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Abstract

The demand for navigating pedestrian by using a hand-held mobile device increased remarkably over the past few

years, especially in GPS-denied scenario. We propose a new pedestrian dead reckoning (PDR)-based navigation

algorithm by using magnetic, angular rate, and gravity (MARG) sensors which are equipped in existing commercial

smartphone. Our proposed navigation algorithm consists of step detection, stride length estimation, and heading

estimation. To eliminate the gauge step errors of the random bouncing motions, we designed a reliable algorithm

for step detection. We developed a BP neural network-based stride length estimation algorithm to apply to different

users. In response to the challenge of magnetic disturbance, a quaternion-based extended Kalman filter (EKF) is

introduced to determine the user's heading direction for each step. The performance of our proposed pedestrian

navigation algorithm is verified by using a smartphone in providing accurate, reliable, and continuous location

tracking services.
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1 Introduction
A large number of navigation systems, such as GPS, can

only be applied to the outdoor and open sky scenarios

since the microwaves are easily blocked by the buildings

and ground. To solve this problem, the multi-MEMS

inertial sensor-based navigation systems are more favored

in recent 5 years [1,2]. Inertial sensors are independent of

the external information, involve no radiation energy to

the environment, and require no external reference frame.

On this basis, it can be recognized as an autonomous

navigation system providing location, heading, and attitude

angle [3,4]. The navigation information obtained from

the inertial system is featured with continuity, high

data-updating rate, good short-term accuracy, and stability.

The magnetic, angular rate, and gravity (MARG) sensors

involved in MEMS technology have been widely used in

smartphones for pedestrian inertial navigation and are

expected to become one of the key components of a

variety of localization and tracking systems [5,6].

As far as we know, the pedestrian inertial navigation

systems are normally based on pedestrian dead reckoning

(PDR) algorithm which is independent of the integration

of acceleration values. Based on the physiological charac-

teristics of pedestrian movement, we can use the cyclical

characteristics and statistics of acceleration waveform and

features which are associated with the walking speed to

estimate the stride length. Moreover, the heading is

obtained from the integration of gyroscope or from the

combination of magnetometer and accelerometer. Due to

the randomness of pedestrian hand-held way, the attitude

angle of a smartphone cannot be constant. Hence, the

accuracy of heading can be guaranteed only after the

real-time attitude angle has been calculated. Therefore,

the way to obtain an accurate attitude angle solution in

different environmental conditions without the external

absolute reference signals forms one of the significant

challenges to be concerned [7,8].

There are two categories of algorithms for attitude

angle updating by using the angular rate of gyroscope:

the Euler angle algorithm and the quaternion algorithm.

The Euler angle algorithm relies on the Euler angle

differential equations to calculate the yaw, pitch, and

roll angles. Since the pitch angle in Euler angles can

result to degenerations, the yaw and roll angles cannot be

determined uniquely when the pitch angle is close to 90°.

The quaternion algorithm avoids the singularity problem
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involved in Euler angles by solving four linear differential

equations. On this basis, the quaternion algorithm is

featured with simple computation cost and is easy to be

operated for a wide application. In quaternion algorithm,

since the gyroscope is suffered by the accumulated

measurement errors, it is not effective to measure the

angles over a long period of time. To obtain a stable

and reliable attitude angle, the gyroscope should be

integrated with accelerometer and magnetometer. To

this end, the complementary filter, Kalman filter, and

gradient descent algorithm are widely used to conduct

data fusion. The work in [9] proposed the quaternion-

based gradient descent algorithm to merge the measured

absolute angle and angular velocity and then obtain three

degrees of freedom (DOF) for attitude measurement. The

algorithm in [9] is simple and is easy to be implemented,

but the related accuracy performance is not good. The

quaternion-based extended Kalman filter (EKF) algorithm

in [10] is recognized to be more accurate, but more system

state vectors and higher computation cost are required,

which is not appropriate for the real-time processing

on a smartphone platform. There is significant accuracy

deterioration by using the aforementioned conventional

algorithms when a large linear acceleration occurs or the

magnetometer is seriously interfered by the surrounding

noise, such as the blocking by iron products. To solve

this problem, this paper shows a new pedestrian dead

reckoning-based MARG navigation algorithm, which

is highly accurate and is easy to be implemented on

smartphones.

