking, known as an RGB-D was proposed
in [114,115]. RGB data provides textural and appearance information of the object being detected, while
the depth data (e.g., thermal data) can provide additional information of the shape of the object [106].
This approach was implemented in [106] by fusing an RGB camera with a depth camera, which detects
heat signatures using a thermal sensor [116,117].

There are two types of thermal sensors that can be used for pedestrian and cyclist detection
applications, the Near-IR (infrared) camera and the Far-IR (also known as thermal) camera. Near-IR has
wavelength of 0.75–1.3 µm and Far-IR cameras have a wavelength of 7.5–13 µm. Pedestrians and
cyclists would appear more visible to the thermal cameras than the near-IR, as the pedestrian/cyclist
body heat radiates in the long-wavelength (approximately 9.3 µm), making the thermal camera
ideal [108,110,118]. The value of the radiation emitted from a human is not particularly affected by
other illuminations in the environment (e.g., street-lamps, artificial lighting). This can improve the
accuracy of the detector, as demonstrated in [106,119–123]. In [123], a commercial visible camera with
a resolution 640x480 was used with a thermal camera. Testing was completed during various times of
the day and weather conditions (i.e., morning, night, afternoon, rain etc.). In one of the tests, using
both visible and thermal cameras, the accuracy of the system was 98.13%. When comparing this result
using the visible and thermal cameras separately, the accuracy was 72.11% and 95.91% respectively.

Comparison of the benefits and drawbacks of visible and thermal cameras, RADAR and LiDAR
can be found in Table 3 and Figure 7. Combining the sensor information can offset some of the
inefficiencies of the individual sensors, such as a higher detection accuracy throughout the day, even
in crowded scenarios.
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Figure 7. Sensor Comparison.

Table 3. Sensor Comparison Matrix.

Environmental Visual Thermal RADAR LiDAR
conditions & costs

Resolution

Illumination

Weather

Elevation

Temperature

Cost

—good —fair —poor.

7.3. Sensor Fusion

Visible sensors are effective, however, they are less reliable in low-light situations [86]. The study
in [86,97], suggests combining visible and thermal cameras together to increase the detection accuracy.
It should be noted that thermal sensors are not very effective under high-temperature conditions and
clothing can affect the pedestrian’s or cyclist’s thermal footprint [124].

There has been a large amount of research conducted surrounding the most reliable approach in
using both colour information of the visible cameras and the thermal information of the thermal
cameras [86,97,125–128]. These studies discuss the drawbacks of visible sensors due to their
dependence on illumination and the benefits of adding thermal data would provide for increased
accuracy. The KAIST dataset is largely used for multispectral pedestrian detection evaluation due
to its large amount of high-quality images in both the visible and IR spectrum. In [86], fusion
techniques using a CNN as the detector were discussed. Figure 8 compares evaluation based on
the KAIST dataset and typical vision-based datasets (Caltech Diamler, etc.). It demonstrates that,
although recent vision-based approaches are efficient during the day, their accuracy decreases at night.
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Therefore, using multispectral information can aid in reducing this inaccuracy, especially at night-time.
For further information of the studies used to generate the graph see [88,89,129–131] for VS data for
daytime, [106,125,128,132] for VS data for night-time and [86,97,127,133–136] for multispectral data.
Figure 8 demonstrates, that although there has been advancements in pedestrian/cyclist detection,
improvements are still required to reduce the miss rate and increase the accuracy of detection systems.
Multispectral information can be used to achieve higher accuracy, however, further investigation
is required.

Vision-based pedestrian detection has been widely researched, which has provided over
60 methods evaluated on the Caltech dataset alone [25]. Despite sensor fusion techniques having been
recently applied for pedestrian detection, there is not much research conducted for cyclist detection
using the same multispectral approach. This is an important aspect to be considered as cyclists are
among the VRUs that are affected by road traffic accidents.

Figure 8. Miss rate of recent detection approaches by year using visual and multispectral data.
Visual data for daytime and night-time and multispectral data is being represented by miss rate
by year of publication. The lower this miss rate, the more effective the approach. The multispectral
data in this case is focused on improving night-time detection efficiency. Multispectral data in these
studies focused on using visual data with thermal data.

