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Abstract—Pedestrian detection is a key problem in computer vision, with several applications that have the potential to positively

impact quality of life. In recent years, the number of approaches to detecting pedestrians in monocular images has grown steadily.

However, multiple data sets and widely varying evaluation protocols are used, making direct comparisons difficult. To address these

shortcomings, we perform an extensive evaluation of the state of the art in a unified framework. We make three primary contributions:

1) We put together a large, well-annotated, and realistic monocular pedestrian detection data set and study the statistics of the size,

position, and occlusion patterns of pedestrians in urban scenes, 2) we propose a refined per-frame evaluation methodology that allows

us to carry out probing and informative comparisons, including measuring performance in relation to scale and occlusion, and 3) we

evaluate the performance of sixteen pretrained state-of-the-art detectors across six data sets. Our study allows us to assess the state

of the art and provides a framework for gauging future efforts. Our experiments show that despite significant progress, performance

still has much room for improvement. In particular, detection is disappointing at low resolutions and for partially occluded pedestrians.

Index Terms—Pedestrian detection, object detection, benchmark, evaluation, data set, Caltech Pedestrian data set.
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1 INTRODUCTION

PEOPLE are among the most important components of a
machine’s environment, and endowing machines with

the ability to interact with people is one of the most
interesting and potentially useful challenges for modern
engineering. Detecting and tracking people is thus an
important area of research, and machine vision is bound
to play a key role. Applications include robotics, entertain-
ment, surveillance, care for the elderly and disabled, and
content-based indexing. Just in the US, nearly 5,000 of the
35,000 annual traffic crash fatalities involve pedestrians [1];
hence the considerable interest in building automated
vision systems for detecting pedestrians [2].

While there is much ongoing research in machine
vision approaches for detecting pedestrians, varying
evaluation protocols and use of different data sets makes
direct comparisons difficult. Basic questions such as “Do
current detectors work well?” “What is the best ap-
proach?” “What are the main failure modes?” and “What
are the most productive research directions?” are not
easily answered.

Our study aims to address these questions. We focus on
methods for detecting pedestrians in individual monocular
images; for an overview of how detectors are incorporated
into full systems we refer readers to [2]. Our approach is
three-pronged: We collect, annotate, and study a large data

setofpedestrian images collected fromavehiclenavigating in
urban traffic; we develop informative evaluation methodol-
ogies and point out pitfalls in previous experimental
procedures; finally, we compare the performance of 16 pre-
trained pedestrian detectors on six publicly available data
sets, including our own. Our study allows us to assess the
state of the art and suggests directions for future research.

All results of this study, and the data and tools for
reproducing them, are posted on the project website: www.
vision.caltech.edu/Image_Datasets/CaltechPedestrians/.

1.1 Contributions

Data set. In earlier work [3], we introduced the Caltech
Pedestrian Data Set, which includes 350,000 pedestrian
bounding boxes (BB) labeled in 250,000 frames and remains
the largest such data set to date. Occlusions and temporal
correspondences are also annotated. Using the extensive
ground truth, we analyze the statistics of pedestrian scale,
occlusion, and location and help establish conditions under
which detection systems must operate.

Evaluation methodology. We aim to quantify and rank
detector performance in a realistic and unbiased manner. To
this effect, we explore a number of choices in the evaluation
protocol and their effect on reported performance. Overall,
the methodology has changed substantially since [3],
resulting in a more accurate and informative benchmark.

Evaluation. We evaluate 16 representative state-of-the-
art pedestrian detectors (previously we evaluated seven
[3]). Our goal was to choose diverse detectors that were
most promising in terms of originally reported perfor-
mance. We avoid retraining or modifying the detectors to
ensure each method was optimized by its authors. In
addition to overall performance, we explore detection rates
under varying levels of scale and occlusion and on clearly
visible pedestrians. Moreover, we measure localization
accuracy and analyze runtime.

To increase the scope of our analysis, we also benchmark
the 16 detectors using a unified evaluation framework on
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six additional pedestrian detection data sets, including the
ETH [4], TUD-Brussels [5], Daimler [6], and INRIA [7] data
sets and two variants of the Caltech data set (see Fig. 1). By
evaluating across multiple data sets, we can rank detector
performance and analyze the statistical significance of the
results and, more generally, draw conclusions both about
the detectors and the data sets themselves.

Two groups have recently published surveys which are
complementary to our own. Geronimo et al. [2] performed a
comprehensive survey of pedestrian detection for advanced
driver assistance systems, with a clear focus on full systems.
Enzweiler and Gavrila [6] published the Daimler detection
data set and an accompanying evaluation of three detectors,
performing additional experiments integrating the detec-
tors into full systems. We instead focus on a more thorough
and detailed evaluation of state-of-the-art detectors.

This paper is organized as follows: We introduce the
Caltech Pedestrian Data Set and analyze its statistics in
Section 2; a comparison of existing data sets is given in
Section 2.4. In Section 3, we discuss evaluation methodology
in detail. A survey of pedestrian detectors is given in
Section 4.1 and in Section 4.2we discuss the 16 representative
state-of-the-art detectors used in our evaluation. In Section 5,
we report the results of the performance evaluation, both
under varying conditions using the Caltech data set and on
six additional data sets.We concludewith a discussion of the
state of the art in pedestrian detection in Section 6.

2 THE CALTECH PEDESTRIAN DATA SET

Challenging data sets are catalysts for progress in computer
vision. The Barron et al. [8] and Middlebury [9] optical flow
data sets, the Berkeley Segmentation Data Set [10], the

Middlebury Stereo Data Set [11], and the Caltech 101 [12],
Caltech 256 [13], and PASCAL [14] object recognition data
sets all improved performance evaluation, added challenge,
and helped drive innovation in their respective fields. Much
in the same way, our goal in introducing the Caltech
Pedestrian Data Set is to provide a better benchmark and to
help identify conditions under which current detectors fail
and thus focus research effort on these difficult cases.

2.1 Data Collection and Ground Truthing

We collected approximately 10 hours of 30 Hz video
(� 106 frames) taken from a vehicle driving through regular
traffic in an urban environment (camera setup shown in
Fig. 2a). The CCD video resolution is 640� 480, and, not
unexpectedly, the overall image quality is lower than that of
still images of comparable resolution. There are minor
variations in the camera position due to repeated mount-
ings of the camera. The driver was independent from the
authors of this study and had instructions to drive normally
through neighborhoods in the greater Los Angeles metro-
politan area chosen for their relatively high concentration of
pedestrians, including LAX, Santa Monica, Hollywood,
Pasadena, and Little Tokyo. In order to remove effects of the
vehicle pitching and thus simplify annotation, the video
was stabilized using the inverse compositional algorithm
for image alignment by Baker and Matthews [15].

After video stabilization, 250,000 frames (in 137 approxi-
mately minute long segments extracted from the 10 hours of
video) were annotated for a total of 350,000 bounding boxes
around 2,300 unique pedestrians. To make such a large
scale labeling effort feasible we created a user-friendly
labeling tool, shown in Fig. 3. Its most salient aspect is an
interactive procedure where the annotator labels a sparse
set of frames and the system automatically predicts
pedestrian positions in intermediate frames. Specifically,
after an annotator labels a bounding box around the same
pedestrian in at least two frames, BBs in intermediate
frames are interpolated using cubic interpolation (applied
independently to each coordinate of the BBs). Thereafter,
every time an annotator alters a BB, BBs in all the unlabeled
frames are reinterpolated. The annotator continues until
satisfied with the result. We experimented with more
sophisticated interpolation schemes, including relying on
tracking; however, cubic interpolation proved best. Label-
ing the �2:3 hours of video, including verification, took
�400 hours total (spread across multiple annotators).
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Fig. 1. Example images (cropped) and annotations from six pedestrian
detection data sets. We perform an extensive evaluation of pedestrian
detection, benchmarking 16 detectors on each of these six data sets. By
using multiple data sets and a unified evaluation framework we can draw
broad conclusion about the state of the art and suggest future research
directions.

Fig. 2. Overview of the Caltech Pedestrian Data Set. (a) Camera setup.
(b) Summary of data set statistics (1k ¼ 103). The data set is large,
realistic, and well annotated, allowing us to study statistics of the size,
position, and occlusion of pedestrians in urban scenes and also to
accurately evaluate the state or the art in pedestrian detection.



For every frame in which a given pedestrian is visible,
annotators mark a BB that indicates the full extent of the
entire pedestrian (BB-full); for occluded pedestrians this
involves estimating the location of hidden parts. In addition
a second BB is used to delineate the visible region (BB-vis),
see Fig. 5a. During an occlusion event, the estimated full BB
stays relatively constant while the visible BB may change
rapidly. For comparison, in the PASCAL labeling scheme
[14] only the visible BB is labeled and occluded objects are
marked as “truncated.”

Each sequence of BBs belonging to a single object was
assigned one of three labels. Individual pedestrians were
labeled “Person” (� 1;900 instances). Large groups for
which it would have been tedious or impossible to label
individuals were delineated using a single BB and labeled
as “People” (� 300). In addition, the label “Person?” was
assigned when clear identification of a pedestrian was
ambiguous or easily mistaken (� 110).

2.2 Data Set Statistics

A summary of the data set is given in Fig. 2b. About
50 percent of the frames have no pedestrians, while
30 percent have two or more, and pedestrians are visible
for 5 s on average. Below, we analyze the distribution of
pedestrian scale, occlusion, and location. This serves to
establish the requirements of a real world system and to
help identify constraints that can be used to improve
automatic pedestrian detection systems.