This paper is organized as follows. Section 2 gives the

system framework. Section 3 presents the algorithms for

step detection and stride length estimation. The heading

estimation algorithm is discussed in Section 4. Section 5

shows some testing results and the related discussion.

Finally, we conclude this paper in Section 6.

2 System framework
Our system is based on the PDR algorithm which is

recognized as a relative positioning algorithm, as shown in

Figure 1 [11-15]. In Figure 1, notations E and N denote

the east and north directions, respectively.

xk ¼ x0 þ
X

k

i¼1

di cos θi

yk ¼ y0 þ
X

k

i¼1

di sin θi
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>
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where θi and di(i = 1,.., k) stand for the heading angle

and the stride length of step i. Hence, the user's position

coordinates can be calculated by (1) as soon as the

parameters di and θi are estimated.

The system architecture is shown in Figure 2. In

concrete terms, we first conduct low-pass filtering to

smooth the modulus of the three-axis accelerometer

data. Second, the filtered accelerometer data is used

to detect the user's steps for location updating. Third, the

empirical model is applied to estimate the pedestrian

stride length as the displacement between every two

adjacent positions. Fourth, using the quaternion-based

extended Kalman filter, we merge the data collected

from MARG sensors to calculate the quaternion rotation

matrix. Fifth, after the Butterworth low-pass filtering, we

Figure 1 Basic model for PDR algorithm. Starting from the user's

initial position (x0, y0), we can calculate the next position, notated as

(x1, y1), by utilizing the heading angle θ1 and the displacement d1.

Based on the iterative process of position calculation, the

coordinates of the user's kth position are calculated by (1).

Figure 2 System architecture. We propose a new PDR-based navigation algorithm using MARG sensors which are equipped in commercial

smartphone.

Tian et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:65 Page 2 of 9

http://asp.eurasipjournals.com/content/2014/1/65



obtain a stable heading angle for each step. Finally, the

PDR algorithm is performed to calculate the user's

locations in a real-time manner.

3 Step detection and stride length estimation
Based on the physiological characteristics of the pedestrian,

the waveform for the three-axis accelerometer modulus

values can be obtained for the formation of cyclical

changes. Therefore, the cyclical and characteristic values

can be used to detect the steps. We calculate the three-axis

accelerometer modulus values in (2).

Acc�norm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ax2 þ ay2 þ az2
q

ð2Þ

where ax, ay, and az are the output data of triaxial

accelerometer in the X, Y, and Z directions respectively.

Then, we can obtain a single peak curve of accelerometer

modulus by using a digital low-pass filter, detect the peak

point accurately, and consequently calculate the step

number. Some small jitters could be produced during

walking when the pedestrian is holding the phone. On this

basis, the peaks appear in the output waveform of acceler-

ometer modulus values, as shown in Figure 3. We set a

threshold to eliminate the gauge errors of steps which re-

sulted from the shaking of smartphone, such that

ΔT > TTh

Acc�norm− g
�

�

�

� > ATh

�

ð3Þ

where ΔT stands for the time interval between every two

adjacent peaks, g is the local acceleration of gravity. TTh

and ATh stand for the time threshold and the peak

threshold, respectively.

We use the empirical model [16,17] to estimate the

stride length in (4).

step�length ¼ C �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Amax−Amin
4
p

ð4Þ

where Amax and Amin stand for the maximum and

minimum of modulus values of accelerometer which are

obtained from the step detection. C is the proportionality

coefficient. Since the step lengths are determined by

height, attitude, and frequency, the value of C which is

significantly influenced by the pedestrian height and stride

frequency cannot be constant. Considering the nonlinear

relations of the proportion coefficient C, pedestrian

height, and stride length, we use a back propagation (BP)

neural network to obtain this nonlinear mapping for the

sake of predicting the value C accurately and real timely.

The structure of our addressed BP neural network is

shown in Figure 4.

4 Heading estimation
4.1 Gyroscope attitude estimation

The angular velocities x, y, and z in the coordinates of

smartphone are measured by a three-axis gyroscope.

