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Abstract

Deep learning methods have achieved great successes

in pedestrian detection, owing to its ability to learn dis-

criminative features from raw pixels. However, they treat

pedestrian detection as a single binary classification task,

which may confuse positive with hard negative samples

(Fig.1 (a)). To address this ambiguity, this work jointly op-

timize pedestrian detection with semantic tasks, including

pedestrian attributes (e.g. ‘carrying backpack’) and scene

attributes (e.g. ‘vehicle’, ‘tree’, and ‘horizontal’). Rather

than expensively annotating scene attributes, we transfer

attributes information from existing scene segmentation

datasets to the pedestrian dataset, by proposing a novel

deep model to learn high-level features from multiple tasks

and multiple data sources. Since distinct tasks have distinct

convergence rates and data from different datasets have

different distributions, a multi-task deep model is carefully

designed to coordinate tasks and reduce discrepancies

among datasets. Extensive evaluations show that the

proposed approach outperforms the state-of-the-art on the

challenging Caltech [9] and ETH [10] datasets where it

reduces the miss rates of previous deep models by 17 and

5.5 percent, respectively.

1. Introduction

Pedestrian detection has attracted wide attentions [5, 31,

28, 7, 8, 9, 17, 6, 36, 13]. This problem is challenging

because of large variations and confusions in the human

body and background, as shown in Fig.1 (a), where the

positive and hard negative patches have large ambiguities.

Current methods for pedestrian detection can be gener-

ally grouped into two categories, the models based on hand-

crafted features [31, 5, 32, 8, 7, 35, 11] and deep models

[21, 23, 28, 22, 16]. In the first category, conventional

methods extracted Haar [31], HOG[5], or HOG-LBP [32]

from images to train SVM [5] or boosting classifiers [8].

HOG ACF
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(a) Positives and hard negatives

(b)Comparison between models

Figure 1: Distinguishing pedestrians from hard negatives

is challenging due to their visual similarities. In (a), the

first and second row represent pedestrians and equivocal

background samples respectively. (b) shows that our TA-

CNN rejects more hard negatives than the detectors using

hand-crafted features (such as HOG [5] and ACF [7]) and

the JointDeep model [22].

The learned weights of the classifier (e.g. SVM) can be

considered as a global template of the entire human body.

To account for more complex poses, the hierarchical de-

formable part models (DPM) [11, 37, 15] learned a mixture

of local templates for each body part. Although they are suf-

ficient to certain pose changes, the feature representations

and the classifiers cannot be jointly optimized to improve

performance. In the second category, deep neural networks
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achieved promising results [21, 23, 28, 22, 16], owing to

their capacity to learn discriminative features from raw

pixels. For example, Ouyang et al. [22] learned features

by designing specific hidden layers for the Convolutional

Neural Network (CNN), such that features, deformable

parts, and pedestrian classification can be jointly optimized.

However, previous deep models treated pedestrian detec-

tion as a single binary classification task, which are not able

to capture rich pedestrian variations, as shown in Fig.1 (a).

This work jointly optimizes pedestrian detection with

auxiliary semantic tasks, including pedestrian attributes

(e.g. ‘backpack’, ‘gender’, and ‘views’) and scene attributes

(e.g. ‘vehicle’, ‘tree’, and ‘vertical’). To understand how

this work, we provide an example in Fig.2. If only a single

detector is used to classify all the positive and negative

samples in Fig.2 (a), it is difficult to handle complex

pedestrian variations. Therefore, the mixture models of

multiple views were developed in Fig.2 (b), i.e. pedestrian

images in different views are handled by different detectors.

If views are treated as one type of semantic tasks, learning

pedestrian representation by multiple attributes with deep

models actually extends this idea to extreme. As shown in

Fig.2 (c), more supervised information enriches the learned

features to account for combinatorial more pedestrian varia-

tions. The samples with similar configurations of attributes

can be grouped and separated in the high-level feature

space.