7.4. DL for Sensor Fusion

With the development of R-CNN, Fast R-CNN and Faster-CNN, CNNs have become a standard
technique for detection and classification applications. As CNNs have provided positive results in the
field of computer vision, studies have been undertaken for using CNNs with multispectral data for
pedestrian detection.

The fusion of the sensor information can be either at pixel-level, early fusion (feature-level), late
fusion (decision-level), or halfway fusion [86] (see Figure 9). To fuse the data at pixel-level, vision-based
images are converted into the HIS (Hue-Intensity-Saturation) colour space. Thermal images are
intensity images; therefore, the fusion of the thermal images and the visible images takes place in the
intensity (I) component. The images are then reconstructed with the new I value. Some pixel-level
fusion methods includes wavelet-based transform [137,138], curvelet transform [139] and Laplacian
Pyramid fusion [140]. Pixel-level fusion is typically not used with DL-based approach for sensor
fusion as the fusion takes place outside of the deep network. Therefore, early fusion, late fusion
and halfway fusion are the typical architectures for DL-based sensor fusion. For feature-level (early
fusion) visible and thermal images are combined together as a 4-channel input for the deep network
(see Figure 9a). The network would then learn the relationships between the image sources [125].
In decision-level (late fusion), feature extraction takes place for both image sources into sub-networks
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(Figure 9b). These features are then fused before being fed into network layers that classify the
object. Halfway fusion involves feeding the colour and thermal data separately into the same network.
The data is then fused inside the network (Figure 9c).

(a)

(b)

(c)

Figure 9. Sensor Fusion Techniques: (a) Early Fusion, (b) Late Fusion and (c) Halfway Fusion.

In [141], decision-level fusion techniques were used to combine the results of visible and thermal
images for detection and tracking purposes. Hwang et al. [106] proposed a detector for pedestrians
using a aggregated channel features (ACF) technique based on fused features of visible and thermal
images. The benefits of using multispectral detection techniques are demonstrated by [97]. It was
found that combining visible and thermal data produced the best results, however, during low-light
conditions (e.g., night), the thermal sensor performed better on its own. Combination of the visible
and thermal data actually performed worse at night with an increase of the Average Miss Rate (AMR)
by 3%. Overall, data fusion decreases AMR by 5% compared to visible and thermal data used on their
own during the daytime. This was unexpected as it was thought that thermal data would not add to
the feature detection of visible images. Evaluation of the KAIST dataset produced competitive results
(64.17% AMR) compared to state-of-the-art Caltech evaluation protocol (65.75% AMR) for pedestrian
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detection. It should be noted that using more than a single sensor causes an overall increase in system
complexity due to alignment and synchronisation of the cameras [97].

Fusion architectures were compared in [125], with halfway fusion proving to be the most effective,
with a 3.5% lower miss rate (MR) than the other two architectures. Also, using a single form of
sensor information (i.e., visible or thermal data) was shown to be worse than the Halfway fusion
model with an increased MR by 11%. The evaluation was completed on the KAIST dataset. In [128],
investigation for the optimal fusion technique for CNN-based pedestrian detection was undertaken.
Fusion architectures were tested using a Faster R-CNN. Two types of fusion techniques were examined;
feature-level and decision-level. Pixel-level techniques were not considered in this study. In another
study [86], the performance of pixel-level fusion with early and late fusion techniques were considered.
In [86], fusion architectures were implemented with an SSD. The results indicate that the Pixel-level
Fusion does not perform well, but for early and late fusion, multispectral information can achieve
better performance for pedestrian detection. Based on the KAIST dataset, using the wavelet transform
for pixel-level fusion provided a lower Miss Rate (MR) for the early and late fusion of 9% and
5% respectively.

In [97], assessment of the gain of accuracy fused visible and thermal images was conducted.
To achieve this, the results from visible images, thermal images and then a combination of the two was
compared. An early fusion technique approach was used for the study. Evaluation and the results
were compared using the KAIST [142] multispectral dataset. The study found that a combination of
features of visible and thermal images produces a better detector than with visible images or thermal
images alone in the daytime. This result was not what was expected as it was believed that thermal
images would not improve the features in the visible images. There is also a slight improvement in the
night-time for the combination of the images.