The attitude of the smartphone is obtained from the

integration of the quaternion-based rigid body kinematic

Figure 3 Modulus values of accelerometer. Some small jitters

could be produced during the walking when the pedestrian is

holding the phone. The false peaks appear in the output waveform

of accelerometer modulus values.

Figure 4 Structure of BP neural network. There are two input layers of neurons and one output layer of neurons. The number of neurons in

the hidden layer is determined in the process of neural network training.
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equations. The quaternion-based rigid body kinematic

equations are

Q
•

¼ 1

2
Q⊗W ;Q t0ð Þ ¼ Q0 ð5Þ

where the quaternion Q = q0 + q1i + q2j + q3k, qi(i = 0, 1, 2,

and 3) is a real number. t0 is the initial time of the user's

movement. Q0 is the initial quaternion. W = 0 +w1i +w2j +

w3k is the quaternion of the attitude angular velocity in the

coordinates of smartphone. ⊗ denotes the multiplication

of quaternion. We can represent (5) in matrix form as

Q
•

¼
q0
•

q1
•

q2
•

q3
•

2

6

6
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7

7

5

¼ 1
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2
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7

7
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2

6

6

4

3

7

7

5

¼ 1

2
Ω ωð ÞQ

ð6Þ

where ωi(i = 1, 2, and 3) is the angular velocity. We

assume that the angular velocity is a constant value in the

same sampling interval. By calculating the differential

equations in (6), the formula of quaternion discrete time

can be obtained by

Qkþ1 ¼ exp
1

2
Ω ωT sð Þ

� �

Qk ¼ I cos
Δθ

2
þΩ ωT sð Þ sin

Δθ

2

Δθ

� �

Qk

ð7Þ

where Δθ ¼ T s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω1
2 þ ω2

2 þ ω3
2

p
. Based on the relation-

ship between attitude rotation matrix and quaternion,

the rotation matrix can be calculated as

T
b
n ¼

q20 þ q21−q
2
2−q

2
3 2 q1 q2 þ q0 q3ð Þ 2 q1 q3− q0 q2ð Þ

2 q1 q2− q0 q3ð Þ q20−q
2
1 þ q22−q

2
3 2 q2 q3 þ q0 q1ð Þ

2 q1 q3 þ q0 q2ð Þ 2 q2 q3‐ q0 q1ð Þ q20−q
2
1−q

2
2 þ q23

2

4

3

5

ð8Þ

In (8), the parameter qi(i = 0,…, 3) can be used to up-

date the attitude rotation matrix. Finally, we calculate

the roll, pitch, and yaw as

roll ¼ arcsin 2 q2 q3−q0 q1ð Þð Þ
pitch ¼ arctan −

2 q1 q3 þ q0 q2ð Þ
q20−q

2
1 − q22 þ q23

� �

yaw ¼ arctan
2 q1 q2 þ q0 q3ð Þ
q20 − q21 þ q22 − q

2
3

� �

8

>

>

>

>

<

>

>

>

>

:

ð9Þ

4.2 Extended Kalman filter design

In practical use, the attitude angles collected from the

gyroscope may start from incorrect initial conditions.

Figure 5 Variations of heading angles from 0° to 360°. When

the heading is in the vicinity of 360° or 0°, the heading angles will

vary from 0° to 360°.

Figure 6 Results of corrected heading angles. After the low-pass

filtered rotation matrix is obtained, the corrected heading angle can

be calculated.

Figure 7 Hand-held smartphone during walking. The

smartphone is hand-held with the X-axis in left direction, Y-axis in

backward direction and Z-axis in down direction during the walking.
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When the accelerometer is not stationary or the mag-

netometer is exposed to interferences, the accumulated

errors by the gyroscope measurement noise and the abso-

lute attitude angles from magnetometer/accelerometer

could provide an incorrect estimation on the heading

angle. Therefore, the integration of gyroscope, accelerom-

eter, and magnetometer for the calculation of attitude

angles can effectively improve the heading precision. The

extended Kalman filter is used in the paper to merge all

the sensors' information to obtain an accurate estimation

on attitude angles. The EKF model is shown in (10).