2.2.1 Scale Statistics

We group pedestrians by their image size (height in pixels)
into three scales: near (80 or more pixels), medium
(between 30-80 pixels), and far (30 pixels or less). This
division into three scales is motivated by the distribution of
sizes in the data set, human performance, and automotive
system requirements.

In Fig. 4a, we histogram the heights of the 350,000 BBs
using logarithmic sized bins. The heights are roughly
lognormally distributed with a median of 48 pixels and a
log-average of 50 pixels (the log-average is equivalent to the
geometric mean and is more representative of typical values
for lognormally distributed data than the arithmetic mean,

which is 60 pixels in this case). Cutoffs for the near/far
scales are marked. Note that � 69% of the pedestrians lie in
the medium scale, and that the cutoffs for the near/far scales
correspond to about �1 standard deviation (in log space)
from the log-average height of 50 pixels. Below 30 pixels,
annotators have difficulty identifying pedestrians reliably.

Pedestrian width is likewise lognormally distributed
and, moreover, so is the joint distribution of width and
height (not shown). As any linear combination of the
components of a multivariate normal distribution is also
normally distributed, so should the BB aspect ratio be
(defined as w=h) since logðw=hÞ ¼ logðwÞ � logðhÞ. A histo-
gram of the aspect ratios, using logarithmic bins, is shown
in Fig. 4b, and indeed the distribution is lognormal. The log-
average aspect ratio is 0.41, meaning that typically w � :41h.
However, while BB height does not vary considerably given
a constant distance to the camera, the BB width can change
with the pedestrian’s pose (especially arm positions and
relative angle). Thus, although we could have defined the
near, medium and far scales using the width, the consis-
tency of the height makes it better suited.

Detection in the medium scale is essential for automotive
applications. We chose a camera setup that mirrors expected
automotive settings: 640� 480 resolution, 27 degrees vertical
field of view, and focal length fixed at 7.5 mm. The focal
length in pixels is f � 1;000 (obtained from 480=2=f ¼
tanð27�=2Þ or using the camera’s pixel size of 7:5 �m). Using
a pinhole camera model (see Fig. 4c), an object’s observed
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Fig. 3. The annotation tool allows annotators to efficiently navigate and
annotate a video in a minimum amount of time. Its most salient aspect is
an interactive procedure where the annotator labels only a sparse set of
frames and the system automatically predicts pedestrian positions in
intermediate frames. The annotation tool is available on the project
website.

Fig. 4. (a) Distribution of pedestrian pixel heights. We define the near
scale to include pedestrians over 80 pixels, the medium scale as 30-
80 pixels, and the far scale as under 30 pixels. Most observed
pedestrians (� 69%) are at the medium scale. (b) Distribution of BB
aspect ratio; on average w � 0:41h. (c) Using the pinhole camera
model, a pedestrian’s pixel height h is inversely proportional to
distance to the camera d: h=f � H=d. (d) Pixel height h as a function
of distance d. Assuming an urban speed of 55 km/h, an 80 pixel
person is just 1.5 s away, while a 30 pixel person is 4 s away. Thus,
for automotive settings, detection is most important at medium scales
(see Section 2.2.1 for details).



pixel height h is inversely proportional to the distance d to
the camera: h � Hf=d, where H is the true object height.
Assuming H � 1:8 m tall pedestrians, we obtain d �
1;800=h m. With the vehicle traveling at an urban speed of
55 km/h (� 15 m=s), an 80 pixel person is just 1.5 s away,
while a 30 pixel person is 4 s away (see Fig. 4d). Thus,
detecting near scale pedestrians may leave insufficient time
to alert the driver, while far scale pedestrians are less
relevant.

We shall use the near, medium, and far scale definitions
throughout this work. Most pedestrians are observed at the
medium scale and, for safety systems, detection must occur
in this scale as well. Human performance is also quite good
in the near and medium scales but degrades noticeably at
the far scale. However, most current detectors are designed
for the near scale and perform poorly even at the medium
scale (see Section 5). Thus, there is an important mismatch
in current research efforts and the requirements of real
systems. Using higher resolution cameras would help;
nevertheless, given the good human performance and
lower cost, we believe that accurate detection in the
medium scale is an important and reasonable goal.

2.2.2 Occlusion Statistics

Occluded pedestrians were annotated with two BBs that
denote the visible and full pedestrian extent (see Fig. 5a). We
plot frequency of occlusion in Fig. 5b, i.e., for each
pedestrian we measure the fraction of frames in which
the pedestrian was at least somewhat occluded. The
distribution has three distinct regions: pedestrians that are
never occluded (29 percent), occluded in some frames
(53 percent), and occluded in all frames (19 percent). Over
70 percent of pedestrians are occluded in at least one frame,
underscoring the importance of detecting occluded people.
Nevertheless, little previous work has been done to quantify
occlusion or detection performance in the presence of
occlusion (using real data).

For each occluded pedestrian, we can compute the
fraction of occlusion as 1 minus the visible pedestrian area
divided by total pedestrian area (calculated from the visible
and full BBs). Aggregating, we obtain the histogram in
Fig. 5c. Over 80 percent occlusion typically indicates full
occlusion, while 0 percent is used to indicate that a BB could
not represent the extent of the visible region (e.g., due to a
diagonal occluder). We further subdivide the cases in
between into partial occlusion (1-35 percent area occluded)
and heavy occlusion (35-80 percent occluded).

We investigated which regions of a pedestrian were most
likely to be occluded. For each frame in which a pedestrian
was partially to heavily occluded (1-80 percent fraction of
occlusion), we created a binary 50� 100 pixel occlusion
mask using the visible and full BBs. By averaging the
resulting � 54 k occlusion masks, we computed the prob-
ability of occlusion for each pixel (conditioned on the
person being partially occluded); the resulting heat map is
shown in Fig. 5d. Observe the strong bias for the lower
portion of the pedestrian to be occluded, particularly the
feet, and for the top portion, especially the head, to be
visible. An intuitive explanation is that most occluding
objects are supported from below as opposed to hanging
from above (another but less likely possibility is that it is
difficult for annotators to detect pedestrians if only the feet
are visible). Overall, occlusion is far from uniform and
exploiting this finding could help improve the performance
of pedestrian detectors.

Not only is occlusion highly nonuniform, there is
significant additional structure in the types of occlusions
that actually occur. Below, we show that after quantizing
occlusion masks into a large number of possible types,
nearly all occluded pedestrians belong to just a handful of
the resulting types. To quantize the occlusions, each BB-full
is registered to a common reference BB that has been
partitioned into qx by qy regularly spaced cells; each BB-vis
can then be assigned a type according to the smallest set of
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Fig. 5. Occlusion statistics. (a) For all occluded pedestrians annotators labeled both the full extent of the pedestrian (BB-full) and the visible region
(BB-vis). (b) Most pedestrians (70 percent) are occluded in at least one frame, underscoring the importance of detecting occluded people.
(c) Fraction of occlusion can vary significantly (0 percent occlusion indicates that a BB could not represent the extent of the visible region).
(d) Occlusion is far from uniform with pedestrians typically occluded from below. (e) To observe further structure in the types of occlusions that
actually occur, we quantize occlusion into a fixed number of types. (f) Over 97 percent of occluded pedestrians belong to just a small subset of the
hundreds of possible occlusion types. Details in Section 2.2.2.



cells that fully encompass it. Fig. 5e shows three example
types for qx ¼ 3; qy ¼ 6 (with two BB-vis per type). There are
a total of

Pqx;qy
i¼1;j¼1 ij ¼ qxqyðqx þ 1Þðqy þ 1Þ=4 possible types.

For each, we compute the percentage of the � 54 k

occlusions assigned to it and produce a heat map using
the corresponding occlusion masks. The top seven of
126 types for qx ¼ 3; qy ¼ 6 are shown in Fig. 5f. Together,
these seven types account for nearly 97 percent of all
occlusions in the data set. As can be seen, pedestrians are
almost always occluded from either below or the side; more
complex occlusions are rare. We repeated the same analysis
with a finer partitioning of qx ¼ 4; qy ¼ 8 (not shown). Of the
resulting 360 possible types, the top 14 accounted for nearly
95 percent of occlusions. The knowledge that very few
occlusion patterns are common should prove useful in
detector design.

2.2.3 Position Statistics

Viewpoint and ground plane geometry (Fig. 4c) constrain
pedestrians to appear only in certain regions of the image.
We compute the expected center position and plot the
resulting heatmap, log-normalized, in Fig. 6a. As can be seen
pedestrians are typically located in a narrow band running
horizontally across the center of the image (y-coordinate
varies somewhat with distance/height). Note that the same

constraints are not valid when photographing a scene from
arbitrary viewpoints, e.g., in the INRIA data set.

In the collected data, many objects, not just pedestrians,
tend to be concentrated in this same region. In Fig. 6b, we
show a heat map obtained by using BBs generated by the
HOG [7] pedestrian detectorwith a low threshold.About half
of the detections, including both true and false positives,
occur in the same band as the ground truth. Thus, incorpor-
ating this constraint could considerably speed up detection
but it would only moderately reduce false positives.

2.3 Training and Testing Data

We split the data set into training/testing sets and specify a
precise evaluation methodology, allowing different re-
search groups to compare detectors directly. We urge
authors to adhere to one of four training/testing scenarios
described below.

The data were captured over 11 sessions, each filmed in
one of five city neighborhoods as described. We divide the
data roughly in half, setting aside six sessions for training
(S0-S5) and five sessions for testing (S6-S10). For detailed
statistics about the amount of data see the bottom row of
Table 1. Images from all sessions (S0-S10) have been
publicly available, as have annotations for the training
sessions (S0-S5). At this time we are also releasing
annotations for the testing sessions (S6-S10).