8. Datasets

Due to its real-world application and significance, pedestrian and cyclist detection has been a
widely studied problem. The key challenges that associated with this field have been variations in
pose, scaling and occlusion. These effects can be seen in major datasets, such as the Caltech dataset,
where several pedestrians are affected by occlusion [25]. Pedestrians and cyclists are traditionally
considered separately, which can lead to having the input image scanned multiple times to detect
the two objects independently. This not only increases computational costs, but it can further cause
detection errors where the pedestrian and cyclists are misclassified due to the similarity in appearance.

A dataset is used to train a deep network for pedestrian and cyclist detection. They can also
be used for benchmarking and comparing the accuracy and performance of pedestrian detection
techniques, as in Table 4. For deep network models, large annotated datasets are required to produce
an accurate system [50]. The pedestrians, or any other object in the dataset, needs to have bounding
boxes that are annotated. For general object detection, ImageNet has proven to be a sufficient dataset
to train a CNN [44,143,144].

Table 4. Detection Methods Benchmark 3.

Method Miss Rate Dataset

Shapelet [72] 94% Diamler [102]
FrtMine (Feature Mine) [145] 85% Caltech Japan [11]

Pls (Partial Least Squares) [146] 72% Caltech Japan
VJ (Viola–Jones) [147] 72% INRIA [32]

FPDW (Fastest Pedestrian Detector in the West) [148] 63% TUD-Brussels [149]
ChnFtrs (Channel Features) [150] 60% TUD-Brussels

MultiFtr+CSS (Multiple Feature+Color Self Symmetry Information) [151] 59% TUD-Brussels
LatSVM-V1 (Latent SVM) [46] 58% Diamler

MultiFtr [152] 57% Diamler
MultiFtr+Motion [151] 55% Caltech [11]

HikSVM (Histogram Intersection Kernel SVM) [153] 55% Diamler
LatSvm-V2 [35] 51% ETH [154]



Appl. Sci. 2019, 9, 2335 20 of 38

Table 4. Cont.

Method Miss Rate Dataset

HogLbp (HOG Local Binary Pattern) [34] 49% Diamler
HOG [32] 45% INRIA

JointDeep [155] 45% ETH
HogLbp 39% INRIA

MultiFtr+CSS 39% Diamler
LatSVM-V2 [49] 38% Diamler

MultiFtr 36% INRIA
ConvNet (Convolutional Networks) [156] 33% Diamler

MultiFtr+Motion 29% Diamler
MLS (Macrofeature Layout Selection) [157] 28% Diamler

WordChannels [158] 16% INRIA
NAMC (Normalized Autobinomial Markov Channels) [159] 15% INRIA

RandForest (Random Forest) [160] 15% INRIA
SCCPriors (Symetric Cross-Channel Priors) [161] 15% INRIA

Franken [162] 14% INRIA
InformedHarr [163] 14% INRIA

LDCF (Locally Decorralated Channel Features) [61] 14% INRIA
Roerei [164] 14% INRIA

SketchTokens [165] 13% INRIA
SpatialPooling [166] 11% INRIA

RPN+BF (Region Proposal Network+Boosted Forest) [167] 10% Caltech
MS-CNN (Multi-Scale CNN) [90] 10% Caltech

SA-FastRCNN (Scale Aware-FastRCNN) [131] 10% Caltech
UDN+ (Unified Deep Network) [168] 10% Caltech

Adaptive Faster R-CNN [169] 9% Caltech
F-DNN+SS (Fused Deep Neural Network+Selective Search) [170] 8% Caltech

F-DNN2+SS [170] 8% Caltech
TLL-TFA (Topological Line Localization-Temporal Feature Aggregation) [171] 7% Caltech

3 Effectiveness of different methods evaluated on datasets for pedestrian detection. These results are from the
Caltech Pedestrian Detection Benchmark and are arranged in a log-average miss rate (MR), where the lower
the value, the more effective the method. The evaluation for the benchmark can be found in [11,172].