Xkþ1 ¼ FXk þW k

Zkþ1 ¼ HXkþ1 þ V kþ1

�

ð10Þ

Using the discrete time model to update attitude

angles, the state vector can be described by the rotation

Figure 8 Step detection. We can obtain a single peak curve of accelerometer modulus by using a digital low-pass filter, detect the peak point

accurately, and consequently calculate the step number.
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quaternion. The state transition vector equation is shown

in (11).

Qkþ1 ¼ FQk þ wk ð11Þ

where F ¼ exp 1
2
Ω ωT sð Þ

� �

is the state transition matrix.

wk is the vector of processing noise. The measurement

model is constructed by stacking the normalized acceler-

ometer and the magnetometer measurement vectors as

akþ1

mkþ1

	 


¼ T
b
n Qkþ1ð Þ 0

0 T
b
n Qkþ1ð Þ

	 


g

h

	 


þ avkþ1
mvkþ1

h i

ð12Þ

where T
b
nðQkþ1Þ is the quaternion-based attitude rotation

matrix. g is the vector of normalized gravity. h is the

vector of normalized magnetic field intensity. The vectors

of measurement noise in accelerometer and magnetometer

are notated as avk + 1 and
mvk + 1 which can be recognized

as the uncorrelated zero-mean white noise processes with

the corresponding covariance matrix R.

g ¼ 0 0 1½ �Τ ð13Þ

h ¼ 0 by bz
� �Τ ð14Þ

R ¼ 0
σ
2
aI

σ2mI

0
h i

ð15Þ

From the observation equation, we can find that the re-

lationship between state vector and measurement vector

is nonlinear. Therefore, we linearize the first part on the

right side of (12) to calculate the observation matrix H as

H ¼

−2q2 2q3 −2q0 2q1
2q1 2q0 2q3 2q2
4q0 0 0 4q3
2byq3−2bzq2 2byq2 þ 2bzq3 2byq1−2bzq0 2byq0 þ 2bzq1
4byq0 þ 2bzq1 2bzq0 4byq2 þ 2bzq3 2bzq2
−2byq1 þ 4bzq0 −2byq0 2byq3 2byq2 þ 4bzq3

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð16Þ

In the static scenario without magnetic interference,

the measurement noise in accelerometer and magnet-

ometer is not changed. When the linear acceleration or

the magnetic interference exists, the errors of attitude in

accelerometer and magnetometer could be significantly

large. To solve this problem, we use an adaptive ap-

proach to construct the observation variance σ
2
a and σ

2
m

for the sake of modifying the weight of measurement

values in a real-time manner. This process is illustrated

in (17) and (18).

σ
2
a ¼ ka1 j jjakð jj−jjgjj jÞ þ ka2var jjak−N=2jj:jjakþN=2jj

� �

ð17Þ

σ
2
m ¼ km1 jjmkj jð j−jjhjj jÞ þ km2var jjmk‐N=2jj:jjmkþN=2jj

� �

ð18Þ

where ||ak|| and ||mk|| are the modulus values of acceler-

ometer and magnetometer. ki1 and ki2 are the weighting

factors. var(ik − N/2: ik + N/2) (i = a, m) is the variance of

modulus values in the sliding window with the size of N.

When the smartphone has a large linear acceleration or is

suffered by the external magnetic interference, both

modulus value and variance of accelerometer and

magnetometer are increased. In this case, to reduce the

influence of the linear acceleration and the external

magnetic interference, we distribute large values to the

observation variance, σ
2
a and σ

2
m , to guarantee that the

filtering process is determined by the output of gyroscope.

4. 3 Heading correction

During the walking, the smartphone is suffered by not

only the upward and forward movement, but also the

swings. From the curve of heading angles obtained by

EKF, we can find that the smartphone swings severely.

To reduce the impact of swing on heading estimation,

we use the second-order Butterworth digital low-pass

filter to conduct heading correction.