Detectors can be trained using either the Caltech training
data (S0-S5) or any “external” data, and tested on either the
Caltech training data (S0-S5) or testing data (S6-S10). This
results in four evaluation scenarios:

. Scenario ext0: Train on any external data, test on
S0-S5.

. Scenario ext1: Train on any external data, test on
S6-S10.

. Scenario cal0: Perform 6-fold cross validation using
S0-S5. In each phase use five sessions for training
and the sixth for testing, then merge and report
results over S0-S5.

. Scenario cal1: Train using S0-S5, test on S6-S10.
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Fig. 6. Expected center location of pedestrian BBs for (a) ground truth
and (b) HOG detections. The heat maps are log-normalized, meaning
pedestrian location is even more concentrated than immediately
apparent.

TABLE 1
Comparison of Pedestrian Detection Data Sets (See Section 2.4 for Details)



Scenarios ext0/ext1 allow for evaluation of existing, pre-
trained pedestrian detectors, while cal0/cal1 involve train-
ing using the Caltech training data (S0-S5). The results
reported here use the ext0/ext1 scenarios, thus allowing for
a broad survey of existing pretrained pedestrian detectors.
Authors are encouraged to retrain their systems on our
large training set and evaluate under scenarios cal0/cal1.
Authors should use ext0/cal0 during detector development,
and only evaluate after finalizing all parameters under
scenarios ext1/cal1.

2.4 Comparison of Pedestrian Data Sets

Existing data sets may be grouped into two types:
1) “person” data sets containing people in unconstrained
pose in a wide range of domains and 2) “pedestrian” data
sets containing upright, possibly moving people. The most
widely used “person” data sets include subsets of the MIT
LabelMe data [23] and the PASCAL VOC data sets [14]. In
this work, we focus on pedestrian detection, which is more
relevant to automotive safety.

Table 1 provides an overview of existing pedestrian data
sets. The data sets are organized into three groups. The first
includes older or more limited data sets. The second
includes more comprehensive data sets, including the
INRIA [7], ETH [4], and TUD-Brussels [5] pedestrian data
sets and the Daimler detection benchmark (Daimler-DB) [6].
The final row contains information about the Caltech
Pedestrian Data Set. Details follow below.

Imaging setup. Pedestrians can be labeled in photo-
graphs [7], [16], surveillance video [17], [24], and images
taken from a mobile recording setup, such as a robot or
vehicle [4], [5], [6]. Data Sets gathered from photographs
suffer from selection bias, as photographs are often
manually selected, while surveillance videos have re-
stricted backgrounds and thus rarely serve as a basis for
detection data sets. Data Sets collected by continuously
filming from a mobile recording setup, such as the Caltech
Pedestrian Data Set, largely eliminate selection bias (unless
some scenes are staged by actors, as in [6]) while having
moderately diverse scenes.

Data set size. The amount and type of data in each data
set is given in the next six columns. The columns are:
number of pedestrian windows (not counting reflections,
shifts, etc.), number of images with no pedestrians (a y
indicates cropped negative windows only), and number of
uncropped images containing at least one pedestrian. The
Caltech Pedestrian Data Set is two orders of magnitude
larger than most existing data sets.

Data set type. Older data sets, including the MIT [16],
CVC [19], and NICTA [22] pedestrian data sets and the
Daimler classification benchmark (Daimler-CB) [21], tend to
contain cropped pedestrian windows only. These are
known as “classification” data sets as their primary use is
to train and test binary classification algorithms. In contrast,
data sets that contain pedestrians in their original context
are known as “detection” data sets and allow for the design
and testing of full-image detection systems. The Caltech
data set along with all the data sets in the second set
(INRIA, ETH, TUD-Brussels, and Daimler-DB) can serve as
“detection” data sets.

Pedestrian scale. Table 1 additionally lists the
10th percentile, median, and 90th percentile pedestrian
pixel heights for each data set. While the INRIA data set
has fairly high-resolution pedestrians, most data sets
gathered from mobile platforms have median heights that
range from 50-100 pixels. This emphasizes the importance
of detection of low-resolution pedestrians, especially for
applications on mobile platforms.

Data set properties. The final columns summarize
additional data set features, including the availability of
color images, video data, temporal correspondence between
BBs and occlusion labels, and whether “per-image” evalua-
tion and unbiased selection criteria were used.

As mentioned, in our performance evaluation we
additionally use the INRIA [7], ETH [4], TUD-Brussels [5],
and Daimler-DB [6] data sets. The INRIA data set helped
drive recent advances in pedestrian detection and remains
one of the most widely used despite its limitations. Much
like the Caltech data set, the ETH, TUD-Brussels, and
Daimler-DB data sets are all captured in urban settings
using a camera mounted to a vehicle (or stroller in the case
of ETH). While annotated in less detail than the Caltech
data set (see Table 1), each can serve as “detection” data set
and is thus suitable for use in our evaluation.

We conclude by summarizing the most important and
novel aspects of the Caltech Pedestrian Data Set. The data
set includes Oð105Þ pedestrian BBs labeled in Oð105Þ frames
and remains the largest such data set to date. It contains
color video sequences and includes pedestrians with a large
range of scales and more scene variability than typical
pedestrian data sets. Finally, it is the only data set with
detailed occlusion labels and one of the few to provide
temporal correspondence between BBs.

3 EVALUATION METHODOLOGY

Proper evaluation methodology is a crucial and surpris-
ingly tricky topic. In general, there is no single “correct”
evaluation protocol. Instead, we have aimed to make our
evaluation protocol quantify and rank detector performance
in a realistic, unbiased, and informative manner.

To allow for exact comparisons, we have posted the
evaluation code, ground truth annotations, and detection
results for all detectors on all data sets on the project
website. Use of the exact same evaluation code (as opposed
to a reimplementation) ensures consistent and reproducible
comparisons. Additionally, given all the detector outputs,
practitioners can define novel performance metrics with
which to reevaluate the detectors. This flexibility is
important because while we make every effort to define
realistic and informative protocols, performance evaluation
is ultimately task dependent.

Overall, the evaluation protocol has changed substan-
tially since our initial version described in [3], resulting in a
more accurate and informative evaluation of the state of the
art. We begin with an overview of full image evaluation in
Section 3.1. Next, we discuss evaluation using subsets of
the ground truth and detections in Sections 3.2 and 3.3,
respectively. In Section 3.4, we propose and motivate
standardizing BB aspect ratio. Finally, in Section 3.5, we
examine the alternative per-window (PW) evaluation
methodology.
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3.1 Full Image Evaluation

We perform single frame evaluation using a modified
version of the scheme laid out in the PASCAL object
detection challenges [14]. A detection system needs to take
an image and return a BB and a score or confidence for each
detection. The system should perform multiscale detection
and any necessary nonmaximal suppression (NMS) for
merging nearby detections. Evaluation is performed on the
final output: the list of detected BBs.

A detected BB (BBdt) and a ground truth BB (BBgt) form
a potential match if they overlap sufficiently. Specifically,
we employ the PASCAL measure, which states that their
area of overlap must exceed 50 percent:

ao ¼
: areaðBBdt \BBgtÞ

areaðBBdt [BBgtÞ
> 0:5: ð1Þ

The evaluation is insensitive to the exact threshold as long
as it is below about 0.6, see Fig. 7. For larger values
performance degrades rapidly as improved localization
accuracy is necessary; thus, to focus on detection accuracy,
we use the standard threshold of 0.5 throughout.

Each BBdt and BBgt may be matched at most once.
We resolve any assignment ambiguity by performing the
matching greedily. Detections with the highest confidence
are matched first; if a detected BB matches multiple ground
truth BBs, the match with highest overlap is used (ties are
broken arbitrarily). In rare cases this assignment may be
suboptimal, e.g., in crowded scenes [25], but in practice
the effect is minor. Unmatched BBdt count as false positives
and unmatched BBgt as false negatives.

To compare detectors we plot miss rate against false
positives per image (FPPI) (using log-log plots) by varying
the threshold on detection confidence (e.g., see Figs. 11 and
13). This is preferred to precision recall curves for certain
tasks, e.g., automotive applications, as typically there is an
upper limit on the acceptable false positives per image rate
independent of pedestrian density.

We use the log-average miss rate to summarize detector
performance, computed by averaging miss rate at nine
FPPI rates evenly spaced in log-space in the range 10�2 to
100 (for curves that end before reaching a given FPPI rate,
the minimum miss rate achieved is used). Conceptually,
the log-average miss rate is similar to the average precision
[26] reported for the PASCAL challenge [14] in that it
represents the entire curve by a single reference value. As
curves are somewhat linear in this range (e.g., see Fig. 13),

the log-average miss rate is similar to the performance at
10�1 FPPI but in general gives a more stable and
informative assessment of performance. A similar perfor-
mance measure was used in [27].

We conclude by listing additional details. Some detec-
tors output BBs with padding around the pedestrian (e.g.,
HOG outputs 128� 64 BBs around 96 pixel tall people),
such padding is cropped (see also Section 3.4). Methods
usually detect pedestrians at some minimum size; to coax
smaller detections, we upscale the input images. For
ground truth, the full BB is always used for matching,
not the visible BB, even for partially occluded pedestrians.
Finally, all reported results on the Caltech data set are
computed using every 30th frame (starting with the
30th frame) due to the high-computational demands of
some of the detectors evaluated (see Fig. 15).

3.2 Filtering Ground Truth

Often we wish to exclude portions of a data set during
evaluation. This serves two purposes: 1) excluding ambig-
uous regions, e.g., crowds annotated as “People” where the
locations of individuals is unknown, and 2) evaluating
performance on various subsets of a data set, e.g., on
pedestrians in a given scale range. However, we cannot
simply discard a subset of ground truth labels as this would
cause overreporting of false positives.