Datasets are required for training the network to learn features for classification of pedestrians
and cyclists. There exists several datasets for pedestrians, however, cyclists datasets are limited.

8.1. Pedestrian Datasets

Although vision-based approaches cannot collect the same level of information at night-day or
low-light conditions, most of the detectors are based on colour images. This is due in part to the
fact that many of datasets that are used for benchmarking are of colour images [106]. Some of the
most commonly used datasets for evaluating pedestrian detection techniques are Caltech-USA [173],
KITTI [104], ETH [174] , TUD-Brussels [175]. These datasets are vision-based datasets [43]. Of these
datasets, Caltech and KITTI are the major benchmarks for pedestrian detection as they are large
datasets with pedestrians in scenes that pose challenges for detection due to crowded scenes, occlusion,
etc. [25].

The KAIST [142], a multispectral dataset, combines data collected using visible and thermal
cameras. The KAIST dataset aims to improve the training of deep networks for detection, as most
of the large-scale (i.e., Caltech, KITTI, etc.) use only RGB-based image. The issue with using only
colour images is that it is assumed that the autonomous vehicle would be functioning in a well-lit
condition, which is not always the case in practice. Therefore, thermal images can be used when
the conditions do not allow visible images to function as designed. As KITTI has been so widely
used, [142] was influenced to provide a similar quality dataset. They also used KITTI as a ground truth
and valuation criteria.
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8.2. Cyclist Datasets

There is significantly more dataset for pedestrians than there is for cyclists. A public dataset
for cyclists was introduced by [48] known as the Tsinghua-Daimler Cyclist Benchmark. Prior to this,
there was no challenging dataset for cyclists. Although there was an object detection benchmark as
part of the KITTI dataset, however, it contained less than 2000 cyclist instances. This could be seen as
insufficient for training a detector and evaluation (i.e., testing). Cyclists have been often disregarded
due to their similarities with pedestrians. However, cyclists can be just as vulnerable as pedestrians,
and therefore Tsinghua-Daimler Cyclist dataset was introduced. Based on the Tsinghua-Daimler
Cyclist dataset, a new dataset was presented in [25,48], which contains both pedestrians and cyclists.
They added a pedestrian dataset into the cyclist dataset as no dataset for both pedestrians and cyclists
exist at this time. A comparison of the datasets mentioned above can be found in Table 5. It should be
noted that some other pedestrian datasets, such as KAIST, do contain cyclists but not enough to train
and evaluate a network.

Table 5. Datasets for Pedestrians and Cyclists.

Object Type Visible Multispectral Intent Estimation

Pedestrian Caltech [173]
KITTI [176]

CityScapes [177] KAIST [106] Daimler [178]
ETH [69]

TUD-Brussels [175]
PASCAL-VOC [179]

Cyclist Tsinghua-Daimler [48] FLIR [180] ———
KITTI [176]

9. Deep Learning for Intention Estimation

Intent estimation is the latter part of the detection and intent estimation system (Figure 1).
Avoiding incidents involving autonomous vehicles and VRUs is a critical aspect of the fully automated
vehicles [14,181,182]. Even with success in pedestrian detection using deep networks [5], it is not
enough to simply identify the pedestrian or cyclist. The autonomous vehicle must also predict if there
is a chance of any harm that may befall the pedestrian/cyclist due to the autonomous vehicle action
or inaction [181]. Predicting the motion and future behaviour of VRUs can aid in improving safety
for autonomous vehicles and other road users, and, therefore, can be considered as a critical part of
self-driving vehicles [183]. Once detection of the pedestrian/cyclist is completed, it must be considered
whether the pedestrian may be in danger given their location with respect to the current distance,
motion and path of the autonomous vehicle. Even when detection and localisation of the pedestrian
are achieved, pose estimation and tracking must be considered as it can allow the vehicle to take
actions or manoeuvres to prevent accidents if the pedestrian’s or cyclist’s intentions are considered to
cross the path of the vehicle [184]. However, this can be difficult, especially for long-term predictions.
A major cause for this is the agile nature of a human, who can very quickly change speed and direction,
and may not allow the vehicle to have sufficient time to react. This limits the reliability of the prediction
system as seen in [185]. Reduced accuracy in prediction could mean that the vehicle could misinterpret
or not react in time to a pedestrian’s or cyclist’s sudden movements. In [183], minimisation of the
false detections is described for improved accuracy for long-term predictions. DL has been used for
intention estimation [186,187] with promising results as will be discussed in this section. Some of the
literature for intent estimation can be found in [178,183,188–198] which is summarised in Table 6.
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Table 6. Intent estimation approaches.