Specifically, given a pedestrian dataset, denoted as P, the

positive image patches are manually labeled with several

pedestrian attributes, which are suggested to be valuable

for surveillance analysis [20]. However, as the number

of negatives is significantly larger than the number of

positives, we transfer scene attributes information from

existing background scene segmentation databases (each

one is denoted as B) to the pedestrian dataset, other than

annotating them manually. A novel task-assistant CNN

(TA-CNN) is proposed to jointly learn multiple tasks using

multiple data sources. As different B’s may have different

data distributions, to reduce these discrepancies, we transfer

two types of scene attributes that are carefully chosen,

comprising the shared attributes that appear across all the

B’s and the unshared attributes that appear in only one of

(a) HOG

(c) CNN (d) TA-CNN

(b) Channel Features

Figure 4: Feature spaces of HOG, channel features, CNN

that models pedestrian detection as binary classification,

and TA-CNN. Positive and hard negative samples of the

Caltech-Test set [9] are represented by red and green,

respectively.

them. The former one facilitates the learning of shared

representation among B’s, whilst the latter one increases

diversities of attributes. Furthermore, to reduce the gaps

between P and B’s, we first project each sample in B’s to

a structural space of P and then the projected values are

employed as input to train TA-CNN.

This work has the following main contributions. (1)

To our knowledge, this is the first attempt to learn discrim-

inative representation for pedestrian detection by jointly

optimizing it with semantic attributes, including pedestrian

attributes and scene attributes. The scene attributes can be

transferred from existing scene datasets without annotating

manually. (2) These multiple tasks from multiple sources

are trained using a single task-assistant CNN (TA-CNN),

which is carefully designed to bridge the gaps between

different datasets. (3) We systematically investigate the

effectiveness of attributes in pedestrian detection. Extensive

experiments on both challenging Caltech [9] and ETH [10]

datasets demonstrate that TA-CNN outperforms state-of-

the-art methods. It reduces miss rates of existing deep mod-

els on these datasets by 17 and 5.5 percent, respectively.

1.1. Related Works

We review recent works in two aspects.

Models based on Hand-Crafted Features The hand-

crafted features, such as HOG, LBP, and channel features,

achieved great success in pedestrian detection. For ex-

ample, Wang et al. [32] utilized the LBP+HOG features

to deal with partial occlusion of pedestrian. Chen et

al. [4] modeled the context information in a multi-order

manner. The deformable part models [11] learned mixture

of local templates to account for view and pose variations.

Moreover, Dollár et al. proposed Integral Channel Features
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Figure 3: The proposed pipeline for pedestrian detection.

(ICF) [8] and Aggregated Channel Features (ACF) [7],

both of which consist of gradient histogram, gradients,

and LUV, and can be efficiently extracted. Benenson et

al. [1] combined channel features and depth information.

However, the representation of hand-crafted features cannot

be optimized for pedestrian detection. They are not able to

capture large variations, as shown in Fig.4 (a) and (b).

Deep Models Deep learning methods can learn features

from raw pixels to improve the performance of pedestrian

detection. For example, ConvNet [28] employed convo-

lutional sparse coding to unsupervised pre-train CNN for

pedestrian detection. Ouyang et al. [21] jointly learned

features and the visibility of different body parts to handle

occlusion. The JointDeep model [22] designed a deforma-

tion hidden layer for CNN to model mixture poses infor-

mation. Unlike the previous deep models that formulated

pedestrian detection as a single binary classification task,

TA-CNN jointly optimizes pedestrian detection with related

semantic tasks. The learned features are more robust to

large variations, as shown in Fig.4 (c) and (d). Another

contemporaneous deep model [13] seems complementary

to our method.

2. Our Approach

Method Overview Fig.3 shows our pipeline of pedes-

trian detection, where pedestrian classification, pedestrian

attributes, and scene attributes are jointly learned by a

single TA-CNN. Given a pedestrian dataset P, for example

Caltech [9], we manually label the positive patches with

nine pedestrian attributes, which are listed in Fig.5. Most

of them are suggested by the UK Home Office and UK

police and valuable in surveillance analysis [20]. Since

the number of negative patches in P is significantly larger

than the number of positives, we transfer scene attribute

information from three public scene segmentation datasets

to P, as shown in Fig.3 (a), including CamVid (Ba) [3],

Stanford Background (Bb) [12], and LM+SUN (Bc) [29],

where hard negatives are chosen by applying a simple yet

fast pedestrian detector [7] on these datasets. As the data in

different B’s are sampled from different distributions, we

carefully select two types of attributes, the shared attributes

(outlined in orange) that present in all B’s and the unshared

attributes (outlined in red) that appear only in one of them.