Instead, to exclude portions of a data set, we introduce
the notion of ignore regions. Ground truth BBs selected to be
ignored, denoted using BBig, need not be matched;
however, matches are not considered mistakes either. For
example, to evaluate performance on unoccluded pedes-
trians, we set all occluded pedestrian BBs to ignore.
Evaluation is purposely lenient: Multiple detections can
match a single BBig; moreover, a detection may match any
subregion of a BBig. This is useful when the number or
location of pedestrians within a single BBig is unknown as
in the case of groups labeled as “People.”

In the proposed criterion, a BBdt can match any
subregion of a BBig. The subregion that maximizes area of
overlap (1) with BBdt is BBdt \BBig, and the resulting
maximum area of overlap is

ao ¼
: areaðBBdt \BBigÞ

areaðBBdtÞ
: ð2Þ

Matching proceeds as before, except BBdt matched to BBig

do not count as true positives and unmatched BBig do not
count as false negatives. Matches to BBgt are preferred,
meaning a BBdt can only match a BBig if it does not match
anyBBgt, andmultiple matches to a singleBBig are allowed.

As discussed, setting a BBgt to ignore is not the same as
discarding it; in the latter case detections in the ignore
regions would count as false positives. Four types of BBs are
always set to ignore: any BB under 20 pixels high or
truncated by image boundaries, containing a “Person?”
(ambiguous cases), or containing “People.” Detections
within these regions do not affect performance.

3.3 Filtering Detections

In order to evaluate on only a subset of the data set, we
must filter detector responses outside the considered
evaluation range (in addition to filtering ground truth
labels). For example, when evaluating performance in a
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Fig. 7. Log-average miss rates for 50 pixel or taller pedestrians as a
function of the threshold on overlap area (see (1)). Decreasing the
threshold below 0.5 has little affect on reported performance. However,
increasing it over �0:6 results in rapidly increasing log-average miss
rates as improved localization accuracy is necessary.



fixed scale range, detections far outside the scale range
under consideration should not influence the evaluation.

The filtering strategy used in our previous work [3] was
too stringent and resulted in underreporting of detector
performance (this was also independently observed by
Walk et al. [28]). Here, we consider three possible filtering
strategies, strict filtering (used in our previous work),
postfiltering, and expanded filtering, that we believe most
accurately reflects true performance. In all cases, matches to
BBgt outside the selected evaluation range neither count as
true or false positives.

Strict filtering. All detections outside the selected range
are removed prior to matching. If a BBgt inside the range
was matched only by a BBdt outside the range, then after
strict filtering it would become a false negative. Thus,
performance is underreported.

Postfiltering. Detections outside the selected evaluation
range are allowed to match BBgt inside the range. After
matching, any unmatched BBdt outside the range is
removed and does not count as a false positive. Thus,
performance is overreported.

Expanded filtering. Similar to strict filtering, except all
detections outside an expanded evaluation range are
removed prior to evaluation. For example, when evaluating
in a scale range from S0 to S1 pixels, all detections outside a
range S0=r to S1r are removed. This can result in slightly
more false positives than postfiltering, but also fewer
missed detections than strict filtering.

Fig. 8 shows the log-average miss rate on 50 pixel and
taller pedestrians under the three filtering strategies (see
Section 4 for detector details) and for various choices of r
(for expanded filtering). Expanded filtering offers a good
compromise1 between strict filtering (which underreports

performance) and postfiltering (which overreports perfor-
mance). Moreover, detector ranking is robust to the exact
value of r. Thus, throughout this work, we use expanded
filtering (with r ¼ 1:25).

3.4 Standardizing Aspect Ratios

Significant variability in both ground truth and detector BB
width can have an undesirable effect on evaluation. We
discuss the sources of this variability and propose to
standardize aspect ratio of both the ground truth and
detected BBs to a fixed value. Doing so removes an
extraneous and arbitrary choice from detector design and
facilitates performance comparisons.

The height of annotated pedestrians is an accurate
reflection of their scale while the width also depends on
pose. Shown in Fig. 9 are consecutive, independently
annotated frames from the Daimler detection benchmark
[6]. Observe that while BB height changes gradually, the
width oscillates substantially. BB height depends on a
person’s actual height and distance from the camera, but
the width additionally depends on the positions of the
limbs, especially in profile views. Moreover, the typical
width of annotated BBs tends to vary across data sets. For
example, although the log-mean aspect ratio (see Sec-
tion 2.2.1) in the Caltech and Daimler data sets is 0.41 and
0.38, respectively, in the INRIA data set [7] it is just 0.33
(possibly due to the predominance of stationary people).

Various detectors likewise return different width BBs.
The aspect ratio of detections ranges from a narrow 0.34 for
PLS to a wide 0.5 for MULTIFTR, while LATSVM attempts to
estimate the width (see Section 4 for detector references).
For older detectors that output uncropped BBs, we must
choose the target width ourselves. In general, a detector’s
aspect ratio depends on the data set used during develop-
ment and is often chosen after training.

To summarize, the width of both ground truth and
detected BBs is more variable and arbitrary than the height.
To remove any effects this may have on performance
evaluation, we propose to standardize all BBs to an aspect
ratio of 0.41 (the log-mean aspect ratio in the Caltech data
set). We keep BB height and center fixed while adjusting the
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1. Additionally, strict and post filtering are flawed as they can be easily
exploited (either purposefully or inadvertently). Under post filtering,
generating large numbers of detections just outside the evaluation range
can increase detection rate. Under strict filtering, running a detector in the
exact evaluation range ensures all detections fall within that range which
can also artificially increase detection rate. To demonstrate the latter exploit,
in Fig. 8 we plot the performance of CHNFTRS50, which is CHNFTRS [29]
applied to detect pedestrians over 50 pixels. Its performance is identical
under each strategy; however, its relative performance is significantly
inflated under strict filtering. Expanded filtering cannot be exploited in
either manner.

Fig. 8. Comparison of detection filtering strategies used for evaluating
performance in a fixed range of scales. Left: Strict filtering, used in our
previous work [3], undercounts true positives, thus underreporting
results. Right: Postfiltering undercounts false positives, thus over-
reporting results. Middle: Expanded filtering as a function of r.
Expanded filtering with r ¼ 1:25 offers a good compromise between
strict and postfiltering for measuring both true and false positives
accurately.

Fig. 9. Standardizing aspect ratios. Shown are profile views of two
pedestrians. The original annotations are displayed in green (best
viewed in color); these were used to crop fixed size windows centered
on each pedestrian. Observe that while BB height changes gradually,
BB width oscillates significantly as it depends on the positions of the
limbs. To remove any effect pose may have on the evaluation of
detection, during benchmarking width is standardized to be a fixed
fraction of the height (see Section 3.4). The resulting BBs are shown
in yellow.



width (see Fig. 9). Note that the ETH [4] and TUD-Brussels
[5] evaluation protocols also suggested standardizing the
aspect ratio, although to an arbitrarily chosen constant of
0.5. In general, the exact constant has only a minor effect on
reported performance; however, it is important that
detector and ground truth aspect ratios match. For example,
standardizing the aspect ratios had a large positive effect on
detectors that return narrow BBs (including PLS and
LATSVM-V2). All results reported in this paper use the
standardized aspect ratios.

3.5 Per-Window versus Full Image Evaluation

An alternative methodology for evaluating detectors based
on binary classifiers is to measure their per-window perfor-
mance on cropped positive and negative image windows,
thus isolating classifier performance from the overall
detection system. PW evaluation is commonly used to
compare classifiers (as opposed to detectors) or to evaluate
systems that perform automatic region of interest (ROI)
generation [30]. Note that not all detectors are based on
classifiers (e.g., [31], [32]); such detectors cannot be
evaluated using PW metrics.

A common assumption is that better PW performance
leads to better detection performance. In practice, we find
that PW and full image performance are only weakly
correlated, see Fig. 10. The PW results are reproduced from
their original publications2 (except the VJ curve, which is
reproduced from [7]); the full image results were obtained
by evaluating on the same pedestrians but within their
original image context. While PW and full image perfor-
mance are somewhat correlated, the ranking of competing
methods is substantially different.

The are a number of reasons for this discrepancy.
Choices made in converting a binary classifier to a detector,

including choices for spatial and scale stride and nonmax-
imal suppression, influence full image performance. More-
over, the windows tested during PW evaluation are
typically not the same as the windows tested during full
image detection, see Fig. 10c.

Full image metrics provide a natural measure of error of
an overall detection system, and in this work we use full
image metrics throughout. While the PW methodology is
useful for isolating evaluation of binary classifiers (the
classification task), ultimately the goal of pedestrian
detection is to output the location of all pedestrians in an
image (the detection task), and for this task full image
metrics are appropriate. We thus advocate using full image
metrics for evaluation of pedestrian detection as is standard
for general object detection [14].

4 DETECTION ALGORITHMS

We focus on computer vision algorithms for detecting
pedestrians in individual monocular images, which we
refer to simply as “pedestrian detectors.” We begin with
an overview of pedestrian detectors in Section 4.1,
examining the ideas introduced in detection in the last
decade. In Section 4.2, we enumerate and discuss in detail
the 16 representative state-of-the-art detectors used in our
evaluation.

4.1 Survey of the State of the Art

We review pedestrian detectors with a focus on sliding
window approaches. These appear most promising for low
to medium resolution settings, under which segmentation
[35] or keypoint [36], [37] based methods often fail. We list
abbreviations of detectors used in our evaluation in brackets
[ALG]. For an overview of how detectors are incorporated
into full automotive systems that utilize stereo, scene
geometry, tracking, or other imaging modalities (e.g., [30],
[38], [39], [40], [41]), we refer readers to [2], [42], [43]. In this
work, we focus on the detectors themselves.