Study Approach 4 Overview Technique 5 Performance Evaluation 6

& Sensor

[178]
DMM,
VS-
based

Comparative
study of
recursive
Bayesian
filters for
pedestrian
path prediction.
The purpose of
the paper was to
explore the
accuracy and
benefits of
single/multiple
models with EKF.

EKF
and
IMM
using
single/
multiple
models.

The models were
applied for four
pedestrian motions;
crossing, stopping,
bending and starting.
Position measurements
were obtained using a
vision-based pedestrian
detector The results
showed that the single
and multiple models had
very similar performance
in terms of position
estimation. This could be
due to a high sampling
rate and low measurement
error. However, for path
prediction, the IMM
outperformed the single
model-based approach
and could improve
position estimation
of up to 30 cm.

Image sequences
were recorded
using a stereo
camera system.
The dataset
contained 12,485
images
containing
pedestrians. A
state-of-the-art
HOG-SVM
detector was
used for
detecting the
pedestrians in
the images.

[199]
DMM,
VS-
based

Prediction of
pedestrian
locations and
pose to classify
intentions up to
1 s ahead.
Location and pose
prediction of
pedestrians for
intention
classification.

B-GPDM
and naïve
-Bayes
classifiers

Intention prediction up
to 1s ahead of time using
this technique. The
approach added in reducing
the number of
misclassifications as well
as avoiding continuous
action changes of the
pedestrian, such as walking
and stopping. The average
mean error was 29.47 cm for
stopping, starting and
walking trajectories.

Evaluated
based on the
CMU dataset,
which contains
63,508 poses
based on 129
sequences. The
CMU dataset is
vision-based.

[200]
PBM,
VS-
based

The purpose of the
study was to estimate
the probability
distribution of the
future positions of a
pedestrian based on
plan planning
approaches.

Particle
filter

The pedestrian’s future
destination is estimated
so that the position of
the pedestrian becomes
a path planning problem,
taking environmental
conditions into account.
Unlike DMMs, other
models, such as dynamic
states or behaviours
models, are not required.
Instead these models are
solved implicitly. Dynamic
states can include passing
cars and cyclists. This
method has provided
higher levels of
performance when
compared to DMMs.

The method was
tested using the
dataset presented
in [201]. This
dataset is vision-
based. There is
2113 frames of
pedestrians
stopping and
2436 walking.
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Table 6. Cont.

Study Approach 4 Overview Technique 5 Performance Evaluation 6

& Sensor

[202]
DL,
VS-
based

Long-term intent
prediction of VRUs
based on motion
trajectories.
Treated as time
series problem.

RNN &
LSTM
architecture

When evaluated and
compared to state-of
-the-art baselines, the
approach provided
improved results in terms
of overall mean lateral
position error. In one of
the evaluations, there was
an improved result of up to
85% for the standing
sequence. However the
evaluation for the stopping
sequence produced an
increase of mean position
error rate.

The dataset used
for testing the
proposal was the
Daimler pedestrian
path prediction
benchmark dataset
as presented in
[178]. It contained

68 sequences and
based on a stereo
camera system.

[181]
DL,
VS-
based

Vision-based pedestrian
intention estimation.
CNN is used to detect
and provide skeleton
information.