This is done because the former one enables the learning

of shared representation across B’s, while the latter one

enhances diversities of attributes. All chosen attributes

are summarized in Fig.5, where shows that data from

different sources have different subset of attribute labels.

For example, pedestrian attributes only present in P, shared

attributes present in all B’s, and the unshared attributes

present in one of them, e.g. ‘traffic light’ of Ba.

We construct a training set D by combing patches

cropped from both P and B’s. Let D = {(xn,yn)}
N
n=1

be a set of image patches and their labels, where each

yn = (yn,o
p
n,o

s
n,o

u
n) is a four-tuple1. Specifically, yn

denotes a binary label, indicating whether an image patch

1In this paper, scalar variable is denoted by normal letter, while set,

vector, or matrix is denoted as boldface letter.
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is pedestrian or not. op
n = {opin }9i=1, os

n = {osin }
4
i=1, and

ou
n = {ouin }4i=1 are three sets of binary labels, representing

the pedestrian, shared scene, and unshared scene attributes,

respectively. As shown in Fig.3 (b), TA-CNN employs

image patch xn as input and predicts yn, by stacking

four convolutional layers (conv1 to conv4), four max-

pooling layers, and two fully-connected layers (fc5 and

fc6). This structure is inspired by the AlexNet [14] for

large-scale general object categorization. However, as the

difficulty of pedestrian detection is different from general

object categorization, we remove one convolutional layer

of AlexNet and reduce the number of parameters at all

remaining layers. The subsequent structure of TA-CNN is

specified in Fig.3 (b).

Formulation of TA-CNN Each hidden layer of TA-

CNN from conv1 to conv4 is computed recursively by

convolution and max-pooling. Each hidden layer in fc5 and

fc6 is obtained by a fully-connected transformation. For all

these layers, we utilize the rectified linear function [18] as

the activation function.

TA-CNN can be formulated as minimizing the log poste-

rior probability with respect to a set of network parameters

W

W∗ = argmin
W

−

N∑

n=1

log p(yn,o
p
n,o

s
n,o

u
n|xn;W), (1)

where E = −
∑N

n=1 log p(yn,o
p
n,o

s
n,o

u
n|xn) is a com-

plete loss function regarding the entire training set. Here,

we illustrate that the shared attributes os
n in Eqn.(1) are

crucial to learn shared representation across multiple scene

datasets B’s.

For clarity, we keep only the unshared attributes, ou
n,

and the loss function becomes E = −
∑N

n=1 log p(o
u
n|xn).

Let xa
n denote the n-th sample of scene dataset Ba. A

shared representation can be learned if and only if all the

samples share at least one target (attribute). Since the

samples are independent, the loss function can be expanded

as E = −
∑I

i=1 log p(o
u1
i |xa

i )−
∑J

j=1 log p(o
u2
j , ou3j |xb

j)−∑K

k=1 log p(o
u4
k |xc

k), where I+J +K = N , implying that

each dataset is only used to optimize its corresponding un-

shared attribute, although all the datasets and attributes are

trained in a single TA-CNN. For instance, the classification

model of ou1 is learned by using Ba without leveraging

the existence of the other datasets. In other words, the

probability of p(ou1|xa,xb,xc) = p(ou1|xa) because of

missing labels. The above formulation is not sufficient

to learn shared features among datasets, especially when

the data have large differences. To bridge multiple scene

datasets B’s, we introduce the shared attributes os, the

loss function develops into E = −
∑N

n=1 log p(o
s
n,o

u
n|xn),

such that TA-CNN can learn a shared representation across

B’s because the samples share common targets os, i.e.

p(os1n , os2n , os3n , os4n |xa
n,x

b
n,x

c
n).