Papageorgiou and Poggio [16] proposed one of the first
slidingwindowdetectors, applying support vectormachines
(SVM) to an overcomplete dictionary of multiscale Haar
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Fig. 10. Per-window versus full image evaluation on the INRIA pedestrian data set (see Section 4 for detector details and Section 5.2 for complete
results). Legends are ordered by performance. (a) PW results reproduced from their original publications. (b) Full image results obtained by
evaluating on the same pedestrians but within their original image context. While PW and full image performance are somewhat correlated, the
ranking of competing methods is substantially different. (c) Illustration of six cases not tested during PW evaluation that can give rise to false
positives (top) or false negatives (bottom) in full image evaluation. False positives can arise from detections on body parts or at incorrect scales or
positions, while false negatives can arise from slight misalignments between the tested windows and true pedestrian locations or from NMS.

2. PW evaluation must be performed with care: Cropped positive and
negative windows obtained by different sampling procedures may contain
window boundary effects that classifiers can exploit as discriminative
features, leading to overfitting. We observed this for the SHAPELET [33] and
HIKSVM [34] detectors, see also www.cs.sfu.ca/~mori/research/papers/
sabzmeydani_shapelet_cvpr07.html and http://www.cs.berkeley.edu/
~smaji/projects/ped-detector/. The original (ORIG) and corrected PW
results are shown in Fig. 10a; in both cases the overfitting was discovered
only after full image evaluation.



wavelets. Viola and Jones [VJ] [44] built upon these ideas,
introducing integral images for fast feature computation and
a cascade structure for efficient detection, and utilizing
AdaBoost for automatic feature selection. These ideas
continue to serve as a foundation for modern detectors.

Large gains came with the adoption of gradient-based
features. Inspired by SIFT [45], Dalal and Triggs [HOG] [7]
popularized histogram of oriented gradient (HOG) features
for detection by showing substantial gains over intensity-
based features. Zhu et al. [46] sped up HOG features by
using integral histograms [47]. In earlier work, Shashua
et al. [48] proposed a similar representation for characteriz-
ing spatially localized parts for modeling pedestrians. Since
their introduction, the number of variants of HOG features
has proliferated greatly with nearly all modern detectors
utilizing them in some form.

Shape features are also a frequent cue for detection.
Gavrila and Philomin [49], [50] employed the Hausdorff
distance transform and a template hierarchy to rapidly
match image edges to a set of shape templates. Wu and
Nevatia [17] utilized a large pool of short line and curve
segments, called “edgelet” features, to represent shape
locally. Boosting was used to learn head, torso, leg, and full
body detectors; this approach was extended in [18] to
handle multiple viewpoints. Similarly, “shapelets” [33] are
shape descriptors discriminatively learned from gradients
in local patches; boosting was used to combine multiple
shapelets into an overall detector [SHAPELET]. Liu et al. [51]
proposed “granularity-tunable” features that allow for
representations with levels of uncertainty ranging from
edgelet to HOG type features; an extension to the
spatiotemporal domain was developed in [52].

Motion is another important cue for human perception;
nevertheless, successfully incorporating motion features
into detectors has proven challenging given a moving
camera. Given a static camera, Viola et al. [53] proposed
computing Haar-like features on difference images, result-
ing in large performance gains. For nonstatic imaging
setups, however, camera motion must be factored out. Dalal
et al. [54] modeled motion statistics based on an optical flow
field’s internal differences, thereby compensating for uni-
form image motion locally. While the features were
successful on a per-window basis [54], for full image
detection the benefit appeared minimal [55]. This was
resolved by Wojek et al. [5], who showed that certain
modifications were necessary to make the motion features
effective for detection.

While no single feature has been shown to outperform
HOG, additional features can provide complementary
information. Wojek and Schiele [MULTIFTR] [56] showed
how a combination of Haar-like features, shapelets [33],
shape context [57] and HOG features outperforms any
individual feature. Walk et al. [28] extended this frame-
work by additionally combining local color self-similarity
[MULTIFTR+CSS] and the motion features discussed above
[MULTIFTR+MOTION]. Likewise, Wu and Nevatia [58]
automatically combined HOG, edgelet, and covariance
features. Wang et al. [59] combined a texture descriptor
based on local binary patterns (LBP) [60] with HOG
[HOGLBP]; additionally, a linear SVM classifier was
modified to perform basic occlusion reasoning. In addition

to HOG and LBP, [61] used local ternary patterns (variants
of LBP). Color information and implicit segmentation
were added in [62], with a performance improvement
over pure HOG.

Dollár et al. [29] proposed an extension of [VJ] where
Haar-like feature are computed over multiple channels of
visual data [CHNFTRS], including LUV color channels,
grayscale, gradient magnitude, and gradient magnitude
quantized by orientation (implicitly computing gradient
histograms), providing a simple and uniform framework
for integrating multiple feature types. In the “Fastest
Pedestrian Detector in the West” [FPDW] [63], this
approach was extended to fast multiscale detection after it
was demonstrated how features computed at a single scale
can be used to approximate feature at nearby scales.

Considerable effort has also been devoted to improving
the learning framework. Tuzel et al. [64] utilized covariance
matrices computed locally over various features as object
descriptors. Since covariance matrices do not lie on a vector
space, the boosting framework was modified to work on
Riemannian manifolds, with improved performance. Maji
et al. [34] proposed an approximation to the histogram
intersection kernel for use with SVMs [HIKSVM], allowing
for substantial speedups and thus enabling a nonlinear
SVM to be used in sliding-window detection. Babenko et al.
[65] proposed an approach for simultaneously separating
data into coherent groups and training separate classifiers
for each; Wojek et al. [5] showed that both Maji et al. [34]
and Babenko et al. [65] gave modest gains over linear SVMs
and AdaBoost for pedestrian detection, especially when
used in combination [66].

A number of groups have attempted to efficiently utilize
very large feature spaces. “Feature mining” was proposed
by Dollár et al. [67] to explore vast (possibly infinite) feature
spaces using various strategies including steepest descent
search prior to training a boosted classifier [FTRMINE].
These ideas were developed further by Bar-Hillel et al. [68],
who introduced a scheme for synthesizing and combining a
rich family of part-based features in an SVM framework
[FEATSYNTH]. Schwartz et al. [69] represented pedestrians
by edges, texture, and color and applied partial least
squares to project the features down to a lower dimensional
space prior to SVM training [PLS].

To cope with articulation, the notion of parts and pose has
been investigated by several authors. Mohan et al. [73]
successfully extended [16] with a two stage approach: First,
head, arm, and leg detectors were trained in a fully
supervisedmanner, next the detectors’ outputwas combined
to fit a rough geometric model. Such fully supervised two
stage approaches have been revisited over time [17], [74],
[75]. Likewise, Bourdev and Malik [76] proposed to learn an
exhaustive dictionary of “poselets:” parts clustered jointly in
appearance and pose. Supervised pose estimation has been
used in a similar manner. Lin and Davis [70] used a part-
template tree to model a pedestrian’s shape locally for the
head, upper body, and legs, and extracted HOG appearance
descriptors along the shape’s outline [POSEINV]. Enzweiler
and Gavrila [77] labeled pedestrians as belonging to one of
four canonical orientations and jointly perform classification
and orientation estimation. Joint body pose estimation and
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person classification can also be formulated as a structured
learning problem [78].

Notable early approaches for unsupervised part learn-
ing, including the constellation model [79], [80] and the
sparse representation approach of Agarwal and Roth [81],
relied on keypoints. Leibe et al. [36] adapted the implicit
shape model, also based on keypoints, for detecting
pedestrians. However, as few interest points are detected
at lower resolutions, unsupervised part-based approaches
that do not rely on keypoints have been proposed. Multiple
instance learning (MIL) has been employed in order to
automatically determine the position of parts without part-
level supervision [82], [83]. And, in one of the most
successful approaches for general object detection to date,
Felzenszwalb et al. [71], [72] proposed a discriminative
part-based approach that models unknown part positions
as latent variables in an SVM framework [LATSVM]. As
part models seem to be most successful at higher resolu-
tions, Park et al. [84] extended this to a multiresolution
model that automatically switches to parts only at suffi-
ciently high resolutions.

4.2 Evaluated Detectors

We chose 16 representative state-of-the-art pedestrian
detectors for this evaluation (see Section 4.1 and Table 2).
Our goal was to choose a diverse set of detectors that were
both representative of various lines of research and most
promising in terms of originally reported performance.
While we could not be exhaustive due to unavailability of
many detectors and practical time and space constrains, we
do believe that the selected detectors give an accurate
portrait of the state of the art.

In nearly all cases, we obtained pretrained detectors
directly from the authors as our goal was to have an
unbiased evaluation of existing approaches. Any major
differences from the original publications are discussed
below. We thank the authors for either publishing their
code online or making it available upon request.

While research in pedestrian detection is quite diverse,
the approaches with the highest reported performance share
many elements. These detectors typically follow a sliding
window paradigm which entails feature extraction, binary
classification, and dense multiscale scanning of detection
windows followed by nonmaximum suppression. Below we
discuss each component of the evaluated detectors, includ-
ing the features, learning framework, and detection details,
and conclude with implementation notes; for additional
details, we refer readers to the original publications. Table 2,
ordered by descending log-average miss rate on clearly
visible pedestrians in the Caltech data set (see Section 5 for
details), gives an overview of each detector.

Features. The first columns in Table 2 indicate the feature
typesusedby eachdetector (specified by the general category
of image content extracted and not the particular instantia-
tion). Nearly all modern detectors employ some form of
gradient histograms [7]. In addition, detectors can utilize
gradients directly, as well as grayscale (e.g., Haar wavelets
[44]), color, texture (including LBP [60] and co-occurrence
[85]), self-similarity [86], and motion [54] features. The best
performing detectors tend to use a combination of cues.