CNN
and
SVM

The CNN is able to extract
high-level features. These
features are then processed
using an SVM. The high-level
features provide more
information about pedestrian
actions than low-level
features, such as HOG and
Histogram of Optical Flow
(HOF). Unlike typical
detectors, a monocular
camera was implemented
for this method. This method
was able to predict the
intention of a pedestrian
750 ms before a pedestrian
will cross while walking
and 250 ms after a pedestrian
moves from the bent forward
position. In addition, 187 ms
when entering the road from
a stand still position.
Intention estimation is still
difficult, especially at a
distance or crowded situations.

A stereo camera
system was used
for testing. The
author mentions
that others have
used LiDAR as
well. The Daimler
pedestrian path
prediction
benchmark
dataset was
used.

4 DMM-Dynamical Motion Modelling, PBM-Planning-Based Models, DL-Deep Learning, VS-vision.
5 EKF-Extended Kalman Filter, IMM-KF-Interacting Multiple Model-Kalman Filter,B-GPDM-Balanced
Gaussian Process Dynamical Models, RNN-Recurrent Neural Network, LSTM-Long Short-term Memory.
6 CMU-Carnegie Mellon University.

As illustrated in Table 6 and throughout this section, most research focuses on short-term path
prediction based on visible cameras [185,189,203]. Although there has been studies undertaken for
using thermal sensors to tracking pedestrians/cyclists (see [204,205]), there has not been as much focus
on using thermal data for pedestrian/cyclist intent estimation. Therefore it may be useful to further
investigate the improvements that may be brought from sensor fusion for VRU intent estimation in the
same way as sensor fusion for VRU detection was discussed in Section 7.

As stated in [183,206], it was found that hand-crafted feature descriptors would not be able
to provide the level of accuracy required to pedestrian detection. As DL approaches are able to
extract features directly from the input data, making them effective in pedestrian/cyclist detection
applications, this motivated the implementation of a deep network architecture for the purpose of
pedestrian intention estimation in [183]. The network was coupled with a long-short-term-memory
(LSTM) network to improve the accuracy of the system. LSTMs are used for learning in time series [207].
More on this work can be found in [183].
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Another approach uses Cartesian coordinates with a Bayesian Network [185] and Gaussian
process regression [208]. The Bayesian Network used multivariate Gaussian distributions for the
relative position and velocity with respect to the vehicle for a predicted time. There has also been
research undertaken using body features that can aid in predicting a pedestrian’s future behaviour
such as walking, standing, bending, jogging and running [188,209,210]. The head orientation of the
pedestrian was considered in [183,203]. This feature allows for determining the awareness of the
pedestrian situation and the approaching vehicle.

Before the advent of deep learning techniques, typically pedestrian trajectories using
Kalman Filters or naïve movement models using human gait estimation and analysis of simple
heuristics [211,212]. However, due to the improbability of proper adaptation and handling to
changes in pedestrian movement, these techniques provided poor results in terms of predicting
future pedestrian movements [1,178].

Other than DL approaches, there have been two typical approaches for predicting the
future actions of a pedestrian [178]. One approach is based on dynamical motion modelling
(DMM) [178,189,203]. This approach is able to predict the motion trajectories for different scenarios.
However, the model assumes that all trajectories inhibit similar dynamics. This leads the model to have
a lower accuracy when predicting long-term motion modelling for intent estimation. Planning-based
models (PBMs) [213,214], has shown better results for long-term predictions. However, the model
requires the final destination information of the VRU, which is a difficult task for a moving vehicle to
infer. Although the DMM and PBM approaches have proven to be quite powerful, they are dependent
on hand-crafted features (e.g., HOG, Haar-like, DPM, etc.). As discussed earlier, hand-crafted features
for detection are limited. The same can be said for hand-crafted features for intent estimation. When the
autonomous vehicle processes an unseen or complex situation, it may not be able to react properly as the
hand-crafted features create a generalisation of certain situations. That is because feature selections and
parameters when designed by an expert, rather than using real-time information collected from sensors.
This causes these techniques to be rather restricted and under-perform in previously unseen situations.
To solve this problem, [202] proposed a data-driven (i.e., DL) approach, where the initial motion
trajectories [178] are used for long-term intent estimation, enabling for predicting future positions of a
VRU up to 4 seconds ahead. A Recurrent Neural Network (RNN)+Long Short-Term Memory (LSTM)
approach was adopted. The RNN+LSTM method is typically used for time series problem.