Now, we reconsider Eqn.(1), where the loss func-

tion can be decomposed similarly as above, E =
−
∑I

i=1 log p(o
s
i , o

u1
i |xa

i )−
∑J

j=1 log p(o
s
j , o

u2
j , ou3j |xb

j)−∑K

k=1 log p(o
s
k, o

u4
k |xc

k) −
∑L

ℓ=1 log p(yℓ,o
p
ℓ |x

p
ℓ ). Even

though the discrepancies among B’s can be reduced by

os, this decomposition shows that gap remains between

datasets P and B’s. To resolve this issue, we compute

the structure projection vectors zn for each sample xn, and

Eqn.(1) turns into

W∗ = argmin
W

−

N∑

n=1

log p(yn,o
p
n,o

s
n,o

u
n|xn, zn;W).

(2)

For example, the first term of the above decomposition can

be written as p(os
i , o

u1
i |xa

i , z
a
i ), where zai is attained by

projecting the corresponding xa
i in Ba on the feature space

of P. This procedure is explained below. Here zai is used

to bridge multiple datasets, because samples from different

datasets are projected to a common space of P. TA-CNN

adopts a pair of data (xa
i , z

a
i ) as input (see Fig.3 (b)). All

the remaining terms can be derived in a similar way.

Structure Projection Vector As shown in Fig.6, to close

the gap between P and Bs, we calculate the structure

projection vector (SPV) for each sample by organizing

the positive (+) and negative (-) data of P into two tree

structures, respectively. Each tree has depth that equals

three and partitions the data top-down, where each child

node groups the data of its parent into clusters, for example

C1
1 and C10

5 . Then, SPV of each sample is obtained by

concatenating the distance between it and the mean of each

leaf node. Specifically, at each parent node, we extract

HOG feature for each sample and apply k-means to group

the data. We partition the data into five clusters (C1 to C5)

in the first level, and then each of them is further partitioned

into ten clusters, e.g. C1
1 to C10

1 . As a result, the length of

SPV for each sample is 2× 5× 10 = 100.

3. Learning Task-Assistant CNN

To learn network parameters W , a natural way is to

reformulate Eqn.(2) as the softmax loss functions similar
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to the previous methods. We have2

E ,− y log p(y|x, z)−

9∑

i=1

αio
pi log p(opi|x, z)

−

4∑

j=1

βjo
sj log p(osj |x, z)−

4∑

k=1

γko
uk log p(ouk|x, z),

(3)

where the main task is to predict the pedestrian label

y and the attribute estimations, i.e. opi, osj , and ouk,

are auxiliary semantic tasks. α, β, and γ denote the

importance coefficients to associate multiple tasks. Here,

p(y|x, z), p(opi|x, z), p(osj |x, z), and p(ouk|x, z) are mod-

eled by softmax functions, for example, p(y = 0|x, z) =
exp(Wm

·1
T
h

(L))

exp(Wm
·1

Th(L))+exp(Wm
·2

Th(L))
, where h(L) and Wm indi-

cate the top-layer feature vector and the parameter matrix

of the main task y respectively, as shown in Fig.3 (b), and

h(L) is obtained by h(L) = relu(W(L)h(L−1) + b(L) +
Wzz+ bz).

Eqn.(3) optimizes eighteen loss functions together. It

has two main drawbacks. First, since different tasks have

different convergence rates, training many tasks together

suffers from over-fitting. Second, if the dimension of the

features h(L) is high, the number of parameters at the

top-layer increases rapidly. For example, if the feature

vector h(L) has H dimensions, the weight matrix of each

two-state variable (e.g. Wm of the main task) has 2 ×
H parameters, whilst the weight matrix of the four-state

variable ‘viewpoint’ has 4 × H parameters3. As we have

seventeen two-state variables and one four-state variable,

the total number of parameters at the top-layer is 17 × 2 ×
H + 4×H = 38H .