Learning. The second set of columns provides details
about the learning paradigm used by each detector. Support
vector machines [16] and boosting [44] are the most popular
choices due to their theoretical guarantees, extensibility,
and good performance. Boosted classifiers and linear SVMs
are particularly well suited due to their speed; nonlinear
kernels are less common, the exception being the fast
histogram intersection kernel [34]. Boosting automatically
performs feature selection; alternatively, some detectors
(indicated with a mark in the “feature learning” column)
learn a smaller or intermediate set of features prior to or
jointly with classifier training. Finally, a few detectors,
including LATSVM and FEATSYNTH, are part based.

Detection details. The next columns describe the
detection scheme. Two dominant nonmaximum suppres-
sion approaches have emerged: mean shift (MS) mode
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TABLE 2
Comparison of Evaluated Pedestrian Detectors (See Section 4.2 for Details)



estimation [55] and pairwise max (PM) suppression [71],
which discards the less confident of every pair of
detections that overlap sufficiently according to (1). PM
requires only a single parameter; in addition, a variant has
been proposed (PM*) that allows a detection to match any
subregion of another detection, resulting in improved
performance (see (2) and addendum to [29]). FEATSYNTH

only tests windows returned by FTRMINE and does not
require NMS. Pedestrian model height is typically around
96-100 pixels (the size of precropped pedestrians in the
INRIA data set), with an additional 28-32 pixels of
padding. For multiscale detection, usually around 10-
14 scales per octave are scanned (with corresponding scale
strides of 1.07-1.05); a fast multiscale scheme is proposed in
[63]. Runtimes (for detecting over 100 pixel pedestrians in
640� 480 images) and log-average miss rates (on clearly
visible pedestrians) are discussed in Section 5.

Implementation notes. The final columns of Table 2 list
additional details. Most of the evaluated detectors were
trained on the INRIA data set [7]; two were trained on TUD
motion pairs (TUD-MP) (the training set for TUD-Brussels
[5]). LATSVM-V1 was trained on Pascal [14]; LATSVM-V2
used INRIA and a later version of the latent SVM framework
[72]. In nearly all cases, we used code obtained directly from
the authors, the only exceptions being VJ and SHAPELET,
which were reimplemented in [56]. In a few cases, the
evaluated code differed from the published version: SHAPE-

LET and HIKSVM have been corrected so they no longer
overfit to boundary effects; we evaluate a variant of
POSEINV based on boosting (which in our tests out-
performed the much slower kernel SVM version); PLS

switched to PM� NMS; and finally, the posted code for
HOGLBP does not include occlusion reasoning (the im-
provement from occlusion reasoning was slight [59]).

5 PERFORMANCE EVALUATION

We performed an extensive evaluation of the 16 pedestrian
detectors enumerated in Table 2 under various scenarios
and for multiple data sets. First, in Section 5.1 we evaluate
performance under different conditions using the Caltech
Data Set. Next, we report performance on six additional
data sets in Section 5.2 and analyze statistical significance in
Section 5.3. Finally, in Section 5.4 we report runtimes.

We chose to evaluate pretrained detectors, obtained
directly from their authors. This is an important methodo-
logical point: We assume that authors know best how to
tune their algorithms; attempting to train the detectors
ourselves would have opened the difficult subject of
parameter tuning, making our study unwieldy. Moreover,
few authors share training code; thus, insisting on retraining
would have severely limited our ability to conduct a broad
evaluation. Fortunately, most of the detectors were trained
on the same data set (see Table 2), making them directly
comparable. Additionally, testing these pretrained detectors
on multiple other data sets allows us to study cross-data set
generalization, a topic of crucial real-world importance.

5.1 Performance on the Caltech Data Set

We first analyze performance under six conditions on the
testing data in the Caltech Pedestrian Data Set. Fig. 11
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Fig. 11. Evaluation results under six different conditions on the Caltech Pedestrian Data Set. (a) Overall performance on all annotated pedestrians is
unsatisfactory. (b) Performance on unoccluded pedestrians over 80 pixels tall is substantially better, but (c) degrades for 30-80 pixel pedestrians.
(d) Likewise, performance on unoccluded pedestrians over 50 pixels tall is better than overall performance, but (e) degrades in the presence of
partial occlusion. (f) This motivates us to evaluate performance on pedestrians at least 50 pixels tall under no or partial occlusion; we refer to this as
the reasonable evaluation setting and use it throughout.



shows performance for the overall data set, on near and
medium scales, under no and partial occlusion, and on
clearly visible pedestrians. We plot miss rate versus false
positives per image (lower curves indicate better perfor-
mance) and use log-average miss rate as a common
reference value for summarizing performance. Legend
entries display and are ordered by log-average miss rate
from worst to best. We discuss the plots in detail below.

Overall. Fig. 11a plots performance on the entire test set.
MULTIFTR+MOTION slightly outperforms the other detec-
tors, with CHNFTRS a close second. However, absolute
performance is poor, with a log-average miss rate of over
80 percent. To understand where the detectors fail, we
examine performance under various conditions.

Scale. Results for near and medium scale unoccluded
pedestrians, corresponding to heights of at least 80 pixels
and 30-80 pixels, respectively (see Section 2.2.1), are shown
in Figs. 11b and 11c. For the near scale, MULTIFTR+MOTION

performs best with a log-average miss rate of only
22 percent; numerous other detectors still achieve reason-
able log-average miss rates around 30-40 percent. On the
medium scale, which contains over 68 percent of ground
truth pedestrians (see Fig. 4a), performance degrades
dramatically. CHNFTRS, FPDW, and FEATSYNTH achieve
the best relative performance, but absolute performance is
quite poor with 77-78 percent log-average miss rate.
Moreover, the top three performing detectors on near scale
pedestrians degrade most. We can see this trend clearly by
plotting log-average miss rate as a function of scale. Fig. 12
shows performance at five scales between 32 and 128 pixels
(see also Sections 3.2 and 3.3). Performance improves for all
methods with increasing scale, but most for MULTI-

FTR+MOTION, HOGLBP, and LATSVM-V2. These utilize
motion, texture, and parts, respectively, for which high
resolutions appear to be particularly important.

Occlusion. The impact of occlusion on detecting 50 pixel
or taller pedestrians is shown in Figs. 11d and 11e. As
discussed in Section 2.2.2, we classify pedestrians as
unoccluded, partially occluded (1-35 percent occluded), and
heavily occluded (35-80 percent occluded). Performance
drops significantly even under partial occlusion, leading to
a log-average miss rate of 73 percent for CHNFTRS and

MULTIFTR+MOTION. Surprisingly, performance of part-
based detectors degrades as severely as for holistic detectors.

Reasonable. Performance for medium scale or partially
occluded pedestrians is poor, while for far scales or under
heavy occlusion it is abysmal (see Fig. 16). This motivates us
to evaluate performance on pedestrians over 50 pixels tall
under no or partial occlusion (these are clearly visible
without much context). We refer to this as the reasonable
evaluation setting. Results are shown in Fig. 11f; MULTI-

FTR+MOTION, CHNFTRS, and FPDW perform best with log-
average miss rates of 51-57 percent. We believe this
evaluation is more representative than overall performance
on all pedestrians and we use it for reporting results on all
additional data sets in Section 5.2 and for the statistical
significance analysis in Section 5.3.

Localization. Recall that the evaluation is insensitive to
the exact overlap threshold used for matching so long as it
is below � 0:6 (see Section 3.1 and Fig. 7). This implies that
nearly all detections that overlap the ground truth overlap it
by at least half. However, as the threshold is further
increased and higher localization accuracy is required,
performance of all detectors degrades rapidly. Detector
ranking is mostly maintained except MULTIFTR and PLS
degrade more; this implies that all but these two detectors
have roughly the same localization accuracy.

5.2 Evaluation on Multiple Data Sets

To increase the scope of our analysis, we benchmarked the
detectors on six additional pedestrian detection data sets,
including INRIA [7], TUD-Brussels [5], ETH [4], Daimler-
DB [6], Caltech-Training, and Caltech-Japan. These data sets
are discussed in Section 2.4 and Table 1; we also review
their most salient aspects below. Evaluating across multiple
data sets allows us to draw conclusion both about the
detectors and the data sets. Here, we focus on the data sets,
we return to assessing detector performance using multiple
data sets in Section 5.3. Performance results for every data
set are shown in Fig. 13.

We begin with a brief review of the six data sets. INRIA
contains images of high-resolution pedestrians collected
mostly from holiday photos (we use only the 288 test
images that contain pedestrians; note that a few have
incomplete labels). The remaining data sets were recorded
with a moving camera in urban environments and all
contain color except Daimler-DB. ETH has higher density
and larger scale pedestrians than the remaining data sets
(we use the refined annotations published in [5]). Caltech-
Training refers to the training portion of the Caltech
Pedestrian Data Set. Caltech-Japan refers to a data set we
gathered in Japan that is essentially identical in size and
scope to the Caltech data set (unfortunately, it cannot be
released publicly for legal reasons). Table 1 provides an
overview and further details on each data set’s properties
and statistics (see also Fig. 1).

We benchmark performance using the reasonable eva-
luation setting (50 pixel or taller under partial or no
occlusion), standardizing aspect ratios as described in
Section 3.4. For Daimler-DB and INRIA, which contain
only grayscale and static images, respectively, we run only
detectors that do not require color and motion information.
Also, FTRMINE and FTRSYNTH results are not always
available; otherwise, we evaluated every detector on every
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Fig. 12. Performance as a function of scale. All detectors improve rapidly
with increasing scale, especially MULTIFTR+MOTION, HOGLBP, and
LATSVM-V2, which utilize motion, texture, and parts, respectively. At
small scales, state-of-the-art performance has considerable room for
improvement.



data set. We make all data sets, along with annotations and
detector outputs for each, available in a single standardized
format on our project webpage.