9.1. DMM

Dynamical motion modelling (DMM) is the general approach for the future location of pedestrians
based on motion trajectory [202,215]. In [178], an Extended Kalman filter, a type of Bayesian filter,
was used for short intent estimation (<2 s). Further details of this approach and some of the other
approaches discussed in this section can be found in Table 6, a Dynamic Bayesian Network (DBN)
was used for intention estimation of a pedestrian that is walking on the curb [203]. As part of the
DBN, a Switching Linear Dynamical System (SLDS) was also implemented to predict the changes
in the pedestrian’s motion. In [199], the pedestrian intention was predicted using pose estimation
based on dynamical models and behaviour classification using Balanced Gaussian Process Dynamical
Models (B-GPDM) and naïve Bayes classifiers. Another approach uses a dynamic model with a HOG
feature descriptor with Linear SVM detector [32]. It uses an Interacting Multiple Model based on
Kalman Filters (IMM-KF) for future predictions of the pedestrian. However, simpler methods such as
constant speed velocity models can provide comparable results to IMM-KF, which is a more complex
technique [181]. The results were improved in [189] by using a Gaussian process dynamic model with
probabilistic hierarchical trajectories. This approach uses the silhouette of the pedestrian and attempts
to predict its future progress. The approach predicted the pedestrian’s action with respect to the path
of the vehicle. These methods require that common trajectories of pedestrians are learned and then
these are classified. This means that the technique may not be reliable in previously unseen scenarios.
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Therefore, as pedestrians and other VRUs are able to quickly change direction and motion, DMMs
decrease in reliability for increased prediction lengths [200].

9.2. PBM

Unlike DMMs, planning-based models (PBMs) for pedestrian’s future movements do not model
the intentions of the targets explicitly [178]. Instead, they assume that the target (i.e., pedestrian)
has the intention to reach a particular destination. For example, in [200], a model was proposed
for long-term intention prediction of a pedestrian. In this model, the pedestrian’s goal is to reach a
location is predicted based on the estimation of the probability distribution of the future positions
of the pedestrian. The model is based on a probabilistic path planning technique. A grid occupancy
map is used to estimate the destination of the pedestrian based on the position and orientation of
the pedestrian. The model was trained using supervised learning with pedestrian trajectories with
matching grid map. Although this technique used a DL approach to learn the future movements of the
pedestrian, it does not use a data-driven approach, which again can cause issues when experiencing
unforeseen scenarios.

9.3. DL Approach

In [181], a data-driven approach using a deep network is proposed which uses the skeleton
features of the pedestrian to estimate future intention. The evaluation provided results similar to [189]
in terms of classification of whether the pedestrian will cross or stop when approaching the road, but the
data-driven approach in [181] is a simpler method and requires less dense information, i.e., requiring
monocular information rather than stereo and dense optical flow as in [178,189]. In other approaches,
stereo cameras [191] and LiDAR [183] are used to predict pedestrian intentions based on their silhouette.
Head and body orientation estimation have also been used for intention estimation for pedestrians
in [190,192,193,216]. Fang et al [181] argue that it is unclear how these estimations provide accurate
intention estimation or if they provide significant additional time for reactive manoeuvres. For example,
before the collision, pedestrians typically look in the direction of the oncoming vehicle [196]. In [181] a
pose estimation technique is employed and the orientation of the body and head of the pedestrian
is considered as in [193]. It is suggested in [192], that head orientation is not particularly useful for
pedestrians that are intending to stop or cross the road. Delays may be caused when predicting
pedestrian intentions due to insufficient information on the posture and body movements [194], which
also makes the data-driven approach more effective as it will use the information provided from the
sensors in real time.