To resolve the above issues, we cast learning multiple

tasks in Eqn.(3) as optimizing a single multivariate cross-

entropy loss,

E ,− yTdiag(λ) log p(y|x, z)

− (1 − y)
T
diag(λ)(log 1 − p(y|x, z)),

(4)

2We drop the sample index n in the remaining derivation for clarity.
3All tasks are binary classification (i.e. two states) except the pedestrian

attribute ‘viewpoint’, which has four states, including ‘front’, ‘back’, ‘left’,

and ‘right’.

where λ denotes a vector of tasks’ importance coefficients

and diag(·) represents a diagonal matrix. Here, y =
(y,op,os,ou) is a vector of binary labels, concatenating

the pedestrian label and all attribute labels. Note that each

two-state (four-state) variable can be described by one bit

(two bits). Since we have seventeen two-state variables and

one four-state variable, the weight matrix at the top layer,

denoted as Wy in this case, has 17 ×H + 2 ×H = 19H
parameters, which reduces the number of parameters by

half, i.e. 19H compared to 38H of Eqn.(3). Moreover,

p(y|x, z) is modeled by sigmoid function, i.e. p(y|x, z) =
1

1+exp(−WyTh(L))
, where h(L) is achieved in the same way

as in Eqn.(3).

The network parameters are updated by minimizing

Eqn.(4) using stochastic gradient descent [14] and back-

propagation (BP) [27], where the error of the output layer

is propagated top-down to update filters or weights at each

layer. The BP procedure is similar to [14]. The main

difference is how to compute error at the L-th layer. In

the traditional BP algorithm, the error e(L) at the L-th layer

is obtained by the gradient of Eqn.(4), indicating the loss,

i.e. e(L) = y − y, where y denotes the predicted labels.

However, unlike the conventional BP where all the labels

are observed, each of our dataset only covers a subset of at-

tributes. Let ô signify the unobserved labels. The posterior

probability of Eqn.(4) becomes p(y\ô, ô|x, z), where y\ô

specifies the labels y excluding ô. Here we demonstrate

that ô can be simply marginalized out, since the labels are

independent. We have
∑

ô
p(y\ô, ô|x, z) = p(y\ô|x, z) ·∑

ô1
p(ô1|x, z) ·

∑
ô2

p(ô2|x, z) · ... ·
∑

ôj
p(ôj |x, z) =

p(y\ô|x, z). Therefore, the error e(L) of Eqn.(4) can be

computed as

e(L) =

{
y − y, if y ∈ y\ô,

0, otherwise,
(5)

which demonstrates that the errors of the missing labels will

not be propagated no matter whether their predictions are

correct or not.

We fix the important coefficient λ1 ∈ λ of the main

task y, i.e. λ1 = 1. As the auxiliary tasks are independent,

their coefficients can be obtained by greedy search between

zero and one. To simplify the learning procedure, we have

∀λi ∈ λ, λi = 0.1, i = 2, 3, ..., 18 and found that this

setting provides stable and reasonable good results.

4. Experiments

The proposed TA-CNN4 is evaluated on the Caltech-Test

[9] and ETH datasets [10]. We strictly follow the evaluation

protocol proposed in [9], which measures the log average

4 http://mmlab.ie.cuhk.edu.hk/projects/

TA-CNN/ The corresponding author is Ping Luo (pluo.lhi@gmail.com).

http://mmlab.ie.cuhk.edu.hk/projects/TA-CNN/
http://mmlab.ie.cuhk.edu.hk/projects/TA-CNN/
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miss rate over nine points ranging from 10−2 to 100 False-

Positive-Per-Image. We compare TA-CNN with the best-

performing methods as suggested by the Caltech and ETH

benchmarks5 on the reasonable subsets, where pedestrians

are larger than 49 pixels height and have 65 percent visible

body parts.

4.1. Effectiveness of TACNN

We systematically study the effectiveness of TA-CNN in

four aspects as follows. In this section, TA-CNN is trained

on Caltech-Train and tested on Caltech-Test.

Effectiveness of Hard Negative Mining To save com-

putational cost, We employ ACF [7] for mining hard nega-

tives at the training stage and pruning candidate windows

at the testing stage. Two main adjustments are made in

ACF. First, we compute the exact feature pyramids at each

scale instead of making an estimated aggregation. Second,

we increase the number of weak classifiers to enhance

the recognition ability. Afterwards, a higher recall rate is

achieved by ACF and it obtains 37.31 percent miss rate

on Caltech-Test. Then the TA-CNN with only the main

task (pedestrian classification) achieved 31.45 percent miss

rate by cascading on ACF, obtaining more than 5 percent

improvement.