Of all data sets, performance is best on INRIA, which
contains high-resolution pedestrians, with LATSVM-V2,
CHNFTRS, and FPDW achieving log-average miss rates of
20-22 percent (see Fig. 13a). Performance is also fairly high on
Daimler-DB (Fig. 13b) with 29 percent log-average miss rate
attained by MULTIFTR+MOTION, possibly due to the good
image quality resulting from use of a monochrome camera.
ETH (Fig. 11c), TUD-Brussels (Fig. 13d), Caltech-Training
(Fig. 13e), and Caltech-Testing (Fig. 11f) are more challen-
ging, with log-averagemiss rates between 51-55 percent, and
Caltech-Japan (Fig. 13f) is even more difficult due to lower
image quality. Overall, detector ranking is reasonably
consistent across data sets, suggesting that evaluation is
not overly dependent on the data set used.

5.3 Statistical Significance

We aim to rank detector performance utilizing multiple data
sets and assess whether the differences between detectors
are statistically significant. Two issues make such an
analysis challenging: 1) Data set difficulty varies and 2)
relative detector performance may change across data sets.
The plots in Fig. 13 clearly demonstrate both challenges. To
address this, Dem�sar [87] introduced a series of powerful
statistical tests that operate on an m data set by n algorithm
performance matrix (e.g., a matrix of log-average miss
rates). The key insight is to convert absolute performance on
each data set into algorithm rank, thus removing the effects

of varying data set difficulty. We first describe the analysis
and then present results for pedestrian detectors.

We analyze statistical significance using the nonpara-
metric Friedman test with a posthoc analysis; this approach
was also used by Everingham et al. [14] for the PASCAL
VOC challenge. Contrary to ANOVA, the Friedman test
does not assume a distribution on performance, but rather
uses algorithm ranking. Dem�sar [87] found this nonpara-
metric approach to be more robust. A further in-depth study
by Garcı́a and Herrera [88] concluded that the Nemenyi
posthoc test which was used by Dem�sar [87] (and also in the
PASCAL challenge [14]) is too conservative for n� n
comparisons such as in a benchmark. They recommend
use of more powerful posthoc tests such as the Shaffer test
that include more sophisticated logic reasoning. For our
analysis we use the nonparametric Friedman test along with
the Shaffer posthoc test (code is available from [88]).

To obtain a sufficient number of performance samples
we evaluate the pretrained detectors separately on each of
the 11 sets in the Caltech data set (see Section 2.3), 13 sets of
Caltech-Japan, three sequences in ETH, and one sequence in
TUD-Brussels. We omit Daimler-DB and INRIA on which
not all detectors can be tested and any detector not tested on
every data set (see Section 5.2). We rank detectors on each
data fold based on their log-average miss rate (tested under
the reasonable evaluation setting). This procedure yields a
total of 28 rankings for 14 detectors.

Results are shown in Fig. 14. First, we plot the number
of times each detector achieved each rank in Fig. 14a.
Detectors are ordered by improving mean rank (displayed
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Fig. 13. Results on six data sets under the reasonable evaluation setting. In general, detector ranking is fairly stable across data sets. Best results
are achieved on INRIA (a), which contains high-resolution pedestrians, followed by Daimler-DB (b), likely due to the good image quality. Overall
performance for ETH (c), TUD-Brussels (d), Caltech-Train (e), and Caltech-Test (Fig. 11f) are similar. Performance on Caltech-Japan (f) is slightly
worse, likely due to more challenging imaging conditions. The fairly high consistency of detector ranking across multiple data sets implies that
evaluation is not overly dependent on the data set used.



in brackets). The best overall performing detector is
MULTIFTR+MOTION, which ranked first on 17 of the
28 data folds and had a mean rank of 2.4. CHNFTRS and
FPDW came in second and third with a mean rank of 3.3
and 3.8, respectively. VJ has the worst overall performance
with a mean rank of 13.5, while HOG remains somewhat
competitive with a mean rank of 8.2. Among the top
performing detectors, however, variance is fairly high,
with nearly every detector from MULTIFTR onward
ranking first on at least one data fold.

Fig. 14b shows the results of the significance test for a
confidence level of � ¼ 0:05. The x-axis showsmean rank for
each detector, blue bars link detectors for which there is
insufficient evidence to declare them statistically signifi-
cantly different. For example, MULTIFTR+MOTION,
CHNFTRS, and FPDW are all significantly better than HOG
(since they are not linked). Observe, however, that the
differences between the top six detector are not statistically
significant; indeed, each detector tends to be linked to
numerous others. This result does not change much if we
relax the confidence to � ¼ 0:1. A similar trendwas observed
inEveringhamet al.’s [14] analysis on thePASCALchallenge.
Unfortunately, the statistical analysis requires a large
number of samples, and while the 28 data folds provide a
considerably more thorough analysis of pedestrian detectors
than previously attempted, given their inherent variability
even more data would be necessary. We emphasize,
however, that simply because we have insufficient evidence
to declare the detectors statistically significantly different
does not imply that their performance is equal.

5.4 Runtime Analysis

In many applications of pedestrian detection, including
automotive safety, surveillance, robotics, and human
machine interfaces, fast detection rates are of the essence.
Although throughout we have focused on accuracy, we
conclude by jointly considering both accuracy and speed.

We measure runtime of each detector using images from
the Caltech data set (averaging runtime over multiple
frames). To compensate for detectors running on different
hardware, all runtimes are normalized to the rate of a single
modern machine. We emphasize that we measure the speed
of binaries provided by the authors and that faster
implementations are likely possible.

In Fig. 15, we plot log-average miss rate versus runtime
for each detector on 640� 480 images. Legends are ordered
by detection speed measured in frames per second (fps).
Detection speed for pedestrians over 100 pixels ranges
from �0:02 to �6:5 fps achieved by FPDW, a sped up
version of CHNFTRS. Detecting 50 pixel pedestrians
typically requires image upsampling; the slowest detectors
require around 5 minutes per frame. FPDW remains the
fastest detector operating at �2:7 fps. Overall, there does
not seem to be a strong correlation between runtime and
accuracy. While the slowest detector happens to also be the
most accurate (MUTLIFTR+MOTION), on pedestrians over
50 pixels the two fastest detectors, CHNFTRS and FPDW,
are also the second and third most accurate, respectively.

While the frame rates may seem low, it is important to
mention that all tested detectors can be employed as part of
a full system (cf. [2]). Such systems may employ ground
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Fig. 14. Summary of detector performance across multiple data sets and the statistical significance of the results. (a) Visualization of the number of
times each detector achieved each rank. Detectors are ordered by improving mean rank (displayed in brackets); observe the high variance among
the top performing detectors. (b) Critical difference diagram [87]: The x-axis shows mean rank, blue bars link detectors for which there is insufficient
evidence to declare them statistically significantly different (due to the relatively low number of performance samples and fairly high variance).

Fig. 15. Log-average miss rate versus the runtime of each detector on 640� 480 images from the Caltech Pedestrian Data Set. Runtimes of all
detectors are normalized to the rate of a single modern machine; hence all times are directly comparable. (Note that the VJ implementation used did
not utilize scale invariance; hence its slow speed.) While the slowest detector happens to also be the most accurate (MUTLIFTR+MOTION), for
pedestrians over 50 pixels the two fastest detectors, CHNFTRS and FPDW, are also the second and third most accurate, respectively.



plane constraints and perform region-of-interest selection
(e.g., from stereo disparity or motion), reducing runtime
drastically. Moreover, numerous approaches have been
proposed for speeding up detection, including speeding up
the detector itself [29], [44], [46], through use of approxima-
tions [63], [89] or by using special purpose hardware such
as GPUs [90] (for a review of fast detection see [63]).
Nevertheless, the above runtime analysis gives a sense of
the speed of current detectors.

6 DISCUSSION

This study was carried out to assess the state of the art in
pedestrian detection. Automatically detecting pedestrians
from moving vehicles could have considerable economic
impact and the potential to substantially reduce pedestrian
injuries and fatalities. We make three main contributions: a
new data set, an improved evaluation methodology, and an
analysis of the state of the art.

First, we put together an unprecedented object detection
data set. The data set is large, representative, and relevant.
It was collected with an imaging geometry and in multiple
neighborhoods that match likely conditions for urban
vehicle navigation. Second, we propose an evaluation
methodology that allows us to carry out probing and
informative comparisons between competing approaches to
pedestrian detection in a realistic and unbiased manner.
Third, we compare the performance of 16 pretrained state-
of-the-art detectors across six data sets. Performance is
assessed as a function of scale, degree of occlusion,
localization accuracy, and computational cost; moreover,
we gauge the statistical significance of the ranking of
detectors across multiple data sets.

All results of this study, and the tools for reproducing
them, are posted on the project website.3 This includes the
Caltech Pedestrian Data Set, the video annotation tool (see
Fig. 3), and all evaluation code. We have also posted all
additional data sets used in this study (INRIA, TUD-
Brussels, ETH, and Daimler-DB), along with their annota-
tions and detector outputs on each, in a standardized
format. The goal is to allow all researchers to easily and
accurately assess state-of-the-art performance.

Our experiments allow us to make a number of
observations and point to important directions for further
research. We discuss them in the following sections.