The quaternion representation is discontinuous in the

rotation angles of 360°. For example, the angle of 361°

Table 1 Results of stride length estimation

Height (cm) Reference SL
in average (m)

Estimated SL
in average (m)

Standard
deviation (m)

158 0.6402 0.6407 0.0237

165 0.6688 0.6635 0.0475

170 0.6818 0.6859 0.0354

175 0.6908 0.6936 0.0186

178 0.7609 0.7584 0.0332

Figure 9 Variations of magnetometer modulus values. The

irregular changes of magnetometer modulus values indicate that

strong magnetic interference exists in the environment.
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should be represented as the angle of 1°. The low-pass

filtering could result in an unexpected behavior when

the heading is in the vicinity of 360° or 0°, as shown in

Figure 5. In contrast, the estimation by rotation matrix

is not suffered by the discontinuities. After the low-pass

filtered rotation matrix is obtained, the heading angle

can be calculated by (8). The solid curve in Figure 6 is

the result of corrected heading angles.

5 Testing results
In our testing, the MARG sensors equipped in Huawei

smartphone is selected as the inertial measurement unit

consisting of a three-axis accelerometer (ST LIS3DH), a

three-axis magnetometer (akm8963), and a three-axis

gyroscope (ST L3G4200D). The smartphone is based on

the Android operating system to provide application

programming interface (API). We collect the raw data

from sensors using the API with the sampling rate of

50 Hz. Considering the sensor behavior and structure,

we do the necessary calibration as one of the important

pre-processing modules to integrate the three different

sensors. The signal conditioning is required to get rid of

the residual bias and scale-factor errors in a fine alignment

procedure. As shown in Figure 7, the smartphone is

hand-held during walking.

5.1 Step detection and stride length estimation

A dataset is collected to examine the performance of our

proposed step detection approach. The results of step

detection and a magnified part of the detection are

shown in Figure 8. From Figure 8, we can find that the

probability of step detection is close to 100%.

We use five groups of data collected by five different

persons with different heights to examine performance

Figure 10 Results of heading angles. The Reference indicates the direction of testing path. The heading angles estimated by GDA are obtained by

using gradient descent algorithm. The heading angles obtained by our proposed algorithm are shown by EKF curve.

Figure 11 Walking trajectory. We choose the playground in CQUPT as the testing bed to examine the positioning accuracy of our proposed

algorithm. Reference and Trajectory stand for the real trace and the tracked trace, respectively.
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of stride length estimation. The walking length in total is

about 105 m. Table 1 shows the results of stride length

(SL) estimation.

5.2 Heading estimation

We choose the corridors in a building in CQUPT as the

testing bed to examine the ability of our proposed

approach resisting to the anti-magnetic interference.

The testing bed has different intersections and is

suffered by variable magnetic interference. As shown in

Figure 9, the irregular changes of magnetometer

modulus values indicate that strong magnetic interference

exists in the environment.

Figure 10 compares two different attitude fusion

methods: the conventional gradient descent algorithm

(GDA) and our proposed EKF. The ‘Reference’ indicates

the direction of testing path. From Figure 10, we observe

that the proposed EKF can provide more accurate and

stable estimation of pedestrian heading compared to the

GDA, especially in the environment where the magnetic

disturbance exists.

5.3 Trace tracking

Since the error for each step cannot be easily labeled, we

use an actual walking trace in a loop (i.e., the starting

position and ending position coincide) instead for our

testing. The distance between the starting position and

the ending position on the tracked trace (or called tracking

error) is selected to evaluate the positioning accuracy. In

this case, the smaller distance between the starting position

and the ending position indicates the higher positioning

accuracy to be obtained. In Figure 11, Reference and

‘Trajectory’ stand for the real trace and the tracked

trace, respectively.

The tracking results by our proposed pedestrian

navigation algorithm are shown in Table 2. Ten groups of

data collected by ten different people are used to evaluate

the positioning accuracy. For the trace with 400 m in

length, the tracking errors are only within 8 m.

6 Conclusions
This paper presents a new pedestrian navigation

algorithm based on the MARG sensors equipped in

Huawei smartphone. The testing results on the smartphone

platform show that the accurate, reliable, and continuous

localization and tracking can be provided. Our pro-

posed algorithm can be applicable to many other

types of smartphones and also provide an important

guidance to the design of the integrated Wi-Fi and

MEMS navigation systems [18-20]. Furthermore, the

optimization of heading estimation algorithm forms

another interesting work in future.
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