An approach using a vision-based technique to evaluate the pose of a pedestrian over several
frames to establish the risk to the pedestrian with respect to the vehicle in [181]. The approach uses a
CNN-based technique to detect and estimate the pose of pedestrian based on the work in [217]. It is
also mentioned in [181] that high-level features, such as skeleton joints, can provide more information
than low-levels, such as HOG and Histogram of Optical Flow (HOF) [218]. The overall design used
a monocular camera for a pedestrian detector and 2D pedestrian pose estimation for determining
the intentions of the pedestrian [219–221], whereas [220,221] used machine learning techniques that
can also be applied using DL techniques. This technique is simpler to implement than some other
pedestrian intention estimation techniques that require stereo cameras and optical flow to function.
For future work, [181] suggests the application of the technique in situations where there are multiple
pedestrians and with occlusion for evaluation. However, to achieve this application, a dataset would
need to be produced to sufficiently evaluate the technique. In [222], a thermal sensor was used for more
accurate results in low-light scenarios. The proposed method combined body features (e.g., standing,
walking) with head orientation features. This method uses the distance between a pedestrian and curb
(DPC), the lateral moving speed (LMS) and head orientation (HO) of the pedestrian. The approach
provided the lowest error rate (22.03%) than any other combination of the features. This approach
outperformed other prediction methods, such as a Markovian model [223] and a DBN approach [203].
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RNNs have been used for sequence-based prediction in various applications, such as human gait
analysis [224], handwriting imitation [225] and human interactions [226]. The RNN uses a feedback
loop to capture temporal information by going into an internal state known as the hidden unit.
RNNs allow for data to be fed back to the previous layers [183]. However, this type of RNN can
become inaccurate in long-term predictions. Therefore, the RNN+LSTM architecture [207], which
provides for a memory unit for the RNN in the LSTM units. The stored information values can change
depending on the previous outputs and new inputs. These LSTM units consist of a cell state and four
gate layers, with each gate consisting of an activation function that takes into account the current
state and the previous state as an input. There can be multiple memory layers, depending on the
application. The other three gates are the input, output and forget. The input gate selects the input that
is sent to the memory, the output is based on the memory state and input and the forget gate selects
the information that is to be discarded by the memory. A detailed discussion of the architecture of an
RNN+LSTM architecture can be found in [202]. The proposed method in [202] was data-driven for
long-term pedestrian intention prediction using a stacked LSTM architecture and evaluated on the
Daimler pedestrian motion trajectory dataset with promising results for intention estimation.

10. Conclusions

Visible data is the typical type of data that is used for VRU detection and intent estimation. It is
argued that visible data is not very robust on its own as its reliability diminishes in low-light conditions.
It was suggested by many authors that the fusion of thermal data with visible data could improve the
reliability and accuracy of detection, making a more robust overall system. Fusion techniques have
provided positive results, but efforts will continue to find the ideal fusion technique. What is also
lacking is the dataset for cyclists, both in visible and thermal datasets. On the other hand, detection
techniques for pedestrians can be adapted for cyclists. Datasets for pedestrians and cyclists in a
multispectral dataset can aid in improving the accuracy and speed of object detection techniques.

Detection is the preliminary phase for the purposes of intent estimation, enabling it to identify
the pedestrian/cyclist in the surrounding environment. As detection has been a challenging problem
in computer vision, there is a significant amount of literature on the topic. However, this remains
a problem that is yet unsolved. DL aims to aid in overcoming this challenge. DL, largely CNN,
has provided a more effective method of pedestrian and cyclist detection when compared to the
traditional methods that were depended on hand-crafted descriptors for region proposal, feature
extraction and classification. The ability to outperform the traditional approaches is partly due to
the higher level of abstraction that is achieved by the deep network, which can be imitated through
hand-crafted techniques. The techniques that we have mentioned need further attention so that they
can operate in real time.

However, intent estimation techniques have not received the same attention. This is due to
detection being the initial step to identifying the desired object. Once an object is successfully classified
as the desired object, it can be tracked so that pose/orientation estimations can be examined. Using this
information, an accurate intent estimation can be achieved. DL techniques are also being employed for
intention estimation approaches as traditional models of path prediction and motion modelling are not
sufficient. Traditional techniques are not as robust as the data-driven techniques based on RNN+LSTM
methods. Data-driven can react to unseen situations, these reactions enable it to more effective and
accurate in real time.
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