6.1 Statistics of the Caltech Pedestrian Data Set

The Caltech Pedestrian Data Set is thoroughly annotated
(including occlusion labels, temporal correspondences, and
“ignore” regions) and contains pedestrians at a wide range
of scales. It thus allows us to analyze the statistics of a
number of important phenomena:

Scale. Pedestrian pixel size is highly variable. Most
pedestrians, however, are observed at heights of 30 to
80 pixels. This scale range also happens to be the most
important for automotive settings given current sensor
technology and typical imaging geometry (see Fig. 4).

Occlusion. Occlusion is very frequent (see Figs. 5b and
5c). Nevertheless, out of many possible occlusion patterns,
few are commonly observed (see Fig. 5f). The head is

typically visible, while the lower portions of a pedestrian
are increasingly likely to be occluded.

Location. The distribution of pedestrian centers in
images is highly concentrated along the middle band (see
Fig. 6a). However, while incorporating this constraint
would speed detection, it would only moderately reduce
false alarms under these settings (see Fig. 6b).

Experiments across multiple data sets show reasonably
consistent detector rankings (see Figs. 13 and 14), suggest-
ing that evaluation is not overly dependent on the data set
used. Overall, however, the Caltech Pedestrians Data Set
proves to be the most challenging. We thus expect that it
will remain useful for a fairly long time before showing
signs of saturation. Furthermore, its large size and thorough
annotation enables researchers to measure performance
under very low-false alarm rates, small scales, and varying
levels of occlusion.

6.2 Overall Performance

There is considerable room for improvement in pedestrian
detection. The plots in Fig. 11 show that:

1. Performance is far from perfect, even under the
most favorable conditions. At the near scale, i.e.,
with pedestrians at least 80 pixels tall, 20-30 percent
of all pedestrians are missed under the fairly mild
goal of at most one false alarm every 10 images (see
Fig. 11b).

2. Performance degrades catastrophically for smaller
pedestrians (see Figs. 11c and 12). While pedestrians
30-80 pixels tall are most numerous and most
relevant in automotive settings, around 80 percent
are missed by the best detectors (at 1 false alarm per
10 images).

3. Performance degrades similarly under partial occlu-
sion (under 35 percent occluded), see Fig. 11e.

4. Performance is abysmal at far scales (under 30 pixels)
and under heavy occlusion (over 35 percent oc-
cluded), see Fig. 16. Under these conditions nearly all
pedestrians are missed even at high false positive
rates.

The gap between current and desired performance is
large and unlikely to be reached without major leaps in our
understanding. One should note that single frame perfor-
mance is a lower bound for the performance of a full system
and that tracking, contextual information, and the use of
additional sensors can help reduce false alarms and
improve detection rates (see [2]).
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3. www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/.

Fig. 16. Evaluation on far scales and for heavily occluded pedestrians. In
both cases, detection performance is abysmal and currently outside the
capabilities of the state of the art.



6.3 State-of-the-Art Detectors

While research in pedestrian detection is quite diverse, the
approaches with the best performance have many ele-
ments in common (see Table 2). These detectors typically
follow a sliding window paradigm which entails feature
extraction, binary classification, and dense multiscale
scanning of detection windows followed by nonmaximum
suppression. Nearly all modern detectors employ some
form of gradient histograms; in addition, the best
performing detectors tend to use a combination of cues.
Support vector machines and boosting are used almost
exclusively although variants show promise. For multi-
scale detection, 10-14 scales per octave are commonly
tested, and for NMS, mean shift mode estimation and
pairwise max suppression appear most successful. Overall,
there is a high degree of convergence for the various
stages of detection.

Which is the best overall detector? Fig. 15 summarizes
both detection accuracy and computational cost; surpris-
ingly, there does not seem to be a hard tradeoff between
these two quantities. Overall, FPDW has the most appealing
characteristics: It is at least one order of magnitude faster
than its competitors and has among the best detection rates,
particularly on medium scale pedestrians. If computational
cost is not a consideration, then MULTIFTR+MOTION is the
best choice. Note, however, that retraining on the larger
Caltech Pedestrian Data Set may change the relative
ranking of the detectors.

The state of the art in pedestrian detection is clearly
advancing. Considerable progress has been made from
earlier approaches (e.g., VJ) to the most recent ones (see
Table 2). Thus, given the fast pace of technical progress in
the field and the considerable room for improvement, we
expect to see new detectors top the charts every year.

6.4 Research Directions

Ourbenchmark indicates theneed for research in sevenareas:

1. Small scales. Better performance is needed in the 30-
80 pixel range, while most research has been
focused on pedestrians over 100 pixels. Reasonable
human performance at medium scales indicates that
detection in this range is achievable without
resorting to expensive high-resolution cameras that
would delay the introduction of machine vision
systems to automotive settings.

2. Occlusion. Performance degrades rapidly under even
mild occlusion, including for part-based detectors.
The Caltech Pedestrian Data Set is the first to include
occlusion labels (and a study of occlusion statistics);
we hope this motivates researchers to improve this.

3. Motion features. The detector with highest accuracy
(MULTIFTR+MOTION) is the only one to utilize
motion features, but the optical flow-based features
appear to help primarily at large scales. At low
resolutions, motion is very informative for human
perception; thus effective motion features for this
setting are needed.

4. Temporal integration. Although full systems often
utilize tracking (e.g., see [2], [6], [42]), a comparative
study of approaches for integrating detector outputs

over time has not been carried out. Note that full
tracking may be unnecessary and methods that
integrate detector outputs over a few frames may
suffice [41].

5. Context. The ground plane assumption can reduce
errors somewhat; however, at low resolutions
more sophisticated approaches for utilizing context
are needed.

6. Novel features. The best detectors use multiple
feature types in combination with gradient histo-
grams (see Table 2). We expect additional gains from
continued research on improving feature extraction.

7. Data. Most detectors were trained on INRIA [7].
Training using the much larger Caltech data set
should boost performance, although learning be-
comes more challenging due to the broad range of
scale and occlusion levels. Studies are needed to see
the effect of quantity and type of training data
versus performance.

ACKNOWLEDGMENTS

P. Perona and P. Dollár acknowledge the support of ONR
MURI Grants #N00014-06-1-0734 and #1015-G-NA127. This
project was also partially supported by Nissan Motor Co.,
Ltd. The authors thank Seigo Watanabe of Nissan for
collecting the video and for many useful discussions. They
would also like to thank all authors that made their
detection code available.

REFERENCES

[1] U. Shankar, “Pedestrian Roadway Fatalities,” technical report,
Dept. of Transportation, 2003.

[2] D. Geronimo, A.M. Lopez, A.D. Sappa, and T. Graf, “Survey on
Pedestrian Detection for Advanced Driver Assistance Systems,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 7,
pp. 1239-1258, July 2010.

[3] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian
Detection: A Benchmark,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2009.

[4] A. Ess, B. Leibe, and L. Van Gool, “Depth and Appearance
for Mobile Scene Analysis,” Proc. IEEE Int’l Conf. Computer
Vision, 2007.

[5] C. Wojek, S. Walk, and B. Schiele, “Multi-Cue Onboard Pedestrian
Detection,” Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, 2009.

[6] M. Enzweiler and D.M. Gavrila, “Monocular Pedestrian
Detection: Survey and Experiments,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 31, no. 12, pp. 2179-
2195, Dec. 2009.

[7] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for
Human Detection,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2005.

[8] J.L. Barron, D.J. Fleet, S.S. Beauchemin, and T.A. Burkitt,
“Performance of Optical Flow Techniques,” Int’l J. Computer
Vision, vol. 12, no. 1, pp. 43-77, 1994.

[9] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and R. Szeliski,
“A Database and Evaluation Methodology for Optical Flow,” Proc.
IEEE Int’l Conf. Computer Vision, 2007.

[10] D. Martin, C. Fowlkes, and J. Malik, “Learning to Detect Natural
Image Boundaries Using Local Brightness, Color, and Texture
Cues,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 26, no. 5, pp. 530-549, May 2004.

[11] D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation of
Dense Two-Frame Stereo Correspondence Algorithms,” Int’l
J. Computer Vision, vol. 47, pp. 7-42, 2002.

[12] L. Fei-Fei, R. Fergus, and P. Perona, “One-Shot Learning of Object
Categories,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 28, no. 4, pp. 594-611, Apr. 2006.

DOLL�AR ET AL.: PEDESTRIAN DETECTION: AN EVALUATION OF THE STATE OF THE ART 759



[13] G. Griffin, A. Holub, and P. Perona, “Caltech-256 Object Category
Data Set,” Technical Report 7694, California Inst. of Technology,
2007.

[14] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, and A.
Zisserman, “The PASCAL Visual Object Classes (VOC) Chal-
lenge,” Int’l J. Computer Vision, vol. 88, no. 2, pp. 303-338, June
2010.

[15] S. Baker and I. Matthews, “Lucas-Kanade 20 Years On: A Unifying
Framework,” Int’l J. Computer Vision, vol. 56, no. 3, pp. 221-255,
2004.

[16] C. Papageorgiou and T. Poggio, “A Trainable System for Object
Detection,” Int’l J. Computer Vision, vol. 38, no. 1, pp. 15-33, 2000.

[17] B. Wu and R. Nevatia, “Detection of Multiple, Partially Occluded
Humans in a Single Image by Bayesian Combination of Edgelet
Part Detectors,” Proc. 10th IEEE Int’l Conf. Computer Vision, 2005.

[18] B. Wu and R. Nevatia, “Cluster Boosted Tree Classifier for Multi-
View, Multi-Pose Object Detection,” Proc. 11th IEEE Int’l Conf.
Computer Vision, 2007.

[19] D. Gerónimo, A. Sappa, A. López, and D. Ponsa, “Adaptive Image
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