Effectiveness of Pedestrian Attributes We investigate

how different pedestrian attributes can help improve the

main task. To this end, we train TA-CNN by combing

the main task with each of the pedestrian attributes, and

the miss rates are reported in Table 1, where shows that

‘viewpoint’ is the most effective attribute, which improves

the miss rate by 3.25 percent, because ‘viewpoint’ captures

5 http://www.vision.caltech.edu/Image_

Datasets/CaltechPedestrians/

the global information of pedestrian. The attribute capture

the pose information also attains significant improvement,

e.g. 2.62 percent by ‘riding’. Interestingly, among those at-

tributes modeling local information, ‘hat’ performs the best,

reducing the miss rate by 2.56 percent. We observe that

this result is consistent with previous works, SpatialPooling

[25] and InformedHaar [35], which showed that head is the

most informative body parts for pedestrian detection. When

combining all the pedestrian attributes, TA-CNN achieved

25.64 percent miss rate, improving the main task by 6
percent.

Effectiveness of Scene Attributes Similarly, we study

how different scene attributes can improve pedestrian de-

tection. We train TA-CNN combining the main task with

each scene attribute. For each attribute, we select 5, 000
hard negative samples from its corresponding dataset. For

example, we crop five thousand patches for ‘vertical’ from

the Stanford Background dataset. We test two settings,

denoted as “Neg.” and “Attr.”. In the first setting, we

label the five thousand patches as negative samples. In the

second setting, these patches are assigned to their original

attribute labels. The former one uses more negative samples

compared to the TA-CNN (main task), whilst the latter one

employs attribute information.

The results are reported in Table 2, where shows that

‘traffic-light’ improves the main task by 2.53 percent, re-

vealing that the patches of ‘traffic-light’ are easily confused

with positives. This is consistent when we exam the hard

negative samples of most of the pedestrian detectors. Be-

sides, the ‘vertical’ background patches are more effective

than the ‘horizontal’ background patches, corresponding to

the fact that hard negative patches are more likely to present

vertically.

Attribute Prediction We also consider the accuracy of

attribute prediction and find that the averaged accuracy

of all the attributes exceeds 75 percent. We select the

pedestrian attribute ‘viewpoint’ as illustration. In Table 3,

we report the confusion matrix of ‘viewpoint’, where the

number of detected pedestrians of ‘front’, ‘’back’, ‘’left’,

and ‘right’ are 283, 276, 220, 156 respectively. We observed

that ‘front’ and ‘back’ information are relatively easy to

capture, rather than the ‘left’ and ‘right’, which are more

likely to confuse with each other, e.g. 21 + 40 = 61 mis-

classified samples.

4.2. Overall Performance on Caltech

We report overall results in two parts. All the results

of TA-CNN are obtained by training on Caltech-Train and

evaluating on Caltech-Test. In the first part, we analyze

the performance of different components of TA-CNN. As

shown in Fig.7a, the performances show clear increasing

patterns when gradually adding more components. For

example, TA-CNN (main task) cascades on ACF and re-

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/


Predict State

Frontal Back Left Right

Frontal 226 32 15 10

True Back 24 232 12 8

State Left 22 13 164 21

Right 5 15 40 96

Accuracy 0.816 0.796 0.701 0.711

Table 3: View-point estimation results on Caltech-Test.

(a) Log-average miss rate reduction procedure

(b) Overall Performance on Caltech-Test

Figure 7: Results under standard evaluation settings

duces the miss rate of it by more than 5 percent. TA-

CNN (PedAttr.+SharedScene) reduces the result of TA-

CNN (PedAttr.) by 2.2 percent, because it can bridge the

gaps among multiple scene datasets. After modeling the

unshared attributes, the miss rate is further decreased by 1.5
percent, since more attribute information is incorporated.

The final result of 20.86 miss rate is obtained by using

the structure projection vector as input to TA-CNN. Its

effectiveness has been demonstrated in Fig.7a.

Figure 8: Results on Caltech-Test: (a) comparison with

hand-crafted feature based models; (b) comparison with

other deep models

In the second part, we compare the result of TA-CNN

with all existing best-performing methods, including VJ

[30], HOG [5], ACF-Caltech [7], MT-DPM [33], MT-

DPM+Context [33], JointDeep [22], SDN [16], ACF+SDT

[26], InformedHaar [35], ACF-Caltech+ [19], SpatialPool-

ing [25], LDCF [19], Katamari [2], SpatialPooling+ [24].

These works used various features, classifiers, deep net-

works, and motion and context information. We summarize

them as below. Note that TA-CNN dose not employ motion

and context information.

Features: Haar (VJ), HOG (HOG, MT-DPM), Channel-

Feature (ACF+Caltech, LDCF); Classifiers: latent-SVM

(MT-DPM), boosting (VJ, ACF+Caltech, SpatialPooling);

Deep Models: JointDeep, SDN; Motion and context: MT-

DPM+Context, ACF+SDT, Katamari, SpatialPooling+.

Fig.7b reports the results. TA-CNN achieved the small-

est miss rate compared to all existing methods. Although it

only outperforms the second best method (SpatialPooling+

[24]) by 1 percent, it learns 200 dimensions high-level fea-

tures with attributes, other than combining LBP, covariance

features, channel features, and video motion as in [24].

Also, the Katamari [2] method integrates multiple types of

features and context information.

Hand-crafted Features The learned high-level repre-

sentation of TA-CNN outperforms the conventional hand-

crafted features by a large margin, including Haar, HOG,

HOG+LBP, and channel features, shown in Fig.8 (a). For

example, it reduced the miss rate by 16 and 9 percent com-

pared to DPM+Context and Spatial Pooling, respectively.

DPM+Context combined HOG feature with pose mixture

and context information, while SpatialPooling combined

multiple features, such as LBP, covariance, and channel

features.

Deep Models Fig.8 (b) shows that TA-CNN surpasses

other deep models. For example, TA-CNN outperforms two

state-of-the-art deep models, JointDeep and SDN, by 18 and

17 percent, respectively. Both SDN and JointDeep treated

pedestrian detection as a single task and thus cannot learn

high-level representation to deal with the challenging hard



Figure 9: Results on ETH

negative samples.

4.3. Overall Performance on ETH

We compare TA-CNN with the existing best-performing

methods (see Sec.4.2) on ETH [10]. TA-CNN is trained

on INRIA-Train [5]. This setting aims at evaluating the

generalization capacity of the TA-CNN. As shown in Fig.9,

TA-CNN achieves the lowest miss rate, which outperforms

the second best method by 2.5 percent. It also outperforms

the best deep model by 5.5 percent.

Effectiveness of different Components The analysis

of the effectiveness of different components of TA-CNN

is displayed in Fig.10, where the log-average miss rates

show clear decreasing patterns as follows, while gradually

accumulating more components. First, TA-CNN (main

task) cascades on ACF and reduces the miss rate by 5.4

percent. Second, with pedestrian attributes, TA-CNN

(PedAttr.) reduces the result of TA-CNN (main task)

by 5.5 percent. Third, when bridging the gaps among

multiple scene datasets with shared scene attributes, TA-

CNN (PedAttr.+SharedScene) further lower the miss rate by

1.8 percent. Forth, after incorporating unshared attributes,

the miss rate is further decreased by another 1.2 percent.

TA-CNN finally achieves 34.99 percent log-average miss

rate with the structure projection vector.

Comparisons with Deep Models Fig.11 shows that TA-

CNN surpasses other deep models on ETH dataset. For

example, TA-CNN outperforms other two best-performing

deep models, SDN [16] and DBN-Mul [23], by 5.5 and 6

percent, respectively. Besides, TA-CNN even reduces the

miss rate by 12.7 compared to MultiSDP [34], which care-

fully designed multiple classification stages to recognize

hard negatives.

Figure 10: Log-average miss rate reduction procedure on

ETH

Figure 11: Comparison with other deep models on ETH

dataset

5. Conclusions

In this paper, we proposed a novel deep model to

learn features from multiple tasks and datasets, showing

superiority over hand-crafted features and features learned

by other deep models. Extensive experiments demonstrate

its effectiveness. Future work tends to explore more

attribute configurations. The proposed approach also has

potential for attribute prediction and background scene

understanding.
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